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Abstract

Computer chess provides a good testbed for understand-
ing dynamic MIMD-style computations. To investigate the
programming issues, we engineered a parallel chess pro-
gram called *Socrates, which running on the NCSA’s 512
processor CM-5, tied for third in the 1994 ACM Interna-
tional Computer Chess Championship. *Socrates uses the
Jamboree algorithm to search game trees in parallel and
uses the Cilk 1.0 language and run-time system to express
and to schedule the computation. In order to obtain good
performance for chess, we use several mechanisms not di-
rectly provided by Cilk, such as aborting computations and
directly accessing the active message layer to implement a
global transposition table distributed across the processors.
We found that we can use the critical path C and the total
workW to predict the performance of our chess programs.
Empirically *Socrates runs in timeT � 0:95C+1:09W=P
on P processors. For best-ordered uniform trees of heighth and degree d the average available parallelism in Jam-
boree search is Θ((d=2)h=2). *Socrates searching real
chess trees under tournament time controls yields average
available parallelism of over 1000.

1 Introduction

Computer chess provides a good testbed for understand-
ing dynamic MIMD-style computations. The parallelism
in computer chess is derived from a dynamic expansion
of a highly irregular game-tree, which makes computer
chess difficult to express, for example, as a data-parallel
program. To investigate how to program this sort of
dynamic MIMD-style application, we engineered a par-
allel chess program called *Socrates (pronounced “Star-
Socrates”.) The program, based on Heuristic Software’s
serial Socrates program, has an informally estimated rat-
ing of over 2400 USCF. *Socrates, running on the 512-
node CM-5 at the National Center for Supercomputing
Applications (NCSA) at the University of Illinois, tied for
third place in the 1994 ACM International Computer Chess
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Championship held at the end of June 1994 in Cape May,
New Jersey.

*Socrates is a step forward from *Tech [Kus94], our
previous chess program. *Tech is based on H. Berliner’s
serial Hitech program [BE89], and running on NCSA’s
512-node CM-5, tied for third in the 1993 ACM Interna-
tional Chess Championship. *Socrates borrowed many of
the techniques we developed for *Tech, including the ba-
sic search algorithm and the transposition table. *Socrates
uses a new programming language and run-time system
called Cilk 1.0 [BJK*94] to separate the chess program
from the problems of scheduling and load balancing on a
parallel computer.

To help manage the complexity of our chess systems, we
divided the programming problem into two parts: an appli-
cation and a scheduler. The application can be thought of
as a dynamically unfolding directed acyclic graph, where
the graph vertices correspond to instructions, and the graph
edges correspond control-flow dependencies between var-
ious instructions. An instruction may not execute until all
its predecessors have executed. The scheduler, on the other
hand, takes such a DAG and decides on which processor
each instruction should run, and when it should run. The
application’s job is to expose parallelism. The scheduler’s
job is to run the program as fast as possible, given the avail-
able parallelism in the application, without running out of
memory. Thus, in *Socrates, we use Cilk 1.0 to address the
scheduling problem, and the chess program itself can focus
on only those issues which are unique to a chess program.

We had learned from our previous parallel chess pro-
gram, *Tech, how to predict the performance of a parallel
chess program. It was not clear from the outset how to pre-
dict the performance of a parallel chess program. Chess
programs search a dynamically generated tree, and ob-
tain their parallelism from that tree. Different branches of
the tree have vastly different amounts of total work and
available parallelism. Chess programs use large global
data structures and are nondeterministic. We wanted pre-
dictable performance. For example, if one develops a
program on a small machine, one would like to be able to
instrument the program and predict how fast it will run on
a big machine. How can predictable performance be sal-
vaged from a program with these characteristics? We had
found from *Tech that there are two complexity measures
of performance that actually can predict the performance
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of chess programs: the total work W and the critical path
length C.

The total work and critical path length give us a chance
to understand how the performance of a parallel program
will scale as the number of processors increase, and also
gives us a chance to understand the effectiveness of our
scheduler. For example, the effectiveness with which the
available work is scheduled into the machine can be mea-
sured by comparing it to the bound from Brent’s theorem
[Bre74, Lemma 2], which states that the runtime on P pro-
cessors with a perfect scheduler can be brought down to no
more than C +W=P .

The values ofW andC depend on the parallel algorithm,
rather than on the scheduler. In our game-tree search al-
gorithm, the values of W and C are partially dependent
on scheduling decisions made by the scheduler, but we
believe that W and C are mostly independent of those de-
cisions. A good algorithm reduces W and C. We can
compare W to the runtime of a corresponding serial chess
program, and we can compare C to W . The ratio of W to
the work done by the serial program is the efficiency of the
program, and indicates how much overhead is inherent in
the parallel algorithm. The ratio W=C is the average avail-
able parallelism of the program. We can hope, because of
Brent’s theorem, to use as many as W=C processors with
an efficiency of at least 50%.

This paper explains how we obtain predictable high-
performance on *Socrates. Section 2 describes the Jam-
boree game-tree search algorithm and presents some an-
alytical results describing the performance of Jamboree
search. Then, in Section 3, we describe the Cilk 1.0 lan-
guage and run-time system. The modifications made to
Cilk in order to run the chess program are described in
Section 4. In Section 5 we outline several other mech-
anisms used in the chess program. Section 6 presents a
description of how the Jamboree algorithm relates to the
algorithms used by other chess programs. We make some
concluding remarks in Section 7.

2 Parallel Game Tree Search

The *Socrates chess program uses an efficient parallel
game-tree search algorithm called “Jamboree” search. In
this section we explain Jamboree search, starting with the
basics of negamax search and serial�-� search, and present
some analytical performance results for the algorithm.

The basic idea behind Jamboree search is to do the fol-
lowing operations on a position in the game tree that has k
children:� The value of the first child of the position is deter-

mined (by a recursive call to the search algorithm.)� Then, in parallel, all of the remaining k � 1 children
are tested to verify that they are not better alternatives

than the first child.� Each child that turns out to be better than the first child
is searched in turn to determine which is the best.

If the move ordering is best-first, i.e., the first move con-
sidered is always better than the other moves, then all of
the tests succeed, and the position is evaluated quickly and
efficiently. We expect that the tests will usually succeed,
because the move ordering is often best-first due the the
application of several chess-specific move-orderingheuris-
tics.

2.1 Negamax Search Without Pruning

Before delving into the details of the Jamboree algorithm,
let us review the basic search algorithms that are applica-
ble to computer chess. (Readers who are familiar with the
serial game tree search algorithms may wish to skip di-
rectly ahead to the description of the Jamboree algorithm
in Section 2.4.) Most chess programs use some variant
of negamax tree search to evaluate a chess position. The
goal of the negamax tree search is to compute the value of
position p in a tree Tp rooted at position p. The value of p
is defined according to the negamax formula:vp = 8>><>>: static eval(p)

if p is a leaf in Tp, and
maxf�vc : c a child of p in Tpg

if p is not a leaf.

