
VimVim RecipesRecipes

AA cookbookcookbook forfor thethe VimVim texttext editoreditor

by Run Paint Run Run / Run Paint Press

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 1

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

TABLETABLE OFOF CONTENTSCONTENTS

Introduction ...v

Conventions..vi

Contributing...vii

License... ix

Credits ... x

Basics

Choosing the Right Mode ... 12

Basic Navigation ... 14

Opening Files .. 16

Saving a File ... 20

Quitting Vim.. 22

Deleting Text .. 24

Visually Selecting Text.. 26

Copying, Cutting, and Pasting .. 28

Configuring Vim.. 30

Printing.. 34

Getting Help.. 36

Editing

Indenting Lines.. 41

Selecting Text with Motions... 44

Repeating Commands ... 48

Changing the Case of Text... 50

Sorting Text .. 52

Executing External Commands .. 55

Managing Sessions .. 57

Formatting with an External Program ... 60

ii

Working with Different File Formats .. 62

Typing

Spell Checking... 65

Using Templates... 67

Undoing Mistakes... 71

Auto-Completing Text ... 73

Abbreviating Common Strings ... 76

Inserting Accented or “Foreign” Characters ... 78

Opening the File .. 81

Inserting the Date.. 84

Inserting Snippets ... 86

Navigation

Navigating Text Files... 91

Navigating Source Code .. 93

Navigating the Viewport .. 95

Navigating Buffers .. 96

Navigating Tabs .. 98

Manually Creating Folds...100

Navigating Folds ...102

Splitting the Screen ...104

Navigating Marks..106

Navigating Tags...108

Bookmarking Lines with Visible Markers (Signs) ..111

GUI

Changing the Font ...115

Maximising Screen Space ...117

Creating Menus and Toolbar Buttons ...119

Searching

Searching for any Word ..122

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. iii

Searching Over Multiple Files...123

Searching and Replacing ...126

Searching for the Word Beneath the Cursor...128

Creating Regular Expressions...129

Looking up Documentation for the Keyword Under the Cursor134

Display

Working with Long Lines..136

Displaying Line Numbers...138

Working with Remote Files ...139

Changing the Status Line ...141

Redefining Highlight Groups ...144

Modifying the Cursor ...147

Changing the Window Title ...149

Extending

Creating Keyboard Shortcuts with Key Mappings ...153

Changing the Colour Scheme ..155

Creating Command-Line Commands ...157

Extending Vim with Scripts and Plugins ..159

Integrating Vim with Git ..162

Other Uses of Vim

Browsing Directories ..167

Using Vim as a File Manager ..169

Viewing Differences Between Files ...172

Outlining a Document..174

iv

INTRODUCTIONINTRODUCTION

The Vim text editor is perhaps as famous for its learning curve as it is for its contributions to

productivity. Vim isn't "intuitive" in the way other applications claim to be—you cannot use it

by simply replicating the actions you perform with a word processor, by clicking on menu

items aimlessly until you achieve your desired effect. But this is by design. The major strength

of Vim is that it does things differently to magnificent effect. It permanently alters the way in

which you regard text editors and software in general. And that is why, in 2009, I am putting

the finishing touches to a free book about a text editor whose ancestry can be traced back to

1976.

This book is written to be consulted when you're looking for a better way to perform a task.

It does not replace Vim's excellent built-in documentation, but complements it by focussing on

tasks rather than commands. It will always be incomplete by virtue of Vim having more

features and extensions than I have years alive, but will hopefully still serve as an indispensable

reference.

In addition to being free, this book is open source. The files from which it is compiled are

freely available, for you to examine and, hopefully, improve. In any case, I would enjoy hearing

any feedback you have. Contact details are in the Contributing section, and you can e-mail me

at the address below.

Happy Viming!

—Run Paint Run Run (runrun@runpaint.org), 2009, U.K.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. v

http://runpaint.org/
mailto:runrun@runpaint.org

CONVENTIONSCONVENTIONS

The following typographical conventions are used in this book:

KEYKEY PRESSESPRESSES

<Esc><Esc> - Indicates that the named key should be pressed.

<Ctrl><Ctrl>--pp - Keys joined with a - should be pressed simultaneously. In this example the

<Ctrl><Ctrl> should be held down while the pp key is pressed.

NORMALNORMAL MODEMODE COMMANDSCOMMANDS

gqapgqap - The named characters should be entered in order while in Normal mode.

COMMAND-LINECOMMAND-LINE COMMANDSCOMMANDS

:set spell - The command should be typed in Command-Line mode. (If you're in a

different mode, press <Esc><Esc> before you type the command).

:!command - As above, but command is a variable which should be substituted for its value.

MONOSPACEDMONOSPACED FONTFONT

A fixed width font is used for filenames, code, and variable names.

vi

CONTRIBUTINGCONTRIBUTING

This book is released under a Creative Commons Attribution-Share Alike 3.0 Unported

License, and its complete text is available in a Git repository. All contributions are welcomed.

Patches are preferred, but if you're not comfortable with Git you can use the issue tracker as

described below.

ISSUEISSUE TRACKERTRACKER

You may report typographical errors, factual mistakes, or unclear passages via the web-based

issues tool at github.com/runpaint/vim-recipes/issues.

E-MAILE-MAIL

You can send patches and bug reports to runrun@runpaint.org.

PATCHESPATCHES

The source for this book is available in a Git repository. If you have Git installed on your

system you may clone the repository using the URL git://github.com/runpaint/vim-recipes.git.

(For an introduction to Git see the Git Community Book).

You'll probably want to do something like this:

$ gitgit cloneclone git://github.com/git://github.com/runpaint/runpaint/vim-recipes.gitvim-recipes.git

Initialized empty Git repository in /tmp/vim-recipes/.git/

remote: Counting objects: 666, done.

remote: Compressing objects: 100% (610/610), done.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. vii

http://github.com/runpaint/vim-recipes/issues
mailto:runrun@runpaint.org
output/www/git:/github.com/runpaint/vim-recipes.git
http://book.git-scm.com/

remote: Total 666 (delta 350), reused 0 (delta 0)

Receiving objects: 100% (666/666), 407.52 KiB | 35 KiB/s,

done.

Resolving deltas: 100% (350/350), done.

$ cdcd vim-recipesvim-recipes

$ vimvim text/text/04_basics/04_basics/09_configuring_vim.html09_configuring_vim.html

$ gitgit commitcommit -a-a

Then either send me a patch (runrun@runpaint.org), or post it to the issue tracker.

Alternatively, if you already use GitHub, fork the repository, make your changes, then send me

a pull request.

viii

http://github.com/
http://github.com/runpaint/vim-recipes

LICENSELICENSE

This work is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported

License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or

send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California,

94105, USA.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. ix

http://creativecommons.org/licenses/by-sa/3.0/

CREDITSCREDITS

COVERCOVER IMAGEIMAGE

The cover photograph of Bram Moolenaar, the creator of Vim, was taken by Sebastian

Bergmann and kindly released under a Creative Commons Attribution-Share Alike 2.0 Generic

License. The original photograph can be viewed at Flickr.

CSSCSS

The Cascading Style Sheets used in the production of the book were derived significantly from

the work of others. Mark Pilgrim's stylesheet from Dive Into Python 3 was the main

inspiration. In conjunction, the CSS created by Håkon Wium Lie and Bert Bos for their book

entitled Cascading Style Sheets: Designing for the Web, 3rd Edition, and graciously made

available via A List Apart, was particularly helpful. Lastly, Nando Vieira's kitabu project offered

ideas on how to tie it all together.

CONTRIBUTORSCONTRIBUTORS

The following people have kindly contributed ideas, corrections, and advice: Rizal Almashoor,

Raúl Núñez de Arenas Coronado, Adam Blinkinsop, coderpunk, dm3, Kjetil Dynnamittt, Ihar

Filipau, Michael Houghton, Javier Rojas, and others who I'm bound to have omitted. Thank

you!

x

http://moolenaar.net/
http://sebastian-bergmann.de/
http://sebastian-bergmann.de/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://www.flickr.com/photos/sebastian_bergmann/2110830017/
http://diveintomark.org/
http://diveintopython3.org/
http://people.opera.com/howcome/
http://www.w3.org/People/Bos/
http://www.informit.com/title/0321193121
http://www.alistapart.com/articles/boom
http://simplesideias.com.br/
http://github.com/fnando/kitabu/tree/master

BASICSBASICS

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 11

CHOOSINGCHOOSING THETHE RIGHTRIGHT MODEMODE

PROBLEMPROBLEM

You know that Vim has multiple modes of operation but aren't sure when to use which one.

SOLUTIONSOLUTION

For practical purposes there are four modes:

InsertInsert modemode

Use only for typing; not moving around or editing. Stay in this mode for as short a time

as possible.

NormalNormal modemode

Use this for editing: moving around the file, changing text, and rearranging structure. Dip

in and out of Insert mode when needed.

VisualVisual modemode

Use this for visually selecting text so that you can cut, copy, or format it.

Command-LineCommand-Line modemode

Use this for entering commands, e.g. :set number

DISCUSSIONDISCUSSION

Vim's modal approach to editing can seem confusing, but it really is the key to understanding

Vim.

It's tempting to spend much of your time in Insert mode, and navigate with the arrow keys.

However, this is slow and requires an awful lot of key presses.

12

Normal mode is the default mode because it makes it so easy to move around the file to

either edit existing text or position the cursor where you want to insert text.

✪ Use <Ctrl><Ctrl>++oo in Insert mode to switch to Normal mode for one command, then

return to Insert mode. For example, <Ctrl><Ctrl>++oo gqasgqas enters Normal mode, reformats the

current sentence,1 then returns you to Insert mode.

If you create a new file, and just want to type, by all means go straight into Insert mode and

do so. All other times, though, stay in Normal mode.

For example, you want to find a paragraph you've written previously, and reword it. In

Normal mode you can either search for it (e.g. /Hobson argued), or simply page through

the file (e.g. <Ctrl><Ctrl>++FF to scroll downwards) to find it. Once there, you can move to the

section you're interested in using either the basic movement commands or text objects. You

can now use text objects again to select something and change it. For example cawcaw deletes

the current word and puts you into Insert mode to change it. Once you have done so, hit

<Esc><Esc> again to return to Normal mode.

1. For an explanation of gqasgqas refer to the Selecting Text with Motions recipe.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 13

BASICBASIC NAVIGATIONNAVIGATION

PROBLEMPROBLEM

You want to move around inside a file.

SOLUTIONSOLUTION

The traditional approach is to use the arrow keys to move up, down, left, and right. Vim

supports that style of navigation but also offers a more efficient alternative:

KeyKey MovementMovement

hh Left

ll Right

kk Up a line

jj Down a line

00 Start of line

^̂ First character of line

$$ End of line

DISCUSSIONDISCUSSION

It is tempting to rely on old habits for something as basic as moving around in a file. Once

you're used to The Vim Way, however, you'll find yourself much more efficient. One reason

for this is that these keys are all located on the main keyboard, so you don't need to stretch

to the arrow keys, hence breaking your flow.

14

Another benefit is that you can prefix these shortcuts with counts (as you can with many Vim

commands) which specify how many times they should be executed. For instance, 2k2k moves

up two lines.

Once you've become used to these keys, take a look at motions and text objects in Selecting

Text with Motions to make the humble combination of hh, ll, kk, and jj more powerful still.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 15

OPENINGOPENING FILESFILES

PROBLEMPROBLEM

You want to open a file in Vim.

If you want to edit or view an existing file you need to open it first. For example, if your

world-changing novel is saved as novel.txt, you want to open novel.txt in Vim.

SOLUTIONSOLUTION

To open a file from the command line invoke Vim with the filename as an argument. For

example: vim docs/novel.txt (on Windows: vim.exe docs\novel.txt).

To open a file from inside Vim you can use :e file (mnemonic: eedit). This closes the current

file and opens a new buffer containing the given file.

✪ If you use Andy Lester's ack utility you can create a shell script to open files without

having to specify their path. For example, using bash:

#!/bin/sh

vim $(ack -g $@)

Name it vack, then vack shapes.rb will search recursively downwards from the

current directory to find shapes.rb, then open it in Vim.

16

http://betterthangrep.com/
http://betterthangrep.com/

DISCUSSIONDISCUSSION

You may prefix the filename with +linenumber to instruct Vim to jump to the given line

after opening. For example, vim +7 todo.list or :e +100 treatise.txt. If you

omit linenumber, i.e. you prefix the filename with +, Vim will jump to the end of the file.

Similarly, prefixing the filename with +/pattern positions the cursor at the first occurrence

of the pattern pattern. For example, vim +/^References btrees.textile
instructs Vim to open btrees.textile, find the first line that starts with References, then

position the cursor there.

The :cd directory command lets you change the directory Vim resolves relative paths

to. So if you're working with multiple files in the same directory tree you can use this

command to set your working directory so it's easier to open files. For example, instead of

opening /home/julie/recipes/pasta/cabonara.txt then /home/julie/
recipes/pasta/peperonata.txt you can :cd /home/julie/recipes/
pasta then :e carbonara.txt. If you forget which directory you're in :pwd (pprint

wworking ddirectory) will tell you.

If you supply multiple filenames, Vim opens them all, one in each buffer. The first file named is

opened in the current buffer. If you provide a line number or pattern to jump to, this only

affects the first named file. Typing :next advances you to the next file in the list.

When working with multiple files you may prefer to view them in tabs or split windows,

instead of buffers.

Tabs display a single file at a time, but, by default, provide a list of opened tabs across the top

of the screen. You can switch to an open tab by clicking on its name in the GUI or referring

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 17

to its number. From within Vim :tabedit file opens the named file in a new tab. Or,

from the command line vim -p files opens each named file in its own tab.

Split windows display multiple files on screen simultenously. By default the screen is divided

horizontally, putting each file beneath the previous, but you may also split it vertically so that

each file is displayed next to each other. From Vim :split file splits the screen

horizontally between the current file and the named file. :vsplit file effects a vertical

division. These operations can be conducted from the command line with vim -o files

and vim -O files, respectively.

So far we have specified filenames literally by naming each file to open. However, at other

times this is impractical. For example, suppose you want to edit all files whose names end

with .txt, or a file that you can only remember has the word lethargy in it. In cases such

as these we would rather describe a group of files by using wildcards.

If you're opening a file from the command line (i.e. vim resume.tex), your shell expands

any wildcards. Windows is notoriously weak at command-line work, but other operating

systems will probably do the right thing here. For example, using the bash shell I can open

.txt files whose names start with 1, 2, or 3 with vim [123]*.txt.

Vim commands that accept filenames support a similar set of wildcards with one caveat: some

commands only accept a single filename, while others accept a list. The implication is that if

you use wildcards with a command like :edit, which only takes a single filename, they

cannot expand to multiple files. So if your current directory contained only one .html file,

:edit *.html would save you typing and work how you expect. However, if the directory

contained multiple .html files, that same wildcard would imply a list of files, and :edit
*.html would complain: E77: Too many file names.

18

Instead of using :edit, you can use :next files which happily accepts a list of files, and

opens each one in a new buffer. The :args files command is similar, but instead of

appending the list of files to the current list of open files, it uses them to replace the current

list.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 19

SAVINGSAVING AA FILEFILE

PROBLEMPROBLEM

You want to save the file you've been working on.

After you've made changes to a file you typically want to save them. For example, if you've

written up a turkey recipe to send to your daughter, you'd open Vim, type the recipe, save it

to turkey-recipe.txt, then e-mail turkey-recipe.txt to your hungry child.

SOLUTIONSOLUTION

The :up[date] command saves the current buffer if it has been modified2. If your file

doesn't have a name yet, you'll need to follow :up with a filename. This is conceptually

similar to most word processors' Save function.

To change the name of an existing file, use :saveas file. If file already exists and you

want to overwrite it, use :saveas! file. This is conceptually the same as most word

processors' Save As function.

DISCUSSIONDISCUSSION

There are a number of situations where it can be useful to have Vim save your file for you

automatically. One is when you're working with files in multiple buffers and cycling between

them. By default, every time you switch to a buffer Vim prompts you to save the current one

first. Another is when you execute an external command on the current file. The command is

passed the file's name, so if your buffer contains unsaved changes, the command won't see

2. The more common command to save a file is :w, however this always saves the file, even if it hasn't been
changed. :up preserves timestamps and saves needless disk access.

20

them. The solution is to :set autowrite. This causes files to be automatically saved when

you switch buffers and execute external commands. If you also want files automatically saved

when you quit Vim, use :set autowriteall.

✪ The :autowrite functionality is not related to some word processor's concept of auto-

saving a file periodically in case of a crash. Vim does this automatically.

You can also "write" a specific portion of a file to a new filename. By prefixing the :up
command with a line range only the specified lines are written to the named file. For example,

:20,30up 20-30.txt saves lines twenty to thirty of the current buffer to a file named

20-30.txt. Alternatively, select a portion of a file visually then execute :up filename

and the text you selected will be written to a file named filename.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 21

QUITTINGQUITTING VIMVIM

PROBLEMPROBLEM

You've finished using Vim and now you want to close the program.

SOLUTIONSOLUTION

To save the changes in the current file then quit use :x3. In Normal mode you use ZZZZ.

DISCUSSIONDISCUSSION

The way you quit Vim depends on what you want to quit (the whole program, or just the

current window) and what you want to do with your unsaved changes.

As mentioned above, if you're using a single window either :x or ZZZZ will save any unsaved

changes, and exit Vim.

To exit and discard your changes you use :q! (mnemonic: qquit in a possibly dangerous

(exclamatory) manner).

You can also quit on the condition that there are no unsaved changes with :q; if you do need

to save Vim warns you E37: No write since last change (add ! to

override).

If you're using multiple windows the above commands will act upon the current window. To

quit all windows use :qa (mnemonic: qquit aall). Vim will prompt you to save any changes. To

3. The more usual suggestion for saving then quiting is :wq. We use :x here because it only saves the file if
it has been changed, thus preserving its timestamp and saving needless disk access.

22

quit all windows without saving use :qa! (mnemonic: qquit aall in a possibly dangerous

manner).

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 23

DELETINGDELETING TEXTTEXT

PROBLEMPROBLEM

You wish to remove some text from a file. For example, you've typed a paragraph which is no

longer needed.

SOLUTIONSOLUTION

In Normal mode, move your cursor over the character to banish and hit xx (mnemonic:

expunge). This deletes characters under and after the cursor; to delete characters before the

cursor use XX. This is fine for single characters, but to delete words and other text objects you

can use ddmotionmotion. The difference, then, is that xx deletes characters, whereas dd deletes text

described by a given motion.

If you'd rather nuke entire lines at a time use dddd. So, to delete the current line and the one

following it: 2dd2dd. Use a range prefix to delete the specified lines, e.g. :17,20d deletes lines

seventeen through to twenty.

