Experimental Computer Science:
The Need for a Cultural Change

Dror G. Feitelson
School of Computer Science and Engineering
The Hebrew University of Jerusalem
91904 Jerusalem, Israel

Version of December 3, 2006

Abstract

The culture of computer science emphasizes novelty anecgpthinment, leading to a
fragmentation where each research project strives toecitabwn unique world. This ap-
proach is quite distinct from experimentation as it is knawrother sciences — i.e. based
on observations, hypothesis testing, and reproducibifitythat is based on a presupposed
common world. But there are many cases in which such expatahprocedures can lead
to interesting research results even in computer scierids.therefore proposed that greater
acceptance of such activities would be beneficial and shHzaifdstered.

1 Introduction

“Research is the act of going up alleys to see if they are blind.
Plutarch

“In all affairs it's a healthy thing now and then to hang a queesinark on the things
you have long taken for grantéd.
Bertrand Russell

We know what theoretical computer science is: the study ddtvdan be computed and at
what cost. But what is experimental computer science? lrapto other branches of science for
inspiration, we can find three components that define exgeriah science:

1. Observation

2. Hypothesis testing

3. Reproducibility

The question is how and whether these apply to computercidhle will attempt to answer this
in the sequel.

As the nature of computer science and the possible role arearpntation have already been
debated at length by others, we first review these discussidhe remainder of this section. While
this provides many historical insights, it is also possioleskip directly to our main arguments
which start in Section 2.

1.1 Computer Science

“A science is any discipline in which the fool of this genavatcan go beyond the

point reached by the genius of the last generdtion.
Max Gluckman

Computer science is a young and constantly evolving digepl It is therefore viewed in
different ways by different people, leading to differentqegptions of whether it is a “science” at
all [13]. These discussions periodically beget reportshansubject, such as the “Computing as a
discipline” report by Denning at al. [16].

Of course, it all boils down to definitions. One interestingtitiction considers three possible
classifications:

Science— this is concerned with uncovering the laws of the univetsés ananalytic activity,
based on observing the real world. Obvious examples aragshyghemistry, and biology.

Engineering — this is concerned with building new things that are pradlycuseful. Thus it
is a syntheticactivity. Examples include mechanical engineering, odrigineering, and
electrical engineering.

Mathematics — this is concerned with the abstract, and may be considereerge on the philo-
sophical. It includes the construction and study of abspemcesses and structures, such as
in set theory, graph theory, and logic. While these are alshoused in both science and
engineering, their development is often independent ofsaici potential use.

Research in computer science is typically part of the latterclassifications. Much of computer
science is about how to do things that have not been donedyefioin other words, inventing new
algorithms [29] and building new tools [5]. This spans a verge spectrum of activities, from
information retrieval to animation and image processingrtmcess control. While in many cases
this does not have the feel of hard-core engineering, itveneeless an activity that leads to the
creation of new tools and possibilities.

By contradistinction, the non-algorithmic parts of them& computer science (such as com-
plexity theory) are more philosophical in nature. Their damof study is inspired by real com-
puters, but it is then abstracted away in the form of modeds ¢hn be studied mathematically.
Structures such as the polynomial hierarchy are the re$alttbought process, and do not cor-
respond to any real computational devices. This is propethia theory deals with information,
which is not subject to physical laws [29].

But computer science seems to have relatively few exampldsei first category, that of ob-
serving, describing, and understanding something thatjusighere. Our contention is that the
techniques used for these activities in the natural sceehage good uses in computer science as
well, and that there are in fact things to be found. As a mtitiggexample, consider the finding of
self-similarity in computer network traffic. Up to the ead990s, the prevailing (abstract) model
of traffic was that it constituted a Poisson process. Buectilhg real data revealed that this was
not the case, and alternative fractal models should be gm@l38]. This was an observation of
how the world behaves, that was motivated by scientific sityipand led to an unexpected result
of significant consequences.

1.2 Experimentation

“when we ignore experimentation and avoid contact with thlBtyewe hamper progress.

Walter Tichy

“The only man | know who behaves sensibly is my tailor; he takgsneasurements
anew each time he sees me. The rest go on with their old measote and expect

me to fit then.
George Bernard Shaw

“Beware of bugs in the above code; | have only proved it cqorreatttried it!
Donald Knuth

An immediate objection to the above comments is that expariad computer science is actu-
ally widely practiced. In fact, three distinct definitionSvehat constitutes experimental computer
science can be identified.

Perhaps the most prominent use of the term “experimentapatenscience” occurs in several
NSF reports, e.g. thRejuvenating experimental computer scienegort from 1979 [23], and
the Academic careers for experimental computer scientistseargineergeport from 1994 [46].
However, these reports don't really attempt to define expental science; rather, they use the
phrase “experimental computer science” as a counterpdthéoretical computer science”. As
such, this is an umbrella term that covers university rete#rat includes the building of real
systems, and therefore needs to be treated differentlynmstef funding and expected generation
of papers. The justification for such special treatmentesstkpectation of a relatively direct effect
on technological progress.

The core of this notion of experimental computer sciencéeshuilding of systems, whether
hardware or software. This is not done so much to study theserss, as to demonstrate their fea-
sibility [29]. Thus itis more of an engineering activity tha scientific one. And indeed, one of the
reports notes that this notion of experimental computesrsm is largely divorced from the theory
of computer science, as opposed to the relatively tight loogijpf theory and experimentation in
the natural sciences [46].

The second notion of experimental computer science is g&t by Denning in his pap&er-
formance evaluation: Experimental computer science &igtt[14]. In this paper, Denning argues

3

experimental experimental
test evaluation

concrete hypothesis concrete system
prediction or model implementation design

Figure 1: A comparison of the scientific method (on the left) with théerof experimentation in
system design (right).

that the essence of experimental science is the modelingtofenby mathematical laws; therefore,
experimental computer science is the mathematical maglefithe behavior of computer systems.
Moreover, it is suggested that studying the abstract mayledtifies as experimentation. This no-
tion is carried over to the repo@omputing as a disciplingl6], where modeling and abstraction
are proposed as one of the three basic paradigms that cesadf@f computer science (the other
two being theory and design).

But Denning also mentions the use of experimentation asdbéexk step in the engineering
loop: a system is designed that has anticipated propebtiethese are then tested experimentally.
If the results do not match the expectations, the systengdesimodified accordingly (Fig. 1).
One of Denning’s examples of such a cycle is the developnfgraging systems that implement
virtual memory, which didn’t provide the expected benefitsliithe page replacement algorithms
were sufficiently refined [15]. This was achieved by a comtimaof abstract modeling and ex-
perimental verification.

In fact, using experimental feedback can be argued to be daherént force underlying the
progress of the whole of computer science. This claim is niaddlewell and Simon in their
Turing Award lecture [47]. They start by noting that “the pbenena surrounding computers are
deep and obscure, requiring much experimentation to aiseissiature”. While they admit that
the nature of this experimentation “do[es] not fit a narrogresbtype of the experimental method”,
they claim that it is nevertheless an experimental prodestsshapes the evolution of new ideas:
you can't really decide if a new idea is good until you try it.0As many ideas are tried by many
people, the good ones survive and the bad ones are discdiged:an even lead to the formation
of fundamental hypotheses that unite the work in a whole.figdkdan example, they cite two such
hypotheses that underlie work in artificial intelligenceedhat a physical symbol system has the
necessary and sufficient means for general intelligentiacéind the other that intelligent behavior
is achieved by heuristic search.

The third definition of experimental computer science eyplbe above ideas at a more mod-

4

est and concrete scale. It involves the evaluation of coermytstems, but using (more of) the
standard methodologies of the natural sciences. This apbris advocated by Tichy in his paper
Should computer scientists experiment mdi@?], and by Fenton et al. in the pap®cience and
substance: a challenge to software engind2rq

A possible argument against such proposals is that expetatien is already being done.
Many systems-oriented papers include “experimental t&sséctions, which present the results
obtained through simulations or even measurements of mgaleimentations [13]. In addition,
there are at least two journals and a handful of workshopscanterences devoted to empirical
studies:

e The ACM Journal of Experimental Algorithmigcsvhich is devoted to empirical studies of
algorithms and data structures. Its mere existence refleetsnderstanding that such studies
are needed, because some algorithms may simply be too coto@ealyze. Experimenta-
tion may also be needed to augment worst-case behavior widssessment of the typical
case.

e The Springer journaEmpirical Software EngineeringHere the use of experimentation is
a result of the “soft” nature of the material: software comstion is a human activity, and
cannot be modeled and analyzed mathematically from firatjplies [24].

e The annualText REtrieval Conferenc@REC) is a forum created by NIST specifically to
promote and standardize the experimental evaluation désyssfor information retrieval
[66]. In each year, a large (averaging 800,000) corpus ofich@nts is created, and a set of
50 query topics is announced. Participants then use thedentive systems to find topic-
related documents from the corpus, and submit the resuljadging.

e The annualnternet Measurement Conferen@€M), which includes papers that study the
Internet as a complex structure that — despite being maremacheeds to be studied ex-
perimentally, often relying on deductions based on exteneasurements.

e The Workshop on Duplicating, Deconstructing, and Debunk{id¢DDD), held annually
with ACM’s International Symposium on Computer Architee(ISCA), which includes
this wording in its call for papers:

Traditionally, computer systems conferences and worksiimqus almost exclu-
sively on novelty and performance, neglecting an abundahageresting work

that lacks one or both of these attributes. A significant paresearch—in fact,
the backbone of the scientific method—involves independaiidation of exist-

ing work and the exploration of strange ideas that never p&nThis workshop

provides a venue for disseminating such work in our communit

e The International Symposium on Empirical Software Engineg(fSESE), which is ex-
pected to merge with thHaternational Symposium on Software Metriogorm a conference
devoted tcEmpirical Software Engineering and Measuremiern2007.

e Thelnternational Symposium on Experimental Robgtacdi-annual meeting focusing on
theories and principles which have been validated by expaaris.

5

While this listing is encouraging, it is also disheartenihgt most of these venues are vary narrow
in scope. Furthermore, their existence actually acceasuae low esteem by which experimental
work is regarded in computer science. For example, theratéieasurement conference web site
states

IMC was begun as a workshop in 2001 in response to the diffi@ilthat time find-
ing appropriate publication/presentation venues for fgjghlity Internet measurement
research in general, and frustration with the annual ACM@I®M conference’s
treatment of measurement submissions in particular.

Despite the existence of several experimentally orientstues, this fraction of papers and
journals is much lower than in other scientific fields [63]. fdover, in many cases system ex-
periments are more demonstrations that the idea or systekswioan a real experiment (what
constitutes a “real” experiment is detailed below, e.g.act®n 2.3). In the following sections, we
hope to show that there is much more than this to experimargtiodology.