The negamax formula states that the best move for playerA is the move that gives playerB, who plays the best move
from B’s point of view, the worst option. If there are no
moves, then we use a static evaluation function. Of course,
no chess program searches the entire game tree. Instead
some limited game tree is searched using an imperfect
static evaluation function. Thus, we have formalized the
chess knowledge as Tp, which tells us what tree to search,
and static eval, which tells us how to evaluate a leaf
position.

The naive Algorithmnegamax shown in Figure 1 com-
putes the negamax value vp of position p by searching
the entire tree rooted at p. It is easy to make Algo-
rithm negamax into a parallel algorithm, because there
are no dependencies between iterations of the for loop of
Line (N5). One simply changes the for loop into a par-
allel loop. But negamax is not a efficient serial search
algorithm, and thus, it makes little sense to parallelize it.

2.2 Alpha-Beta Pruning

The most efficient serial algorithms for game-tree search
all avoid searching the entire tree by proving that certain
subtrees need not be examined. In this section we review
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(N1) Define negamax(p) as
(N2) If n is a leaf then return static eval(n).
(N3) Let ~c the children of n, and
(N4) b �1:
(N5) For i from 0 below j~cj do:
(N6) Let s �negamax(~ci): ;; Recursive Search
(N7) if s > b then set b s: ;; New best score
(N8) enddo
(N9) return b.

Figure 1: Algorithm negamax.0Z0Z0Z0jZ0Z0Z0Z00Z0Z0Z0ZZ0Z0Z0Z00Z0Z0Z0ZZ0Z0Z0Z00Z0Z0OPlZ0Z0Z0J0
Figure 2: White to move and win. In this position,
White need not consider all of Black’s alternatives to
40.Kf1, since almost any move Black makes will keep
the queen, a worse outcome than just taking the queen
with 40.K�h2.

the �-� serial search algorithm in preparation for the ex-
planation of how the Jamboree parallel search algorithm
works.

An example of how pruning can reduce the size of a
game tree that is searched can be seen in the chess position
of Figure 2. Suppose White has determined that it can
win Black’s queen with 40. K�h2. White’s other legal
move 40. Kf1 fails to capture the queen. White does
not need to consider every possible way for Black’s queen
to escape. Any one of a number of possibilities suffices.
Thus, White can stop thinking about the move without
having exhaustively searched all of Black’s options.

The idea of pruning subtrees that do not need to
be searched is embodied in the serial �-� search algo-
rithm [KM75], which computes the negamax score for a
node without actually looking at the entire search tree. The
algorithm is expressed as a recursive subroutine with two
new parameters � and �. If the value of any child, when
negated, is as great as �, then the value of the parent is no
less than �, and we say that the parent fails high. If the
values of all of the children, when negated, are less than or
equal to �, then the value of the parent is no greater than�, and we say that the parent fails low.

Procedure absearch3 is shown in Figure 3. When

3This variant on the standard �-� algorithm is apparently due to

Procedure absearch is called, the parameters � and �
are chosen so that if the value of a node is not greater than� and less than �, then we know that the value of the node
can not affect the negamax value of the root of the entire
search tree. After the score is returned from the subsearch
on Line (A6), the algorithm, on Line (A7), checks to see
if the negated score is as great as �. If so, we know that
the value of the node is at least as great as � and we can
skip searching the remaining children; the node has failed
high. Just because one of the children has a negated score
less than �, however, does not mean that some other child
might not be within the �-� window. The algorithm can
only fail low after considering all of the children.

The �-� algorithm can substantially reduce the size of
the tree searched. The �-� algorithm works best if the
best moves are considered first, because if any move can
make the position fail high, then certainly the best move
can make the position fail high. Knuth and Moore [KM75]
show that for searches of a uniform best-ordered tree of
height H and degree D, the �-� algorithm searches onlyO(pDH) leaves instead of DH leaves.

For any k � 0, before searching the (k+1)st child, the�-� algorithm obtains the value of the kth child and possibly
uses that value to adjust � or return immediately. This
dependency between finishing the kth child and starting
the (k + 1)st child completely serializes the �-� search
algorithm.4

2.3 Scout Search

For a parallel chess program, we need an algorithm that
both effectively prunes the tree and can be parallelized.
We started with a variant on serial �-� search, called Scout
search, and modified it to be a parallel algorithm. This
section explains the Scout search algorithm.

Fishburn [Fis83], who called it fail-soft �-� search. Fail-soft �-� search
can return a value that is less than �, in which case the value returned is
an upper bound to the true value of the node, or the search can return a
value that is greater than �, in which case the value returned is a lower
bound to the true value.

4R. Finkel and J. Fishburn showed that if the serialization implied by�-� pruning is ignored by a parallel program, then it will achieve onlypP speedup on P processors [FF82].
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(A1) Define absearch(n; �; �) as
(A2) If n is a leaf then return static eval(n).
(A3) Let ~c the children of n, and
(A4) b �1:
(A5) For i from 0 below j~cj do:
(A6) Let s �absearch(~ci;��;��):
(A7) If s � � then return s. ;; Fail High
(A8) If s > � then set � s. ;; Raise �
(A9) If s > b then set b s.
(A10) enddo
(A11) return b.

Figure 3: Algorithm absearch.

(S1) Define scout(n; �; �) as
(S2) If n is a leaf then return static eval(n).
(S3) Let ~c the children of n, and
(S4) b �scout(c0;��;��):
(S5) ;; The first child’s valuation may cause this node to fail high.
(S6) If b � � then return b.
(S7) If b > � then set � b.
(S8) For i from 1 below j~cj do: ;; the rest of the children
(S9) Let s �scout(~ci;��� 1;��): ;; Test
(S10) If s > b then set b s.
(S11) If s � � then return s. ;; Fail High
(S12) If s > � then ;; Test failed
(S13) Set s �scout(~ci;��;��). ;; Research for value
(S14) If s � � then return s. ;; Fail High
(S15) If s > � then set � s.
(S16) If s > b then set b s.
(S17) enddo
(S18) return b.

Figure 4: Algorithm scout.

Figure 4 shows the serial Scout search algorithm, which
is due to J. Pearl [Pea80]. Procedure scout is similar to
Procedure absearch, except that when considering any
child that is not the first child, a test is first performed to
determine if the child is no better a move than the best
move seen so far. If the child is no better, the test is said
to succeed. If the child is determined to be better than the
best move so far, the test is said to fail, and the child is
searched again (valued) to determine its true value.

The Scout algorithm performs tests on positions to see
if they are greater than or less than a given value. A test is
performed by using an empty-window search on a position.
For integer scores one uses the values (��� 1) and (��)
as the parameters of the recursive search, as shown on
Line (S9). A child is tested to see if it is worse than the
best move so far, and if the test fails on Line (S12) (i.e.,
the move looks like it might be better than the best move
seen so far), then the child is valued, on Line (S13), using

a non-empty window to determine its true value.
If it happens to be the case that � + 1 = �, then

Line (S13) never executes because s > � implies s � �,
which causes the return on Line (S11) to execute. Conse-
quently, the same code for Algorithm scout can be used
for the testing and for the valuing of a position.