A compromise is to delete the remainder of a line, which can be achieved with DD. If your

cursor was positioned after compromise in the above sentence, and you then hit DD, the line

would be changed to just A compromise.

If you've selected a block of text visually, you can delete it all with xx.

DISCUSSIONDISCUSSION

Vim doesn't just delete text; it saves it to a register first. If you delete a small amount of text

(less than a line), it's stored in a register named "-. Otherwise, it's stored in "0, whose

24

existing contents are moved to "1, whose existing…right up to "9. This allows you easy

access to previously deleted text inasmuch as you can recall, say, the 3rd most recently

deleted line with "2p"2p. Even more usefully, you can use :registers to view your recent

deletions. The Undoing Mistakes recipe explains how to revert these deletions.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 25

VISUALLYVISUALLY SELECTINGSELECTING TEXTTEXT

PROBLEMPROBLEM

You want to interactively select some text by drawing a box around it, thus enabling you to

perform a command that affects it. In other words, you want to select a text like you would

in a GUI word processor using either the keyboard or, in Gvim, the mouse.

SOLUTIONSOLUTION

To select text character by character change to Visual mode with v, then move the cursor as

normal using the h,j,k,l keys. For example, to select the current character and the three that

follow hit v, then 3l. To select the current paragraph: v, then ap.

To select text by lines switch to Visual Line mode with V, then move upwards and

downwards with k and j as normal. For example, to select the current line and the 2

following it hit V, then 2j.

To select text in vertical blocks, or 'columns' to the rest of us, you use Visual Block mode

with <Ctrl><Ctrl>--vv4. For example, if you wanted to select the first two characters of the current

line and the 20 following, you'd position your cursor on the first character of the first line

you're interested in, hit <Ctrl>-v, move one character to the right (l), then move down 20

lines with 20j.

If you want to switch selection mode mid-selection hit v, V, or <Ctrl>-v, as appropriate.

4. Windows® defines this shortcut for pasting text, so <Ctrl><Ctrl>--qq exists as an alias.

26

DISCUSSIONDISCUSSION

As you get used to Vim's movement command, you'll have less of a need for the various visual

modes. Regardless, they can still be convenient when you're making complex selections or

aren't really sure what you're doing. ;-)

Having selected text, o can be used to toggle the cursor between the beginning and end of

the selection.

The point of selecting text is to operate on it. Here are some common actions:

• Copy/cut it.

• Format it, e.g. gqgq.

• Indent/unindent it.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 27

COPYING,COPYING, CUTTING,CUTTING, ANDAND PASTINGPASTING

PROBLEMPROBLEM

You want to duplicate text from one place to another. For example, you may want to move

the paragraph you've just typed above the previous one. Or maybe you want to copy some

text from a web page into Vim.

SOLUTIONSOLUTION

To copy/cut text from Vim you must first select it. You can do so visually, or provide a

motion to the relevant command.

Vim calls copying yanking, so to copy visually selected text use the yy (mnemonic: yank)

command. The syntax yymotionmotion yanks the text defined by motion. For example, y2wy2w would

copy the current and following words. yyyy works on lines instead, so 4yy4yy would copy the

current line and the three following it. (YY is a synonym, thus saving you that extra keystroke ;-

)).

Cutting is much the same, only it uses dd (mnemonic: delete) and dddd, respectively. To cut the

visually selected text, hit dd. To cut the current line, dddd. To cut the current word, dwdw.

The text is now in one of Vim's registers. To paste the contents of a register into a file,

position your cursor appropriately, then use the pp (mnemonic: paste or put) key in Normal

mode. pp inserts text after the cursor. To insert the text before use PP. As with many Vim

commands, pp and PP can be prefixed with a repetition count, so 2p2p pastes the clipboard

contents twice.

28

To paste text from the system clipboard use ShiftShift++InsIns in Insert mode or "*p"*p in Normal

mode. Conversely, "+y yanks the current selection to the system clipboard.

DISCUSSIONDISCUSSION

The solution above uses the concept of a single clipboard, much like some operating systems

do. Vim can work this way, as you can see, but also supports 'named registers'. These are,

effectively, multiple, independent clipboards. 5 Registers are named with a " character followed

by a single lowercase letter, e.g. "a6.

To yank/delete/put using a named register, simply prefix the command with the register name.

So, to yank the current line to register "b use "byy"byy. To paste it use "bp"bp.

To view the contents of the registers (both user-set and Vim-set), issue the :registers
command.

When pasting text from external applications into a Vim instance Vim may clobber the text by

attempting to be too clever. This happens when it cannot distinguish between entered text

and pasted text. The most common symptom is that the pasted text is indented bizarrely.

To fix this, consider using :set paste before you paste, then :set nopaste afterwards.

Alternatively, use :set pastetoggle=key to map a key to toggle paste mode. With this

setup on Linux, for example, users could paste with F11F11++ShiftShift--InsIns++F11F11.

5. Registers are actually far more powerful than this; :help registers for details.
6. Again, this is a vast simplification.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 29

CONFIGURINGCONFIGURING VIMVIM

PROBLEMPROBLEM

You want your Vim preferences to persist over sessions.

For example, you want Vim to show line numbers all the time. Displaying Line Numbers

explains how, but when you restart Vim you find that your preferences have been forgotten.

SOLUTIONSOLUTION

Throughout this book I will discuss how to configure Vim options using the :set option

or :set option=value syntax. This works, but only for the current instance of Vim. If

you specify these options in your vimrc file they'll be set permanently.

⇰ LocationLocation ofof vimrc

The default location of the vimrc file depends on your operating system. Identify your

operating system, then note the corresponding path. All references in this book to vimrc
refer to this path.

Gvim reads vimrc then a gvimrc file located in the same place as vimrc. In this book

vimrc and gvimrc are treated as synonyms.

Unix/Unix/LinuxLinux

$HOME/.vimrc

30

OS/2OS/2

$HOME/.vimrc or $VIM/.vimrc (or _vimrc)

MS-DOSMS-DOS andand WindowsWindows

$HOME/_vimrc or $VIM/_vimrc

AmigaAmiga

s:.vimrc or $VIM/.vimrc

The vimrc is a simple plain text file. Open the filename specified in the sidebar and add one

option per line using the option=value syntax (the ':' prefix is unnecessary). Indeed, this is

the general principle for adding any Command-Line command in this book to your vimrc.

For example:

" Set the boolean number option to true

set number

" Set the textwidth option to '78'

set textwidth=78

" Set the expandtab option to false

set noexpandtab

A single quotation mark (") introduces comments. They are ignored by Vim, but particularly

useful for remembering what all of your preferences mean.

✪ Even if you don't want to specify any options in vimrc you should still create it. On

some systems Vim will act like the Vi editor in the absence of this file, which is unlikely to be

what you want.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 31

DISCUSSIONDISCUSSION

The vimrc locations given in the sidebar are used for user preferences; there are also system

wide vimrc files. User preferences take precedence over system preferences. This means that

if you change an option set in the system vimrc, your preferences will be respected.

However, if the system vimrc sets an option differently from the Vim defaults, and you don't

include it in your vimrc, the system preference will be used.

The example vimrc above is very basic. They can also include functions, conditionals, and

anything else Vim's scripting engine supports. For a simple example look at the usage of

:autocmd in the Using Templates recipe.

If your configuration becomes complex you may want to split it over multiple files. You can

instruct Vim to include these files in your configuration by adding a source file line to

vimrc for each config file. See Abbreviating Common Strings for an example.

If you want a different configuration for a specific project you can :set exrc then include a

.vimrc (or vimrc on DOS and MS Windows) in the project's directory. This takes

precedence over your vimrc, and will be used when you edit files in that directory.

Warning: There's the potential for security problems when using exrc. If a vimrc was placed

in your project directory without you knowing -- as a result of unpacking an archive, for

example -- it could be used to execute arbitrary commands under your user account. For this

reason it's strongly recommended that you use :set secure in conjunction with exrc.

This prevents the directory-specific vimrc files from executing potentially dangerous

commands. The Vim documentation suggests adding set secure as the last line in your

vimrc.

32

⇰ DebuggingDebugging ConfigurationConfiguration

• Start Vim without loading your vimrc: vim -u NORC. (Use -U for Gvim).

• Start Vim with a different vimrc: vim -u file.

• Start Vim in verbose mode: vim -V. (Describes each file being sourced).

• Check the system wide vimrc to see whether its interacting badly with yours.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 33

PRINTINGPRINTING

PROBLEMPROBLEM

You want to print something from Vim.

SOLUTIONSOLUTION

In GVim there's a Print entry on the File menu, and a printer icon on the toolbar. In Vim

execute :hardcopy.

DISCUSSIONDISCUSSION

:hardcopy converts the current file to Postscript and sends it to the default printer. You

can specify that a different printer is used with :set pdev=printer. For example, :set
pdev=usblp1.

If you have a PDF printer installed7, you can use this technique to print a file to PDF. For

example, assuming your PDF printer is called pdf:

set pdev=pdf

set printoptions=paper:A4,syntax:y,wrap:y

The printoptions line is a comma separated list of values that affect how Vim formats the

document before it sends it to the printer. A list of options is at :help popt.

The paper option sets the paper size. It accepts values such as A3, letter, and legal.

7. Linux/Mac users can install the CUPS PDF package to get a PDF printer, e.g. on Debian/Ubuntu: apt-
get install cups-pdf.

34

The syntax option determines whether the document is printed with syntax highlighting. By

default it has the value a which means that Vim only uses highlighting for colour printers. A

value of y forces highlighting.

Lines are wrapped when wrap:y, which is the default. If wrap has the value n, long lines are

truncated.

Other useful options are header:0 to stop a header from being printed, number:y to

number lines, duplex:off to print on only one side of the page.

On Linux the lpr utility is used for printing. To use a different program add a stanza such as

the following to your vimrc:

set printexpr=PrintFile(v:fname_in)

function PrintFile(fname)

call system("a2ps " . a:fname)

call delete(a:fname)

return v:shell_error

endfunc

The above example specifies that the GNU Anything to Postscript (a2ps) utility is used for

printing. a2ps can print two pages per physical page and custom headers, for example; see

man a2ps for a complete list of features.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 35

GETTINGGETTING HELPHELP

PROBLEMPROBLEM

You want help with Vim but don't know where to look. Or, you've found help but find the

output of the online help confusing.

SOLUTIONSOLUTION

Look up a topic in the online help with :help topic. Search it with the :helpgrep
pattern command.

✪ When requesting help for a subject use <Ctrl><Ctrl>++dd to auto complete what you've

typed. For example, :help :h<Ctrl><Ctrl>++dd shows a list of help topics for commands

starting with :h.

DISCUSSIONDISCUSSION

The :help topic displays documentation for the tag named topic in the Vim

documentation. The tags are named with the following convention:

TypeType ofof TopicTopic PrependPrepend ExampleExample

Normal mode command (nothing):help x
Visual mode command v :help v_u
Insert mode command i :help i_<Esc>
Command-line command : :help :quit
Command-line editing c :help c_

36

Vim command argument - :help -r

Option ' :help 'textwidth'

(The table above is excerpted from the Vim online help).

The documentation itself also uses several conventions that may not be immediately obvious.

For example, :help help displays the following8:

The strings in pink are synonymous tags for the current entry. For example, :help <F1>
locates the same entry as :help help.

The blue <Help> label indicates that in GVim the Help menu is the GUI equivalent of this

command.

The :h[elp] notation uses square brackets to indicate the optional portion of the

command. Command-line commands can be shortened to the point that they are still

unambiguous. In this case, :help can be shortened to :h or :hel.

8. If you're using a different colour scheme the colours may be different.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 37

The green text ('helplang') indicates an option. It's also a hyperlink to an explanation of

the option, so if your cursor is over it you can use <Ctrl><Ctrl>++]] to follow it.

The screenshot above identifies some further conventions to be aware of.

The {pattern} notation describes a variable, i.e. it's a placeholder for text that you must

supply.

Again square brackets are denote optional text. In this example, [@xx] means that you can

follow the pattern by a two-letter language code.

Lastly, the light green text are also hyperlinks. For example, :cwindow links to

documentation for that command.

helpgrep takes a pattern and matches it against the locally installed documentation in much

the same way as vimgrep did in Searching Over Multiple Files. If it finds any matches, it adds

them to the quick fix list9, and jumps to the first one.

9. See the Quick Fix List sidebar in Searching Over Multiple Files for more information

38

✪ Once you've followed a hyperlink (with <Ctrl><Ctrl>++]]), you can return to your previous

location with <Ctrl><Ctrl>++oo. This works in a similar fashion to a web browser's Back button, so

using this key combination n times will take you to the place you were at n links previously.

If you've installed a Vim addon, you'll need to run :helptags docs-path before

helpgrep will see its documentation.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 39

EDITINGEDITING

40

INDENTINGINDENTING LINESLINES

PROBLEMPROBLEM

You want to use whitespace (spaces or tabs) to indent lines from the left margin.

For example, you may want to start your paragraphs with an indented first line. Or, if you're

writing program source code, you may want to visually represent the structure of your

program by using indentation to show nesting.

SOLUTIONSOLUTION

To start a line indented, just press the tab key once for each level of indentation.

To indent existing lines, highlight them visually and press >> to indent or << to unindent.

If you're in Insert or Replace mode you can use <Ctrl><Ctrl>--<Shift><Shift>--tt to indent (mnemonic:

ttab), and <Ctrl><Ctrl>--<Shift><Shift>--dd to unident (mnemonic: dde-tab/indent).

More powerful are motions combined with indent/unident commands. The syntax is >>motionmotion

to indent the text described by motion, and <<motionmotion to unident it. For example, >ap>ap

indents the current paragraph.

DESCRIPTIONDESCRIPTION

For many users, this solution will be sufficient. However, programmers regularly need more

control over indentation because it's so important to their work.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 41

✪ The :set list command makes literal tabs visible. It displays them as ^I, and uses

a similar notation for other non-printable characters. The $ symbol is used to show the end of

lines.

A contentious issue among programmers involves how the tab key should work. There are

two main schools of thought:

• Literal tabs - Each press of the tab key should insert a literal tab character (padding

with spaces if necessary). To achieve this: :set tabstop=8 (the default), :set
softtabstop=8, :set shiftwidth=8, and :set noexpandtab. Tabs are

now eight columns wide; each indentation level is a single tab.

• Convert tabs to spaces - Each press of the tab key should insert a certain number of

spaces. The settings you need are :set tabstop=8, :set shiftwidth=4, and

:set expandtab. Tabs are now replaced with 4 spaces. Real tabs are displayed 8

character wide, spaced tabs 4 characters wide.

shiftwidth controls how many spaces are inserted when using the >>>>/<<<< technique

described above, or the automatic indenting used with source code.

softtabstop specifies how many columns Vim uses when TabTab is hit in Insert mode. If it's

less than tabstop, and Vim's not expanding tabs (:set noexpandtab), Vim indents with

tabs, padding with spaces where necessary.

(It can be seen, then, that you'll typically want to make softtabstop and shiftwidth
equal, for reasons of consistency and sanity.)

The boolean expandtab option replaces tabs with spaces if true; leaves them alone if false.

42

These settings are not retroactive. To make an existing file honour your indentation

preferences use the :retab! command.

SEESEE ALSOALSO

• Tabs versus Spaces: An Eternal Holy War by Jamie Zawinski.

• Secrets of Tabs in Vim by Ted Logan.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 43

http://www.jwz.org/doc/tabs-vs-spaces.html
http://www.tedlogan.com/techblog3.html

SELECTINGSELECTING TEXTTEXT WITHWITH MOTIONSMOTIONS

PROBLEMPROBLEM

You want to define an area of text for a command to operate on without leaving Normal

mode.

For example, you want to delete next two words, or reformat the current paragraph.

SOLUTIONSOLUTION

In Normal and Visual mode operator commands can be followed by motions which describe

what text they should operate on. They can be thought of as a set of directions the operator

should use to select text.

For example, you can delete the character under the cursor with xx. If you wanted to delete

the word fandangle you'd need to press xx nine times: once for each character. You could

simplify the process by prefixing xx with a count: 9x9x. However, that requires you to know

how many characters are in the word, and would be totally impractical if you wanted to

delete multiple words at once. Instead you can use the ddmotionmotion command which deletes the

text selected by motion, as opposed to the character-by-character approach of xx. The

motion for a word is w, so you can delete the word more easily with dwdw.

The following table shows some common operators which understand motions.

OperatorOperator ActionAction DescriptionDescription

cc change Deletes then enters insert mode.

dd delete Deletes.

yy yank Copies to a register.

44

gqgq format Reformats.

>> indent Shifts text left.

<< unindentShifts text right.

Here are some common motions:

CommandCommand MovesMoves

countcounthh Left count characters.

countcountll Right count characters.

countcountjj Down count characters.

countcountkk Up count characters.

$$ To end of the line.

countcount$$ To end of the line count-1 lines downward.

00 To the first character of the line.

countcountffcharcharTo the countth occurrence of char to the right.

We can combine operators and motions to select text then operate upon it. Let's look at

some examples:

y10hy10h

Copy the previous 10 characters to a register.

dd

Delete from the current character until the end of the line.

c2jc2j

Delete the current line and the one below it, then enter Insert mode.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 45

DISCUSSIONDISCUSSION

Motions aren't very intelligent. Say you wanted to delete the word This with dwdw. That works

as long as your cursor is over T; if you were on the h, you'd only delete that.

Vim supports additional motions for operating on text objects. One of these is awaw (mnemonic:

a word) which would do the right thing in both examples above because it considers what

object, not character, the cursor over.

Text object commands are very similar to motions, and can be used with the same operators.

They're frequently just a motion command prefixed with either a or i. The a prefix indicates

that the whole object will be selected, including white space; the i prefix selects the inner

object without white space, or just the white space. A few of the available commands follow:

CommandCommand SelectsSelects

countcountawaw

countcountiwiw
count words

countcountaWaW

countcountiWiW
count non-blank characters

countcountasas

countcountisis
count sentences

countcountaBaB

countcountiBiB
count […] or {…} blocks

countcounta"a"

countcounti"i"
count quoted strings

So, to delete a paragraph, position your cursor anywhere inside it then hit dapdap. Delete a

paragraph - it even sounds sensible10.

10. No, this is not a bug.

46

A motion can also be a regular expression, in which case it describes the text matched:

extending from the current cursor position to the penultimate character matched by the

pattern. The syntax is //patternpattern: a solidus followed by a regular expression. For example,

d/\dd/\d deletes from the current character to the first digit, excluding the digit itself.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 47

REPEATINGREPEATING COMMANDSCOMMANDS

PROBLEMPROBLEM

You've entered a command and want to repeat it without re-typing it.

SOLUTIONSOLUTION

The period .. repeats the last command entered in Normal mode. For example, dddd deletes

the current line; dd..dd.. deletes the current line, then deletes the new current line, then

deletes the new current line. In other words, it repeats the command twice.