Another problem with the experimental approach used in npapers is that the methodology
is inadequate. Fenton et al. write [24]

Five questions should be (but rarely are) asked about aimyg eliasing from software-
engineering research:

Is it based on empirical evaluation and data?

Was the experiment designed correctly?

Is it based on a toy or a real situation?

Were the measurements used appropriate for the goals ofpleement?
e Was the experiment run for a long enough time?

In addition, comparisons with other work may be inadequate td lack of real experience and
understanding of the competing approaches [68]. In theeBystrea, a common problem is the
lack of objectivity. Inevitably, experimental and compara studies are designed and executed by
an interested party. They don’t measure an independenl; s@rld, but rather a system they had
created at substantial investment, and opposite it, sormpeting systems. In particular, there is
practically no independent replication of the experimefitsthers. Thus reported experiments are
susceptible to two problems: a bias in favor of your own syst&nd a tendency to compare against
restricted, less optimized versions of the competitiorY[l§, Obviously, both of these might limit
the validity of the comparison.

The goal of the present paper is not to argue with the aboasjde fact, we totally accept
them. However, we claim that there is more to experimentaimgder science. In the following
sections, we return to the three basic components of expatahscience and try to show that

e There is a place for observation of the real world, as in tharahsciences,

e Thereis a use for hypothesis testing at an immediate anctdieneel as part of the evaluation
and understanding of man-made systems, and

6

e There is a need for reproducibility and repetition of resal$ advocated by the scientific
method.

And while this may be done already to some degree, it woulddneticial to the field as a whole
if it were done much much more.

2 Observation

“Discovery consists in seeing what everyone else has seethiakéhg what no one

else has thougtit.
Albert Szent-Gyorgi

In the exact sciences observation means the study of n&turemputer science this means the
measurement of real systems. Note that we exclude simulation this context. This is analogous
to the distinction between experimental and computatiapploaches to other sciences.

Measurement and observation are the basis for forming a Inoddkee world, which is the
essence of learning something about it. The model can thersdxe: to make predictions, which
can then be tested — as discussed in Section 3.

It should be noted that model building is not the only reasmmfeasurement. Another goal is
just to know more about the world in which we live and oper&ta. example, what is the locking
overhead or scheduling overhead of an operating system? ig/tiee distribution of runtimes of
processes? What is the behavior of systems that fail? Krgpthie answers to such questions can
serve to shape our world view and focus the questions we ask.

Making measurements for the sake of measurements is unconmoomputer science. The
culture favors self-containment and the presentation afllasfory, rather than “just” measure-
ments. Our views on why “just measurements” should be ttddrand even encouraged are elab-
orated in the subsections below.

2.1 Challenges

“Art and science have their meeting point in method.
Edward Bulwer-Lytton

“Genius is the talent for seeing things straight.
Maude Adams

The prevailing attitude of many computer scientists seemsetthat measurements are just
done. In reality, it is indeed very easy to obtain unrelialkeasurements. But making reliable
measurements can be quite challenging [51]. Regrettabiyay also be quite difficult to distin-
guish between the two.

Consider the question of determining the overhead of a gbsteitch, for example. On the
face of it it seems like a rather simple thing to do. In factgah even be done by a user-level
process. For example, Ousterhout proposed to measureccewitches by creating two processes

7

that continually send each other a single byte via a pipe. [48]e operating system will then
continually switch between them, because each proceskdtogng to read the other process’s
byte immediately after sending its own byte. Thus measuhegime to pass a byte a thousand
times is essentially a measurement of a thousand contedtssi

However, such measurements can only provide an approximatithe context switch’s over-
head. Some of the problems are

1. We are also measuring the time to read and write bytes foea o factor this out, we need
to measure these activities separately and subtract ttmemtfre context switch overhead.

2. It might happen that some system daemon or other procdssswip and is scheduled be-
tween our two processes. In this case we are measuring twext@witches and whatever
this other process does too.

3. The resolution of the system timer might be insufficienti@asure a single context switch.
Even if time is given in microseconds, it does not mean thatrésolution is single mi-
croseconds — an implementation may actually only suppoltiisetond resolution, and
always return time values that are integral multiples ofL.@ticroseconds. Therefore re-
peated context switches need to be performed to make tHet@idhead measurable. This
increases the danger of interference as noted above fraensyfaemons, and in addition
the loop overhead should also be accounted for. An altengtito use a cycle counter, as is
provided on most modern architectures. However, accessgygle counter actually takes
more than a cycle, and care must be taken to handle wrap-roun

A promising alternative that at least ensures we know exaeliat we are measuring is to
make the measurement within the operating system’s kem&l.can identify the kernel code
responsible for context switching, and simply time it. Bhuistis actually not as easy as it sounds
[17]. It requires intimate knowledge of the system, e.g.asecthe code has more than one exit
point.

Another problem is that the phrase “context switch overh&adctually not well-defined. It
could mean at least three different things:

1. The time that the operating system runs in order to peroontext switch.

2. The time from when one user process stops running till themext user process starts
running. This is slightly longer than the time the operatsygtem runs, as it includes the
trap into the operating system and the return to user level.

3. The “lost” time that user processes cannot use due to thtexiswitch. This may be much
longer than the direct overhead indicated above, as theydomadditional lost time due to
lost cache state that needs to be restored. Note that thisvhamib-cases: cache lines that
were lost due to the operating system activity, and cacles liost due to the activity of other
processes since the last time this process ran.

In addition, these values are not singular, but rather cawma fa distribution: if you repeat the
measurement many times, you will get different numbers,thadariability may be significant.

Of course, these problems are not unique to trying to meakereontext switch overhead.
Once you start thinking about it, similar problems pop upardgg practically any measurement.
For example, how would you measure memory bandwidth, and ddes it means when you have
multiple levels of caching? How do you measure processoutiiiput when you have superscalar
out-of-order execution and multiple functional units?

It should also be stressed that all the above relates toth@est and most basic of measure-
ments. This goes to show that various decisions have to be mate process of measurement,
some of which may have subtle implications. It is reasongidé different people will have dif-
ferent opinions about what decisions to make. Such diftesican only be resolved (or acknowl-
edged) by a social process of discussing the alternativeseging which are found to be most
useful in practice.

In addition, it is necessary to develop measurement metbgus that avoid perturbations
of the measured system, and are applicable to differerdtsins. For example, one can use a
large memory-mapped buffer to accumulate measuremerad|uwesh it to disk only at the end of
the measurement period. This reduces perturbations dilmengneasurement (provided the buffer
does not overflow), at the price of reducing the memory alibglto the measured system, which
in principle may also cause a change in behavior. Which eféamore troublesome can only be
determined by experience. Such methodologies and experiged to be shared by researchers,
in order to avoid duplication of effort and achieve unifotynof standards. This can only be
done effectively in a culture that appreciates the intéllaleffort and expertise needed to perform
reliable measurements.

2.2 Metrics
“When you can measure what you are speaking about and expiressimbers, you
know something about it.
Lord Kelvin
“If you can’t measure it, you can’t improve'it.
unknown

A special challenge in performing measurements is comingitip appropriate metrics. In
physics, there are a few basic units that can be measuregth|e¢ime, mass, charge, etc. Then
there are a few derived units: speed is length divided by,touerent is charge divided by time,
and so on. Part of the substance of physics is to find reldtipadetween units, e.g. different
combinations that all yield variants of energy.

But what are the units of computer science measurements?omeus candidate, shared
with physics, is time: we are practically obsessed with homglthings take, and even more, with
throughput, i.e. how many things we can do per unit of timeRBlI MFLOPS, MB/s, etc.). But
there are many notions that are hard to measure because Wweaagangood metrics.

Maybe the most prominent example is locality. Locality derence is a very basic notion in
computer science, and underlies the myriad versions ofiegchncluding processor caches, file
system buffer caches, and web proxy caches. We all know dbeuwdistinction between spatial

9

600 -SDSC HTTP SDSC HTTP

3 L
9 500 2
[} = 0.1 1
& 400 g
® < 0.01
o« 300 e ~
o = \\
L < 0.001 .
g 200 _g — original trace \‘
€ 100 %0.0001 - scrambled trace 1
2 ? :
0 I ! I ! O 00001 T T T T T 1
0 300 600 900 1200 1500 0 300 600 900 1200 1500 1800
stack distance stack distance

Figure 2:Left: histogram of stack distances for a log of HTTP requésisi a SDSC web server.
Right: difference in the tail of the stack-distance digitibns for the original data and scrambled
data.

locality and temporal locality. But how does one measuralit®? Given a computer program,
can you find a number that represents the degree of locahtyitlexhibits? Can you compare
two programs and say with confidence which has more localy&s any course in the computer
science curriculum discuss these issues?

The truth of the matter is that there has been some work onuriegdocality. The most
popular metric is the average stack distance [60]. Givefesgrce stream, insert each new address
into a stack. If the address is already in the stack, noteeppgidand move it to the top. The average
depth at which addresses are found is the desired metrise iptogram exhibits strong locality,
items will be found near the top of the stack, and the avertagk slistance will be small. If there
is no locality, the average stack distance will be large.

The average stack distance is a simple metric with intudippeal. However, it is seldom
actually used. There are two reasons for this situatiomst Fironly measures temporal locality, and
there is no corresponding simple metric for spatial logal8econd, temporal locality is actually
the combination of two separate effects:

1. A correlation between an item and nearby items in the eefsx stream, which tend to be
the same, and

2. A skewed popularity, where some items are much more conth@mothers, and therefore
appear much more often in the reference stream.

The intuition of locality leans towards the first effect: wenk of locality in terms of references
to the same item that are bunched together at a certain timdegra absent at other times. But in
reality, the second effect may be much stronger.

An example is shown in Fig. 2. The left-hand graph is a histogof the stack distances ob-
served in a well-known data log, the SDSC HTTP trace availtbin the Internet Traffic Archive.
This trace contains 25,430 successful requests to 1680eifilgs, which were logged on August

10

22,1995. The distribution shows remarkable locality, as\talues are extremely common. How-
ever, the distribution hardly changes when the log is sclathland the same requests are viewed
in an arbitrary random order. This implies that the low stdistances are the result of a few items
being very popular, and not of a correlation structure inréference stream. And indeed, it is
well-known that popularity often follows the highly skewggpf distribution [4].

The bottom line is then that we don’t know of a simple metriclézality, and in particular, for
separating the different types of locality. This is actyallpretty common situation. We also don't
really know how to measure the quantity, quality, or comijeaf software, or the productivity of
software production, the performance of microprocesspsipercomputers, or the reliability or
availability of distributed systems, to mention but a fews hot that no metric is available. It's
that the suggested metrics all have obvious deficiencies ace widely used, and that there is
relatively little discussion about how to improve them.