Line S10, which raises the best score seen so far accord-
ing to the value returned by a test, is necessary to insure
that if the test fails low (i.e., if the test succeeds), then the
value returned is an upper bound to the score. If a test were
to return a score that is not a proper bound to its parent,
then the parent might return immediately with the wrong
answer when the parent performs the check of the returned
score against � on Line S11.

A test is typically cheaper to execute than a valuation
because the�-� window is smaller, which means that more
of the tree is likely to be pruned. If the test succeeds, then
algorithm scout has saved some work, because testing
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(J1) Define jamboree(n; �; �) as
(J2) If n is a leaf then return static eval(n).
(J3) Let ~c the children of n, and
(J4) b �jamboree(c0;��;��):
(J5) If b � � then return b.
(J6) If b > � then set � b.
(J7) In Parallel: For i from 1 below j~cj do:
(J8) Let s �jamboree(~ci;��� 1;��):
(J9) If s > b then set b s.
(J10) If s � � then abort-and-return s.
(J11) If s > � then
(J12) Wait for the completion of all previous iterations
(J13) of the parallel loop.
(J14) Set s �jamboree(~ci;��;��). ;; Research for value
(J15) If s � � then abort-and-return s.
(J16) If s > � then set � s.
(J17) If s > b then set b s.
(J18) Note the completion of the ith iteration of the parallel loop.
(J19) enddo
(J20) return b.

Figure 5: Algorithm jamboree.

a node is cheaper than finding its exact value. If the test
fails, then scout searches the node twice and has squan-
dered some work. Algorithm scout bets that the tests
will succeed often enough to outweigh the extra cost of
any nodes that must be searched twice, and empirical evi-
dence [Pea80] justify its dominance as the search algorithm
of choice in modern serial chess-playing programs.

2.4 Jamboree Search

The Jamboree algorithm, shown in Figure 5, is a paral-
lelized version of the Scout search algorithm. The idea
is that all of the testing of the children is done in par-
allel, and any tests that fail are sequentially valued. A
parallel loop construct, in which all of the iterations of
a loop run concurrently, appears on Line (J7). Some syn-
chronization between various iterations of the loop appears
on Lines J12 and J18. We sequentialize the full-window
searches for values, because, while we are willing to take
a chance that an empty window search will be squandered
work, we are not willing to take the chance that a full-
window search (which does not prune very much) will be
squandered work. Such a squandered full-window search
could lead us to search the entire tree, which is much larger
than the pruned tree we want to search.

The abort-and-return statements that appear on Lines
J10 and J15 return a value from Procedure jamboree
and abort any of the children that are still running. Such
an abort is needed when the procedure has found a value
that can be returned, in which case there is no advantage
to allowing the procedure and its children to continue to

run, using up processor and memory resources. The abort
causes any children that are running in parallel to abort their
children recursively, which has the effect of deallocating
the entire subtree.

The actual search algorithm used in *Socrates also in-
cludes some forward pruning heuristics that prune a deep
search based on a shallow preliminary search. The idea
is that if the shallow search looks really bad, then most
of the time a deep search will not change the outcome.
Forward pruning techniques have lately been shown to be
extremely powerful, allowing programs running on single
processors to beat some of the best humans at chess. The
serial Socrates program uses such a scheme, and so does
*Socrates. In the *Socrates version of Jamboree search,
we first perform the preliminary search, then we search the
first child, then we test the remaining children in parallel,
and research the failed tests serially.

Parallel search of game-trees is difficult because the most
efficient algorithms for game-tree search are inherently
serial. We obtain parallelism by performing the tests in
parallel, but those tests may not all be necessary in a serial
execution order. In order to get any parallelism, we must
take the risk of performing extra work that a good serial
program would avoid.

2.5 Analysis of Jamboree Search

The Jamboree search algorithm can be analyzed for a few
special cases of trees of uniform height and degree. Here
we summarize our results. The complete statement of the
theorems and proofs can be found in [Kus94]. It turns out
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that we have two analytical results, one for best ordered
trees and one for worst ordered trees.

Theorem 1 states how Jamboree search behaves on best-
ordered trees. A best-ordered tree is one in which it turns
out that the first move considered is always the best move,
and thus the tests in the jamboree search algorithm always
succeed.

Theorem 1 For uniform best-ordered trees of degree d and
height h the following hold:� The total work performed is Θ(dh=2), which is the

same as serial �-� search would perform. That is,
the work efficiency is 1.� The critical path length is Θ(2h=2), and thus the av-
erage available parallelism is Θ((d=2)h=2).

Chess trees typically have degree of between 30 and 40
in the middle-game, and since we hope to search at least
to depth 10, a best-ordered chess tree would have several
hundred-thousand fold parallelism.

If the tree is not best-ordered, then the performance of the
parallel algorithm can be much worse,however. Theorem 2
addresses worst-ordered trees. A worst-ordered tree is one
in which the worst move is considered first, and the second
worst move is considered second, and so-on, with the best
move considered last.

Theorem 2 For uniform worst-ordered trees of degree d
and height h the following hold:� The total work performed is Θ(dh).� The critical path is Θ(dh).
For large d and h, the constants work out so that the total
work performed is approximately three times as much as
the serial �-� search would perform (thus the efficiency
is 1=3), and the critical path length is equal to the work
performed by serial �-� (with the speedup approaching 1
from below.)

Surprisingly, for worst-ordered uniform game trees, the
speedup of Jamboree search over serial�-� search turns out
to be under 1. That is, Jamboree search is worse than serial�-� search, even on a machine with no overhead for com-
munications or scheduling. For comparison, parallelized
negamax search achieves linear speedup on worst-ordered
trees, and Fishburn’s MWF algorithm achieves not-quite
linear speedup on worst-ordered trees [Fis84].

2.6 Real Chess Trees

For real chess trees, we found that the better the move
ordering, the lower the critical path and the less total work
is performed. Thus, the move ordering heuristics of a chess

program, which are important for serial programs because
it reduces the work, are doubly important for our parallel
algorithm because it also decreases the critical path length.

It is difficult to analyze Jamboree search for arbitrary
game trees, because it is difficult to characterize the tree
itself, and the tree that is actually searched can depend on
how the work is scheduled. Unlike many other applica-
tions, the shape of the tree traversed by Jamboree search
can be affected by the order of the execution of the work,
sometimes increasing the work and sometimes decreasing
work. Thus, measurements of “critical path length” and
“work” on a particular run may be different than the mea-
surements taken on another run, because the trees them-
selves are different. It is not clear what “critical path”
and “work” mean for Jamboree search on arbitrary trees.
Nonetheless, we have found that we can use the measurd
critical path length and total work to tune the program.