To repeat a command entered in Command mode hit ::, then ↑↑ to scroll back through your

command history. If you type the first few letters of the command before using ↑↑, the history

will be limited appropriately.

DISCUSSIONDISCUSSION

The period command helps automating repetitive tasks with the fewest keypresses. It lets you

say “do that again”, but in only one character.

If you know you want to execute a command n times, you can prefix it with the integer n.

The above example rewritten in this way is 3dd3dd.

The second approach requires fewer keystrokes so is clearly preferable if you know in

advance how many times you want to repeat a command. However, the period command lets

you make that decision incrementally, after executing the command.

48

You can combine these approaches by prefixing the period command with an integer to say

“do that n times again”: nn... Be aware that having done this, if you use the period command

again it will repeat your previous repetitions, i.e. commandcommand, followed by nn.., followed by ..

will result in command being executed 2n + 1 times.

The discussion above assumes that the last command needs to be repeated exactly. Instead,

you may wish to execute a different command on the same text. Jump to the line of the last

change with the Normal mode command '., then make that change.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 49

CHANGINGCHANGING THETHE CASECASE OFOF TEXTTEXT

PROBLEMPROBLEM

You want to change the case of a character or block of text. For example, you may want to

change bob to Bob.

SOLUTIONSOLUTION

~~

Toggles the case of the current character in Normal mode, or the selection in Visual

mode.

uu

Lowercases highlighted text. (Note: This only works in Visual mode; otherwise uu will

undo your last change).

UU

Uppercases highlighted text. (Note: This only works in Visual mode; otherwise UU will

undo the changes made on the current line).

DISCUSSIONDISCUSSION

As normal, these commands accept motions. For example:

VUVU

Uppercase current line.

guwguw

Lowercases current word.

50

To convert a string to title case, i.e. initial capitals, you can use the following regular

expression: s/\<\(\w\)\(\w*\)\>/\u\1\L\2/g. Select the text you want to convert, hit ::, then

enter the regular expression. If you use this regularly, consider remapping a key to execute

this command. For example:

nnoremap <F7> :s/\<\(\w\)\(\w*\)\>/\u\1\L\2/g<CR>

vnoremap <F7> :s/\%V\(\w\)\(\w*\)\%V/\u\1\L\2/g<CR>

Alternatively, you can install the titlecase plugin.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 51

http://www.vim.org/scripts/script.php?script_id=439

SORTINGSORTING TEXTTEXT

PROBLEMPROBLEM

You want to sort a selection of text or an entire whole file.

For example, if you've made a list of your books with one title per line, you'd like to organise

it alphabetically.

SOLUTIONSOLUTION

Vim version 7 introduced a :sort command. So if you're using v7 or later you can sort an

entire file using :sort.

✪ You can find your Vim version number with the :version command. The first line of

output contains the version number, e.g. VIM - Vi IMproved 7.2 (2008 Aug 9,

compiled Mar 19 2009 15:27:51), which indicates version 7.2.

If you're using an older version of Vim you'll need an external sort utility. Linux/UNIX users

should already have sort installed. You can sort the entire file by executing :!%sort, which

filters the file through the external sort utility.

To sort part of a file:

1. Select the area you're interested in.

2. Hit :: and Vim will display :'<,'>' which refers to your selection.

3. Type !sort (i.e. execute :'<,'>!sort).

52

DISCUSSIONDISCUSSION

Both methods above sort lines alphabetically. If you require a different type of sorting you

need to pass options to the command.

If you're using Vim 7+:

:sort!
Reverses the sort order, i.e. sorts in descending order: z-a, 100-0.

:sort flagsflags

The sort command can be followed by a series of flags which can be combined in any

order:

n
Sorts by the first decimal number in the line.

i
Ignores case while sorting.

u
Deletes duplicate lines (keeps unique lines).

:sort /patternpattern/
Ignore text matching pattern when sorting.

For example, the following table describes how the set of data in the Original column is

transformed for the given invocations of :sort.

OriginalOriginal:sort!:sort in:sort i /^./}
ant 1 zebra 12 ant 1 zebra 12

Dog 7 frog 11 fish 6 fish 6

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 53

cow 8 fish 6 Dog 7 ant 1

fish 6 cow 8 cow 8 Dog 7

frog 11ant 1 frog 11 cow 8

zebra12Dog 7 zebra 12 frog 11

If you're using the external sort utility the options are similar. See man sort for the

details. Common invocations are:

%!sort -u
Delete duplicate lines.

%!sort -f
Ignore case when sorting.

%!sort -r
Reverse sort order.

54

EXECUTINGEXECUTING EXTERNALEXTERNAL COMMANDSCOMMANDS

PROBLEMPROBLEM

You want to run a program from within Vim, possibly having it operate on the current file.

For example, you want to view a list of the other files in your project by getting a listing of

the current directory. Or you want to find mistakes in the essay you're working on by passing

its filename to the diction utility.

SOLUTIONSOLUTION

Invoke the program using the :!program syntax. For example, to view a directory listing on

a POSIX system: :!ls.

If you need to pass the current filename to the command as an argument, use the % wildcard.

For example, executing :!wc % from aristotle-essay.txt executes wc
aristotle-essay.txt.

⇰ FilenameFilename ModifiersModifiers

You can alter the filename represented by % by following the wildcard with a modifier. For

example:

%:p
Makes the filename a full path.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 55

http://www.gnu.org/software/diction/diction.html
http://www.gnu.org/software/diction/diction.html

%:.
Makes the filename relative to the current directory.

%:t
Removes any directories before the actual file name. For example ~/work/foo.txt
⇒ foo.txt.

%:e
Removes everything except the filename extension. For example ~/work/foo.txt ⇒
txt.

DISCUSSIONDISCUSSION

The concept is that Vim suspends itself, asks your system to execute the command, shows

you its output, then, once the user presses <Enter><Enter>, returns you to Vim.

If you don't want to see the output of the command, you can execute it like this: :silent
command. (To also hide any error output: :silent! command).

You can use :redir > file if you want to save the output of a command to a file. You

first execute, say, :redir > /tmp/output, then :!command. The output for command

will be saved in the file /tmp/output, and displayed on the screen. (You can combine

:silent command and :redir file to redirect a command's output to a file without

seeing it on screen). To stop output redirection execute :redir END.

You can use :r!command to execute command and read in its output to the current file.

For example, if you're using a POSIX system, you can insert your kernel version with

:r!uname -v.

56

MANAGINGMANAGING SESSIONSSESSIONS

PROBLEMPROBLEM

Every time you work on a project you need to manually open all of the files it comprises,

readjust the window size, etc. You'd like Vim to do all this automatically.

SOLUTIONSOLUTION

Use sessions.

To save a session: :mksession. Vim saves the session information as 'Session.vim' in the

working directory; to specify your own filename execute :mksession file instead. To

overwrite an existing session follow the command with an exclamation mark: :mksession!.

To restore a session invoke Vim with the -S flag from the same directory you saved

Session.vim in: vim -S. If you used a different filename for your session: vim -S
file. If you're already inside Vim, you can load a session by sourcing the session file, e.g.

:source Session.vim.

DISCUSSIONDISCUSSION

Applications such as Mozilla Firefox use the concept of a global session file which is

overwritten every time you use the program. To make Vim work this way you simply use a

fixed name for the session variable. For example, you could save it to $VIMHOME/
Session.vim. You could add a mapping something like this to your vimrc.

nmap SQ <ESC>:mksession! ~/vim/Session.vim<CR>:wqa<CR>

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 57

(SQSQ for Session Quit). To automatically restore this session when Vim is called without

arguments add the following:

function! RestoreSession()

if argc() == 0 "vim called without arguments

execute 'source ~/.vim/Session.vim'

end

endfunction

autocmd VimEnter * call RestoreSession()

You can extend this in arbitrary ways to suit your working environment. One approach is to

only restore a session if it exists in the current file's directory. Another is to simply hardcode

a list of directories whereby if they are the file's current directory or parent directory, their

session file is used. This is useful for one-project-per-directory organisation.

If you don't just want one global session file, as described above, a more granular approach is

suggested below:

nmap SSA :wa<CR>:mksession! ~/sessions/

nmap SO :wa<CR>:so ~/sessions/

Session Save As saves the open files and prefills the command line with the command to save

the current session in a ~/sessions/ directory. All you need to do is enter a name and hit

<Enter><Enter>.

Session Open also saves the open files, then prefills the command line with the command to

load a session file. Just type the name of the session you want to load and hit <Enter><Enter>.

You can use <Tab><Tab> completion in both cases. For example, you could save a session with

SSAwork<Enter>SSAwork<Enter>. Later, when you want to restore the session but can't recall its name,

just hit SO<Tab>SO<Tab> to cycle through the saved sessions.

58

(Both mappings assume the ~/sessions/ directory already exists; create it if it doesn't).

✪ Yuri Klubakov's sessionman plugin provides a more polished approach for session

management, subsuming the functionality described above.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 59

http://www.vim.org/scripts/script.php?script_id=2010
http://www.vim.org/scripts/script.php?script_id=2010

FORMATTINGFORMATTING WITHWITH ANAN EXTERNALEXTERNAL PROGRAMPROGRAM

PROBLEMPROBLEM

You want to reformat text with a program other than Vim. For example, you want to use the

W3C 's 'tidy' utility to format HTML .

SOLUTIONSOLUTION

Set the equalprg option to the name of the program you want to use, along with any

arguments it should be passed. For example:

:set equalprg=tidy\ -indent\ -q

You can now select the text you want to format, then hit ==. You can reformat the entire file

with 1G=G1G=G.

DISCUSSIONDISCUSSION

The formatter that you use depends on the type of content you are producing. Here are a

couple of suggestions of programs to use for specific file types:

TextText

If you want to format normal text using an external program, par is a popular choice. It can

wrap, align, justify, and quote text in every conceivable way, and many more aside.

60

HTML/HTML/XHTMLXHTML

Use HTML Tidy. You can specify options on the command line, as shown in the example

above. If you want to specify a lot of options, put them into a config file, and point tidy to

it: tidy --config file. At a minimum you probably want to use:

:setlocal equalprg=tidy\ -utf8\ -indent\ -q\ -f\ /tmp/err

Then you can reformat your file with 1G=G1G=G. One caveat is that this won't work correctly for

reformatting a specific section of the file. You can use the --show-body-only true
option if you want to be able to do this, but like many formatters of markup languages, Tidy

doesn't perform as well on fragments because of lack of context.

XMLXML

HTML Tidy can be used to format XML as well by passing it the -xml option. Alternatively,

you can use xmllint:

:set equalprg=xmllint\ --format\ -

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 61

http://tidy.sourceforge.net/

WORKINGWORKING WITHWITH DIFFERENTDIFFERENT FILEFILE FORMATSFORMATS

PROBLEMPROBLEM

You're editing a file created on a different operating system, so need to change its line

endings. Or, you wish to convert a file to use different line endings, perhaps because a tool

expects them that way.

SOLUTIONSOLUTION

Specify the desired file format with :set ff=format, where format is dos for Microsoft

Windows/DOS files, unix for Unix/Linux, or mac for Apple Mac. As usual, you must then save

the file to make the changes permanent: :up.

DISCUSSIONDISCUSSION

Different operating systems have different notions of what constitutes a line in a text file.

Specifically, they disagree on the control character that terminates a line. Unix/Linux uses a

line feed (LF), Microsoft Windows uses a carriage return followed by a line feed (CRLF), and

the Mac uses a carriage return (CR). This would be a matter of pedantry were it not for

users of different operating systems sharing files.

Luckily, Vim handles this situation transparently most of the time. When a file is loaded, its

format is guessed, and &ff is set appropriately. If Vim guesses incorrectly, you can insist on a

specific file format with :e ++ff=format, thus forcing the file to convert to the given

format.

The above assumes that a file's line endings are at least consistent. That is, each line ends with

the same character(s). If your file is mangled (some lines ending with CR, some with LF, for

62

example) you will likely see stray control characters such as ^J or ^M peppered throughout.

This can be fixed with search and replace: :%s/\r//. Lastly, if you have some Mac line

endings with dos/unix or Unix/Linux line endings with mac, use :%s/\r/\r/g.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 63

TYPINGTYPING

64

SPELLSPELL CHECKINGCHECKING

PROBLEMPROBLEM

You want Vim to highlight misspelled words and suggest alternatives.

SOLUTIONSOLUTION

To enable spell checking you first need to ensure that Vim knows which language you're

typing in. If you execute :echo &spelllang you'll see the language code that Vim thinks

applies. For instance en. To change this use :set spelllang=code. For example, I use

:set spelllang=en_GB.UTF-8.

If you're spell checking in American English, you should already have the dictionary installed.

Otherwise, Vim should prompt you to download it. If you're not and it doesn't, see the

Getting Dictionaries sidebar of Auto-Completing Text.

To highlight spelling errors just execute :set spell. To remove the highlighting: :set
nospell.

DISCUSSIONDISCUSSION

Spelling errors are highlighted in one of four colours depending on the type of error:

• Word is not in the dictionary.

• Word is in the dictionary but not capitalised.

• Word is classed as 'rare'.

• Word is spelled incorrectly for this region. For instance, color in British English.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 65

You can jump to the next spelling error after the cursor]s]s and jump backwards with [s[s.

Similarly, you can use]S]S and [S[S to only jump between words not in the dictionary (i.e. rare,

and region-specific misspellings are skipped).

Once the spelling errors are highlighted, you presumably want to correct them. If you hit z=z=

over a misspelled word you'll be presented with a list of suggested spellings. Enter the number

corresponding to the correct spelling and hit <Enter><Enter>.

If a correctly spelled word is highlighted as an error, you can add it to your personal

dictionary with zgzg. This prevents it from being marked as an error in the future.

Conversely, if an incorrectly spelled word isn't highlighted, you can add it to the bad word list

with zwzw.

66

USINGUSING TEMPLATESTEMPLATES

PROBLEMPROBLEM

You create documents containing boilerplate text and would like to avoid typing it.

For instance, you write HTML documents and don't want to type the standard preamble every

time.

SOLUTIONSOLUTION

Use templates and associate them with a file extension. When a new file is created with an

extension for which a template is available, the template contents will be inserted.

You must first create a skeleton document, e.g.:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd"

xml:lang="en">

<head>

<title>Document Title</title>

</head>

<body></body>

</html>

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 67

Save this document in your Vim directory with the corresponding file extension, e.g.

~/.vim/skel/tmpl.html. (You may also want to make this file read only so you don't

modify it by mistake).

Add the following to your .vimrc:

autocmd! BufNewFile * silent! 0r ~/.vim/skel/tmpl.%:e

Now, every time you open a new file Vim checks ~/.vim/skel/ for a file whose name

starts with tmpl. and ends with the extension of the file you're creating. It then reads the

template file into your new file's buffer.

For example, if you added the template above then invoked Vim with vim page.html, the

XHTML above would be inserted into the page.html file automatically.

DISCUSSIONDISCUSSION

Once you have created a document from a template you have to insert text at various

predefined positions. For instance, for the XHTML template, you have to change the contents

of <title>…</title>, then start typing between the <body>…</body> tags. Navigating between these

points in the document, which are the same every time you use the template, is cumbersome.

The traditional solution is to use placeholders. This involves including some notation in the

template file that indicates where your input is required, then providing a method to jump

between them.

Here's the previous template with placeholders added:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

68

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.w3.org/MarkUp/SCHEMA/xhtml11.xsd"

xml:lang="en">

<head>

<title>%TITLE%</title>

</head>

<body>%BODY%</body>

</html>

The placeholder notation is arbitrary, but let's stick with %VARIABLE% for the sake of

example. Now we need a way to jump between them, and <Ctrl><Ctrl>--pp (menmonic:

placeholder) seems reasonable. While we're at it, we'll define a function (LoadTemplate())

to replace the autocmd line we added earlier. Add the following to your vimrc:

function! LoadTemplate()

silent! 0r ~/.vim/skel/tmpl.%:e

" Highlight %VAR% placeholders with the Todo colour group

syn match Todo "%\u\+%" containedIn=ALL

endfunction

autocmd! BufNewFile * call LoadTemplate()

"Jump between %VAR% placeholders in Normal mode with

" <Ctrl-p>

nnoremap <c-p> /%\u.\{-1,}%<cr>c/%/e<cr>

"Jump between %VAR% placeholders in Insert mode with

" <Ctrl-p>

inoremap <c-p> <ESC>/%\u.\{-1,}%<cr>c/%/e<cr>

If we create a new HTML file now this is what we see:

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 69

See below for ways to automatically jump to the placeholders and for inserting smaller code

fragments by using snippets.

70

UNDOINGUNDOING MISTAKESMISTAKES

PROBLEMPROBLEM

You've made a mistake while editing and you'd like to revert it. Or, worse, you've made a

mistake while reverting a mistake, and you'd like to revert that.

For example, you've just deleted the paragraphs containing, subject to peer review, the cure

for cancer. You'd kinda' like to retrieve it, and pretend the whole situation had never

occurred.

SOLUTIONSOLUTION

Use the undo feature. Hit uu in Normal mode or :u in Command mode. You can undo all

recent changes on the current line with UU. To undo multiple times either repeat the command

or prefix it with a digit indicating the number of times. For example, to undo the previous

change and the one before that: uuuu.

To redo a change that was undone use <Ctrl><Ctrl>++RR or :redo.

You can also jump backwards and forwards through your edits by time. To return to how

your file looked 1 hour ago use :earlier 1h, then travel forward 20 minutes with

:later 20m.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 71

DISCUSSIONDISCUSSION

The undo/redo behaviour described above should be familiar to most users as it mirrors that

of many other applications. Vim, however, extends this concept into the idea of undo

branches.

Imagine you opened a new file and entered elephant. You then entered calf on a new line and

hit uu. This undid the addition of calf so now your file just contains the word elephant. Next

you entered moose. If you hit uu again you'd undo moose and get back to elephant. No matter

how many times you do this you'd never get the calf back (which is unacceptable; elephant

calves are particularly photogenic) because you made an edit after undoing (by adding moose).

Undo branches to the rescue. Hit g-g- and your file will now contain elephant then calf. Here

are the events represented diagramatically:

Vim implicitly created an undo branch each time you hit uu. The branch represents the state of

the file before you undid. g-g- (and g+g+ to move forwards) moves between these branches.

72

AUTO-COMPLETINGAUTO-COMPLETING TEXTTEXT

PROBLEMPROBLEM

You want to be able to type the start of a word and then have Vim complete it. For example,

you want to type multip, be offered suggestions for words that start that way, then pick one.

SOLUTIONSOLUTION

To auto-complete a word Vim needs a list of possible words. An obvious source is the

current file(s). If your file already contains the word multiplicand, then Vim can use it to auto-

complete multip. Simply hit <Ctrl><Ctrl>++nn after the p to complete the word. If multiple matches

are found you'll be presented with a list from which to choose from.