Of course, coming up with good metrics is not easy. One shesjgkcially beware of the
temptation of measuring what is easily accessible, andyusas a proxy for what is really required
[51]. Baseball statistics provide an illuminating examipiehis respect [39]. Players were (and
still are) often evaluated by their batting average and hewst they can run, and pitchers by how
fast they can throw the ball. But as it turns out, these mettan’t correlate with having a positive
effect on winning baseball games. Therefore other metresiaeded. What metrics are the most
effective is determined by experimentation: when you haearalidate metric, try it out and see
if it makes the right predictions. After years of checkingtvamounts of data by many people,
simple and effective metrics can be distilled. In the caseaskball, the metric for hitters is their
on-base percentage; for pitchers it is hitters struck odtreome runs allowed.

Many additional examples of measuring things that ingialay seem unmeasurable can be
found in the fields of cognitive psychology and behaviorarexmics. Especially famous is the
work of Kahneman and Tversky, regarding the biases effgatonomic decision making. For
example, they designed experiments that showed that péapdeto give potential losses twice
as much weight as that assigned to potential gains. Suchhégtad explain what was seen as
irrational economic behavior, and eventually led to theraimg of the 2002 Nobel Prize in eco-
nomics.

2.3 Surprises

“I didn’t think; | experimented.
Wilhelm Roentgen

“The most exciting phrase to hear in science, the one thatlsetee most discoveries,

is not “Eureka!”, but “That’s funny..”
Isaac Asimov

“There are two possible outcomes: if the result confirms ththesis, then you've
made a measurement. If the result is contrary to the hypisthtbgn you've made a

discovery.
Enrico Fermi

11

“Fiction is obliged to stick to possibilities. Truth isri’t.
Mark Twain

An essential element of experimental measurements is tie@foa for surprises. This is what
distinguishes true experimental exploration from demmatisins and calibrations of system mod-
els. Experiments are out to obtain new (and unexpected) leaige. In fact, this is what science
is all about, as articulated in John Henry’s writing abo gienesis of the scientific method at the
hands of Francis Bacon [32]:

Before Bacon'’s time, the study of nature was based largegrochair speculation. It

relied almost entirely on abstract reasoning, startingnfeorestricted range of presup-
positions about the nature of the world, and its aim was tdae@xfgnown phenomena

in ways that were consistent with those presuppositions. nde know that these

presuppositions were incorrect and that much of pre-modataral philosophy was

therefore entirely misconceived, but this would never|doever, have been realised
by anyone working within the tradition...

Without experiments, nature doesn’t have the opportunitglt you anything new. The same goes
for computer-based systems.

Perhaps the best-known example of a surprising discovarthé context of computer sys-
tems) emanating from empirical measurements is the disga¥self-similarity in network traffic
[38]. This started with the seemingly pointless collectainvoluminous data regarding packets
transmitted on an Ethernet local area network — an observatithe real world. Analyzing this
data showed that it does not conform with the prevailing $tmsmodels of traffic. In particular,
aggregating the data over increasing time scales did nottea fast reduction in variance as was
expected. This led to the creation of the self-similar nekwaffic models that are now accepted
as much more realistic. And this is not only of academic egger the new models have major
implications regarding the design of communication systesrg. the provisioning of buffer space
and the (im)possibility of guaranteeing various qualitysefvice and performance objectives.

Once the discovery of self-similarity in network traffic wamsde, similar discoveries started
to pop up in other domains. Self similarity has now been okeskin file systems [27], parallel
computers [61], and the web [10]. Even failures turn out teehsuch characteristics, and are not
well modeled by Poisson models [56].

Other types of surprises are also possible. Consider, fonple, the data shown in Fig. 3. This
shows the level of activity (as measured by the number of #itdarjobs) on large-scale parallel
supercomputers over a period of two years. While fluctuataye of course expected, these graphs
show another type of phenomenon as well: flurries of extrgimigh activity by a single user, that
last for a limited period of time [22]. It is not clear why thigppens, but it is clear that it has
a significant (and unexpected) impact on the statistics @ftbrkload as a whole. generalizing
from this and other examples, there is a good chance thatifigmk at your computer closely
enough, you will find that it is doing strange things that yoouwdn't have anticipated (and I'm
not referring to a situation in which it had been taken ovealiacker).

The main problem with surprises is that we never fail to b@ssed by them. It is very easy
to fall into the trap of assuming that — given that we are dgpivith a man-made system — we

12

LANL CM-5 SDSC SP2

12000 - 50 7000 -
o user ~ 6000 1 B user 374
o 10909 . o gé 8 5000 1 427 others
= 8000 7 Il 210 others = i
- | = 4000
2 6000 - ‘ g
3000 -
2 4000 3
° ° 2000
2000 1. [, PR | 1000 - %
O\\\\\\\\\\\\\\\\\\\\\\\ O\\\\\\\\\\\\\\\\\\\\\\\
ND J FMAMJ JASOND J FMAMJ JAS JJASOND J FMAMJ JASOND J FMA
1994995 1996 1998 1999 2000

Figure 3: Arrivals per week in long logs of activity on parallel supemgputers exhibit flurries of
activity by single users.

know what is going on, and can therefore plan our actionsrdaogly. But as a scientist, one
needs to develop a sense of healthy skepticism. More oftanrtbt, we don't really know enough.
And the only way to find out is by looking.

2.4 Modeling

“The important thing in science is not so much to obtain neusfas to discover new
ways of thinking about therh.
Sir William Bragg

“Science is built up of facts, as a house is built of stonesabwtccumulation of facts
is no more a science than a heap of stones is a House.
Henri Poincagé

Well-executed measurements provide us with data. Modd#tisglata is the process that turns
them into information and knowledge. The resulting modebedies what we have learned from
the measurements about our world. A good model includesitiefisa of new concepts and effects,
and thus enriches our vocabulary and our ability to disdusptoperties of the systems we build.
Thus modeling transcends the realm of experimentation|esads into theory.

An important property of good models is simplicity. A good aebdoesn’t just define new
useful quantities — it also leaves out many useless onesadtlod modeling distills the cumulative
experience gained from performing experimental measumésnand sets then in a format that can
be used as the basis for further progress [14]. In fact, thedso the basis for natural science,
where experimental observations are summarized in siraple that are actually a model of how
nature operates.

It should be stressed that finding new models is not easy. digedt obstacle is actually
noticing that a new model is needed. It is very tempting terptet experimental results in the

13

light of prevailing preconceptions. This runs the risk ofirfig the measurements to the theory,
rather than the theory to the measurements.

As an example, consider the issue of message-passing itkepaystems. Parallel programs
are composed of multiple processes that execute on diffpr@cessors, and communicate by
sending messages to each other. The performance of thegegssssing is therefore crucial for
the performance of the parallel application as a whole. Thsled to extensive measurements of
different message-passing systems. One result is the ener@f two basic concepts that describe
the performance of message passing: latency and bandwidth.

In an informal sense, latency is “how long it takes to getéheand bandwidth is “how much
can flow in a unit of time”. These concepts can be visualizeddnsidering a water hose. The
bandwidth corresponds to the diameter (or rather, the sexgfon) of the hose, whereas the latency
corresponds to the water pressure, and hence to the spdeaviniith it propagates. Note that,
somewhat counterintuitively, the two may be independerttilemwve may expect a system with
low latency to provide higher bandwidth, it is also posstbl&ave a lot of water flowing at a slow
rate, or just a thin jet of water flowing at a high rate.

But the interesting thing about latency and bandwidth isntiredset they imply. Latency and
bandwidth are two parameters, and they imply a model that lba$ two parameters: a simple
linear model. In particular, the common model for the tim&rémsmit a message is

message length
bandwidth

Given this model, we can perform measurements and find tlaeneers: simply measure the time
to send messages of different sizes, and fit the results teearlmodel. The slope then gives the
bandwidth, and the intercept gives the latency.

But other approaches are also possible. For example, insmmm to measure the latency of
a communication system as the time to send a zero-size nees8ygdefinition, this is indeed
the time needed to get from here to there. But it does not satgscorrespond to the intercept
of a linear model, because the behavior of a real system mayuod more complex. This goes
to show two things. First, the definition of latency of prahkic, and different approaches are
possible. Second, more sophisticated models of commiumicaystems may be needed. And
indeed, several such models have been proposed, including

time = latency+

e The LogP model, which is similar to the simple linear model, distinguishes between two
types of bandwidth: what the network can carry, and what tltereode can inject [11].

e The LogGP model, which adds a separate bandwidth for longages, that are presumably
handled by a different transmission protocol [1].

e The LoGPC model, that adds modeling of network contentidi. [4

The motivation for all these models is the inadequacy of ipresysmodels to describe a real mea-
sured phenomenon that is perceived as important. And evea details are needed when the
messages are generated automatically in a shared-mensbeyrsj43].

One field in which massive data is collected but practicatlymodeling is attempted is com-
puter architecture. Microarchitectural design in patacsuffers from immense complexity, with

14

myriad factors that all interact with each other: instrantmixes, instruction dependencies, branch
behavior, working-set sizes, spacial and temporal logatt., and also the correlations among all
of them. The commonly used alternative to modeling is to @agme a select set of benchmarks,
e.g. the SPEC benchmarks, and settle for measurement eflibashmarks. However, this comes
at the expense of understanding, as it is impossible to desigeriments in which specific char-
acteristics of the workload are modified in a controlled n&ann

Other fields suffer from the opposite malady, that of modgtoo much. In particular, we tend
to jump to models without sufficient data, and for the wrongsans. The prevalence of Poisson
models in operating systems and networking is a good exartjdeeasy to convince oneself that a
Poisson model is reasonable; in essence, it amounts todime ttiat events happen independently
and at random. What could be more reasonable for, say, jotaksiror component failures? But
the fact that it seems reasonable doesn't mean that thig iguth: more often than not, it just
points to our lack of imagination (in this specific examplegarding the possibility that arrival
processes are often self-similar and display long-rangemidence). The use of Poisson models in
the interest of mathematical tractability is even more @sogs, because it may foster a tendency
to ignore known data. For example, the earliest measurenoémmomputer system workloads in
the 1960s exposed non-Poisson behavior and non-expadndistrgbutions [9, 55, 67], but these
were ignored for many years in favor of the mathematical earence of assuming memoryless
behavior.

2.5 Truth

“Errors using inadequate data are much less than those usiogta at all.
Charles Babbage

“Believe those who are seeking the truth. Doubt those who tfihd i
Andre Gide

The scientific method is based on the quest for truth by mefaabjective observations. Ob-
viously this is a problematic prospect, and the issue of dredbjectivity is really possible has
been discussed for hundreds of years. But John Henry wB&js [

Whether objective knowledge is really possible or not (amcidogists would say it
isn't), it is clearly better toaspireto a knowledge that is free from ideological bias
rather than to promote claims to truth that have been delibbrconceived to support
a particular ideology or an ungrounded system of belief.