Our strategy is to measure the critical path and the work
on a particular run, and to try to predict the performance
from those measurements. (The details of how we measure
critical path length are discussed in Section 3.) We mea-
sured the program on a set of eight problems5, shown in
Figure 6. For each problem the program was run to various
depths up to those that allowed the program to solve the
problem by getting the “correct” answer, as identified by
Kaufman. We also measured the programming running on
a variety of different sized machines. Then we performed
a curve-fit of the data to a performance model of the formTpredicted = c1 � C + c2 � WP + c3:

We found that the performance can be accurately mod-
eled asT � (0:95� 0:04)C + (1:091� 0:001)WP + 0 (1)

with a sample correlation coefficient6 of 0.999947, and a
mean error of 14.2% and a mean relative error of 4.85%.7

To us, this is quite amazing, because chess is a very de-
manding application. For *Tech, we found that according
to measurements of the ideal parallelism profile (which
shows the amount of parallelism as a function of time, run-
ning the program on an ideal infinite processor machine),
for half the run-time there is often less than 10-fold par-
allelism. The low coefficients on Equation 1 indicate that
the program quickly finishes the available work during the

5Our eight problems were provided by *Socrates team member
L. Kaufman, who is an International Master. Kaufman has published
several larger sets of benchmarks [Kau92, Kau93] that were used to un-
derstand *Tech [Kus94].

6For a definition of sample correlation coefficients and other statistical
terms see, for example, [HL93, page 51].

7The results presented here are for *Socrates. A more complete
analysis of the statistical properties of the measurements for *Tech can
be found in Kuszmaul’s dissertation [Kus94].
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(a)N�g7 (b)Re6 (c)R�g7 20 (d)Ra2rmbZkZ0sopZ0lpop0Z0o0m0ZZ0opZ0A00aPZ0Z0ZZ0M0O0Z0PO0ZNOPOS0ZQJBZR
0Z0Z0Z0ZZ0Z0Z0Z00Z0j0o0Zo0ZBmPZ00Z0ZPM0ZZPZ0J0o00Z0Z0Z0ZZ0Z0ZbZ0

bZ0s0skZZ0l0ZpoppZnapm0ZZpZ0Z0Z00O0Z0Z0ZO0M0ONZ00A0ZQOPOZBS0ZRJ0
0ZkZ0Z0ZZ0o0Z0SppZpa0Z0ZZpZ0o0Z00Z0ZPZ0ZONZPZPZ00O0ZKO0sZ0Z0Z0Z0

(e) a3 (f) .Nd3 (g)Ne4 (h) f4

Figure 6: The 8 chess positions used in this paper. Below each position is shown Kaufman’s “correct” move for that
position. All positions are “White to move”, except for Position (f).

times of low parallelism, and when there is much paral-
lelism the program efficiently load balances the work.

We also found that the work increases by about a factor
of two to three as the number of processors increases from
1 to 128 processors, and that the critical path length is
fairly stable as the number of processors increases. Most
of the difficulty of predicting the performance of the chess
program comes from the fact that the amount of work is
increasing. The processors end up expanding subtrees that
are pruned in the serial code.

We found that the critical path does not limit the speedup
for our test problems, or for the program running under
tournament conditions. By using critical path to under-
stand the parallelism of our algorithm, we are able to make
good tradeoffs in our algorithm design. Without such a
methodology it can be very difficult to do algorithm de-
sign. For example, Feldmann, Monien, and Mysliwietz
find themselves changing their Zugzwang chess program
to increase the parallelism without really having a good
way to measure their changes [FMM93]. They express
concern that by serially searching the first child before
starting the other children they have reduced the available
parallelism. Our technique allows us to state that there
is sufficient parallelism to keep thousands of processors
busy without changing the algorithm. We can conclude
that we should try to reduce the total amount of work done
by the program, even if it reduces the available parallelism
slightly.

We experimented with some techniques to improve the
work efficiency, and found several techniques to improve
the work efficiency at the expense of increasing the criti-
cal path length. For example, on *Tech we considered a

algorithm change that would value the first two children
before starting the parallel tests of all the remaining chil-
dren. The idea is that by valuing more children, it becomes
more likely that the best of the children that have been
valued will be able to prune some of the remaining chil-
dren. When we measured the runtime on a small machine,
the program ran faster but on a big machine the runtime
actually got worse. To understand why, we looked at the
work and critical path length. We found that this variant
of Jamboree search actually does decrease the total work,
but it increases the critical path length, so that there is not
enough available parallelism to keep a big machine busy.
By looking at both the critical path length and the total
work we were able to extrapolate the performance on the
big machine from the performance on the little machine,
however, and so we avoided introducing modifications that
would hurt us in tournament conditions.

3 The Cilk Work-Stealing Scheduler

Now that we have explained the search algorithm used
in *Socrates, we need to explain how the computation is
distributed across the machine. We use a run-time system
called Cilk 1.0 [BJK*94]8 to distribute work among the
CM-5 processors. This section explains how a program is
expressed in Cilk and how the computation is distributed
across the machine.

To distribute work among CM-5 processors, Cilk uses
a randomized work-stealing approach, in which idle pro-
cessors request work. Processors run code that is nearly

8Cilk is a threaded language of the C ilk.
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P1 int fib (int n)
P2 f
P3 if(n<2) return n;
P4 else return fib(n-1)+fib(n-2);
P6 g

fib(n-2)

fib(n-1)

sum

F1 thread sum (cont k, int x, int y)
F2 f
F3 SendWordArgument (k, x+y);
F4 g
F5
F6 thread fib (cont k, int n)
F7 f
F8 if (n<2) SendWordArgument (k, n);
F9 else
F10 f cont x, y;
F11 spawn next sum (k, ?x, ?y);
F12 spawn fib (x, n-1);
F13 spawn fib (y, n-2);
F14 g
F15 g

Figure 7: Expressing the doubly recursive Fibonacci program in Cilk 1.0. On the upper-left is the program written in
serial C. On the lower-left is the dataflow graph for the program. On the right is the corresponding Cilk code.

serial. When a processor discovers some work that could
be done in parallel, it posts the work into a local data struc-
ture. When a processor runs out work locally, it sends
a message to another processor, selected at random, and
removes work from that processor’s collection of posted
work.

The Cilk system was original based on the Parallel Con-
tinuation Machine run-time system of Halbherr, Zhou and
Joerg [HZJ94]. In PCM, the scheduler uses a double ended
queue (a deque) on every processor. When a processor
posts work, it pushes it on the bottom of the deque. When
a processor needs more work to do locally, it pops it off the
bottom of the deque. When a processor steals work, the
work is stolen from the top of the deque on the remote pro-
cessor. It turns out that we modified this basic scheduler,
as we shall describe in Section 4.4.

Cilk requires that the programmer explicitly break the
algorithm into threads. To give an idea of how programs
are expressed, consider the doubly recursive Fibonacci pro-
gram shown in Figure 7. First we convert the program to
a dataflow graph, and then for each node of the graph, we
write a thread, which looks like a C function. Thus, in
the final Cilk code, there are two threads, the sum thread
and the fib thread. The sum thread accepts two values,
adds them, and sends the result to an explicitly provided
continuation. The fib thread creates a thread to sum two
results, and passes continuations (denotedx and y) for that
thread to two subsidiary fib threads. For a more com-
plete description of the Cilk syntax, including a tutorial,
see [BJK*94].