Another source of words is a dictionary. Get one, using the sidebar for reference, then point

Vim to it with :set dictionary=file. Then add the dictionary to list of places Vim

looks for words: :set complete+=k. The 'complete' options controls where Vim

looks for possible matches.

⇰ GettingGetting DictionariesDictionaries

If you specify your language with :set spelllang=lang-code, e.g. :set
spelllang=it for Italian, Vim should automatically download the correct dictionary for

you and set it up. If this doesn't work for you see :help spell and vim/runtime/
spell/README.txt.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 73

http://ftp.vim.org/vim/runtime/spell/README.txt
http://ftp.vim.org/vim/runtime/spell/README.txt
http://ftp.vim.org/vim/runtime/spell/README.txt
http://ftp.vim.org/vim/runtime/spell/README.txt

Auto-complete can also be used to lookup synonyms for the current word. Get a thesaurus

file, then instruct Vim to use it with :set thesaurus=file, :set complete+=s.

<Ctrl><Ctrl>--xx <Ctrl><Ctrl>--ff searches for the filename that starts with the text before the cursor.

If one is found, it is inserted before the cursor. If multiple filenames are found, a drop down

list is displayed to choose between them.

✪ Eric Van Dewoestine's SuperTab plugin lets you use the <Tab><Tab> key to auto-

complete text. You select the type of completion that you want using :SuperTabHelp,

then just hit <Tab><Tab> after a word to see a drop-down menu of completion choices.

DISCUSSIONDISCUSSION

Vim can use pretty much any word source imaginable. Consult :help ins-completion
for more details.

Vim version 7 and above supports Omni-Completion, which allows custom functions to

generate possible completions dynamically. Even better, for programmers at least, is that some

popular programming languages already have Omni-Completion functions which are enabled

automatically. These typically allow context-sensitive completion of method names, objects, and

reserved words. For example, using Ruby I can type an integer, a period, then invoke Omni-

Completion to find that Fixnum objects support methods such as %, *, and +.

Languages that don't have Omni-Complete functions available can use their syntax highlighting

definitions to achieve a similar affect. The Vim documentation suggests adding the following

stanza to your vimrc, after any :filetype command, to enable Omni-Completion using

the best available method:

74

http://www.vim.org/scripts/script.php?script_id=1643
http://www.vim.org/scripts/script.php?script_id=1643

if has("autocmd") && exists("+omnifunc")

autocmd Filetype *

\ if &omnifunc == "" |

\ setlocal omnifunc=syntaxcomplete#Complete |

\ endif

endif

To use Omni-Completion hit CtrlCtrl++xx CtrlCtrl++oo to be presented with a list of choices for the

text behind the cursor.

Apart from programming languages, Omni-Completion also works for HTML and CSS. For

example, you can type <p<p clcl, CtrlCtrlxx CtrlCtrl++oo, then be shown class=" CDATA,

onclick=" Script, and ondblclick=" Script.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 75

ABBREVIATINGABBREVIATING COMMONCOMMON STRINGSSTRINGS

PROBLEMPROBLEM

You regularly have to enter the same text, but don't want to.

For instance, if you use Vim to write e-mail you may often mention the URL of your website.

Instead of typing http://example.com/ every time, which is both annoying and error

prone, you want to enter, say, myUrl and have it replaced with the address.

SOLUTIONSOLUTION

Use Vim's abbreviations feature to map concise abbreviations to frequently entered text.

To create the aforementioned abbreviation we use the :iabbrev command: :iabbrev
myUrl http://example.com/. To use it, type the name of the abbreviation (myUrl in

this case) and then hit <Space><Space> or <Enter><Enter>. The name of the abbreviation is replaced with

its payload.

The syntax for defining abbreviations is :iabbrev name payload, where name is the

text you want replaced, and payload is what it should be replaced with.

DISCUSSIONDISCUSSION

The abbreviation feature is smart enough not to expand abbreviation names that occur as part

of another word, but its telepathic functionality is suboptimal. Useful abbreviation names are

easy to type, but will not appear in normal text. The convention I use is to prefix them with

my, then uppercase the first letter. (If you use a programming language that prefers

76

"camelCased" variable names, you may see clashes. Either stop using Java®, or disable

abbreviations for the source code.)

You can also abbreviate commands. For instance, if you wanted to type :docs instead of

:help you could map one to the other with :cabbr docs help.

I suggest keeping your abbreviations in an abbreviations file in $VIM. You can then source it

from your vimrc. For example, you can create the file by running vim $VIM/
abbreviations, then populate it with your abbreviations:

iabbrev myUrl http://example.com/

iabbrev myEmail user@example.com

Then in vimrc just write source $VIM/abbreviations.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 77

INSERTINGINSERTING ACCENTEDACCENTED OROR "FOREIGN""FOREIGN" CHARACTERSCHARACTERS

PROBLEMPROBLEM

You want to type characters which don't exist on your keyboard.

For example, you want to type some words in another language, so need to insert accented

characters. Or you want to type a symbol such as ±.

SOLUTIONSOLUTION

If you haven't already, set up Vim to use UTF-8 by following the sidebar. It makes this process

far easier.

⇰ EnablingEnabling UTF-8UTF-8 SupportSupport

Vim uses the encoding specified by the user's environment. On Linux this is set with the

$LANG variable. To override this use :set encoding=utf-8.

If you're using Vim from a terminal your terminal software must also be configured to use

UTF-8. Instructions for that are outside the scope of this recipe.

When editing files their current encoding is maintained, so if you opened a file in ISO-8859-2,

your changes would be written in that encoding. To force UTF-8 for all files use :set
encoding=utf-8 fileencodings=.

78

To insert an accented character you press <Ctrl><Ctrl>--KK, the unadorned character, then another

character indicating the accent type. This method can also be used to produce translations of

characters in a given script.

For example, to insert an e acute (the last letter in café) you hold down <Ctrl><Ctrl>--KK, type e,

then type an apostrophe (').

The following table shows the different types of characters you can produce:

CharacterCharacter MeaningMeaning

! Grave

' Acute accent

> Circumflex accent

? Tilde

- Macron

(Breve

. Dot above

: Diaeresis

, Cedilla

_ Underline

/ Stroke

" Double acute (Hungarumlaut)

; Ogonek

< Caron

0 Ring above

2 Hook

9 Horn

= Cyrillic

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 79

* Greek

% Greek/Cyrillic special

+ Smalls: Arabic, caps: Hebrew

3 Some Latin/Greek/Cyrillic

4 Bopomofo

5 Hiragana

6 Katakana

DISCUSSIONDISCUSSION

This method of input is most suitable for occasionally typing unusual characters. For regular

use, Vim supports most input methods. See :help keymap and :help termencoding
for more details.

Vim refers to printable, non-ASCII characters as digraphs. A list of digraphs available on your

system can be obtained with the command :digraphs. The output may appear chaotic, but

that's mainly because it's so dense. It lists, in columns, the character's internal name, the literal

character, and the character code in decimal.

You can also insert characters using their character code. If you're one of the slackers who

haven't memorised the Unicode specification yet, you can use the :digraphs command, or

any other reference, to lookup the code. Hit <Ctrl><Ctrl>--VV, then type the code in either

hexadecimal or decimal. Continuing the above example of producing é, you could enter either

<Ctrl><Ctrl>--VV xe9xe9 or <Ctrl><Ctrl>--VV 233233.

The internal name :digraphs lists corresponds with the shortcut table above. That is to

say, the internal name for é is e'. Thus, we can generalise the <Ctrl><Ctrl>--KK approach for any

character we know the name of. For example, to produce the ± sign you hit <Ctrl><Ctrl>--KK--+-+-.

80

OPENINGOPENING THETHE FILEFILE NAMENAME BENEATHBENEATH THETHE CURSORCURSOR

PROBLEMPROBLEM

You have a file name under your cursor and would like Vim to open it.

For example, program source code often references other files from which it includes

functionality. You want to quickly open such a file.

SOLUTIONSOLUTION

Position your cursor over a file name then hit gfgf (mnemonic: go to file or get file) in Normal

mode. For example, consider a file like the following:

Edit your ~/.vimrc by opening it with Vim, then...

If your cursor was anywhere over ~/.vimrc, gfgf would try to open your Vim configuration

file. (This assumes that you're using Linux where ~ is shorthand for the user's home

directory).

Vim doesn't care if the word under the cursor looks like a filename, so if your cursor was

over the word your, instead, it would try to open a file named your in your path.

Your path is a list of directories in which Vim searches for the named file. To see what it's

currently set to execute :echo &path. The path is a comma-separated list of directories,

some of which have special significance:

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 81

..

The directory containing the current file.

;;

A path that ends with a semicolon is searched recursively, up the directory hierarchy. For

example /usr/share/doc; means to first search in /usr/share/doc, then /usr/
share/, then /usr/, then /.

**

A path that ends in an asterisk is searched recursively downwards. For example, /home/
kate/* would search all of user kate's home directory.

I like gf to search recursively downwards from the current directory so I append ./** to

my path like so: :set path+=./**.

DISCUSSIONDISCUSSION

This feature has a surprising amount of uses for something so basic. I use it when:

• Log files are referenced in e-mail alerts.

• To open files referenced in my version control system's commit e-mails.

• When outlining11 a project that consists of multiple files. Each level of outline links to

the relevant file.

• To view source code for external modules when writing source code.

Vim also lets you follow URLs in this way, so you can gf on http://example.com/, to

open the HTML in Vim, or sftp://example.com/README to connect to example.com

via SFTP, fetch README, then open it for editing in Vim.

11. The Indentation Folding sidebar in Manually Creating Folds describes one approach to outlining in Vim

82

By default gf opens the file in the same window. To open it in a new tab use <Ctrl><Ctrl>ww++gfgf.

To make this behaviour the default consider a key remap: :nnoremap gf <C-W>gf.

If your filename is followed by a line number, e.g. foo.txt:10 you can jump to the given line

with gFgF.

If the filename you use gfgf on doesn't exist, Vim complains. I don't use gFgF so I have

remapped it to create the given file: :nnoremap gF :view <cfile><cr>.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 83

INSERTINGINSERTING THETHE DATEDATE

PROBLEMPROBLEM

You're typing a document and want to insert the current date.

For example, you're composing a letter and want to include today's date at the top.

SOLUTIONSOLUTION

Use !!date in Normal mode.

DISCUSSIONDISCUSSION

The !!command syntax executes command and replaces the current line with the output.12.

To control where the date is inserted see the following paragraphs.

A similar same effect can be achieved with :r!date. The advantage is that it inserts the

output of date on the next line, rather than replacing the current one.

The solutions above assume that you have a date executable in your PATH, as all UNIX-

based systems should. I understand that Windows users have to use !!date /t.

Alternatively, you can call Vim's strftime() function, e.g. strftime("%c"). This will

work on all systems which support the strftime system call, which I believe is the majority.

12. This is in fact an oversimplification. count!!command actually filters count lines through

command and returns the result, but when count is omitted, it has the effect I've described. This is why
the text on the current line is replaced with the date.

84

You can map this function to a function key. For example, the following commands map <F7><F7>

to insert a date stamp after the cursor.

:inoremap <F7> <C-R>=strftime("%c")<CR>

:nnoremap <F7> "=strftime("%c")<CR>p

I suggest the use of !!date because it doesn't waste a function key, and, personally, I find it

more memorable. If you intend to insert dates regularly, by all means remap a key to do so.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 85

INSERTINGINSERTING SNIPPETSSNIPPETS

PROBLEMPROBLEM

You repeatedly type the same constructs, so want to expedite the process by typing a few

letters then have Vim produce the boilerplate text.

For example, to enter a HTML <table> you want to type table<Tab><Tab> then have Vim

produce:

<table border=" ">

<tr><th> </th></tr>

<tr><h> </th></tr>

</table>

SOLUTIONSOLUTION

Use Michael Sanders' snipMate plugin, which provides a subset of the snippets feature of the

Textmate. editor.

Follow the installation instructions on the script page, then open a HTML document with Vim,

e.g. vim test.html. Type table<Tab><Tab>. The <table> given above should be inserted

into your document.

In the above example, table is the trigger, the text you type, and the resultant HTML is the

snippet, the text that is inserted after typing trigger<Tab><Tab>.

snipMate is distributed with a collection of snippets for common file types. To see a list of

snippets available for the current buffer execute <Ctrl><Ctrl>--RR <Tab><Tab>. To write your own see

:help snipMate.

86

http://www.vim.org/scripts/script.php?script_id=2540
http://macromates.com/

✪ Several snipMate users have made their snippets available on GitHub.com:

• Scala snippets by Tyler Weir.

• Ruby, Ruby on Rails, jQuery, rSpec, etc. snippets by Martin Grenfell and Travis Jeffery.

• A general collection by Ron Damen.

DISCUSSIONDISCUSSION

The power of snipMate comes from how it lets you navigate the snippet once inserted.

Consider again the <table> example:

<table border="1">

<tr><th>2</th></tr>

<tr><h>3</th></tr>

</table>4

The numbers, e.g. 1, in the above output represent tab stops: the positions where the nth

<Tab><Tab> after the trigger will move the cursor to. So, the user types table<Tab><Tab> to insert

the snippet. His cursor is placed in position 1 so he can enter the border size. He then hits

<Tab><Tab> again to position his cursor in 2 so he can enter the name of the header for the first

row. And so on.

Some constructs require user-entered text to appear multiple times. For instance, HTML

authors may want to enter an <option> element like the following:

<option value="placeholder">placeholder</option>

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 87

http://github.com/search?q=snipmate&type=Repositories
http://github.com/tjweir/vim-snipmate-scala-snips/tree
http://github.com/scrooloose/snipmate-snippets/tree/master
http://github.com/travisjeffery/snipmate-snippets/tree/master
http://github.com/jxl/snippets/tree/master

In this example, placeholder is placeholder text that needs to be entered twice. snipMate

lets you enter the text in value="placeholder">, and have it copied into

>placeholder< as you type.

To learn more about snipMate and its features see :help snipMate.

There is also a similar snippet engine called XPTemplate.

⇰ ComparisonComparison ofof TechniquesTechniques toto Auto-CompleteAuto-Complete TextText

We have discussed various approaches to automatically inserting text in this chapter, so let us

recap13.

Templates can be used to associate a skeleton document with a file extension, whereby opening

a file whose name ends with that extension causes the skeleton document to be inserted into

the buffer. The advantage of this approach is that it doesn't require the installation of any

plugins, but other than that snipMate can be used to achieve the same effect. For example,

SnipMate has a trigger named docx which inserts the XHTML 1.1 doctype:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

This can trivially be adapted to insert whatever boilerplate HTML you desire.

Abbreviations can be used to replace a piece of text with another piece of text after pressing

<Tab><Tab>. They differ from snippets in two key respects. Abbreviations are typically defined

globally, whereas snippets are defined for specific filetypes. For instance, a trigger of for could

13. The forthcoming is intentionally opinionated and simplified because a detailed analysis of every possibility
is beyond the scope of this book. That said, if there are any factual errors, please let me know.

88

http://www.vim.org/scripts/script.php?script_id=2611

insert a C for loop when editing C source code, or a Ruby for loop when editing Ruby code.

More importantly, snippets have the notion of placeholders that can be tabbed between. In

general, snippets can do everything abbreviations can, and more.

Insert-mode auto-completion can auto-complete text based on what has already been typed or

the grammar of the current file type. For instance, you can auto-complete a variable name that

you have declared previously, or a language keyword. This form of auto-completion augments

snipMate: use the former to complete unique definitions and names in the current file, and those

that it includes; use the latter to complete pre-defined snippets. Where the two's functionalities

overlap, snipMate has a simpler interface (type a trigger, hit <Tab><Tab>), and is, arguably, easier

to configure.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 89

NAVIGATIONNAVIGATION

90

NAVIGATINGNAVIGATING TEXTTEXT FILESFILES

PROBLEMPROBLEM

You're editing a text file such an essay or e-mail, and want to exploit its structure to navigate

it efficiently.

SOLUTIONSOLUTION

In Normal mode you can use the following shortcuts:

KeyKey MoveMove ToTo

{{ Beginning of current paragraph

}} End of current paragraph

((Beginning of current sentence

)) End of current sentence

ww Beginning of next word

bb Beginning of the previous word

ee End of the word

DISCUSSIONDISCUSSION

The shortcuts above all rely on the fact that plain text is often very structured. A document

consists of paragraphs separated by newlines. Paragraphs contain one or more sentences which

begin with capital letters and end with periods. Sentences are collections of words which are

separated by spaces.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 91

After using one of these shortcuts you may want to return to where you were previously.

This is particularly useful if you're writing one thing and are then reminded that you now have

to change another: you use a shortcut to jump to the location of the change, then want to

resume where you left of. You can use the g,g, (mnemonic: go back to where I paused

(commas can be used to represent pauses…)) command. Each time you execute it you'll be

taken back another step. To move in the other direction (towards more recent changes), use

g;g;.

All of these shortcuts can be combined. So, to move to the end of the previous word you

type bebe. You can also prefix them with numbers to indicate how many times they should be

executed: 3b3b moves to the beginning of the 3rd previous word.

92

NAVIGATINGNAVIGATING SOURCESOURCE CODECODE

PROBLEMPROBLEM

You're editing the source code for a computer program, and want to navigate it efficiently.

SOLUTIONSOLUTION

The commands below allow movement around source code in the context of typical

constructs. For instance, %% finds the end of the if/elsif/else block, or a comment, your cursor

is over, and moves you to the end of it.

KeyKey MoveMove ToTo

%% End of construct 14

[[[[Backwards to the beginning of the current function.

][][Forwards to the beginning of the current function.

]}]} Beginning of the current block.

[{[{ End of the current block.

}[}[Beginning of the current comment block.

}]}] End of the current comment block.

gdgd First usage of the current variable name 15. (Mnemonic: go to definition).

gDgD Go to the first global 16 usage of the current variable name.

14. A construct is a bracket pair, an if/elsif/else block, or a comment. For example, if you hit %% on an
opening bracket you'd jump to the corresponding closing bracket. See :help % for more details.
15. Occurrences in comments are ignored.
16. gdgd looks for the definition closest to your current position, thus respecting the lexical scoping rules of

many languages. gDgD starts searching from the first line of the file, so prefers variables with a global scope.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 93

DISCUSSIONDISCUSSION

The shortcuts available for text files are supported for source code, too, so review them if

you haven't already.

There's a lot to remember here. Despite my best efforts, I suspect that the descriptions above

are still confusing. To understand these shortcuts you really need to try them yourself. Open

some source code written in your favourite language with Vim, make sure that syntax

highlighting is on (:syntax on), and bounce back and forth between those braces.

94

NAVIGATINGNAVIGATING THETHE VIEWPORTVIEWPORT

PROBLEMPROBLEM

You want to scroll through a document in screenfulls; not line by line.

SOLUTIONSOLUTION

CommandCommand ScrollScroll ToTo

HH Top of the screen. (Mnemonic: Home).