In the quest for objective knowledge, computer sciencesfacenuch bigger problem than
the natural sciences: the problem of relevance. The nasarahces, as their name implies, are
concerned with nature. Nature is unique and enduring, ssunements performed in Paris in
the 17th century are valid to London in the 19th century antt@& in the 21st century. But
measurements of a computer in room 218 may be irrelevanetodmputer situated in room 219
at the same time, even if they are of the same model, due tleslifierences in their configuration
or use. Results of computer measurements are generallynivetrsal; rather, they are brittle, and

15

are very sensitive to the conditions under which they wethegad and especially to the specific
system being used.

Another problem is the rate of change in the technologyedriealm of computers. Many fea-
tures of computer systems grow at exponential rates: theitgensf elements in integrated circuits
(Moore’s law [59]), the size of primary memory, and the perfance of and number of processors
in typical supercomputers [20], to name a few. Under suatuaistances, measurements tend to
be short-lived. By the time you manage to perform a measurneared analyze the results, these
results may already be out of date, because newer and hettens have emerged.

Of course, not all computer-related measurements nedgss#fer from such problems. For
example, some measurements are more closely related to émplepuse computers than to the
computers per se. As such, they only change very slowlycteitgchanges in user behavior (e.g.
in 2005 people probably type somewhat faster on averagdllesidid in 1965, because computer
keyboards are so much more common — but actually this is a ap&eulation, and needs to be
checked!).

Moreover, it is also interesting to measure and follow thibesms that do suffer from brittle
relevance. One reason is simply to characterize and uagershis brittleness. Another is to
collect data that will enable longitudinal studies. Forrapde, data is required to claim that certain
properties grow at an exponential rate, and to try and naindilne exponent. A third reason is
that while the actuahumberanay be of little use, thenderstandinghat is derived from them has
wider applicability. Measurements necessarily yield nambbut these numbers are typically a
means and not an end in itself. If we learn something from theenshouldn’t care that they are
not universally correct. If we never measure anything odeaf that it will not be relevant, such
irrelevance becomes a self-fulfilling prophecy.

The problem with computer measurement is not that they ddeack to a universal and en-
during truth. The problem is expecting them to do so. Evehéatural sciences measurements
are qualified by the circumstances under which they werecktl. Admittedly, with computers
the situation is much more problematic, due to rapid teabgioal change. But partial data is still
useful and better than nothing. It is simply a matter of agkedging this situation and making
the best of it.

2.6 Sharing

“One of the advantages of being disorderly is that one is aatigtmaking exciting

discoveries.
A. A. Milne

Getting data is hard. Getting good data is even harder. kasefore imperative that data be
shared, so that the most benefit possible will be gleanediftdmparticular, sharing data enables
two important things:

1. Exploration — there is always more to the data than yotalhjtsee. By making it available,
you enable others to look at it too. Paraphrasing Linus’s,lvaitin enough eyeballs, the data
will eventually give up its secrets.

16

2. Reproducibility — given your data, others can redo yoalygsis and validate it. This notion
is elaborated in Section 4.

Given that data is hard to come by, it is wasteful to requirergane to get the data anew. In
many cases it may even be impossible, as not everyone hassaocthe measured system. For
example, only the operators of a large-scale supercompater access to it and can measure its
performance and workload. But they are not necessarily éisedrjuipped to analyze this data. It
is therefore much more efficient to share the data, and emdhégs to look at it. Of course, if
possible it is highly desirable to get new data too; but thgoopof using known data is important
to enable more people to work on it, and to foster a measuneifafrnity across different analyses.

Sharing the data is extremely important even if you do perfardetailed analysis. Access to
the raw data is required both in order to validate the ansyysid in order to perform new types of
studies. It should be stressed that validation is not a digmistrust — this is simply how science
is done. As for innovative analyses, it can be claimed thatisha highly creative endeavor, maybe
even more than the effort needed to collect good data in thediace. For example, consider a
workload log from a parallel supercomputer that includesftiilowing data for each submitted
job:

e User ID, with indication of special users such as system achtnators.

Application identifier for interactive jobs (with expliddentification of Unix utilities), or an
indication that the job was a batch job.

Number of nodes used by the job.
Runtime in seconds.

e Start date and time.

This doesn’t look like much, but still, what can you extracirh this data? My initial analysis
found the following [21]:

e The distribution of job sizes (in number of nodes) for sysjebs, and for user jobs classified
according to when they ran: during the day, at night, or omtbekend.

e The distribution of total resource consumption (node sdsprfor the same job classifica-
tions.

e The same two distributions, but classifying jobs accordimgheir type: those that were
submitted directly, batch jobs, and Unix utilities.

e The changes in system utilization throughout the day, farkdays and weekends.
e The distribution of multiprogramming level seen during tteg/, at night, and on weekends.

e The distribution of runtimes for system jobs, sequentibkjcand parallel jobs, and for jobs
with different degrees of parallelism.

e The correlation between resource usage and job size, fertjadt ran during the day, at
night, and over the weekend.

17

e The arrival pattern of jobs during the day, on weekdays anekereds, and the distribution
of interarrival times.

e The correlation between the time of day a job is submittedi@@source consumption.

e The activity of different users, in terms of number of jobbmsiitted, and how many of them
were different.

e Profiles of application usage, including repeated runs eg#me user and by different users,
on the same or on different numbers of nodes.

e The dispersion of runtimes when the same application isiggdanany times.

While this is a pretty extensive list, | am confident that someereading this paper will be able
to come up with additional interesting observations. If yare interested, the original data is
available from the Parallel Workloads Archive. In fact, tgua few repositories of data already
exist, including

Internet Traffic Archive at URL http://ita.ee.lbl.gov/

NLANR Internet Traces at URL http://moat.nlanr.net/

CAIDA Internet Traces at URL http://www.caida.org/

MAWI Backbone Traffic Archive at URL http://mawi.wide.ad.jp/mawi/

LBNL/ICSI Enterprise Tracing Project at URL http://www.icir.org/enterprise-tracing/index.html
Waikato Internet Traffic Storage at URL http://www.wand.net.nz/wand/wits/

Video Frame Size Tracesat URL http://www-tkn.ee.tu-berlin.de/research/trace/trace.html

BYU Performance Evaluation Laboratory traces of address, instruction, and disk 1/0 at URL
http://traces.byu.edu/

New Mexico State University traces of address references for processor architecunesstat
URL http://tracebase.nmsu.edu/tracebase.html

Parallel Workload Archive for workloads on parallel supercomputers at URL
http://www.cs.huji.ac.il/labs/parallel/workload/.

Hopefully, in the future all relevant data will be depositedsuch repositories, which will be
maintained by professional societies. Regrettably, sofrteese repositories seem to be dead.
For example, the well-known Internet Traffic Archive was gptto provide access to data used
in networking and web performance studies, and containddkesets used in several pioneering
papers. But it only contains data collected between 1995.868.

A legitimate issue is the need to get the most out of your leamhed data before allowing
others to get their hands on it, possibly scooping you to th@igation of the results. This concern
is easily handled by fostering a cultural acceptance of sdef@y in making the data available.
One option is to keep the data private until you publish youn dnitial results, as is commonly
done e.g. in biology. Another option is to wait for a fixed periafter obtaining the data, e.g. one
year. Deciding on such a fixed timeframe is preferable inittaatoids situations in which the data

18

is continuously kept private out of anticipation of addi# analysis, which never materializes;
there are too many cases of researchers who intend to makeawdalable but are then sidetracked
and the data is lost.

On the other hand, it can be claimed that the fear of beingmabis actually not well founded.
The current situation is that data can lay around for yeai@ré&@nyone bothers to look at it. One
of my personal examples is the workload flurries shown abovég. 3, which were discovered
in widely available (and used) data [22]. Another is the gsialof Top500 data, which is also a
well-known and widely cited dataset [19, 20].

Thus the flip side of the argument for keeping data for prieegeloitation is the opportunity
for even more exciting discoveries if you make it public. As atbove examples show, it can take
many years for someone to come up with a new use for existitay @y making the data public,
we increase the chances that someone will have a use for Temis especially relevant for large
scale monitoring projects, that just collect data for noiobs reason. For example, Kumar et al.
have used monitors of network address usage to track dowPR th@édress from which an Internet
worm was launched [37]. This use was not anticipated wheunaite collection was initiated, and
would not have been possible if the data was not available.

3 Hypothesis Testing

“A fact is a simple statement that everyone believes. It isgent, unless found guilty.
A hypothesis is a novel suggestion that no one wants to teelieis guilty, until found

effective’
Edward Teller

“Smart people (like smart lawyers) can come up with very gogdamations for mis-

taken points of view. ' o
Attributed to an un-named “famous scientist” by Frank Wolfs

Hypothesis testing is at the very core of the scientific meththis is where experimentation
comes in. This is where you interrogate nature to see whethat you think you know is indeed
true.

As outlined in the previous section, experimental scientagswith observation. Based on
the measured observations, one builds a model. The modal abstraction of the world, and
embodies a generalization of the results of the measurafyrieistan expression of what you have
learned from them.

But such a model is a theory, not a fact. How do you know if thithe correct generalization?
The model or theory by itself is useless. To justify itselfmadel must be used. The way to
use a model is to make predictions about the world, and iriqodatt, about aspects that have
not been measured yet. Such predictions are acthgfiptheseabout what the outcome of the
missing measurements will be — an educated guess, based gni@uknowledge, but not yet
real knowledge in itself.

To turn a hypothesis into bone-fide knowledge, it has to pasdedst of experimentation. A
special test is designed, which will measure specificallgtivar the hypothesis makes the right

19

prediction. This closes the cycle (Fig. 1): a measuremeito@ model, the model to a hypothesis,
and now the hypothesis is used to guide another measureieatn turn may lead to a refinement
of the model, and so on.

3.1 Emergent Hypotheses

“Wise men profit more from fools than fools from wise men; fag thise men shun

the mistakes of fools, but fools do not imitate the succesttd®w wise!
Cato the Elder

“Your theory is crazy, but it's not crazy enough to be true.
Niels Bohr

The term “hypothesis” is actually quite loaded, and is ugetva quite different levels: the
macro level and the micro level. The above discussion andegkesubsection are focused mainly
towards the micro level, where a specific, concrete, atomadiption is to be tested. But at least
some previous discussions of hypothesis testing in compeience has focused on the macro
level.