Similarly for the Jamboree algorithm, we transform the
search code shown in Figure 5 into a dataflow graph, as
shown in Figure 8. Then we express the program in Cilk
analogously to the Fibonacci example.

Cilk automatically computes the critical path length and
total work of a computation. The computation of the crit-
ical path is done by a system of time-stamping, as shown
in Figure 9.

The Cilk system runs on both the CM-5 and network
of workstations. Soon we expect to provide Cilk versions
that run on shared memory multiprocessors and a variety
of other parallel computing platforms. We are currently
working on improving the Cilk time system to provide
better support for global data structures, for input/output,
and to help automatically break up a program into threads.

4 Using Cilk for Chess Search

In the following two sections we describe the implementa-
tion of *Socrates using Cilk. These sections are an inter-
esting case study in implementing a large, multithreaded,
speculative application. As mentioned in the introduction,
*Socrates is a parallelization of a serial chess program.
Much of the code, including the static evaluator, is iden-
tical in the parallel and the serial versions and is not be
discussed here. Instead, we focus on the portions of the
code which were written specifically for the parallel ver-
sion.

This section focuses on those parts of the Cilk scheduler
that we had to change in order to make Cilk behave more
like the scheduler used in *Tech. The changes we made
include implementing migration handlers, aborting com-
putations that are in progress, changing the order in which
threads are stolen, and adding level waiting.

4.1 Migration Threads

We use a large, variable sized data structure (nearly 200
bytes) to describe the state of a chess board. In the serial

8



ViValue child iV0

� � �V2

T2T1 T3 Tk�1

V1 V3 Vk�1

Test child i TiMergeForkJoinTest
Figure 8: The dataflow graph for Jamboree search. First Child 0 is searched to determine its value, then the rest of the
children are tested in parallel to try to prove that they are worse choices than Child 0, and then each of the children
that fail their respective tests are serially researched. This dataflow graph can be used to measure the critical path
length of the computation by using time-stamping. Compare this description of the Jamboree algorithm to the textual
description in Figure 5.

(d2; t2)(d1; t1)
(d1 � d2; �� + max(t1; t2))��

Figure 9: The time at which an instruction in a dataflow graph is executed in a perfect infinite-processor schedule
can be computed by time-stamping the tokens. In addition to the normal data-value of a token (d1, d2, and d1 � d2

respectively in the figure), the token includes a time-stamp (t1, t2, and ��+max(t1; t2) respectively.) The time-stamp
on the outgoing token is computed as a function of the time-stamps of the incoming tokens and the time to execute
the instruction.
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code we pass around pointers to this structure and copy it
only when necessary. In the parallel code we cannot just
blindly pass pointers between threads, because if the thread
is migrated the pointer will no longer be valid. A naive
solution is to copy the state structure into every thread, but
this adds a significant overhead to the parallel code. This
overhead is especially distasteful when you realize that
well under 1% of threads are actually migrated, so most of
the copying would be wasted effort.

To solve this problem we use migration threads. Any
thread can have a migration thread associated with it. When
the scheduler tries to migrate a thread that has an associated
migration thread, the scheduler will first call the migration
thread. This migration thread will return a new closure
which is migrated instead.

Using this mechanism we are able to pass threads a
pointer to a state structures. Any thread that is passed a state
pointer is also given a migration thread which will copy the
state into the closure if the thread is stolen. Once the closure
arrives at the stealing processor, the stolen thread can then
be called with a pointer to the copied state structure. This
allows the overhead of copying the state to be paid only
when it is actually necessary.

4.2 Abort

In order to implement the jamboree search algorithm we
must be able to abort a computation. This is needed when
we discover that at least one child has a score greater than
beta, so there is no need to search the rest of the children.
(This is called failing high.) The Cilk system has no built-
in mechanism for aborting a computation, so this had to
be added as user code. Our goal in designing the abort
mechanism was to keep it as self contained as possible and
to minimize changes to the rest of the code. Eventually we
would like to add support for such a mechanism to Cilk
itself.

In order to abort a computation we must be first able to
find all of the threads that are working on this computa-
tion. To implement this we use abort tables to link together
all the threads working on a computation. When a com-
putation, say A1, needs to create several children it first
creates an abort table containing an entry for each child of
the computation. If a child of A1, say B1, itself spawns
off children, then the entry for B1 is updated to contain a
pointer to the abort table that B1 creates. Once B1 and all
its children have completed, B1’s table is deallocated and
the entry for B1 is updated. With this mechanism in place
the abort code is able to find all the descendants of any
computation. When performing an abort, the abort code
does not actually destroy any threads, instead it merely
makes a mark in the affected abort tables. When a user’s
thread runs its first action should be to check to see if it
has been aborted, and if so skip the rest of its computation.
This check allows the user’s code to do any cleaning up

that may be necessary. (For example, the code may need
to free some data structures.)

The abort mechanism provides functions to create, up-
date, and deallocate the abort structures; to check if a thread
is aborted; and to start an abort. By using these functions
and passing around a few pointers to abort tables, the search
code was modified to include aborting without too many
changes.

One difficulty encountered in implementing the abort
tables was in keeping the tables correct when a computation
migrates. When a computation is stolen an abort table is
allocated on the stealer’s side and the existing abort table
is modified to point to it. The difficulty arises because at
the time a computation is stolen there is not yet an abort
table on the stealer’s side to point to. This abort table is not
be allocated until after the thread begins to run (unless we
change the run time system, which we wanted to avoid). So
instead we create a unique identifier (UID) for each stolen
computation, and store that into the abort table. Then on
the stealer’s side we have a hash table to map the UID into
a pointer to the abort table. The protocol for accessing the
hash table is quite tricky since there are many cases which
require special handling. For example, the network of the
CM-5 can reorder messages, therefore we have to handle
the case where a message to abort a computation arrives
before the thread that will allocate the hash table entry and
abort table for that computation. Unfortunately, we did not
consider all such possibilities before beginning the design,
so getting this mechanism working correctly took longer
than anticipated.

4.3 Steal Ordering

In the original Cilk runtime system the thread queue con-
sisted of a single double ended queue. Newly enabled
threads were placed at the front of the queue and the local
processor took work out of this side as well (i.e. LIFO).
When stealing occurs, threads are stolen from the other side
of the queue (i.e. FIFO). For a tree shaped computation,
the LIFO scheduling allows the computation to proceed
locally in a depth first ordering, thus giving us the same
execution order a sequential program would have. How-
ever when stealing occurs the FIFO steal ordering causes
a thread near the top of the tree to be stolen, so a large
piece of work will be migrated, thus minimizing stealing.
Since jamboree search is a tree shaped computation this
mechanism works reasonably well.

With this scheduling mechanism, the order in which
children are executed depends on whether or not a child is
stolen. For most computations this execution order does
not matter; but for jamboree search it does. Execution
order has an effect because if one child fails high, the rest
of the children do not need to be searched. Our program
orders the children such that when no children are stolen
(the common case) the children most likely to fail high
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are executed first; this order minimizes the total work W .
The problem is that when stealing occurs we steal the child
least likely to fail high.