LL Bottom of the screen. (Mnemonic: Lower).

MM Middle of the screen. (Mnemonic: Middle).

gggg Top of file.

GG Bottom of file.

DISCUSSIONDISCUSSION

If your file is longer than the height of your window, you'll need a way of scrolling the portion

that appears on the screen.

The area of the screen displaying a file is called the viewport. As we scroll down the

document using jj, the viewport updates to hide the line at the top, and show a new one at

the bottom. Scrolling through a long document this way is inefficient and unhealthy for our

fingers. Instead we can scroll one screenfull at a time, which severely reduces the amount of

key presses involved.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 95

NAVIGATINGNAVIGATING BUFFERSBUFFERS

PROBLEMPROBLEM

You have multiple files open and want to navigate between them.

SOLUTIONSOLUTION

Buffers allow you to have a collection of files open with only one displayed at a time. They

are particularly useful for processing a set of files sequentially, whereby you operate on one

file, then switch to the buffer containing the next. If you'd rather have the open files listed

along the top of the screen, consider using tabs instead.

CommandCommand ResultResult

:buffers
:ls
:files

View the list of buffers along with their numbers.

:buffer N Open buffer N.

:bn[ext] Go to the next buffer. (Menmonic: buffer next).

:bp[revious]Go to the previous buffer. (Mnemonic: buffer previous).

:bf[irst] Go to the first buffer.

:bl[ast] Go to the last buffer.

:ba[ll] Open all the buffers in the buffer list. (Mnemonic: buffer all, or have a ball,

go crazy and open them all at once).

96

DISCUSSIONDISCUSSION

To quickly navigate between buffers its common to map :bnext and/or :bprev to a key.

For example map <F6> :bn<CR> lets you hit <F6><F6> to cycle through the open buffers.

You can also switch buffers very quickly by using :buffer (and its shortcut :b). It supports

(partial) file matching thus if you have first.txt and second.txt loaded you can use :b fir (or

even just :b f) to switch to first.txt.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 97

NAVIGATINGNAVIGATING TABSTABS

PROBLEMPROBLEM

You want to group your windows into multiple, logical groups.

When you have a lot of open windows/buffers it can be tricky to navigate between them.

Often it makes more sense to group them into logical tabs, so you can switch between them

easier, and operate on them as a group.

For example, if you were using Vim to edit a website, you may have your CSS files open in

one tab, the HTML files in another, and a HTML reference guide in the third.

SOLUTIONSOLUTION

Use tabs.

CommandCommand ActionAction

:tabedit
[file]

Open a new tab. If the optional file is supplied, that file is opened in the

new tab.

:tabclose Close the current tab.

:tabnext n

ngt
Go to next tab, or the nth

:tabs Show a list of the open tabs.

:tabprevious
n

ngT
Go to previous tab, or the nth

:tabdo cmd Executes cmd in each open tab, aborting on the first error.

98

DISCUSSIONDISCUSSION

You can use Vim's tabs like those in Firefox® and Opera®, by opening one file in each tab,

then switching between them. Vim enables you to extend this concept, however, by allowing

multiple files to be opened in the same tab.

When you open a tab, a tabline appears along the top of the screen, which lists the open tabs.

In GVim you can switch to another tab, close existing tabs, and open new tabs, by clicking the

tabline with the mouse.

You can either cycle through open tabs using gtgt, or go directly to a specific tab by prefixing

gtgt with its number. Tabs are numbered starting with 1, so to switch to the 3rd tab on the

tabline, say, you'd use 3gt3gt. If you have a lot of tabs, their numbers may not be obvious. In

this case, use :tabs to find them.

The power of tabs comes from executing commands on the windows they contain as a logical

group. Continuing the above example, this would let you perform a search and replace all

HTML files. For example, if you were in the HTML tab, you could say :tabdo s/<foo>/
<bar>/g, and all of your HTML files would have their <foo>s replaced with <bar>s.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 99

MANUALLYMANUALLY CREATINGCREATING FOLDSFOLDS

PROBLEMPROBLEM

You want to fold a file, then navigate it in outline mode.

SOLUTIONSOLUTION

⇰ EnablingEnabling FoldingFolding

Folding is very likely already enabled in your Vim. If not, check it has been compiled with the

+folding option, and that foldenable is true, i.e. :set foldenable.

Use Vim's folding feature to treat a file hierarchically, expanding and collapsing its sections as

necessary.

Fold commands start with z. Vim's help makes the spurious case that this, kinda', if you squint,

looks like a folded piece of paper.

CommandCommand ActionAction

zfzf Fold the selected text.

zfzf##jj Create a fold from the cursor down # lines.

zf/zf/stringstringCreate a fold from the cursor to string.

zfazfaBB Fold the current block delimited by bracket B17

17. B can be any of ()[]{}<>. This feature understands nested blocks, too, so will usually do the right
thing.

100

For instance, zf4jzf4j creates a fold from the current line to the forth line down. Or, if you've

selected text in Visual mode, then zfzf will fold the selection.

DISCUSSIONDISCUSSION

How you use folds will depend very much on the type of file you are editing. They are

particularly useful for long papers or essays, for instance, where you fold each section so as to

navigate the document hierarchically. When editing program source code they can be used

with function/method/class declarations.

This recipe is entitled Manually Creating Folds, because there are other approaches to folding

which are automatic. A particularly useful method, indentation folding, is described below. In

addition, most programming languages support syntax folding. Try it out by opening some

source code in Vim then executing :set foldmethod=syntax.

⇰ IndentationIndentation FoldingFolding

If you're working with structured, indented text you may prefer to use indentation folding.

Enable it with :set foldmethod=indent. Folds are now automatically created for

each level of indented text. (To indent simply start a line with a <Tab><Tab>18 So, for example,

zMzM folds all indented text.

To expand, collapse, and otherwise navigate folds see Navigating Folds.

18. Each shiftwidth of indent corresponds to one fold. See the Indenting Lines recipe for details.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 101

NAVIGATINGNAVIGATING FOLDSFOLDS

PROBLEMPROBLEM

Your document contains folds and you want to use them for navigation. (To create folds see

Manually Creating Folds).

SOLUTIONSOLUTION

CommandCommand ActionAction MnemonicMnemonic

zczc Close the current fold. close fold

zozo Open the current fold. open fold

zMzM Close all folds. fold More

zrzr Open one level of folds. reduce folding

zRzR Open all folds. Reduce folding

zjzj Move to the next fold. jj moves to the next line

zkzk Move to the previous fold.kk moves to the previous line

zmzm Close one level of folds. Fold more

znzn Disable folding. no folds

zNzN Re-enable folding. N is n toggled

DISCUSSIONDISCUSSION

You can use zMzM to achieve a birds-eye view of the file, which can be useful when you're

writing a long book and forget how the recipe you're currently writing relates to…

Vim treats folds like individual lines, so jj and kk move over one fold at a time. Further, you

can yank/delete19 a fold as if it was a single line.

19. yank is Vim terminology for copying text to the clipboard; see Copying, Cutting, and Pasting.

102

By default, folds are forgotten when you edit another file. To save them use :mkview. Then,

to restore them, use :loadview:loadview.

The :set foldcolumn=W command, where W is a integer width less than 13, displays a

column along the left-hand side of the screen with information about the folds in the current

file. It indicates whether the corresponding line is an open or closed fold (with - or +,

respectively).

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 103

SPLITTINGSPLITTING THETHE SCREENSCREEN

PROBLEMPROBLEM

You want to view multiple files at one time. Or, you want to view different positions in the

same file at the same time.

For example, if you were editing source code in an unfamiliar programming language, you may

want to have the documentation and source visible at the same time. Or, if you wanted to

move text between multiple files, you could view the source and target file together.

SOLUTIONSOLUTION

Use Vim's split screen feature to divide the screen into multiple panes, each of which can

display a file.

CommandCommand ActionAction

:split file Splits the window horizontally.

:vsplit fileSplits the window vertically.

(If file is specified, that file is shown in the upper/left, as appropriate, pane; if not, both

panes show the current file).

To move between windows you use <Ctrl><Ctrl>--ww (mnemonic: control window). To move in a

specific direction, add the relevant movement key. So, to move upwards: <Ctrl><Ctrl>--ww++kk.

To close the active window use :q, just as you would to close a window normally.

104

You can reduce/enlarge the size of the current window with <Ctrl><Ctrl>--ww++-- and

<Ctrl><Ctrl>--ww++++, respectively. To specify the size of a window when you open it, prefix the

:split command with the desired height/width in lines. For example, to show README in a

window of 5 lines high: :5 :split README.

DISCUSSIONDISCUSSION

The default behaviour of both :split and :vsplit is to show the current file twice. This

is more useful than it may first sound.

When working with long documents it means that you can view the top and bottom of the

file simultaneously. If you use folding you can use one window to display an outline of a

document while editing a specific section in another. For example, when I'm working on

reports I use :30 :vsplit to view the first and second level headings along the left of the

screen, while editing the report in the main window.

By default the windows will scroll independently of each other. If you :set scrollbind
before you split the screen the windows scroll together.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 105

NAVIGATINGNAVIGATING MARKSMARKS

PROBLEMPROBLEM

You want to bookmark specific points in a file so you can easily jump to them from

elsewhere.

SOLUTIONSOLUTION

Use Vim's marks feature. A mark is a character in the range a-zA-Z0-9. It's represented in the

examples below as M.

CommandCommand ActionAction

mmMM Mark the current position as M.

''MM Jump to the first character of the line containing M.

`̀MM Jump to the position of mark M.

DISCUSSIONDISCUSSION

Marks 0-9 are mainly for Vim's internal use, so ignore them. Marks a-z are only available in

the current file, and are deleted when it is closed. Marks A-Z are available across multiple

files. If your .viminfo file is available, as it usually will be, they persist across sessions.

Marks have a multitude of uses. I use them often when I have a section of a file that I need to

keep referring to: I mark that section with mama, jump to it with 'a'a, then return to where I

was previously with ````. I use them almost implicitly when formatting and filtering text to

define the text that I want to edit.

106

The :marks command shows a list of marks you have set, which is useful for the kind of

person who fully embraced the idea of marking anything and everything but was unable to

remember the significance of all 52 marks he used.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 107

NAVIGATINGNAVIGATING TAGSTAGS

PROBLEMPROBLEM

You're working on a project where you need to jump between occurrences of significant

keywords, which are possibly spread across multiple files.

For example, you're writing source code and want to be able to type a function name then

quickly jump to where it was initially defined so you understand how it should be used. Then

you want to return to where you were.

SOLUTIONSOLUTION

Use tags. Tags are similar to index entries in a book: significant terms are linked to the key

places that they occur.

We will use a program called Exuberant Ctags to generate the tag list because it is compatible

with popular programming languages such as C, C++, Java, Lisp, Perl, PHP, Python, and Ruby.

After you have installed Ctags you can generate a tag list for the current directory (and its

sub-directories) with ctags -R. To only consider files in the current directory use ctags
*. This will generate a tag list for source code in most common languages.

You can now open a source file from that directory and use the :tag tag command to

jump to the definition of the tag. To look up the tag under the cursor use <Ctrl><Ctrl>++]]. You

can also auto-complete tag names by starting to type one then using <Tab><Tab> to cycle through

the list of matching tags. To return to where you were before you jumped to a tag you use

<Ctrl><Ctrl>++tt.

108

http://ctags.sourceforge.net/

DISCUSSIONDISCUSSION

So far, we have only described tags in terms of program source code, but they are by no

means limited to this domain. The Vim help system uses tags extensively to allow navigation.

When you use :help term you're actually looking up a tag in the documentation tag file.

When you position your cursor over a highlighted entry in a help file, you use <Ctrl><Ctrl>++]] to

follow it. This is all possible because as long as you have a way of identifying significant terms

in a file, you can generate a tags list for it. For example, here's an excerpt from the tags

documentation:

tags-option

The 'tags' option is a list of file names. Each of these

files is searched for the tag. This can be used to use a

different tags file than the default file "tags". It can

also be used to access a common tags file.

The tags-option syntax is used for defining a tag. Elsewhere, the |tags-option|
syntax is used for linking to a tag. You can use :helptags dir for generating a taglist for

all *.txt files in the given directory which are marked up in this way.

However you generate it, the tag list is a static file, so it must be regenerated when your files

change significantly. In programming projects, it is typical to update the tags file during the

build process. For example, the Makefile could execute ctags.

Both invocations of ctags given above are very liberal in what they index. They search for all

programming language source code in the specified directories, and incorporate all the tags

found therein into a single tags file. To limit ctags to just Ruby source code, for example,

you can use ctags *.rb. For more control over what files ctags considers, consult its

documentation. On Linux: man ctags.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 109

Once you have generated the tags file Vim needs to be able to find it. By default it looks for a

file named tags in the current directory, but for projects which span multiple directories this

is not always suitable. You can specify the location of the tags file using :set tags=file.

Specify multiple tag files by separating the paths with commas. Instruct Vim to search for a

tags file recursively with :set tags=./tags;/.

Using <Ctrl><Ctrl>++]] to jump to a new tag takes you to a new buffer to show the results. If

you'd rather see them in a new window use <Ctrl><Ctrl>++WW++]], or :stag tag.

If you get dizzy after all this jumping around you can reacquaint yourself with where you've

been by using the :tags command. This shows you which tags you've jumped to, and where

you jumped to them from.

110

BOOKMARKINGBOOKMARKING LINESLINES WITHWITH VISIBLEVISIBLE MARKERSMARKERS ((SIGNSSIGNS))

PROBLEMPROBLEM

You want to assign visible marks to the margins of certain lines.

For example, you're using Vim as an IDE and want breakpoints to be clearly marked. Or, you

want to label lines in need of editing with a question mark icon.

SOLUTIONSOLUTION

Vim allows you to define a sign and then associate it with one or more lines of a file. It is

displayed in the right-hand margin as a two-character string in the terminal, and an icon in

Gvim.

Before you use a sign you must define it. For example:

:sign define fixme text=!! linehl=Todo texthl=Error icon=/path/to/todo.xpm

Let's break this down. We name the sign fixme, which is how we'll refer to it later. We

specify that in the terminal the sign should be displayed as !!, and that in the GUI the icon

stored at /path/to/todo.xpm should be used instead. The linehl argument defines the

highlight group used for the entire line the sign is attached to; texthl defines the highlight

group for the sign itself.

Now the sign is defined, presumably in vimrc, you can use it in any file. To attach the sign

to a specific line you use:

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 111

:sign place id line=line name=name

file=file-path

For example:

:sign place 22 line=200 name=fixme file=/home/user/novel.txt

The id is arbitrary, but must be unique and numeric. The name is the same name you used

when you defined the sign. The value of the line argument is the number of the line on

which the sign should be attached. The file argument is the full path (no expansion is done)

to a currently loaded file to which the sign should be attached. So, in the above example, two

exclamation marks are inserted in the margin of the 200th line of /home/user/
novel.txt.

DISCUSSIONDISCUSSION

You only need to define signs once, so that's easy enough, but the syntax for placing signs is

particularly unwieldy. Let's look at some alternative approaches.

You could place the following stanza in your vimrc so <F5><F5> places the previously defined

fixme sign on the current line of the current file:

function! SignFixme()

execute(":sign place ".line(".")." line=".line(".")." name=fixme file=".expand("%:p"))

endfunction

map <F5> :call SignFixme()<CR>

Rather than placing signs manually, you may prefer to have them automatically placed on lines

satisfying some criteria. The following stanza attaches the fixme sign to lines containing notes

like TODO: check for race conditions. It operates on the current line or selection. So, you

can select a range of lines, press <F6><F6> then have your to-do list items flagged in the margin.

112

function! SignLines() range

let n = a:firstline

execute(":sign define fixme text=!! texthl=Todo")

while n <= a:lastline

if getline(n) =~ '\(TODO\|FIXME\)'

execute(":sign place ".n." line=".n." name=fixme file=".expand("%:p"))

endif

let n = n + 1

endwhile

endfunction

map <F6> :call SignLines()<CR>

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 113

GUIGUI (GVIM)(GVIM)

114

CHANGINGCHANGING THETHE FONTFONT

PROBLEMPROBLEM

You want to display the text in a different font.

For example, the current font isn't particularly readable, or is too large.

SOLUTIONSOLUTION

Standard Vim uses the font from the terminal it is run under. Gvim, however, gives you full

control over the font face and size.

The command :set guifont font-name changes the current font to font-name. The

font name can be followed by a size. There are, unfortunately, some platform-specific

differences at this point…

⇰ SpecifyingSpecifying guifont inin anan Operating-System-SpecificOperating-System-Specific MannerManner

LinuxLinux

• The font name and size are space separated.

• Spaces and commas need to be backslash escaped.

For example: :set guifont=Andale\ Mono\ 11.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 115

MacMac

• The font name and size are colon separated.

• The size is prefixed with a h.

• Spaces and commas need to be backslash escaped.

For example: :set guifont=Monaco:h11.

WindowsWindows

• The font name and size are colon separated.

• The size is prefixed with a h.

• Spaces in font names can be replaced with underscores (_).

For example: :set guifont=Andale_Mono:h11.

DISCUSSIONDISCUSSION

To change the font you need to know its name. On most operating systems you can request

a GUI font chooser with the command :set guifont=*. Linux users can also use the

xlsfonts utility to see a list of available fonts.

If the font you've specified can not be found, Vim complains. To avoid this you can specify

multiple fonts in order of preference with a comma separated list. The first valid font is

loaded. For example: :set guifont=Screen15,\ 7x13. This approach is particularly

useful if you use your Vim configuration on multiple computers, or if you simply want it to be

portable.

116

MAXIMISINGMAXIMISING SCREENSCREEN SPACESPACE

PROBLEMPROBLEM

The toolbar, menubar, and other GUI artifacts take up too much of your screen; you want to

hide them.

SOLUTIONSOLUTION

Modify the guioptions variable. Gvim decides which elements of the GUI to display based on

the value of guioptions. This is a series of letters, each of which refer to some specfic

element. Some examples follow:

• m - Display a menu bar.

• T - Display a toolbar.

• r - Always display the right-hand scrollbar.

• R - Display the right-hand scrollbar if the window is split vertically.

• l - Always display left-hand scrollbar.

• L - Display the left-hand scrollbar if the window is split vertically.

• b - Display the horizontal scrollbar.

So, to hide the menu bar, toolbar, and scrollbars you could use :set guioptions-
=mTrlb. To display a hidden element use += instead, e.g. :set guioptions+=T.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 117

DISCUSSIONDISCUSSION

If you decide that you want to restore one or more of these elements you can simply execute

:set guioptions+=m, for example. This can be cumbersome, however, as it requires you

to remember the significance of each letter.