Macro level hypotheses are concerned with the shaping of @dewfield, as opposed to the
micro level employed in individual research projects. Reghthe best-known such hypothesis
in computer science is th& # NP, and thus efficient polynomial algorithms for NP-complete
problems cannot be found. This has led to extensive researapproximation algorithms, and to
further classifications of problems according to whethenairgood approximations are possible.
While we do not know for a fact tha® # N P, we accept this hypothesis because it has passed
extensive tests: generations of computer scientists hi@ektd refute it and failed.

Various subfields of computer science have their own macmotimneses. As cited above,
Newell and Simon propose the hypothesis that intelligehtbi®r is achieved by heuristic search
[47]. Denning suggests that a basic hypothesis in perfocmanalysis is that queueing networks
provide an adequate model for making predictions [14]. €Hggotheses can be called emergent
hypotheses — they are not proposed and then tested systeltyatiather, they emerge as a sum-
marizing principle that unites a large body of work. The roiyypotheses discussed next are of
the opposite kind, and can be called ad-hoc hypotheses:atieefprmulated for a specific need,
and then tested to see that they fulfill this need.

3.2 Hypothesis-Driven Experiments

“When you have eliminated the impossible, whatever remaimsever improbable,

must be the truth.
Sherlock Holmes

“If at first the idea is not absurd, then there is no hope for it.
Albert Einstein

20

100 T T T T T 300 T T T T —

|
c | c
é go | conservatve —— |] _§ 250 r conservative ———
s difference - ; g 200} difference -]
v s /
3 60 5 150 | /I/
2 2 100 e
3 40 + =1 ’:}
8 S =0t e
) o _ g E
I T
<] (<] TR
= > 50 r g
® of= &
-100 .
0.4 1 04 05 06 07 08 09 1

Figure 4: Comparison of EASY and conservative backfilling, using tieCCvorkload (left) and
the Jann model (right).

The micro level of hypothesis testing is concerned withvittial experiments and measure-
ments. In computer science, just like the natural sciensespeed to explain the results of our
measurements. We are interested in some aspect of a corspstem. We measure it. And now
we have to make sense of the results. This is typically dontyiryg to explain why the system
behaved in the way it did, or in other words, by coming up withadel of how the system behaves,
and showing that the model agrees with the measured results.

But what about the other way around? In the natural scieftcssyot enough that the model
fit the measurements — it is also required that new measutsniethe model! In effect, the
claim that the proposed model explains the system behawioot a proven truth, but merely a
hypothesis. This hypothesis needs to be tested. If it pabgetest, and then another test, and
another, we gain confidence that the model is indeed a faitefiresentation of the system’s
innermost working. Of course, the tests may also show thatmadel is wrong, and then we need
to seek other explanations.

While the prevailing culture in computer science does nguire the experimental verification
of hypotheses derived from models, such a procedure is thevess sorely needed. We show
this by means of a case study (taken from [18]). The case stadgerns the comparison of
two variants of a scheduler for parallel systems. The sdeedoay have some free nodes at its
disposal, and maintains a queue of parallel jobs that cannotet because sufficient nodes are not
available. When a running job terminates and frees some nuaates, or when a new job arrives,
the scheduler scans the queue and starts as many jobs adsgobsiparticular, when a job that
cannot run is found, the scheduler does not stop. Insteadnitnues the scan in an effort to find
smaller jobs that will fit — an optimization known as “backfit)” [40].

The difference between the two variants is small. When blliokfiis performed, there is a
danger that skipped jobs will be starved. One variant, daBASY”, counters this by making a
reservation for the first queued job. The other, called “eovetive”, makes reservations for all
skipped jobs. The reservation is made for when enough naegesxagected to be free, based on
user-supplied estimates of job runtimes.

The case study starts with a comparison of these two variasisg two workloads: a real

21

workload traced on the IBM SP2 parallel supercomputer liestat the Cornell Theory Center
(CTC), and a statistical model of this workload developedlagn et al. [35]. The performance
metric is bounded slowdown: the response time normalizethbyactual runtime, but using a
value of 10 seconds instead of the real runtime if it was toallsnm order to prevent extremely
high values when very short jobs are delayed. The resultstaoen in Fig.4, and indicate a
problem: the Jann model is based on the CTC workload, butabelts differ. With the Jann
model, conservative backfilling is seen to be better. WittCCihey are the same except under
extremely high loads, when EASY is better.

In trying to explain these results, we note that both the filiioly policy and the slowdown
metric are sensitive to job duration. It therefore makesedn check for statistical differences
between the workloads. The most striking difference is thatJann workload has tails at both
ends of the runtime distribution, which the CTC workload sloet.

The long jobs in the tail of the distribution could affect thieserved results by causing longer
delays to other jobs that wait for their termination becaih®y need their processors. But wait!
This is not yet an explanation; it is onlyleypothesisabout what is happening. To check it, an
appropriate experiment has to be devised. In this parti@sse, we re-ran the simulations with
a modified version of the Jann workload, in which all jobs lenthan 18 hours were deleted (in
CTC, there is an 18-hour limit). However, the results wereasially the same as for the original
workload, refuting the hypothesis that the long jobs arpaasible for the difference.

The next candidate hypothesis is that the very short jodsadann workload are the source of
the observed behavior: short jobs could affect the resyltsolmtributing very high values to the
average slowdown metric. This was checked by removing alidhs shorter than 30 seconds. But
again, the results were not significantly different fromsbof the original workload.

Another major difference between the workloads is that andhginal CTC workload most
jobs use power-of-two nodes, whereas in the Jann model jelspaead evenly between each two
consecutive powers of two. Previous work has shown thatrdién of jobs that are powers
of two is important for performance, as it is easier to pacwgmeof-two jobs [42]. While it is
not clear a-priori how this may lead to the specific resultsepied in the original measurements,
it is still possible to check whether the hypothesis that(thek of) emphasis on power-of-two
nodes lies at their base. This is done by running the sinuatbn a modified version of the Jann
workload in which the sizes of 80% of the jobs were roundedaughé next power of two. The
experiment yet again demonstrated that the hypothesisaagyras this seemed not to make a
gualitative difference.

The next hypothesis is that the difference is due to usingrate runtime estimates when
simulating the Jann workload, as opposed to using (inateuraal user estimates in the CTC
workload. If runtime estimates are inaccurate, jobs tertgériminate before the time expected by
the scheduler. This creates holes in the schedule that casdaefor backfilling. As such holes
appear at the head of the schedule, when many subsequemirgpbbeady queued, this strongly
affects conservative backfilling that has to take all subeaicommitments into account. EASY,
on the other hand, only has to consider the first commitmeierdfore conservative achieves
much less backfilling.

One way to test this hypothesis is to add realistic user eséisnto the Jann model. However,

22

80 T T T T T —/

conservative ———
60 r difference - 1
/
/

40 t M/
20 /{//

20 L L L L L L
0.4 0.5 0.6 0.7 0.8 0.9 1

load

average bounded slowdown

Figure 5:Results for the CTC workload when using actual runtimes tis1ates, to verify that this
is the cause of the Jann results.

this is not easy to do [64]. It is much easier to modify the CT@€kioad, and re-run the CTC
simulations using the actual runtimes rather than themaigiser estimates to control the backfill-
ing. The results, shown in Figure 5, largely confirm the cotjee: when using accurate estimates,
conservative comes out better than EASY. The hypothesitheasfore passed the test, and can be
used as the basis for further elaboration.

While such case studies are not very common in systems ofseashould be stressed that
they do exist. Another prime example we can cite is the studyétrini et al. regarding the
performance of the ASCI Q parallel supercomputer [53]. Wuas different from the case study
described above, in that it was an empirical investigatibtme performance of a real system. A
number of hypotheses were made along the way, some of whighdwout to be false (e.g. that
the performance problems are the result of deficienciesaniiplementation of the allreduce
operation), while others led to an explanation of the pnaisién terms of interference from system
noise. This explanation passed the ultimate test by leadiag improved design that resulted in a
factor of 2 improvement in application performance.

In grade school, we are taught to check our work: after yoiddivmultiply back and verify that
you get what you started with. The same principle appliebécetvaluation of computer systems.
These systems are complex, and their behavior is typidatlyasult of many subtle interactions. It
is very easy to fall for wrong explanations that seem vergoeable. The only way to find the right
explanation is to check it experimentally. This is both eéhtecal issue — devising experimental
verifications is not easy, and a cultural one: the notion dingerified explanations are simply not
good enough.

3.3 Refutable Theory

“If the facts don't fit the theory, change the fatts.
Albert Einstein

“ A theory which cannot be mortally endangered cannot be.alive
W. A. H. Rushton

23

Regarding possible explanations of system performancesas hypotheses, and devising ex-
periments to check their validity, are not only a mechanisenfihding the right explanation. Hy-
pothesis testing and refutable theory are the fast lanaeatsftc progress [54].

Using explanations without thinking about and actually desirating proper experimental
verification may lead us to false conclusions. This is of seurad. But the real damage is that
it stifles progress in the right direction, and disregardsgbientific method. Platt writes about
hand-waving explanations, which are easily reversed wbeamesne notices that they contradict
the observation at hand [54],

A “theory” of this sort is not a theory at all, because it does exclude anything.
It predicts everything, and therefore does not predictlangt It becomes simply a
verbal formula which the graduate student repeats andvesligecause the professor
has said it so often. This is not science, but faith; not themut theology. Whether it
is hand-waving, or number-waving, or equation-waving eotly is not a theory unless
it can be disproved.

Platt’s main examples come from the natural sciences, eltpaular biology and high-energy
physics [54]. The theories he talks about are theories deggnature: that the strands of the dou-
ble helix of DNA separate when a cell divides, that the pasftglementary particles is conserved,
etc. But is this also relevant to the computer systems cedjby humans? The answer lies with
the basic characteristics of the scientific research tlat Bltalking about: that it is observational,
and subiject to limited resources.

That the natural sciences are based on observing naturkeis far granted. But computer
science? After all, we design these systems; so can’t thenbkzed mathematically from first
principles? The short answer is no, as we tried to establiskiea Whether at the scale of a single
microprocessor or of the whole Internet, we don't really Wn@hat our computer systems are
doing, and there is no alternative to direct observation.

Perhaps more surprising is the observation that limitedwe®s have a crucial role. Why do
limited resources promote good experimental researchauBecif you have limited resources,
you need to think about how to best invest them, or in othedgowhat will yield the best returns
on your investment. And the answer of the scientific methdbas the best return is obtained by
carefully designed experiments, and specifically, thoaedan best distinguish between competing
theories. Furthermore, this leads to more collaboratitwéen scientists, both in terms of ferment
and cross-pollination of ideas and advances, and in ternmitding large-scale experimental
infrastructure that cannot be built by individual reseaedms. These considerations apply equally
well to computer science.