Ideally we would like to steal from the top of the tree,
but still steal the child that is most likely to fail high. To do
this we had to modify the scheduler by adding the concept
of levels. Each thread in the queue is assigned a level
and threads at the same level will be executed in a fixed
order, regardless of whether they are stolen or executed
locally. Between levels, however, scheduling is done as
before: We execute locally at the shallowest (newest) level
and steal from the deepest (oldest) level. The search code
then marks all the children of a computation as being at a
level one shallower than the level at which the computation
is currently executing. This gives us exactly the ordering
of threads that we want. Adding this to *Socrates reduced
the amount of work performed for searching a position and
seemed to give a speedup of 20-25%. This idea seemed
important enough that we included a cleaner version of this
mechanism in Cilk 1.0.

4.4 Level Waiting

The final change we made to the scheduler was a further
attempt to reduce the extra work being performed by the
parallel version. When a processor is searching a board
position, A, it spawns off a bunch of children to test. If a
processor ran out of children to work on while some chil-
dren were still being worked on elsewhere, that processor
would steal another closure and begin working on that.

Consider the case where one (or more) of the children is
stolen and the processor finishes the rest of the tests before
the test of the stolen child completes. The processor may
then be out of work to do9. This processor will then steal
some closure from another processor and begin searching
its board position, call it B. Eventually the test of the
stolen child will complete. When this result comes back it
will restart the computation on position A and preempt B.
Since position A may still have additional value searches
to perform, this is potentially a long computation. We are
now in a position where B, no matter how little work it
has, will not complete until the potentially long compu-
tation for A completes. The computation which spawnedB will continue without it. It may eventually block (and
thereby artificially lengthen the critical path C) or it may
be able to continue, but will use looser bounds than if B
had completed (and will thereby increase the total workW ).

To avoid this stalled work we further modified the sched-
uler. We added “level waiting”, a feature which makes uses
of the same levels that were used in the previous section
for optimizing the steal ordering. When a computation

9It will often be out of work because none of the children at this level
would have been stolen if there were any work earlier in the queue.

spawns children all the sub-computations are placed at the
same level. The level waiting mechanism simply requires
that all of these sub-computations have completed before
we may begin any work at a shallower level. This prevents
us from starting, and then preempting, an unrelated search.
Implementing this change seemed to give us a 15-20%
speedup.

5 Other Chess Mechanisms

The previous section described issues that arose in getting
the search routines to run in our parallel environment. This
section describes other aspects of the serial code that had
to be modified to run in a parallel system. These aspects
include the transposition table, detecting repeated moves,
and debugging support.

5.1 Transposition Table

Most serial chess programs include a Transposition Table.
This is basically a hash table of previously evaluated nodes.
After a node is searched we create (or update) the hash
entry for this node. The information stored in this entry
includes a score, a move, a depth and a check key. The
score tells us the value of the node; the move tells us what
move achieves this score; and the depth tells us how deep
a search was done. The check key is used to distinguish
between the many positions which may hash to this entry.

Before searching a node we first check to see if it is
present with a deep enough depth, then we need not search
this node again. This can occur because the same position
can be reached by many different sequences of moves (i.e.
a transposition). Much of the time when we get a hit the
depth is not sufficient for the current search. But even in
this case the table is still useful because it gives us the best
move found by an earlier search, and often the best move
at a shallower depth is the best move at a deeper depth.
By using the returned move as our predicted best move,
we increase our chances of accurately predicting the best
move, which, as we saw in Section 2, reduces the work and
critical path of the computation.

For *Socrates we implemented a distributed transpo-
sition table. We had a choice between implementing a
blocking or a non-blocking interface to the table. When a
thread begins a search of a node the first thing it typically
does is to do a transposition table lookup on that node. In
a blocking implementation, this thread would send off a
lookup request to the appropriate node and busy-wait until
the response arrives, and then continue. The obvious dis-
advantage of blocking is that we waste time busy-waiting.

In a non-blocking implementation we would break this
thread into several threads. When the time came to do a
lookup, a thread would be posted on the node that would
hold the entry. This thread would do the lookup and send
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the result back to the original node, enabling the continua-
tion of the search. This implementation has the advantage
that we do not spend any time busy-waiting while we do
a table lookup. But it has one big disadvantage in that it
may lead to many searches taking place on the same node
concurrently. Intermixing two or more searches on the
same node can cause both the work and the critical path
to increase. To avoid these increases the scheduler would
have to be modified to keep the two computations separate.
To avoid the complexity involved in such a modification
we chose to implement a blocking transposition table.

Since there is no way to implement this blocking mech-
anism using Cilk primitives, we dropped to a lower level
and used the Strata active message library [BB94]. We
designed the transposition table such that all accesses are
atomic. For example when a value is to be put into the
table, the information about the position is sent to the node
where the entry resides, and that node updates the entry
as required. Alternatively, we could have implemented a
non-atomic update by performing a remote read of the en-
try, modifying the entry, and then doing a remote write.
Non-atomic updates would have required more messages
and would have had to either lock the entry while the up-
date was in progress, or risk losing some information if
two update operations overlapped.

To determine how much the busy-waiting hurts us, we
instrumented our code to measure the time spent busy-
waiting10. Our experiments showed us that the mean time
between sending the request and receiving the reply was
around 1600 cycles. This worked out to about 7% of the
execution time.

Another decision we faced was how large to make the
hash entries. Clearly, we would like to make them as large
as possible11. The score and the move each require 16 bits.
The bits describing the depth and type of search required
another 9. The only other piece of an entry is the check
bits. In our implementation each position had a 64 bit key.
Of these bits 9 were used to select a processor and 21 were
used to select a hash line on a given processor, so there
is no need to store these bits in the entry itself. Of the
remaining bits 34 bits we stored only 23 of them as the
check bits since this allowed us to fit an entry in one 64
bit double word. When executing on the 512 processor
system we had a 1 billion entry hash table!

The last aspect of the transposition table we will examine
is subsumptions. The issue is what, if anything, do we do
if two independent searches are concurrently searching the
same position (i.e. one search “subsumes” the other). For
example, Processor P1 may begin a search of Position B

10Not all this time is wasted since while busy-waiting we poll the
network so we may spent part of this time responding to arriving messages.
But the analysis above gives us an upper bound on the cost of busy-
waiting.

11Hsu claims that increasing the size of the hash table by a factor of
256 can easily give a factor of 2 to 5 speedup [Hsu90].

and before it completes and writes its result into the hash
table Processor P2 begins another search of Position B.
This leads to part of the search being duplicated. In the
serial code these searches would be performed sequentially
so this problem would not occur.

We considered trying to avoid this overhead in the fol-
lowing manner. When a search begins if the transposition
table lookup fails an entry is created for that position and it
is marked as “search in progress.” Then if another lookup
occurs on this position we know that a search is already
being done. We would then have the option of waiting for
the earlier search to complete.