The following stanza in your gvimrc assigns <F11> to toggle the display of extraneous GUI

elements:

function ToggleGUICruft()

if &go==''

exec('se go=mTrL')

else

exec('se go=')

endif

endfunction

map <F11> <Esc>:call ToggleGUICruft()<cr>

118

CREATINGCREATING MENUSMENUS ANDAND TOOLBARTOOLBAR BUTTONSBUTTONS

PROBLEMPROBLEM

You want to add your own commands to Gvim's menus, or toolbar, for quick access.

For example, you've written a function that automatically writes bestselling novels for you, but

you're not willing to use it if you have to type its name every time; you want to invoke it by

selecting a menu option.

SOLUTIONSOLUTION

Use :set amenu menu command to map a menu item to a command. This is the GUI

equivalent of :map.

For example, :amenu Help.Op&ions :help options<cr> adds a new item called

Options to the Help menu, which invokes :help options. The ampersand (&) signifies that

the character it prefixes can be used as a keyboard shortcut, so in this case <Alt><Alt>++hh++tt

selects this command.

DISCUSSIONDISCUSSION

You're not restricted to adding items to existing menus; you can create a new top-level menu

simply by specifying a name not currently in use. For example:

:amenu <silent>&Vim.vim\.org :!xdg-open http://www.vim.org/<cr>

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 119

will create a new top-level menu called Vim with the shortcut key VV. It will contain one entry

named vim.org (we escape the . because otherwise it would create a vim entry which in turn

contain an org item). When invoked it will open the Vim website on systems adhering to the

Free Desktop Specification. The <silent> prefix prevents the command from being echoed

on the command-line.

If you want to add a dashed separator line between menu items use a menu item named -SEP-

and an empty command, e.g. :amenu Help.-SEP- :.

To control where a top-level menu appears relative to its neighbours you need to prefix

amenu with a numeric priority: the lower the number the further right the menu's position.

For example, :5amenu First.first :echo 'first'<cr> creates a top-level menu

named First that appears before all of the others.

The same approach can be used to position menu items. For example, :amenu 9999.1
Help.first :echo 'first'<cr> adds a first item to the Help menu, which appears

before the other items.

You can also use :amenu to add a new toolbar icon:

:amenu icon=image-path Toolbar.item-name

command

For example:

:amenu icon=options.png ToolBar.OptionsHelp :help<cr>

If the image-path consists only of a filename, as above, Vim prepends $VIMRUNTIME/
bitmaps/ to it.

120

SEARCHINGSEARCHING

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 121

SEARCHINGSEARCHING FORFOR ANYANY WORDWORD

PROBLEMPROBLEM

You want to search the current file for an arbitrary word.

SOLUTIONSOLUTION

Use /word to search forward in the file; ?word to search backward.

DISCUSSIONDISCUSSION

You can use incremental (find-as-you-type) search by using the :set incsearch option.

Having done so, your cursor will move to the first match as you enter your query. This

enables you to receive feedback on the effectiveness of your query. Once satisfied with your

query, press <Enter><Enter> to run it. If you were interested more in the erratic cursor movement

than searching, pressing <Esc><Esc> will cancel the search and return to where you began.

You're not limited to finding literal strings; word can also be a regular expression. For

example /^[A-Z] searches for lines beginning with capital letters.

To repeat your search use //// or ????.

After finding the first match using either of the above methods, you can press the nn

(mnemonic: next match) key to jump to the next match. To jump to the previous match, use

NN.

122

SEARCHINGSEARCHING OVEROVER MULTIPLEMULTIPLE FILESFILES

PROBLEMPROBLEM

You want to search for a particular term in a collection of files. For example, you want to find

the files in your project that mention Mr J. Random.

SOLUTIONSOLUTION

Use the :vimgrep command: :vimgrep /pattern/ [flags] file0 file1

fileN.

DISCUSSIONDISCUSSION

In its simplest form, vimgrep takes a word to search for, and a list of files in which to do

so. So, to search for grapes in shopping-list.txt you'd run :vimgrep /grapes/
shopping-list.txt.

You can name as many files as you like, but you'll probably want to use shell globbing, see the

sidebar for details, instead to specify groups of files. Searching for grapes in all *.txt files

could be accomplished with: :vimgrep /grapes/ *.txt.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 123

⇰ GlobbingGlobbing

A number of Vim commands support filename globbing. This is a way of selecting a group of

files by specifying a pattern matching their names. For example, *.txt refers to all files in

the current directory whose names end in .txt. The * is a wildcard and means anything.

** recursively matches directories below the current one, so **/*.txt searches recursively

downwards from the current directory for filenames ending in .txt.

If your operating system supports additional globbing patterns, you can use these as well.

You're not restricted to searching on simple words, however. You can use any of Vim's

regular expressions between the forward slashes. Searching /tmp/bar.txt and

~/foo.tex for lines starting with numbers: :vimgrep /^[0-9]/ /tmp/bar.txt
~/foo.tex.

vimgrep jumps to the first match it finds. To jump to the next match use :cn:cn; use :cN:cN for

the previous.

✪ If you use :grep instead of :vimgrep an external grep-like utility is used to

perform the search. The program used is the value of &grepprg. A good choice is Andy

Lester's ack which can be used with set grepprg=ack and set
grepformat=%f:%l:%m.

The jj flag inhibits the jumpiness (Ritalin for Vim); simply saving the search results to the

quickfix list (see sidebar for details) and leaving your cursor where it was.

124

http://betterthangrep.com/

The gg flag controls how lines matching the pattern multiple times are handled. If not present

(by default), only the first match of a line is shown; otherwise, every occurrence of the

pattern is regarded as a separate match.

The flags can be combined in either order.

⇰ QuickQuick FixFix ListList

The quick fix list mentioned above is a Vim concept for creating a temporary index of

positions in a file. vimgrep stores its results (a file name, a position within that file, and the

matched text) in the quick fix list.

To view the quick fix list (i.e. the results of the last search) use :cl[ist]. The results are

numbered, so you can jump to a specific one with :cc number.

For more information see :help quickfix.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 125

SEARCHINGSEARCHING ANDAND REPLACINGREPLACING

PROBLEMPROBLEM

You want to replace all occurrences of one string with another.

For example, imagine you were using Vim to write a novel wherein there was a protaganist

named Curtis. You decide to change his name to Excalibur to give him more panache. You

want Vim to make these changes with the least possible effort.

SOLUTIONSOLUTION

Execute :%s/target/replacement/g to replace all occurrences of target with

replacement. For example: :%s/Curtis/Excalibur/g.

DESCRIPTIONDESCRIPTION

The solution above replaces Curtis with Excalibur. The g flag at the end causes this operation

to be performed globally, i.e. multiple times on each line, if necessary.

The % prefix indicates that the replacement should occur over the entire file. Had you

previously visually selected text to which you want to constrain the search/replace operation

omit the %, e.g. :s/Curtis/Excalibur/g. Or, prefix the command with a range to

contstrain it that way, e.g. 2,20s/Curtis/Excalibur/g performs the operation over

lines two to twenty.

The search string (Curtis in this example) doesn't have to be a literal string; it can be any Vim

regular expression. The details of Vim's regular expressions are explained in the Creating

Regular Expressions recipe, so I won't go into them here. Two tips, though:

126

• Search for words - If you provide a literal string to replace, as above, Vim even

replaces occurrences that form parts of other words. For example :%s/and/or/g
would change supply and demand into supply or demor. To avoid this, surround the

string with word boundary anchors (\<, \>). Thus, the above command could be

rewritten as :%s/\<and\>/or/g.

• Search case insensitively - If you want linux to match Linux, linux, and LiNuX you

need to either add the i flag to the end of the replacement command, or, use :set
ignorecase to enable this behaviour for all searches.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 127

SEARCHINGSEARCHING FORFOR THETHE WORDWORD BENEATHBENEATH THETHE CURSORCURSOR

PROBLEMPROBLEM

You want to search the current document for the word underneath your cursor. You'd rather

not type it in again.

SOLUTIONSOLUTION

In Normal mode, place your cursor on or just in front of the word you wish to find, then

press ** (mnemonic: star search). This will jump to the next occurrence of the word in the

current file. Alternatively, pressing ## will find the previous occurrence.

DISCUSSIONDISCUSSION

After finding the first match using either of the above methods, you can press the nn

(mnemonic: next match) key to jump to the next match. To jump to the previous match, use

NN.

To search for words containing the current word, press g*g* or g#g#, as appropriate. For

instance, if the current word is back, g*g* will jump to hunchback.

128

CREATINGCREATING REGULARREGULAR EXPRESSIONSEXPRESSIONS

PROBLEMPROBLEM

You want to use a Vim regular expression, but don't know how they work.

For example, you want to search a document for a word that begins with a vowel.

SOLUTIONSOLUTION

Vim allows you to use regular expressions (regexps) in many areas. The Searching for Any

Word recipe, for example, explains how to search a file for a regexp.

A regexp is a pattern that describes a string. We will use the /pattern/ notation for

describing patterns, and the "string" notation to represent the text the pattern is being

tested against.

The simplest form of pattern is a literal string, which matches that exact string. For example,

/cow/ matches "cow", "Don't have a cow", and "cower".

The period (.) has special significance in a regexp. It matches any single character. So, /.ow/
also matches "cow", but also "sow", and "tow".

You can use character ranges to indicate that any one of the specified characters are

acceptable. For example /[cs]ow/ would match "cow", "sow", and "undersow".

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 129

If your range consists of alphabetically or numerically consecutive characters you can specify

the start character and end character separated by a hyphen. For example, to match "b",

"c", "d", "e", or "f", you can use /[b-f]/. Or, an integer between 1 and 5: /[1-5]/.

You can invert character ranges so they match any character not specified. For example,

/[^cs]ow/ matches any character that isn't a "c" or an "s" followed by "ow", i.e.

"acknowledge", "I said "ow"!", and "bellow".

Another useful concept of regexps is repetition. If you wanted to match strings containing

consecutive "o"s followed by an "i, like "cooing" and "tattooist", you could use

/ooi/. If you wanted to abstract this pattern, however, to match one or more "o"s

followed by an "i", you'd have a problem.

The solution is to suffix the part of the pattern that can be repeated with a metacharacter

which specifies the type of repetition. A metacharacter is simply a character that has special

significance in a regular expression. For example, the "+" metacharacter requires that what

precedes it20 occurs either one or more times. For example, /o\+i/ matches one or more

"o"s followed by an "i": "abattoir", "cooing", and "oii".

The "*" metacharacter represents any number of occurrences of the preceding character, so

/o*i/ matches "zucchini", "boating", and "zooming". This time the "o" is made

optional. (Given that it starts the pattern it's actually unnecessary; /i/ will match everything

that it matches).

A more useful example is /[a-c]t*o\+i/ which matches either "a", "b", or "c"
followed by any number of "t"s, followed by at least one "o", followed by an "i". The

following words satisfy the pattern: "tattooing", "coins", and "limboing". It may not

20. In fact, it requires that the atom that precedes it occurs one or more times, but this recipe is already too
complex. If you want this level of detail see :help pattern or a regular expression book.

130

be intuitive that "tattooing" would match, so let's walk through it: The "a" satisfies

/[a-c]/, the following two "t"s match /t*/, the following two "o"s match /o\+/, then

the "i" matches /i/.

A key concept to grasp here is that a string matches a regexp as long as a contiguous portion

of it matches. In the example above the regexp looks at the first character of "tattooing"
and tries applying the pattern to it. This fails because "t" is not a member of the character

class [a-c]. So it moves on to the next letter and starts again, this time it matches up to

"i", as explained above, and because the pattern has now been exhausted, the rest of the

string is ignored.

You can make a portion of the regexp optional (i.e. insisting that it matches 0 or 1 times)

with \=. You can generalise this with the \{min,max\} notation which matches at least

min times, but no more than max times. For example, /[^a-c][a-c]\{2,4\}[hero]/
matches "yachts" ("yach"), and "blabbed" ("labbe"), but doesn't match

"cabbage".

Like character ranges, alternation allows you to specify a list of alternatives that can match at

a given point. Whereas character ranges specify sets of characters, alternation is used for sets

of strings. For example, /ing\|ed/ matches the string "ing" or the string "ed", e.g.

"simpered", and "attacking". If you used a character range here, e.g. /[inged]/, the

pattern would match any string that contained an "i", an "n", a "g", an "e", or a "d". i.e.

it would match all the strings the alternation approach does, but also many, many more.

All the patterns so far have been allowed to match at any point in the string. That is to say,

before Vim gives up on a match it will try applying the pattern at every point in the text. You

can change this behaviour by using anchors: ^ matches the start of a line, while $ matches the

end. So, /^\s\=\uo/ matches a line that begins with an optional white space character,

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 131

which is followed by an uppercase letter, which is followed by an "o". The following strings

will all match: " Popes are religious", "Roman", and "Soviet Union".

You can combine the two anchors to require that the whole line matches the pattern. For

example, /^\uo\%(v|ma\).\+[rnt]\$/ will match "Tomahawk thrown",

"November" and "Soviet", but will reject "Soviet Union" or "During
November".

DISCUSSIONDISCUSSION

The features described above are common to most regexp implementations. Vim offers some

extensions, though, that users familiar with other regexp implementations may not be aware

of.

By default regexps are case sensitive. That is to say /cow/ will not match "Cow". You can

make all patterns ignore case with :set ignorecase. To change the case sensitivity for a

particular pattern surround the relevant portions with \c (to ignore case from this point on)

and/or \C to respect case from this point on. For example, /\ccow/ matches "cow",

"coW", and "Cow". However, /\cco\Cw/ matches "COw" and "cow", but not "COW".

The \c makes the "co" case insensitive, then the \C makes the "w" case sensitive.

Some characters in a regexp have a special significance and don't match themselves literally in

the string. For example, /^foo/ matches a line starting with "foo"; it doesn't match

"^foo". To match a special character you need to precede it with a backslash, For example

\^ matches "^", \$ matches "$", \. matches ".", etc.

Of particular note in Vim is \n, which matches a newline character, \r which matches a

carriage return character. and \t which matches a <Tab><Tab>.

132

Vim supports backreferences which allow you to refer to part of a match later in the same

match. For example, /\([a-z]\)\1/ matches a lowercase letter followed by the same

character that just matched. This would match "zoom", and "seeing". The parenthesised

portion of the pattern is a group, and the backreference (\n) refers to the nth group. So,

/\([a-z]\)\([a-z]\)\2\1/ matches two lowercase letters, followed by the second one

again, then the first one again. This matches strings like "abba".

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 133

LOOKINGLOOKING UPUP DOCUMENTATIONDOCUMENTATION FORFOR THETHE KEYWORDKEYWORD UNDERUNDER THETHE CURSORCURSOR

PROBLEMPROBLEM

You want to invoke an external command to lookup documentation for the keyword

underneath the cursor. For example, Linux users may like to read the manual for the named

command with the man utility.

SOLUTIONSOLUTION

Use :set keywordprg=program, then hit KK while hovering over the word.

DISCUSSIONDISCUSSION

This recipe calls the command specified with :set keywordprg, passing the current

word21 as an argument. Thus, if keywordprg = man, then hovering over the word ls and

hitting KK would display the documentation for Linux's ls command.

When used with man, Vim translates a count for the KK command into a section number. So

7K7K over glob invokes man 7 glob to display section 7 of the glob documentation.

The Ruby programming language has a utility called ri that displays documentation about the

given Ruby method. The Perl programming language has a similar command called perldoc.

By setting keywordprg appropriately, you can make context-sensitive documentation lookup

trivial.

21. word is used in the sense of a string that looks like a word to Vim; it is not necessarily a valid word in
your language.

134

DISPLAYDISPLAY

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 135

WORKINGWORKING WITHWITH LONGLONG LINESLINES

PROBLEMPROBLEM

Your file contains lines which are too long to fit on the screen. You find it hard to edit and

view.

SOLUTIONSOLUTION

The :set wrap command, which should be on by default, changes how long lines are

displayed. Once they reach the right margin they are broken, and continued on the line below.

(To disable this behaviour: :set nowrap).

wrap only changes the way the lines are displayed, however; the file will not be changed. It

inserts soft line breaks.

This means that a file containing two particularly long lines may be represented by Vim as

having 5 lines, for example, after wrapping. If you try to navigate this file using the basic

movement commands jj would move between the two logical lines, rather than the screen

lines. The solution is to prefix the movement commands with gg, so gjgj moves down one

screen line.

If using wrap, you can specify what point the line should be broken by executing :set
linebreak. This uses the value of breakat to decide where to break the line. To change

the characters used modify breakat.

You can use :set textwidth=width to enforce a maximum line length, after which the

text is broken with a "hard" line break. Vim breaks at white space, so lines may be shorter

136

than width. To reformat existing text according to this preference either select them visually

and hit gqgq or, in Normal mode, you can reformat the current paragraph with gqapgqap.

DISCUSSIONDISCUSSION

In general, you'll be better off using hard line breaks with textwidth. This removes the need to

differentiate between logical lines and screen lines, and means that the file will display

reasonably in any editor, even if it doesn't wrap long lines.

Traditionally, text file lines are kept under 80 characters. This is mainly a holdover from the

days of terminals whose displays were limited in this way, but is still customary in many

programming languages and e-mail. To enforce this restriction just :set textwidth=80.

There's another way to insert hard line breaks without specifying a maximum line length. It is

called wrapmargin and wraps lines relative to the width of the terminal window. For

example, :set wrapmargin=4 means that when a line is more than four characters away

from the right-hand margin, it is broken. This approach is more flexible than textwidth, but

has the disadvantage of producing files which will display poorly on smaller displays or when

the screen is split between multiple files. Especially if you're sharing the files you produce with

others, I suggest the use of textwidth instead.

✪ textwidth takes precedence over wrapmargin. For wrapmargin to take

effect textwidth must be zero, as it is by default.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 137

DISPLAYINGDISPLAYING LINELINE NUMBERSNUMBERS

PROBLEMPROBLEM

You want to see each line's number alongside it. For example, if you’re writing a program,

error messages frequently reference line numbers.

SOLUTIONSOLUTION

Use :set number to enable line numbering. If you're using a small monitor, you may want

to disable them: :set nonumber.

DISCUSSIONDISCUSSION

Even if you're not programming, line numbers can still be useful. For example, if you’re

collaborating on a file with other people, they may mention specific lines, which you can then

jump to with :number. If you’re wrapping long lines, the line number can be used to

differentiate the beginning of the line from the point at which it has been wrapped.

By default the number column is at least 4 characters wide, regardless of how many lines the

file has. To change this minimum width use :set numberwidth=width.

The line numbers are only displayed when you’re viewing the file with Vim; the actual file isn't

modified. If you'd like it to be, and you have the cat command on your system, you can

execute :%!cat -n %. This filters the entire file through cat and prepends the number to

each line.

Lastly, if you'd like to see the line numbers when you print the file without permanently

changing its contents: :set printoptions=number:y.

138

WORKINGWORKING WITHWITH REMOTEREMOTE FILESFILES

PROBLEMPROBLEM

You want to edit/view a file that is stored on another computer.