Platt ends his exposition with the following recommendaft]:

| will mention one severe but useful private test — a touchstof strong inference
— that removes the necessity for third-person criticisntaoee it is a test that any-
one can learn to carry with him for use as needed. It is ourrdthd the Baconian
“exclusion,” but I call it “The Question.” Obviously it shédibe applied as much to
one’s own thinking as to others’. It consists of asking in yown mind, on hear-
ing any scientific explanation or theory put forward, “But, sthat experiment could

24

disprove your hypothesis?”; or, on hearing a scientific expennuescribed, “But sir,
what hypothesis does your experimeigprove?”

4 Reproducibility

“When you steal from one author, it's plagiarism; if you stfaim many, it’s re-

searchH.
Wilson Mizner

“Mathematicians stand on each other’s shoulders while ctenguaientists stand on

each other’s to€es.
R. W. Hamming

We're human. We make mistakes. Even in science. So it is lmeaefh allow others to repeat
our work, both to verify it and to refine and extend it.

4.1 Mistakes

“The greatest mistake you can make in life is to be contindadying you will make
one’
Elbert Hubbard

“Admit your errors before someone else exaggerates them.
Andrew V. Mason

“An expert is a man who has made all the mistakes which can be mad/ery narrow

field”
Niels Bohr

“If you don’t make mistakes, you're not working on hard enopgbblems'
F. Wikzek

| some fields the propensity for mistakes is well-documeraed accepted as part of life. A
prime example is software engineering. Practically altwafe life-cycle models are based on
the notion of iteration, where successive iterations ofdaeelopment correct the shortcomings
of previous iterations [58]. As mistakes are typically fdupy testing the software, testing has
become a major part of development. In the Unified Procesnigis one of four main workflows
that span the duration of a software development projegdt [34

But mistakes happen in all domains of human endeavor, anthdiridlem is a social activity
that requires a time investment by multiple participantg Millo et al. list several illuminating
examples from mathematics, where proofs of theorems weze flaund to be flawed [12]. The
history of science has witnessed several great contr@geasnong eminent scholars, who can't all
be right [30].

25

A recent example closer to computer science is provided bySiAM 100-digit challenge
[3]. The challenge was to compute 10 digits of the answer ot @ 10 difficult computational
problems. 94 groups entered the challenge, and no fewe2thamn, by correctly computing all
100 digits; 5 additional teams got only one digit wrong. Bliit,shree out of four groups made
mistakes, including groups with well-known and experighcemputational scientists.

Moreover, in an interview, Nick Trefethen (the initiatortbe challenge) admitted to not having
known all the answers in advance. But he claimed that suctvlledlge was not needed, as it was
easy to identify the correct answers from the results: whahipte groups from different places
using different methods got the same numbers, they were pnolsably right. Groups who got a
unique result were probably wrong — even if composed of lyighlalified individuals.

The lesson from these examples is that we cannot really leetisair published research results
are correct, even if they were derived by the best sciergtrsisvere subjected to the most rigorous
peer review. But we can gain confidence if others repeat thi amd obtain similar results. Such
repetitions are part of the scientific process, and do nataefipecific mistrust of the authors of
the original results. Rather, they are part of a system tpati@and gain confidence in the original
results, and at the same time to delimit the range of theilicaiplity.

To enable others to repeat a study, the work has to be repldeu€his has several important
components [45, 36, 51]:

1. Describe the work in sufficient detail. Think in terms ofexipe that lists all what has
to be done, and don’'t assume your readers can fill in the gams’t Bbrget to include
trivial details, e.g. whether MB mean$°® bytes or2?° bytes. Design and use tools that
automatically record full details of the environment in wlina measurement is taken [50].

2. Make software available in a usable form, i.e. source gatlger than binaries. This is
especially important for new software you developed forrdmorted experiment; the more
itis used, the better the chance that hidden bugs will bedeauma removed. If using software
produced by others, specify the version used.

3. Make raw data available, especially input data, e.g. thixMvad used to drive a simulation.
4. Enable access to infrastructure. This may be crucialitaicecases where the infrastructure
is unique, either because of its novelty or because of itetag.

Incidentally, keeping all the data needed in order to repcedvork is also very useful when you
have to reproduce it yourself, e.g. in a followup study or whevising a paper [51].

4.2 Understanding

“It is by universal misunderstanding that all agree. Foryfjlbluck, people under-

stood each other, they would never agree.
Charles Baudelaire

“All truths are easy to understand once they are discovehedpaint is to discover

them?
Galileo Galilei

26

“It is not necessary to understand things in order to arguatabem’
Pierre Beaumarchais

While the basic reason for attempting to reproduce prevresslts is to verify them, this
is not the only reason. Verification takes time, and by thestiwe are sure of the validity of
results “beyond a reasonable doubt” they may be no longevaret. However, a more important
reason may be to improve our understanding of the measustensy This is especially true in
an academic setting, where basic understanding is arguatnlg valuable then putting results to
actual use.

One of the arguments against requiring results to be veiidi¢dat it is too hard to do to be
practical. Michael Foster [45] writes

The difficulty with validating results is the myriad of dd&in a simulation or ex-
periment that may affect the measurement. Reproducinguit resans determining
which details are important and which are inessential...

This claim is perfectly true. But a central point in studythg performance of a system is just this:
finding out what are the important parameters that affedopmance, the mechanisms by which
they affect performance, and the degree to which they gifedormance. If we manage to do this,
we have learned something from the study. And if verificaisotmhe means to achieve such a level
of understanding, this is a good reason to perform veribeati

A rare example of actually trying to repeat measurements @grothers is presented by Clark
et al. [8]. Despite being essentially successful, this gdaminderscores the difficulties of re-
producibility, as the reproducing authors seem to have ewsynificant help from the original
authors in order to achieve similar results. One of theirifige was that disabling SMP support in
the operating system turned out to be crucial for the redgezformance. This interesting obser-
vation would not have been made if they were not attemptingpeat previous measurements.

To make repeatability easier, results should be accomgdnyidull details on how they were
obtained. For example, ttoNCEP TUAL language for writing communications tests and bench-
marks compiles into code that collects complete infornmagibout the system environment, and
embeds it in the output file. In addition, the language itselfery high-level, allowing the source
code itself to be shown together with the results. This imiatety exposes the design of the
benchmark, and answers many possible questions aboutaitsde

On the other hand, it is true thakact, numericateproduction is most probably not required.
The point of reproducibility is to reproduce the insightst the numbers. It is more qualitative
than quantitative.

4.3 Standardization

“The good thing about standards is that there are so manyrof'the
Unknown

7y

“The most damaging phrase in the language is: “It's always beee that way:
Grace Hopper

27

“Science is a collection of successful recipes.
Paul Valery

In the context of reproducibility it may also be appropri@tehallenge the prevailing emphasis
on novelty and innovation in computer science, and espgadrathe systems area. Many leading
conferences and journals cite originality as a major faatoaccepting works for publication,
leading to a culture where each researcher is motivatedettecthis own world that is distinct
from (and incomparable with) those of others. This is notyordry different from the natural
sciences, that all study the natural world as it is. It is @s@rent from much of mathematics and
theoretical computer science, where it is much more commdind deep studies based on many
layers of previous work within the same basic framework.

The alternative to innovation and fragmentation is stagidation. This implies a canonization
of a certain approach or process. Canonization does not thatthere is a full agreement that this
approach or process is indeed flawless and the best. It justsribat everyone agrees to use them,
because they realize that the benefits of compatibility sterg from using the same approach far
outweigh the possible benefits of using a specialized apprteat is not accepted by others and
therefore is incompatible with the work of others.

Standardization is widely used in computer systems. The olmgous use is in system de-
sign, where designers forgo possible optimizations innberest of interoperability. For example,
communication protocols allow one computer to correcttgripret bits coming over a wire from
another computer; using a non-standard encoding wouldeddnesdata to be garbled and com-
munication would be impossible. Standardization is alssdua performance evaluation, where
benchmarks such as SPEC are used despite active debatettadioumerits and shortcomings
[69, 26]. Another example is TREC, the series of text reai@onferences, where attendees com-
pete at performing a common set of topical queries from argi@ege corpus of documents [66].

Experimental computer science requires even more stamddoh. As a first step, papers
should include a methodology section that describes howtit& was done in enough detail to
allow it to be reproduced. Later, such methodologies shbealdollected in laboratory manuals,
like those used in biology and other fields (e.g. [57]). Themw®we as a repository for the collective
experience regarding how things should be done — othervaibedc‘best practices”. Once such
manuals exist, the onus of writing methodology sectiong@iced, as much of it can consist of
references to the manuals.

It should be stressed that having an accepted laboratoryahapecifying desirable proce-
dures does not mean that deviations are not allowed andiatation is stifled. It just allows the
community to be split into two unequal parts. The smallet ganterested in research on method-
ologies, and continues to come up with new approaches andarsuons of existing approaches.
At the same time the rest of the researchers can follow theruestablished procedure, focusing
on their specific research questions rather than on the meltbgy used to answer them.

The potential effect of such a split should not be underesch The prevailing practice
today is that a paper should present a full story. Thus a pamsenting a new methodology
may be considered incomplete if it does not also provide amge of a specific situation in
which the methodology was used to advantage. This limitsatbek on methodologies in two
ways: first, methodologies cannot be discussed in greail,detapace must be left for their uses,

28

and second, improvements in methodology that do not imrneglikanslate to significant impact
are considered uninteresting. In the bottom line, spittesearch on methodology into a separate
branch can be expected to foster innovations and develdgnmethis important area.

4.4 Progress

“When the Internet publicity began, | remember being stryckdw much the world
was not the way we thought it was, that there was infinite tianan how people
viewed the world.

Eric Schmidt

“The truth in the matter lies in the fact that anything repeé&se long without variation
tends to become boririg.
Don Ellis

It is often thought that replication in science is mainly abeerifying results and correcting
mistakes. This was the view suggested by the precedingpssctit is wrong. Replication is more
about moving forward than about reviewing the past.

Replication fosters progress because it is hardly ever teteip precise. Each replication also
introduces a small variation. It could be that the same apptin is implemented on a different
platform. It could be that the same algorithm is exercisedgia different input. It could be
that the same experiment is conducted in a slightly diffeveay. Such variations open the door
to meta-studies, which synthesize the results of many puevstudies of the same phenomenon.
And this leads to more general theories, that not only pettaa certain point phenomenon, but
also to a whole context.

Progress is built from a combination of breakthroughs andllssteps. The breakthroughs
typically result from new insights, that are based on cutivdaxperience. The small steps result
from a choice between multiple candidates, just like evoluiepends on the selection of the fittest
among several variants. In either case, progress is natrpig@ned. It requires a certain breadth,
a context, alternatives that are tried our and later digzhrd hey are needed because we cannot
know in advance which will succeed — we need to experimerti@réal world to find out.