We chose not to implement this mechanism. Imple-
menting it would have been somewhat complicated, and
there were a number of issues that this would raise that we
did not have a clear understanding of. For example, when
we were about to abort a search would it be necessary to
first check to see if anyone else is waiting for the results
of this search. Another example is deciding when to wait:
If a position is already being searched to depth d, and we
want to search it to depth d� 1, do we wait for the deeper
search? If we don’t wait we are doing extra work, if we
do wait we may wait much longer than if we had just done
it ourself. We instrumented our program to estimate how
much duplicate work was being done. Each time we com-
pleted a search and were about to write the hash table entry
we first did a hash table lookup to see if we would get a
hit if we began the search now. (If so, then someone else
must have completed a search of this node during the time
since we began the search.) We found that this occured less
than 1% of the time. Furthermore, we had implemented a
similar mechanism for *Tech, and it sometimes speeds the
program up, and sometimes slows it down.

5.2 Repeated Moves

To fully describe a position in a chess game we need more
than just a description of where each piece is on the board;
some history is needed as well. A simple example is we
need to know if the king has moved. If it has then we
cannot castle, even if the king has moved back to its original
position. This sort of information can easily be stored in a
few bits in the state so this causes no difficulty.

Other required history can not be stored so easily. In
chess if the same position is repeated 3 times then the
game is a draw. Similarly if 50 moves are made by each
player without an irreversible move being made, the game
is a draw12. To handle these cases we need to keep track
of all moves since the last irreversible move. (Once an
irreversible move is made earlier positions cannot be re-
peated.) We do this by adding an array of positions to our
state structure. This array contains all the positions (repre-

12An irreversible move is one which cannot be undone; that is, one
which captures a piece or moves a pawn.
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sented by their 64 bit hash key) since the last irreversible
move.

This array greatly increases the size of the state structure
(from about 160 bytes to nearly 1000 bytes). For a serial
program the size of the state may not be significant since
the code could just modify and unmodify the same state
structure. For parallel code, however, it is often necessary
to make copies of the state so a large state can slow down
the program. To prevent this from occuring when we copy
a state we only copy the part of the repeated position array
that is meaningful. Since the average length of this list
is quite small (under 2) copying this list adds very little
overhead.

5.3 Debugging

In order to make it easier to debug our code,we make liberal
use of ‘assert’ statements. Not only did this cause bugs to
be detected sooner, it was also helpful in pinpointing the
cause of the bug. One of our biggest problems initially
was making sure that the parallel version was working
correctly. This was difficult because if the parallel version
was close to the serial, but not exactly the same, it would
usually produce the exact same answers. We were often
modifying both the parallel and the serial search algorithms
and keeping them consistent was quite error prone. One
method we occasionally used to test whether both versions
were identical was to run the parallel code on one processor
and run the serial code and make sure they both searched
exactly the same number of nodes. Unfortunately we did
not do this check often enough and at one point so many
minor variations had crept in that we wound up spending
almost a week trying to make both versions consistent
again.

One of the most useful assertions we added was to check
at every node of the tree that the results of the parallel code
were the same as the serial code. In the debugging version
of the code, after the search of a position was complete we
would call the serial code on the same position and assert
that the results were the same. (We do this with the hash
table turned off, otherwise the serial code simply finds the
result in the hash table.) This was extremely slow, but it
is an easy way to detect any differences between the serial
and parallel searches, and to pinpoint exactly where the
differences lie. After we started using this check, keeping
both versions identical became much easier. We think this
is an approach that is applicable to many parallel programs,
not just chess.

Even with this grandiose verification not all our bugs
were detected. At one point the debugging mode worked
fine when run on any number of processors, as did the
non-debugging program when run on one processor. But
when we ran on more than one processor the speedup was
quite small. It turned out that debugging mode was not
being completely turned off as the flag which says whether

or not to use the hash table was being set correctly only on
processor 0. Therefore all other processors would never
use the hash table. As is often the case, bugs which affect
only performance can be harder to detect than bugs that
affect correctness.

6 Related Search Algorithms

Our chess program uses Jamboree search [Kus94], a paral-
lelization of scout search [Pea80], in which at every node
of the search tree, the program searches the first child
to determine its value, and then tries to prove, in paral-
lel, that all of the other children of the node are worse
alternatives than the first child. This approach to paral-
lelizing game tree search is quite natural, and it has been
used by several other parallel chess programs., such as
Cray Blitz [HSN89] and Zugzwang [FMM91]. Still oth-
ers have proposed or analyzed variations of this style of
game tree search [ABD82, MC82, Fis84, Hsu90]. We do
not claim that the search algorithm is a new contribution.
Instead, we view the algorithm as a testbed for evaluating
mechanisms needed for the design of scalable, predictable,
asynchronous parallel programs.

Jamboree search was used in our previous program,
*Tech [Kus94]. *Socrates is a step forward compared
to *Tech because we introduced a linguistic layer and run-
time system called Cilk 1.0 [BJK*94] to make it easier
to program the application without worrying about the
scheduling issues. Many of the techniques originally used
in *Tech were borrowed for *Socrates. Inspired by some
problems we had with early versions of our *Tech pro-
gram, Leiserson and Blumofe designed a provably good
scheduler that has good space and time bounds, as well as
low communications requirements [BL94].

Other parallel algorithms based on Scout search include
minimal tree search, mandatory work first, and princi-
pal variation splitting. S. Akl, D. Barnard and R. Do-
ran [ABD82] proposed the minimal tree search, which
performs the weak �-� search by searching the minimal
tree (i.e., the Knuth-Moore critical tree [KM75]). Each
position is kept in an expanded form, potentially for a
long time, resulting in unrealistic storage requirements.
The Deep-Thoughtparallel algorithm as described in Hsu’s
thesis [Hsu90] is a variant of the high-storage-requirement
minimal tree search.

J. Fishburn [Fis84] proposed the mandatory work first
(MWF) algorithm. Algorithm MWF is based on the weak
version of �-� search. It explicitly computes the number
of critical children of the position being searched. A child
of a position is critical if the child is in the Knuth-Moore
critical tree, which means that the child would definitely
be searched by the �-� algorithm. If the position be-
ing searched has more than one critical child, then MWF
searches the first child and then searches the other children
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in parallel. If the first child turns out to be worse than
some other child, MWF then researches the children that
might be the best, all in parallel. In contrast, Jamboree re-
searches sequentially. For nodes with exactly one critical
child, MWF searches just the first child. Fishburn analyzed
MWF for best-ordered and worst-ordered trees, but not for
realistic game trees. One can construct game trees that are
mostly best-ordered, in which the MWF algorithm does
almost as badly as the naive parallel �-� search’s O(pP )
speedup.