For example, you might want to change a file on your website from your home computer. Or,

you want to change the message of the day file on a server you administer.

SOLUTIONSOLUTION

To invoke Vim with a remote file use its URL as the argument to vim. For example: vim
sftp://guest@example.com/file.txt.

To work with remote files from within Vim, just use their URLs in place of a filename with

normal editing commands.

So, to to open a remote file for editing use :e URL. For example: :e
ftp://user@example.com/README.

To save to a remote file use :w URL. For example: :w
scp://kci@jojo.example.com/etc/motd.

DISCUSSIONDISCUSSION

Vim supports the following protocols: SCP , SFTP , RCP , HTTP (read-only), WEBDAV , rsync

(read-only), and fetch (read-only). However, it relies on external programs to do so. On

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 139

Linux, most of these programs are available by default; on Windows, for example, only FTP is

normally available. See :help netrw-externapp for more information.

If the protocol requires authentication, you can supply the username as part of the URL, and

then be prompted for the password interactively. This gets boring fast, however.

If you're editing files via SSH or SCP consider setting up passwordless logins. The principle is

explained in Password-less logins with OpenSSH for Debian Linux, but it is much for the same

for other operating systems.

If you're using FTP on Linux, you can store your credentials in ~/.netrc'. The file is

formatted as follows:

machine {host name 1}

login {username}

password {password}

machine {host name 2}

...

It should be made read-only for your user: chmod 600 ~/.netrc . Now you can use

URLs like ftp://example.org/README, and it will find your username and password

automatically.

⚠ FTP is an insecure protocol, so please don't use it unless you must. SSH/SFTP/SCP are all

superior alternatives.

140

http://www.debian-administration.org/articles/152

CHANGINGCHANGING THETHE STATUSSTATUS LINELINE

PROBLEMPROBLEM

You don't like the way the status line looks or would prefer if it displayed different types of

information.

For example, you work with files created on different operating systems, so you'd like the file

format (e.g. unix, MS-Windows, or mac) to be displayed along the bottom of the screen.

SOLUTIONSOLUTION

Use the :set statusline command along with a format string. The format string is the

text you want displayed interspersed with variable names corresponding to the types of

information you want included.

✪ By default Vim hides the status line. To show it: :set laststatus=2.

For example, to display the file format you could use :set statusline=%{&ff}. You

can surround this with arbitrary text, for example: :set statusline=format:\
%{&ff}.

Here are some common variables the status line can display:

NameName DescriptionDescription

b Value of byte under cursor.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 141

c Column number.

l Line number.

r Displays [RO] if file is read only.

t File name (as opposed to file path)

y File content type, e.g. [ruby] or [latex].

\&ff File format, e.g. unix, mac, dos.

Variable names are prefixed with a percentage sign (%). Spaces, bars (|), and other special

characters need to be backslash escaped.

Here's a longer example:

:set statusline=%t\ %y\ format:\ %{&ff};\ [%c,%l]

Sample output: .vimrc [vim] format: unix [2,3].

DISCUSSIONDISCUSSION

You may have noted that the syntax for displaying the file format was different from the other

variables. The %{} syntax evaluates the expression contained within the braces and displays the

result.

For example, to display the name of the current colour scheme: %{g:colors_name}
(example output: morning). Or the current language: %{v:lang} (example output:

en_GB.UTF-8). Here we are simply displaying the value of Vim internal variables. (See :let
for a list).

142

The reason %{&ff} works is because ff is the Vim option for getting/setting the file format,

and the & prefix is used for referring to options. The value of any option can be displayed in

this way.

You can even call a function in this way. For example, to show the last modification time of

the current file:

\%{strftime(\"\%c\",getftime(expand(\"\%\%\")))}

Sample output: Fri 01 May 2009 19:26:07 BST

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 143

REDEFININGREDEFINING HIGHLIGHTHIGHLIGHT GROUPSGROUPS

PROBLEMPROBLEM

You want to change the colours of specific elements of the display. For example, you want

text to be white on a black background.

SOLUTIONSOLUTION

Use the :highight group definition command.

A highlight group (group) is an element of the display whose colours can be customised.

Some of the default highlight groups are:

CursorCursor

Character under the cursor.

ErrorMsgErrorMsg

Command line error messages.

NormalNormal

Normal text.

VisualVisual

Text selected under Visual mode.

The definition is a list of key-value pairs. For example, the following sets the terminal

foreground colour to black and the terminal background colour to yellow:

:highlight Normal ctermfg=black ctermbg=yellow

144

These are some common arguments:

ctermfgctermfg

Terminal foreground colour.

ctermbgctermbg

Terminal background colour.

termterm

Terminal font style, e.g. bold, italic, underline.

guifgguifg

GUI foreground colour.

guibgguibg

GUI background colour.

Apart from term, these arguments take a colour name or number as a value. Recognised

colour names include black, brown, grey, blue, green, cyan, magenta, yellow, and white.

The arguments that are not supplied retain their previous values. For example, :highlight
Normal\ ctermbg=white changes the background colour to white, but keeps the

previous foreground colour.

Let's look at some examples:

• :highlight Visual term=bold - Text that has been selected using Visual

mode is rendered in bold.

• :highlight Comment ctermfg=grey ctermbg=white term=bold -

Comments are rendered in bold, grey text.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 145

DISCUSSIONDISCUSSION

Normally you'll select a colour scheme, and not define highlighting groups at all. Occasionally,

though, you want more control over colours or need to edit a syntax file. That's where the

:highlight command comes in.

Before you change highlight groups you may like to check their current values. You can do

this with :highlight group. To view all current settings use :highlight.

⇰ DefiningDefining aa HighlightHighlight GroupGroup

You can define your own highlight group by using the :highlight command as described

above with a group name of your choice. To select what is highlighted you use :match
group /pattern/. For example:

:highlight Elephant ctermbg=grey ctermfg=white

:match Elephant /\celephant/

This renders all occurrences of the word elephant, regardless of case due to the \c escape, in

white on grey.

146

MODIFYINGMODIFYING THETHE CURSORCURSOR

PROBLEMPROBLEM

You want to make the cursor easier to see.

For example, you're using visually “busy” syntax highlighting, and sometimes lose the cursor.

Or, you're working with columnar data, and need the entire column that the cursor is over to

be highlighted.

SOLUTIONSOLUTION

To change the cursor colour in Gvim redefine the Cursor highlighting group22.

Another approach is to highlight the line the cursor is on. You do this by executing :set
cursorline. Again, to change the colours modify the CursorLine highlighting group.

Similarly, you can highlight the current column the cursor is in with :set cursorcolumn.

The highlight group is, predictably, called CursorColumn.

If you want your terminal to resemble a sniper's sights, you can combine both line and column

highlighting to create a cross-hair effect, as shown below.

22. The Creating Highlight Groups recipe explains how to redefine highlight groups, but in standard Vim the
terminal defines the cursor colour.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 147

DISCUSSIONDISCUSSION

Gvim allows you to customise every conceivable aspect of the cursor display with the

command :set guicursor. This allows you to change the cursor's appearance based on

the mode (i.e. one colour for Insert mode, another for Normal), its height, and control

whether it blinks… This is achieved by providing a format string as the value for guicursor.

Here are some examples:

• n-c-v:ver50-ncvCursor - In Normal, Command, and Insert mode set the cursor

to a vertical bar 50% of the current character's width. Highlight it with the ncvCursor

group.

• i:block-iCursor-blinkon0,v:block-vCursor - In Insert mode use a non-

blinking block cursor highlighted with the iCursor highlighting group. In Visual mode

also use a block cursor, but highlight it with vCursor.

The above examples should be adaptable for your uses. For the gritty detail of the supported

syntax look at :help guicursor.

148

CHANGINGCHANGING THETHE WINDOWWINDOW TITLETITLE

PROBLEMPROBLEM

You want to change the title of a Vim window to make it more descriptive.

SOLUTIONSOLUTION

Assign a value to the titlestring option, and set the title option. For example:

:set title titlestring=My\ Title

DISCUSSIONDISCUSSION

When working with multiple instances of Vim, it can be difficult to remember what task each

window corresponds to. You can avoid this problem by customising each window's title. The

window title can also function similarly to the status line, reminding the user about an

important aspect of the current file.

The default window title contains the current filename, followed by a character indicating the

state of this file, followed by the name of its directory23. The state character is one of the

following:

-
File can't be modified

23. To be precise, the directory name is followed by a hyphen then the value of &v:servername, if set,
otherwise just VIM.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 149

+
File has been modified

=
File is read-only

=+
File is read-only and has been modified

This is already quite a descriptive title, but we can customise it further using a format string,

as described in the Changing the Status Line recipe. The Vim documentation (:help
titlestring) gives the following example:

:auto BufEnter * let &titlestring = hostname() . "/" .

expand("%:p")

Here the window title is reset when the user enters a new buffer. It contains the hostname, a

forward slash, then the full path of the current file24.

Another example is to display the value of an environment variable in the window title along

with the filename. For instance, Ruby on Rails developers could prefix the filename with the

value of RAILS_ENV, which indicates whether the application is in development, production,

staging, or testing mode:

let &titlestring=expand($RAILS_ENV) . ": " .

expand("%:t")

One last trick is to embed the value of an external command in the window title using the

%{system('command')} syntax. This could be used to display the name of the current

24. For an explanation of the %:p syntax see the Filename Modifiers section of the Executing External
Commands recipe.

150

branch, if using a version control system, or indicate whether the project's unit tests are

passing or failing.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 151

EXTENDINGEXTENDING

152

CREATINGCREATING KEYBOARDKEYBOARD SHORTCUTSSHORTCUTS WITHWITH KEYKEY MAPPINGSMAPPINGS

PROBLEMPROBLEM

You'd like to execute a command, or series thereof, with a keyboard shortcut rather than

continually type it in. Or, you'd like to change an existing keyboard shortcut so that it does

something more useful.

For example, you use the <Space><Space> key to page down in other applications, and you'd like to

do the same in Vim. Or, you regularly reformat paragraphs with gqapgqap, but would prefer to

simply hit QQ.

SOLUTIONSOLUTION

Use key mappings. A map is simply a key combination followed by another key combination.

When you enter the first key combination Vim acts as if you entered the second.

For example, to remap <Space><Space> to <PageDown><PageDown> you execute :map <Space>
<PageDown>. The map command creates a mapping for Normal, Visual, and Operator

Pending mode; i.e. if you press <Space><Space> in Insert mode this mapping, thankfully, has no

effect.

Mapping QQ to gqapgqap is similarly straight forward: :nmap Q gqap. Unlike map, :nmap only

takes effect in Normal mode. We used nmap here because this mapping doesn't make sense

in other modes: in Insert mode we want QQ to insert a literal Q, and in Visual mode we want

to reformat the selected text rather than the current paragraph. The Visual mode mapping is

:vmap Q gq.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 153

The other main types of mapping commands are:

:imap
Insert mode only.

:cmap
Command-line only.

:map
Normal, Visual, and Operator-pending.

DISCUSSIONDISCUSSION

Keyboard mapping is yet another way to save valuable keystrokes. If you find yourself

executing a command repeatedly create a mapping. It's also useful for creating more sensible

aliases for existing keyboard shortcuts that you can never quite remember.

It's generally recommended to map the function keys (<F1><F1>-<F12><F12>), as well as their shifted

counterparts (e.g. <Shift><Shift>--<F3><F3>) because they're not used by Vim25. As long as you use a

combination that doesn't interfere with the commands you do use, you're free to use

whatever you want, though.

Before you create a mapping you might like to check what, if anything, it's currently being

used for. You can do this by executing :help key, e.g. :help <F1> will show that Vim

maps it to :help. If you want to see the user-defined mappings (whether set by you or a

plugin) call the :map command with no arguments. This works will the mode-specific map

commands outlined above, too, so :imap will show Insert mode mappings.

25. <F1><F1> is used for :help but pretty useless given that you'd normally use :help topic.

154

CHANGINGCHANGING THETHE COLOURCOLOUR SCHEMESCHEME

PROBLEMPROBLEM

You don't like the colours Vim uses; you want to change them.

For example, you've found a colour scheme you like better, so want to instruct Vim to use it.

Or, you find that the current colour scheme makes text hard to read so want to find a more

suitable one.

SOLUTIONSOLUTION

To browse existing colour schemes enter :colourscheme, then hit <Tab><Tab> to cycle

through the installed schemes. If you find one that you like hit <Enter><Enter> to apply it.

DISCUSSIONDISCUSSION

A colour scheme is a set of rules controlling how different elements of the interface appear.

Vim is distributed with a selection of colour schemes, but you can also download new ones,

as explained in the sidebar.

✪ The Vim Color Scheme Test is a a gallery of colour schemes along with their names.

Browse through it to select a theme you like, then follow the instructions below to install it.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 155

http://www.cs.cmu.edu/~maverick/VimColorSchemeTest/

⇰ InstallingInstalling ColourColour SchemesSchemes

1. Browse the available colour schemes at Vim.org and download any that you like.

2. Create a $VIM/colors, e.g. mkdir -p ~/.vim/colors on POSIX

systems.

3. Copy the .vim file you downloaded in step one to the colors directory you just

created.

4. Open vim then execute :colorscheme name, where name is that of the file

you downloaded without the .vim extension.

5. If you want to use this colour scheme permanently add colorscheme name to

your vimrc; otherwise repeat these steps with a different colour scheme.

Before you change your color scheme you may like to make a note of what you're using at

the moment. You can find the name of the current scheme with :echo g:colors_name.

To change a specific aspect of a colour scheme you can redefine a highlight group.

156

http://www.vim.org/scripts/script_search_results.php?script_type=color+scheme

CREATINGCREATING COMMAND-LINECOMMAND-LINE COMMANDSCOMMANDS

PROBLEMPROBLEM

You want to create your own :command command.

SOLUTIONSOLUTION

Use the :command command like so::command name command, where name is the

command you're creating and command the command name should execute. (name must

start with an initial capital)

For example, :command Ls !ls -all % lets you use :Ls to view the long listing for

the current file on POSIX systems, thus showing the permissions, owner, group, etc.

DISCUSSIONDISCUSSION

The command can be anything you could enter at the : prompt.

You can modify how the command is defined by supplying :command with a list of arguments

with the syntax :command arg1, arg2, … ,argN name command. These are not to

be confused with arguments passed to the command, itself, however.

To create a command that accepts arguments you use the syntax :command -nargs=spec
name command, where spec is:

11

One argument.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 157

**

Any number of arguments.

??

Zero or one arguments.

++

One or more arguments.

You reference the arguments in command with the <args> placeholder. The <q-args>

quotes special characters in the argument. For example, you could use :command -
nargs=1 Ci !cd %:h && git commit %:t -m <q-args> to quickly change to

the directory containing the current file (%:h is the current pathname with the last

component removed) and commit the current file (%:t is the last component of the current

pathname) to a Git repository by typing :Ci message, without worrying about using

quotation marks and the like26.

To create a command that accepts a count you use the -count=default argument, then

reference the count in command as <count>.

To create a command that accepts a range you use the -range=spec argument. If you don't

supply a spec (i.e. -range), the range defaults to the current line. A spec of % means that

the range defaults to the whole file. You can reference the range in the command with the

placeholders <line1> and <line2> which denote the first and last line of the given range,

respectively.

26. For more robust integration with Git see the Integrating Vim with Git recipe

158

EXTENDINGEXTENDING VIMVIM WITHWITH SCRIPTSSCRIPTS ANDAND PLUGINSPLUGINS

PROBLEMPROBLEM

You want to add functionality to Vim, preferably without having to write it yourself.

SOLUTIONSOLUTION

Browse Vim Scripts to find a script that meets your needs. Its 'type' should be utility or

ftplugin. Download the latest version to your computer. If the plugin comes with its own

installation instructions, use those; otherwise, read on.

If the file you've downloaded has a name ending with .vim you usually just need to save it in

the right directory and then its ready to use. For scripts labelled utility, also known as global

plugins, this directory is $VIMHOME/plugin; for those labeled ftplugin, also known as

filetype plugins, the last component of this path is ftplugin instead. If this directory does not

already exist you need to create it. The sidebar lists the locations of the plugin directories on

various operating systems.

If the file is compressed (ending with .zip or .tar.gz), try uncompressing it in the parent

directory of the applicable plugin directory. For example, on Linux this is ~/.vim/.

Now you should just be able to start Vim and have the plugin work.

⇰ PluginPlugin DirectoryDirectory LocationLocation

NoteNote: For filetype plugins, the last portion of these paths is ftplugin; not plugin.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 159

http://www.vim.org/scripts/

UnixUnix

~/.vim/plugin

PCPC andand OS/2OS/2

$HOME/vimfiles/plugin or $VIM/vimfiles/plugin

AmigaAmiga

s:vimfiles/plugin

MacintoshMacintosh

$VIM:vimfiles:plugin

MacMac OSOS XX

~/.vim/plugin

RISC-OSRISC-OS

Choices:vimfiles.plugin

PluginPlugin TypesTypes

Plugins can be either global or filetype-specific. Global plugins are loaded for every file you

open; filetype-specific plugins are only loaded for certain filetypes.

DISCUSSIONDISCUSSION

As complicated as the above instructions may sound, it's generally trivial to install a plugin. For

example, on Linux to install the potwiki plugin:

$ mkdirmkdir -p-p ~/.vim/~/.vim/pluginplugin

$ wgetwget

http://www.vim.org/http://www.vim.org/scripts/scripts/download_script.php?src_id=9316download_script.php?src_id=9316 -O-O

~/.vim/~/.vim/plugin/plugin/potwiki.vimpotwiki.vim

160

http://www.vim.org/scripts/script.php?script_id=1018

(If your plugin directory already exists, the first command is superfluous.)

Vim 7 added support for a new plugin installation method called vimball. Vimballs make plugin

installation and configuration easier, and are a slight improvement over the previous methods.

They're not in wide use yet, but if you find a plugin distributed in this way (they have a *.vba

extension), try following the steps below:

1. Download the *.vba file.

2. Open it with Vim, e.g. vim something.vba.

3. Use :VimballList to verify its contents.

4. Install it by sourcing: :source %.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 161

INTEGRATINGINTEGRATING VIMVIM WITHWITH GITGIT

PROBLEMPROBLEM

You use the Git version control system with Vim and want shortcuts for common operations

and syntax highlighting for git output.

SOLUTIONSOLUTION

Thanks to the work of Tim Pope and others, Vim ships with syntax highlighting support for

Git output/templates. For example, after executing git commit -a, with Vim set as your

default editor, you'll see

Vim can even help you write better commit messages. Git commit messages should typically

have a 50-character or less summary as their first line, with a blank second line, then,

optionally a long explanation, wrapped at about 72 characters27. There's no need to remember

this convention, however, because Vim warns you, visually, if you colour outside the lines. For

example:

27. For an explanation of this convention see A Note About Git Commit Messages.

162

http://www.tpope.net/
http://www.tpope.net/node/106

In this example, the first line is too long, so the extraneous characters are coloured black. The

second line should be blank, so it has a red background to indicate its contents are in error.

motemen's git-vim plugin extends this support by adding shortcuts and commands for common

Git operations.