Remarkably, this process can be accelerated artificiallyapping on the competitiveness of
humans in general and scientists in particular. This is diyngetting up a common challenge, or
competition. By getting multiple research groups to worktloa same problem, and subjecting
them to a common evaluation framework, it becomes easiezléztsthe approach that promises
the most rapid progress. This can then be used as the ba#h® foext round.

There are quite a few examples of such competitions in coenmeience. Perhaps the most
influential is TREC, the series of Text REtrieval Conferenoeganized by NIST (the US Na-
tional Institute of Standards and Technology). This sesg&wted in 1992, has been credited with
improving the effectiveness of text retrieval algorithmstold, by providing large experimental
collections and a relatively subjective and uniform evadrascheme [66]. And there are other
competitions as well, ranging from competitions among opeocessor branch predictors to com-
petitions among teams of robotic dogs playing soccer.

29

5 What Next?

“Most people are more comfortable with old problems than wéw solutions.
Unknown

“All truth passes through three stages. First, it is rididul&econd, it is violently

opposed. Third, it is accepted as being self-evident.
Arthur Schopenhauer

“Men occasionally stumble over the truth, but most of thenk phemselves up and

hurry off as if nothing ever happenéd.
Winston Churchill

Observation and modeling are not unique to the natural segerOther examples include

e Environmental studies, where detailed measurements aitpots are collected and their
effect modeled

e Baseball, with its voluminous collected statistics, angirtise to analyze the contributions
of individual players [39]

e Modern economics, with its data mining of buying patternd és effect on the diminishing
connection between cost and pricing

e Economics theory, which now includes measured psychabgifiluences on human eco-
nomic behavior

Is computer science really so different, that measurendmtst have a place? Surely computer
science can gain from observation and verified modelingsast l@s much as these fields [62].

In fact, the situation is not really so bleak. Over the ye#isre have been many empirical
studies that fit our definition. Examples start with earlydstg of a computer’s workload and user
behavior [55, 9, 67, 60] and culminate with the studies quieieove on LAN and WAN traffic
[38, 52]. There are also papers devoted to experimentaladetbgy, e.g. [25, 26, 7, 51]. However,
when compared to the full scope of research in computer cejehis is still a vanishingly small
fraction. Moreover, the number of studies published is ren@mear enough to achieve a critical
mass from which reliable knowledge can be gleaned. Take uneaents from file systems for
example. Three well-known studies are

e The study of the BSD 4.2 file system by Ousterhout et. al in 148b

e The followup study of the Sprite file system in 1991 [2].

e A study of file usage in Windows NT 4.0 by Vogels in 1999 [65].
Indeed, each of these papers dutifully references thequsvanes and compares the new findings
to the old ones. Between them the three papers cover Unieragstdistributed systems, and

Windows systems. But there is just a single instance of egstieis type, from a span of 14 years!
It is very hard to argue that such data is definitive and thettimparisons are valid.

30

In addition to the paucity of empirical studies, they tend®thinly distributed over many
different publication venues. It is not surprising, theref that the few studies that have been
conducted have had little if any impact on the consequengded commodity systems. And they
are typically only mentioned in the “further reading” sects of textbooks on operating systems
or architecture, if at all.

If you are concerned about all this, what is there to do? Asathmve sections attempted to
show, the crux of the problem is not technical but cultural.tdke steps that will improve on the
current situation, we therefore need a cultural change.

One possible contribution would be to create a forum to fasie publication of experimental
work: aConference on Experimental Computer Scigf@€CS). This would promote papers with
substantial content on

1. Measurement methodology and best practices, and thétidefiof new metrics

N

Reporting on significant data sets, even without detaileadysis and full implications

w

Case studies of hypothesis testing leading to deeperstadding of complex systems

B

Repeated studies that strengthen or contradict presioaées, and experimental work that
bolsters or contradicts established theory

5. Meta-studies using previously published data

And especially those that seem to have little chance to bepaed in conventional venues because
they violate the culture of novelty, self-containment, dadus on performance. Additionally,
published papers will be accompanied by the relevant datasel software used to collect and
analyze it.

An encouraging example in this vein is the journalEhpirical Software EngineeringThis
journal grew out of a perceived need for a forum to publisher®tperimentally oriented work,
and has been sustained by an active research communityenasgears now. A similar forum
has been created by no other than the theoretical compugaceccommunity. The ACMournal
of Experimental Algorithmicsaters for researchers who study the behavior of complexitigns
experimentally, because mathematical analysis is toediffor intractable altogether [36]. Addi-
tional examples are the DIMACS Implementation ChallengesWorkshops on Efficient and Ex-
perimental Algorithms, the Workshops on Duplicating, Destoucting, and Debunking that focus
on computer architecture research, the Internet Measunte@mnferences, and the International
Symposium on Empirical Software Engineering.

Given that so many (and maybe more) conferences exist, anelhaarefully justify the in-
ception of another. One justification is that all the pregiefforts a are rather narrowly focused,
and contain a limited number of papers. A general confergleckcated to experimentation in
computer science in general would be beneficial for bolstete field as a whole, and for encour-
aging interactions and cross-fertilization between th#islds of computer science. In particular,
developments and advances achieved in one field will havepertunity to be picked up in other
fields as well.

Another justification is that the more major conferencesehasketchy record of accepting
experimental work, partly due to an inbuilt preference foe best possible papers that can be

31

published. This often translates to a preference for worledn a clean abstract setting, ignoring
at least some of the complexities of real life. A new confeeewill enable the prioritization of
a focus on real systems, and thereby increased relevanndustry and engineering efforts. At
the same time, such a forum will also enable deeper expetahewnrk to flourish by divorcing
the discussion of methodologies from their immediate us@eéncontext of specific systems and
studies.

Now is a good time to start with such a conference because #esms to be growing recog-
nition of the need for experimental work. In addition to therkishops and conferences quoted
above, we are beginning to see the emergence of large-sqaearmaentation efforts. One is Plan-
etLab http://www.planet-lab.org/), touted as “an open platform for developing, deploying] an
accessing planetary-scale services”. Another is RAMp(//ramp.eecs.berkeley.edu/), the
Research Accelerator for Multiple Processors, an effouts® standard FPGA boards to create a
cycle-accurate environment to emulate and study mul&-coicroprocessors. A centralized con-
ference has the potential to draw such efforts togetherhbweasing the advances and successes
in one fields so that they can be adapted to and adopted infatlkr as well, rather than having
fragmented efforts that do not interact with each other.

A conference can affect the research culture, but this ienotigh. To change the culture, itis
also important to have an impact on the education of futuneggions. Another important contri-
bution would therefore be to boost the experimental appraathe computer science curriculum.
There is nothing much that relates to experimentation inctireent ACM/IEEE curriculum rec-
ommendations. This is in stark contrast with common offggim theoretical computer science:
most departments require students to take courses in datduses, algorithms, and complex-
ity, in addition to courses in mathematics and possibletigkex on more advanced topics such as
optimization and randomization.

A good start for teaching experimental computer scienceladvbe to teach measurement
methodology, e.g. using texts such as Lilja’s bdd&asuring Computer Performance: A Prac-
titioner's Guide[41]. Additional courses can cover topics such as the sitimaof computer
systems, conducting experiments with human subjects, mpldratory data analysis. Some of
these have obvious connections to fields as diverse as gegghcognition, and statistics, and
will therefore have the added benefit of contributing to thter-disciplinary education of com-
puter science graduates.

It is also important to include the notions of experimentahputer science in all courses, and
not confine them to a sub-specialty. An example of the streafjthis approach is the Hennessy
and Patterson book on quantitative computer architeoteliesh has become the main textbook in
the field [31]. Similar texts are needed for other topicshsag operating systems and computer
communications. For example, measured workload effeatsbeaincorporated in such courses
in several places — how process runtimes affect schedulwgl@ad balancing [28], how file
sizes affect the format and layout of file systems on disk,[B8J self-similarity affects quality
of service guarantees, etc. And as noted above, experitienta also useful in the study of
algorithms.

Finally, it is necessary to promote the creation of repostofor data, making it accessible
and available for repeated and new analyses. Moreoversdeypthe raw data and software in

32

a repository can be made a pre-requirement for publicasiomjar to common practice in fields
such as biology. It is desirable that such repositories beaged by professional societies, to
prevent fragmentation and to ensure that they outlive ttezests of a single researcher.

The long term goal, that will really indicate a general at¢aape of the importance of the ex-
perimental approach to computer science, would be the @wgaod a Turing Award for measure-
ment. As a possible straw-man proposal, how about recagnibe importance of the discovery of
self-similarity in communication workloads, now known te prevalent in other contexts as well?

References

[1] A. Alexandrov, M. F. lonescu, K. E. Schauser, and C. Scla&i, “LogGP: incorporating

[2]

[3]

[4]

[5]

long messages into the LogP model — one step closer towaetdiatic model for parallel
computations In 7th Symp. Parallel Algorithms & Architecturepp. 95-105, Jul 1995.

M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff, dnl. K. Ousterhout, Measure-
ments of a distributed file systémn 13th Symp. Operating Systems Principlpp. 198-212,
Oct 1991. Correction i©perating Systems R&7(1), pp. 7-10, Jan 1993.

F. Bornemann, D. Laurie, S. Wagon, and J. Waldvogéle SIAM 100-Digit Challenge: A
Study in High-Accuracy Numerical ComputinglAM, 2004.

L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenk@feb caching and Zipf-like distribu-
tions: evidence and implicatiohsin IEEE INFOCOM pp. 126—-134, Mar 1999.

F. P. Brooks, Jr., The computer scientist as toolsmitti.Il Comm. ACM39(3), pp. 6168,
Mar 1996.

[6] J. Carreira and J. G. SilvaComputer science and the pygmalion effed€omputer31(2),

[7]

[8]

[9]

pp. 116-117, Feb 1998.

D. Citron, “MisSPECulation: partial and misleading use of SPEC CPU200tbmputer
architecture conferenceédn 30th Ann. Intl. Symp. Computer Architecture Conf. Prqc.52,
2003.

B. Clark, T. Deshane, E. Dow, S. Evanchik, M. FinlaysonHé&rne, and J. N. Matthews,
“Xen and the art of repeated resedrdim USENIX Tech. ConfJun 2004.

E. G. Coffman, Jr. and R. C. Woodlrterarrival statistics for time sharing systém&€omm.

ACM 9(7), pp. 500-503, Jul 1966.

[10] M. E. Crovella and A. Bestavros,Self-similarity in world wide web traffic: evidence

and possible causésin SIGMETRICS Conf. Measurement & Modeling of Comput. Syst.
pp. 160-169, May 1996.

33

[11] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. SchauSeSantos, R. Subramonian, and
T. von Eicken, LogP: towards a realistic model of parallel computationn 4th Symp.
Principles & Practice of Parallel Programmingp. 1-12, May 1993.