Fishburn’s MWF algorithm can be viewed as being
separate from the scheduler, but his analysis depends on
the scheduler. For example, Fishburn proves that worst-
ordered game-trees achieve speedup using mandatory-
work-first on a tree-of-processors scheduler, in which the
depth of the game-tree is much greater than the depth of
the processor tree. Our Theorem 2, in contrast, states
that for an infinite processor perfect scheduler the aver-
age available parallelism is less than 3 and the speedup is
less than one. Even though the MWF algorithm is tangled
up with the tree-of-processors scheduler, one can interpret
Fishburn’s results somewhat independently of the sched-
uler. Fishburn’s results indicate, for example, that if one
has a tree of processors that is half as deep as the game
tree and the degree of the processor tree is greater than
the degree of the game tree, then the critical path is short
and the work efficiency is good. Such a tree is as good
as “infinite processors” for an algorithm in which the shal-
lowest h=2 plies of the game tree are searched in parallel
and the deepest h=2 plies of the game tree are searched
serially. It turns out that the half-the-depth-serially strat-
egy, when applied to Jamboree search, reduces the average
available parallelism even further, down to about 2 for
worst-ordered trees. Fishburn did not analyze what hap-
pens if the tree of processors is as deep as the game tree.
The reason that MWF achieves speedup on worst-ordered
trees is that MWF researches the children who failed their
tests in parallel, while the Jamboree algorithm serially re-
searches all the failed children. Hence, for worst ordered
trees, Jamboree search finds little parallelism, while MWF
finds much parallelism. Any chess program that is search-
ing worst-ordered trees is not competitive, however.

Several programs use principal variant splitting (PV-
splitting) [MC82], which is a another variation on MWF,
but the ideas behind PV-splitting are, like MWF, some-
what obscured by the fact that a tree-of-processors sched-
uler is entangled into the search algorithm. Later work
has separated the scheduler from the algorithm. For ex-
ample, Cray Blitz [HSN89] apparently uses PV-splitting
with something like a work-stealing scheduler. No critical
path analysis or measurement has been performed for Cray
Blitz, however.

The Zugzwang program, developed by R. Feldmann,
P. Mysliwietz, and B. Monien [FMM91], uses a par-

allel search algorithm that is very similar to Jamboree
search. Zugzwang achieves high work-efficiency, search-
ing to within a few percent the same number of nodes in a
parallel search as in a sequential search. The efficiency of
our programs appears to be somewhat lower, probably be-
cause the Zugzwang team has gone to substantial effort to
try to ensure that they search the tree in a mostly best-first
order.

The parallel aspiration search algorithm [Bau78] divides
the �-� window into segments, and gives each processor
a different segment of the window to search. Aspiration
search achieves only small parallel speedups. Surprisingly,
the serial version of aspiration search often runs faster
than a infinite window search. Today most state-of-the-art
chess programs, including *Tech, use a serial aspiration
search in which the game tree is searched with a small �-�
window, and if the score is outside of the window, the tree
is researched.

R. Karp and Y. Zhang [KZ89] show how to search an
AND/OR tree in parallel by carefully allocating the right
number of processors to each subtree. C. Stein [Ste92]
employs Karp and Zhang’s algorithm as a subroutine to
do a parallel �-� search. Stein performs a binary search
for the value of the game tree, at each stage converting the
game tree to an AND/OR tree with the question “Is the
value of the root greater than s?”.

There are several other approaches to game tree search
that are not based on �-� search. H. Berliner’s B* search
algorithm [Ber79] tries to prove that one of the moves is
better with respect to a pessimistic evaluation than any of
the other moves with respect to an optimistic evaluation.
D. McAllester’s Conspiracy search [McA88] expands the
tree in such a way that to change the value of the root will
require changing the values of many of the leaves of the
tree. The SSS* algorithm [Sto79] applies branch and
bound techniques to game tree search. These algorithms
all require space which is nearly proportional to the run
time of the algorithm, but the the constant of proportion-
ality may be small enough to be feasible. While these
algorithms all appear to be parallelizable, they have not
yet been successfully demonstrated as practical serial al-
gorithms. We wanted to be able to compare our work to
the best serial algorithms.

7 Conclusions

The history of *Socrates sheds some light on the prob-
lems of developing a high-performance parallel program.
The *Socrates chess team, which includes includes R. Blu-
mofe, M. Halbherr, C. Joerg, B. Kuszmaul, C. Leiserson,
and Y. Zhou of MIT as well as D. Dailey and L. Kauf-
man of Heuristic Software, decided to start with a new
chess program rather than to try to parallelize the original
Socrates program. The difficulty with the original Socrates
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program is that it uses many global variables which are
modified throughout the search. We felt that it would be
easier to start with a program that was designed to modify
its state in a non-destructive fashion by always making a
new copy of the variables that represent the state of a chess
board in the tree search. It turned out that the decision
to start with a new program resulted in the program being
substantially weaker than we had hoped, because we did
not have sufficient time to get all of the chess knowledge
transfered from Socrates to *Socrates.

The program was developed on a very tight sched-
ule. Dailey implemented a bare-bones chess program that
copies chess boards and provided it to the MIT contingent
in May 1994. During June, Dailey visited MIT to help tune
the program, but we spent most of June simply getting the
parallel version of the program to work correctly. The pro-
gram started playing predictably only a few days before
the tournament. The tournament was to start on Saturday
morning, and on the previous Thursday night the program
crashed 2 out 3 times that we played it. Friday morning we
packed up two X-terminals and two modems into the trunk
of our cars and drove the eight hours to Cape May, New
Jersey, wondering whether we were going to be embar-
rassed by a program that would crash during tournament
play. Friday night we logged in and made changes to the
program until 3am. Then the tournament began. Saturday
morning we played and won our first game. We noticed
some problems with the program, and modified it for the
Saturday evening match, which we also won. Saturday
night we made some more modifications to the program,
and on Sunday morning we won our third game. We left
the program alone for the Sunday evening game, which we
lost to Deep Thought. *Socrates’s insufficient apprecia-
tion of the value of castling rights resulted in a poor move
that Deep Thought punished brilliantly in what the on-site
commentators called “one of the all-time greatest games of
computer chess”. Our fifth game resulted in a disappoint-
ing loss to Zarkov, in which *Socrates made two mistakes
due to insufficient chess knowledge. The first mistake was
similar to the mistake in the game against Deep Thought,
but *Socrates managed to salvage the game to a drawn rook
and pawn endgame. Unfortunately, *Socrates managed to
find a losing move in a position that the commentators
thought was nearly a forced draw. Throughout the tourna-
ment the program ran without crashing, and searched quite
deeply. If only we had given Dailey more time to tune the
chess knowledge...

One of the important organization differences between
*Tech and *Socrates is that *Socrates separates the appli-
cation from the scheduler, whereas in *Tech the sched-
uler and the application were wound up together. More
importantly, *Socrates employs a linguistic layer to help
the programmer express the program independently of the
scheduler. Separating the system greatly simplified the im-

plementation of *Socrates, and allowed us to implement
several other parallel applications including a protein fold-
ing program [PJG*94] which was the first program to find
the number of Hamiltonian paths in a 4� 4� 3 grid, and
some smaller programs such as the doubly recursive Fi-
bonacci routine, a backtracking search to solve the problem
of determining how many ways there are to place n queens
on an n by n chess board, a ray-tracing image rendering
program, and a radiosity image rendering program.

We are now developing additional mechanisms for Cilk
to provide high performance on a wider variety of appli-
cations. We are trying to improve the linguistic layer, to
develop abstractions for manipulating shared data struc-
tures, and to simplify the interface to input/output and the
operating system.
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