Install it by copying its files to your Vim directory. For example, on Linux:

mkdir -p ~/.vim

cd /tmp

git clone git://github.com/motemen/git-vim.git

cp -r git-vim/{plugin,syntax} ~/.vim/

cd -

You now have access to commands such as :GitCommit, which will, split your window

horizontally, loading the Git commit template into the upper pane. Once you have written

your commit message and quit the buffer, your file will be committed. (This assumes, of

course, that the current file is located in a Git working directory).

✪ Bob Hiestand's vcscommand plugin offers similar functionality to git-vim, but it

also supports CVS , SVN , and SVK. This makes it especially suitable for situations where one

uses multiple version control systems.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 163

http://subtech.g.hatena.ne.jp/motemen/
http://github.com/motemen/git-vim
http://www.vim.org/scripts/script.php?script_id=90
http://www.vim.org/scripts/script.php?script_id=90

DISCUSSIONDISCUSSION

Through a combination of editable history and particularly fast operation, Git invites regular

commits. This is only feasible, however, if Git is tightly integrated into Vim, because otherwise

version control will become a source of distraction that steals your focus and wastes your

time.

Vim's ability to execute external commands already makes using git reasonably

straightforward. For instance, :!git add % would add the current file, while :!git log
would temporarily suspend Vim to show you the commit log.

The git-vim plugin expedites this process by providing Normal mode shortcuts. \ga\ga28 adds the

current file, \gc\gc commits it, etc.29

git-vim takes this integration further for commands like :GitBlame where the window is

split vertically to show the author's name alongside the lines he was responsible for.

This presentation is clearly superior to the output of :!git blame %, shown below, in

that it employs syntax highlighting, allows inline editing, and hides extraneous output.

28. This example and those following assume that your Leader variable is set to the default of /; see
:help leader for details.
29. For a complete list of shortcuts offered by this plugin see its README.rdoc file.

164

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 165

OTHEROTHER USESUSES OFOF VIMVIM

166

BROWSINGBROWSING DIRECTORIESDIRECTORIES

PROBLEMPROBLEM

You want to see the contents of a directory, perhaps so as to select a file to edit. For

instance, if working on a project comprising multiple files you want to see a list of the files in

a separate window.

SOLUTIONSOLUTION

Invoke Vim with a directory name as an argument, e.g. vim ~/projects/flying-pigs/.

From within Vim use the :Ex (mnemonic: Explore) command. By default it shows the

contents of the current file's directory, but you can provide a directory name if you wish. For

example: :Ex ~/projects/flying-pigs. The directory is shown in a split screen if the

current file has been modified.

To force a directory listing in a split pane, so you can view a file and its directory listing at

once, use :Sex30. Similarly, :Vex to browse in a vertical split, and :Tex to browse in a new

tab.

DISCUSSIONDISCUSSION

By default Vim lists every file contained in a directory. To get a more ls-style listing you can

specify a hiding list with :let g:netrw_listhide='\^\..*'. (This is a comma-

separated list of regular expressions). When you're browsing a directory files starting with a

30. No, that's not a joke; the concept is synonymous with Vim

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 167

period will now be hidden. 31 If you hit aa once you'll invert the hiding list (showing only

hidden files). If you hit aa again you'll remove the hiding list, showing everything.

To change how directory entries are sorted you can modify the g:netrw_sort_sequence
variable. By default its value is, deep breath:

[\/]$,\.h$,\.c$,\.cpp$,*,\.o$,\.obj$,\.info$,\.swp$,\.bak$,\~$

The order of the patterns is the order of the sort. For instance, the first pattern matches

directories, so they're shown first. The next pattern matches file names ending with *.h (C

header files), so they're shown next. And so on. The * pattern matches everything not

matched by the other patterns. You can change this pattern on-the-fly by hitting SS while

viewing a directory listing.

You can change into a directory by selecting it and hitting EnterEnter. The same thing works for

files. If you'd rather open a file in a new buffer use pp. PP will open the file in a split screen.

If you want to operate on the files you see read Using Vim as a File Manager.

31. By Unix/Linux convention filenames which begin with a period are designated hidden. By default file
browsers and other utilities ignore these files unless explicitly commanded not to.

168

USINGUSING VIMVIM ASAS AA FILEFILE MANAGERMANAGER

PROBLEMPROBLEM

You want to use Vim to manage your file system in a similar way to Nautilus, Midnight

Commander, or Windows Explorer.

For example, you want to rename files matching a certain pattern. Or you want to compress

the contents of a directory.

SOLUTIONSOLUTION

Browsing Directories explains the basics of working with directories in Vim, so read it first.

⇰ MarkingMarking FilesFiles

To operate on files you must first mark them (this does not have any relation to the marks

feature).

• MarkMark the file under the cursor: mfmf (mnemonic: mark file).

• UnmarkUnmark the marked file under the cursor: mfmf.

• Mark files matchingmatching aa VimVim regularregular expressionexpression: mrmr (mnemonic: mark with regular

expression). You're then prompted for a pattern.

• UnmarkUnmark allall files: mumu (mnemonic: marks undo).

• VisuallyVisually mark files: <Shift><Shift>--vv, then jj and kk to change the selection area.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 169

You can operate on a single file or a group of them. In the latter case, you need to select files

by marking them, as explained in the sidebar. You can now perform various operations on

these files such as:

• DeletionDeletion: hit DD. You're prompted for each file you've selected. Answering aa deletes

them all without asking you any more.

• RenamingRenaming: hit RR. For each file you're prompted for its new name.

• Copying/Copying/MovingMoving: Hit mtmt (mnemonic: mark target) in the target directory. Change to

the directory containing the source files, select them, then hit mcmc (mnemonic: marked

copy) to copy or mmmm (mnemonic: marked move) to move.

• DiffDiff: To diff up to three marked files, use mdmd (mnemonic: marked diff).

• PrintingPrinting: hit mpmp to print marked files (mnemonic: mark print).

• ExecuteExecute shellshell commandcommand: hit mxmx (mnemonic: marked execute). (See the discussion for

examples).

• Compress/Compress/DecompressDecompress: hit mzmz (mnemonic: marked gzip). (Other compression utilities

can be used instead of gzip, but the Vim command remains the same).

• OpenOpen in horizontal split: hit oo (mnemonic: open).

DISCUSSIONDISCUSSION

Vim can be used as a pretty well-featured file manager. In fact, given that it can be scripted,

key mapped, and configured in concert with Vim, as well as seamlessly operate on remote

directories, it is arguably better.

Perhaps the most interesting command is mxmx. This allows you to pass the list of marked files

to an external command. You're prompted for a command line, in which you can use the %
wildcard. Vim then loops through the selected files and calls the command for each one,

substituting % for the filename.

170

For example, using a POSIX-compatible system, select three files (foo.txt, bar.txt, and

glark) with mfmf. Hit mxmx and enter cat %>>foo-bar-glark. Vim will now execute:

cat foo.txt >>foo-bar-glark

cat bar.txt >>foo-bar-glark

cat glark >>foo-bar-glark

foo-bar-glark will now contain the contents of each file in turn.

The mzmz command also bears further discussion. It toggles the state of the selected files

between compressed and decompressed.

If a file is uncompressed, Vim attempts to compress it. By default it uses gzip, but you can

change this by modifying the g:netrw_compress variable. For example, to use Bzip2: :let
g:netrw_compress=bzip2.

For decompression Vim uses an extension-to-program mapping:

• .tar - tar -xf
• .gz - gunzip
• .bz2 - bunzip2
• .zip - unzip

For example, if a filename ends with .zip Vim decompresses it by calling unzip zip-

file. To add support for another format use :let g:netrw_decompress[ext] =
prog.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 171

VIEWINGVIEWING DIFFERENCESDIFFERENCES BETWEENBETWEEN FILESFILES

PROBLEMPROBLEM

You have multiple versions of a file and want to see how they differ.

For example, if you're working on a document with somebody else, you want to see the

differences between their version and yours.

SOLUTIONSOLUTION

Vim calls this feature diff, as per UNIX convention. You diff a file.

To diff from the command line invoke Vim as vimdiff, e.g. :vimdiff -o file1

file2. To diff from within Vim use :diffsplit file.

The screen is split horizontally, and each file is shown in its own window. The differences

between them are highlighted. By default, a line that exists in one file but not in another are

coloured blue; the line in the other buffer that should have held this line is coloured green,

and is called a filler line. When a line exists in both buffers it is coloured purple. If characters

inside the line differ they are highlighted in red. Identical lines have no highlighting. Identical

runs of lines are folded.

To split the screen vertically use :vimdiff file1 file2 or :vert diffsplit
file1 file2.

172

DISCUSSIONDISCUSSION

Diffs are traditionally used in programming to compare an old and new version of source code

to see what has changed. As suggested above, though, they're invaluable when collaborating on

a file with somebody else. For example, you write a file named grant-proposal.txt,

then e-mail it to somebody else for input. They make their changes and e-mail it back. You

now have two files: grant-proposal.txt and grant-proposal.changes.txt. You

use :vimdiff grant-proposal.txt grant-proposal.changes.txt to see your

collaborator's suggestions.

It's important to note, though, that diff only works with plain text files. It won't work

correctly if you use proprietary, binary formats such as Microsoft Word's .doc. As a general

rule, if Vim can view a file it can diff it.

The windows diff feature splits your screen so each pane scrolls in concert with one other.

This means that if you scroll to line 20 in the bottom pane, the top pane will automatically

scroll to that point, too. This makes comparing long files easier, but you can disable it with

:set noscrollbind.

You can jump between the changes with [c[c to go to the previous change, and]c]c for the

next.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 173

OUTLININGOUTLINING AA DOCUMENTDOCUMENT

PROBLEMPROBLEM

You want to create an outline view of a document such that its structure can be treated as a

hierarchy, the levels of which can be expanded or collapsed.

For example, if you were writing an essay you may begin by creating an outline. Initially that

would consist of the main section headings. You may then decide to subdivide those headings

further, or add explanatory text that explains the heading's scope. As you continue this

iterative process, you can focus on a particular level by expanding that level of the hierarchy.

This process enables long or complex documents to be planned and organised in a logical

fashion.

SOLUTIONSOLUTION

Use the Vim Outliner plugin.

Vim Outliner satisfies all of the objectives above. It's completely integrated with Vim, so your

existing Vim knowledge still applies, and there's little to learn.

Download the plugin from VimOutliner.org, then follow the installation instructions. (The

Extending Vim with Scripts and Plugins recipe may be helpful here).

✪ Debian/Ubuntu users can install Vim Outliner via their package manager. The installation

process is slightly convoluted, however, so instructions follow:

174

http://www.vimoutliner.org/
http://www.vimoutliner.org/modules.php?op=modload&name=Downloads&file=index&req=viewdownload&cid=4

$ sudosudo apt-getapt-get installinstall vim-vimoutlinervim-vimoutliner

vim-addon-managervim-addon-manager

$ sudosudo vim-addonsvim-addons -w-w installinstall vimoutlinervimoutliner

Add the following line to your vimrc if not already there:

filetype plugin indent on

Now open a new file with an .otl extension with Vim, e.g.

vim outline.otl

Each line of this file becomes an entry in the outline. Indentation is used to denote levels of

hierarchy. For example:

In this example, Solar System is at the top level of the outline. Sun and Planets are the next

level down. All of the planets are in the next level after that. Each level is automatically

assigned a colour.

You can add body text to a heading by starting a new line with a colon followed by a space,

i.e. : Body text.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 175

In the example above, body text has been added to the Sun heading.

Vim Outliner uses Vim's folds feature, so the standard folds commands still work. Continuing

the above example, if your cursor is over the body text and you hit the fold close command

zczc the text will be hidden.

Using zczc on a heading collapses its child elements. So, with the cursor over Planets zczc

displays:

176

To expand a tree one level use zozo; to expand it all the way down use zOzO.

To move a heading to a lower level in the hierarchy use >>>> in Normal mode; <<<< reverses the

process.

A shortcut for expanding the hierarchy to a certain level is \\nn, where n is the minimum level

you want displayed. \0\0 expands every level. \1\1 collapses every level. Using \2\2 on our solar

system outline displays only the first- and second-level headings:

For more information see :help vimoutliner.

✪ A mature alternative to Vim Outliner is TVO (The Vim Outliner). Confusingly-similar

name aside, it's worth considering if Vim Outliner doesn't suit you.

DISCUSSIONDISCUSSION

A key strength of this form of organisation is that you can view a complex document at a

glance with \1\1, then drill down to a specific heading to work on it.

Vim Recipes

Visit http://vim.runpaint.org/ for latest updates. 177

http://bike-nomad.com/vim/vimoutliner.html

I use one for my todo/ideas list by putting every item on a line of its own, then, as patterns

emerge, grouping items under headings. For instance, I may add a heading for Book on HTML.

Some time later I think of some chapters, so add them as subheadings to Book on HTML.

When I want to start writing notes for a chapter I add body text to a heading, and start

typing.

Vim Outliner comes with various scripts to convert outlines into other file formats. For

instance, there is a script named otl2html which can be used to convert a .otl file into a

.html. This lets you create semantically-correct webpages without writing HTML. There's

also otl2docbook and otl2pdb, which target DocBook and AddressDB Palm, respectively.

For more tools like this, see VimOutliner.org.

178

http://vimoutliner.org/

	Vim Recipes
	Table of Contents
	Introduction
	Conventions
	Key Presses
	Normal Mode Commands
	Command-Line Commands
	Monospaced Font

	Contributing
	Issue Tracker
	E-mail
	Patches

	License
	Credits
	Cover Image
	CSS
	Contributors

	Basics
	Choosing the Right Mode
	Problem
	Solution
	Discussion

	Basic Navigation
	Problem
	Solution
	Discussion

	Opening Files
	Problem
	Solution
	Discussion

	Saving a File
	Problem
	Solution
	Discussion

	Quitting Vim
	Problem
	Solution
	Discussion

	Deleting Text
	Problem
	Solution
	Discussion

	Visually Selecting Text
	Problem
	Solution
	Discussion

	Copying, Cutting, and Pasting
	Problem
	Solution
	Discussion

	Configuring Vim
	Problem
	Solution
	Location of vimrc

	Discussion
	Debugging Configuration

	Printing
	Problem
	Solution
	Discussion

	Getting Help
	Problem
	Solution
	Discussion

	Editing
	Indenting Lines
	Problem
	Solution
	Description
	See Also

	Selecting Text with Motions
	Problem
	Solution
	Discussion

	Repeating Commands
	Problem
	Solution
	Discussion

	Changing the Case of Text
	Problem
	Solution
	Discussion

	Sorting Text
	Problem
	Solution
	Discussion

	Executing External Commands
	Problem
	Solution
	Filename Modifiers

	Discussion

	Managing Sessions
	Problem
	Solution
	Discussion

	Formatting with an External Program
	Problem
	Solution
	Discussion
	Text
	HTML/XHTML
	XML

	Working with Different File Formats
	Problem
	Solution
	Discussion

	Typing
	Spell Checking
	Problem
	Solution
	Discussion

	Using Templates
	Problem
	Solution
	Discussion

	Undoing Mistakes
	Problem
	Solution
	Discussion

	Auto-Completing Text
	Problem
	Solution
	Getting Dictionaries

	Discussion

	Abbreviating Common Strings
	Problem
	Solution
	Discussion

	Inserting Accented or "Foreign" Characters
	Problem
	Solution
	Enabling UTF-8 Support

	Discussion

	Opening the File Name Beneath the Cursor
	Problem
	Solution
	Discussion

	Inserting the Date
	Problem
	Solution
	Discussion

	Inserting Snippets
	Problem
	Solution
	Discussion
	Comparison of Techniques to Auto-Complete Text

	Navigation
	Navigating Text Files
	Problem
	Solution
	Discussion

	Navigating Source Code
	Problem
	Solution
	Discussion

	Navigating the Viewport
	Problem
	Solution
	Discussion

	Navigating Buffers
	Problem
	Solution
	Discussion

	Navigating Tabs
	Problem
	Solution
	Discussion

	Manually Creating Folds
	Problem
	Solution
	Enabling Folding

	Discussion
	Indentation Folding

	Navigating Folds
	Problem
	Solution
	Discussion

	Splitting the Screen
	Problem
	Solution
	Discussion

	Navigating Marks
	Problem
	Solution
	Discussion

	Navigating Tags
	Problem
	Solution
	Discussion

	Bookmarking Lines with Visible Markers (Signs)
	Problem
	Solution
	Discussion

	GUI (GVim)
	Changing the Font
	Problem
	Solution
	Specifying guifont in an Operating-System-Specific Manner
	Linux
	Mac
	Windows

	Discussion

	Maximising Screen Space
	Problem
	Solution
	Discussion

	Creating Menus and Toolbar Buttons
	Problem
	Solution
	Discussion

	Searching
	Searching for any Word
	Problem
	Solution
	Discussion

	Searching Over Multiple Files
	Problem
	Solution
	Discussion
	Globbing
	Quick Fix List

	Searching and Replacing
	Problem
	Solution
	Description

	Searching for the Word Beneath the Cursor
	Problem
	Solution
	Discussion

	Creating Regular Expressions
	Problem
	Solution
	Discussion

	Looking up Documentation for the Keyword Under the Cursor
	Problem
	Solution
	Discussion

	Display
	Working with Long Lines
	Problem
	Solution
	Discussion

	Displaying Line Numbers
	Problem
	Solution
	Discussion

	Working with Remote Files
	Problem
	Solution
	Discussion

	Changing the Status Line
	Problem
	Solution
	Discussion

	Redefining Highlight Groups
	Problem
	Solution
	Discussion
	Defining a Highlight Group

	Modifying the Cursor
	Problem
	Solution
	Discussion

	Changing the Window Title
	Problem
	Solution
	Discussion

	Extending
	Creating Keyboard Shortcuts with Key Mappings
	Problem
	Solution
	Discussion

	Changing the Colour Scheme
	Problem
	Solution
	Discussion
	Installing Colour Schemes

	Creating Command-Line Commands
	Problem
	Solution
	Discussion

	Extending Vim with Scripts and Plugins
	Problem
	Solution
	Plugin Directory Location
	Plugin Types

	Discussion

	Integrating Vim with Git
	Problem
	Solution
	Discussion

	Other Uses of Vim
	Browsing Directories
	Problem
	Solution
	Discussion

	Using Vim as a File Manager
	Problem
	Solution
	Marking Files

	Discussion

	Viewing Differences Between Files
	Problem
	Solution
	Discussion

	Outlining a Document
	Problem
	Solution
	Discussion