[12] R. A. DeMillo, R. J. Lipton, and A. J. PerlisSocial processes and proofs of theorems and
programs. Comm. ACM22(5), pp. 271-280, May 1979.

[13] P. J. Denning, I's computer science scienceTomm. ACM4A8(4), pp. 27-31, Apr 2005.

[14] P. J. Denning, Performance analysis: experimental computer sciences dedt. Comm.
ACM24(11) pp. 725-727, Nov 1981.

[15] P. J. Denning, Working sets past and preséntEEE Trans. Softw. EngsE-6(1) pp. 64—84,
Jan 1980.

[16] P.J.Denning, D. E. Comer, D. Gries, M. C. Mulder, A. TackA. J. Turner, and P. R. Young,
“Computing as a disciplirie Computer22(2), pp. 63—70, Feb 1989.

[17] Y. Etsion, D. Tsafrir, S. Kirkpatrick, and D. FeitelsoRine Grained Kernel Logging with
KLogger: Experience and InsightsTechnical Report 2005—-35, The Hebrew University of
Jerusalem, Jun 2005.

[18] D. G. Feitelson, Experimental analysis of the root causes of performanciei@tiran results:
a backfilling case study IEEE Trans. Parallel & Distributed Sys16(2), pp. 175-182, Feb
2005.

[19] D. G. Feitelson, On the interpretation of Top500 datantl. J. High Performance Comput.
Appl.13(2), pp. 146—153, Summer 1999.

[20] D. G. Feitelson, The supercomputer industry in light of the Top500 dat@omput. in Sci.
& Eng. 7(1), pp. 42—-47, Jan/Feb 2005.

[21] D. G. Feitelson and B. NitzbergJbb characteristics of a production parallel scientifickvor
load on the NASA Ames iPSC/8601n Job Scheduling Strategies for Parallel Processing
D. G. Feitelson and L. Rudolph (eds.), pp. 337-360, Sprivgeiag, 1995. Lect. Notes
Comput. Sci. vol. 949.

[22] D. G. Feitelson and D. TsafrirWorkload sanitation for performance evaluatioin |IEEE
Intl. Symp. Performance Analysis Syst. & Softwgrp. 221-230, Mar 2006.

[23] J. A. Feldman and W. R. Sutherland&éjuvenating experimental computer science: a report
to the National Science Foundation and othe@@omm. ACM22(9), pp. 497-502, Sep 1979.

[24] N. Fenton, S. L. Pfleeger, and R. L. GlasScfence and substance: a challenge to software
engineers |IEEE Softwl1(4) pp. 86—95, Jul/Aug 1994.

[25] P. J. Fleming and J. J. Wallace{bw not to lie with statistics: the correct way to summarize
benchmark results Comm. ACM29(3), pp. 218-221, Mar 1986.

34

[26] R. Giladi and N. Ahituv, SPEC as a performance evaluation medsufeomputer28(8),
pp. 33—42, Aug 1995.

[27] S. D. Gribble, G. S. Manku, D. Roselli, E. A. Brewer, TGibson, and E. L. Miller, Self-
similarity in file systems In SIGMETRICS Conf. Measurement & Modeling of Comput.
Syst, pp. 141-150, Jun 1998.

[28] M. Harchol-Balter and A. B. Downey Exploiting process lifetime distributions for dynamic
load balancing ACM Trans. Comput. Syst5(3), pp. 253285, Aug 1997.

[29] J. Hartmanis, On computational complexity and the nature of computemsgie Comm.
ACM 37(10) pp. 37-43, Oct 1994.

[30] H. Hellman,Great Feuds in Science: Ten of the Liveliest Disputes Ewéley, 1998.

[31] J. L. Hennessy and D. A. Patters@gmputer Architecture: A Quantitative Approadtior-
gan Kaufmann Publishers Inc., 1990.

[32] J. Henry,Knowledge is Power: Francis Bacon and the Method of Scietamn Books Ltd.,
2002.

[33] G. Irlam, “Unix file size survey - 1993 URL http://www.gordoni.com/ufs93.html.

[34] 1. Jacobson, G. Booch, and J. Rumbaufje Unified Software Development Procesddi-
son Wesley, 1999.

[35] J. Jann, P. Pattnaik, H. Franke, F. Wang, J. SkoviraJaRiodan, Modeling of workload in
MPPS. In Job Scheduling Strategies for Parallel ProcessingG. Feitelson and L. Rudolph
(eds.), pp. 95-116, Springer Verlag, 1997. Lect. Notes Qdngzi. vol. 1291.

[36] D. S. Johnson,A theoretician’s guide to the experimental analysis of athms’. In Data
Structures, Near Neighbor Searches, and MethodgldfjyH. Goldwasser, D. S. Johnson,
and C. C. McGeoch (eds.), pp. 215-250, Am. Math. Soc., 2002.

[37] A. Kumar, V. Paxson, and N. WeaverEXploiting underlying structure for detailed recon-
struction of an Internet-scale evéniManuscript, 2005.

[38] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. WilsohQn the self-similar nature of
Ethernet traffic. IEEE/ACM Trans. Networking(1), pp. 1-15, Feb 1994.

[39] M. Lewis, Moneyball W. W. Norton & Co., 2003.

[40] D. Lifka, “ The ANL/IBM SP scheduling systémIn Job Scheduling Strategies for Parallel
ProcessingD. G. Feitelson and L. Rudolph (eds.), pp. 295-303, Sprivgeag, 1995. Lect.
Notes Comput. Sci. vol. 949.

[41] D. J. Lilja, Measuring Computer Performance: A Practitioner’'s Guideambridge Univer-
sity Press, 2000.

35

[42] V. Lo, J. Mache, and K. WindischA comparative study of real workload traces and synthetic
workload models for parallel job schedulingIn Job Scheduling Strategies for Parallel
ProcessingD. G. Feitelson and L. Rudolph (eds.), pp. 25-46, Springelag, 1998. Lect.
Notes Comput. Sci. vol. 1459.

[43] H. Lu, S. Dwarkadas, A. L. Cox, and W. Zwaenepo&uantifying the performance differ-
ences between PVM and TreadMdrk3. Parallel & Distributed Comput43(2), pp. 65—78,
Jun 1997.

[44] C. A. Moritz and M. I. Frank, LtoGPC: modeling network contention in message-passing
programs. |EEE Trans. Parallel & Distributed Sys1.2(4), pp. 404—-415, Apr 2001.

[45] T. Mudge, ‘Report on the panel: how can computer architecture reseaakroid becoming
the society for irreproducible resultsZTomput. Arch. New24(1), pp. 1-5, Mar 1996.

[46] National Academy of Science&cademic Careers for Experimental Computer Scientists and
Engineers 1994. URL http://books.nap.edu/html/acesc/.

[47] A. Newelland H. A. Simon, Computer science and empirical inquiry: symbols and séarch
Comm. ACML9(3), pp. 113-126, Mar 1976.

[48] J. K. Ousterhout, Why aren’t operating systems getting faster as fast as lasfiv In
USENIX Summer Conpp. 247-256, Jun 1990.

[49] J. K. Ousterhout, H. Da Costa, D. Harrison, J. A. KunzeKMdpfer, and J. G. ThompsonA*
trace-driven analysis of the UNIX 4.2 BSD file systenn 10th Symp. Operating Systems
Principles pp. 15-24, Dec 1985.

[50] S. Pakin, ‘toNCePTual: a network correctness and performance tdatiggiagé. In 18th
Intl. Parallel & Distributed Processing SympApr 2004.

[51] V. Paxson, Strategies for sound Internet measurerhdnt Internet Measurement ConOct
2004.

[52] V. Paxson and S. Floyd,Wide-area traffic: the failure of Poisson modelind EEE/ACM
Trans. Networkin@(3), pp. 226—244, Jun 1995.

[53] F. Petrini, D. J. Kerbyson, and S. Pakirf,He case of missing supercomputer performance:
achieving optimal performance on the 8,192 processors @IAF. In Supercomputing
Nov 2003.

[54] J. R. Platt, ‘Strong inferenceé Sciencel46(3642)16 Oct 1964.

[55] R.F. Rosin, Determining a computing center environmer@omm. ACMB(7), pp. 465468,
Jul 1965.

36

[56] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Moreifa Ma, R. Vilalta, and A. Siva-
subramaniam, Critical event prediction for proactive management in éasgale computer
clusters. In SIGKDD, Aug 2003.

[57] J. Sambrook and D. W. RusselMolecular Cloning: A Laboratory Manual Cold Spring
Harbor Laboratory Press, 3rd ed., 2001.

[58] S. R. SchachQbject-Oriented and Classical Software EngineeriddcGraw-Hill, 6th ed.,
2005.

[59] R. R. Schaller, Moore’s Law: past, present, and futirdEEE Spectrun84(6), pp. 52-59,
Jun 1997.

[60] J. R. Spirn,Program Behavior: Models and Measurementsisevier North Holland Inc.,
1977.

[61] M. S. Squillante, D. D. Yao, and L. ZhangAhalysis of job arrival patterns and parallel
scheduling performante Performance EvaluatioB6—37 pp. 137-163, 1999.

[62] W. F. Tichy, “Should computer scientists experiment mdre€omputer31(5), pp. 3240,
May 1998.

[63] W.F. Tichy, P. Lukowicz, L. Prechelt, and E. A. HeinEXperimental evaluation in computer
science: a quantitative stutlyd. Syst. & Softw28(1), pp. 9—18, Jan 1995.

[64] D. Tsafrir, Y. Etsion, and D. G. FeitelsonModeling user runtime estimates In Job
Scheduling Strategies for Parallel Processibg G. Feitelson, E. Frachtenberg, L. Rudolph,
and U. Schwiegelshohn (eds.), pp. 1-35, Springer Verlag52Qect. Notes Comput. Sci.
vol. 3834.

[65] W. Vogels, ‘File system usage in Windows NT 4.0 In 17th Symp. Operating Systems
Principles pp. 93-109, Dec 1999.

[66] E. M. Voorhees, TREC: improving information access through evaluatioBulletin Am.
Soc. Information science & TecB2(1), Oct/Nov 2005.

[67] E.S. Walter and V. L. Wallace Further analysis of a computing center environre@bmm.
ACM10(5) pp. 266-272, May 1967.

[68] S. Wartik, “Are comparative analyses worthwhifeZTomputer29(7), p. 120, Jul 1966.

[69] R. P. Weicker, An overview of common benchmarks Computer23(12) pp. 65-75, Dec
1990.

[70] M. V. Zelkowitz and D. R. Wallace, Experimental models for validating technoldgyzom-
puter31(5), pp. 23—-31, May 1998.

37

