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Abstract. This paper describes the basic processing model
and architecture of Aurora, a new system to manage data
streams for monitoring applications. Monitoring applications
differ substantially from conventional business data process-
ing. The fact that a software system must process and react to
continual inputs from many sources (e.g., sensors) rather than
from human operators requires one to rethink the fundamen-
tal architecture of a DBMS for this application area. In this
paper, we present Aurora, a new DBMS currently under con-
struction at Brandeis University, Brown University, and M.I.T.
We first provide an overview of the basic Aurora model and
architecture and then describe in detail a stream-oriented set
of operators.
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1 Introduction

Traditional DBMSs have been oriented toward business data
processing, and consequently are designed to address the
needs of these applications. First, they have assumed that the
DBMS is a passive repository storing a large collection of data
elements and that humans initiate queries and transactions on
this repository. We call this a human-active, DBMS-passive
(HADP) model. Second, they have assumed that the current
state of the data is the only thing that is important. Hence,
current values of data elements are easy to obtain, while pre-
vious values can only be found torturously by decoding the
DBMS log. The third assumption is that triggers and alerters
are second-class citizens. These constructs have been added
as an afterthought to current systems, and none has an imple-
mentation that scales to a large number of triggers. Fourth,
DBMSs assume that data elements are synchronized and that
queries have exact answers. In many stream-oriented applica-
tions, data arrive asynchronously and answers must be com-

puted with incomplete information. Lastly, DBMSs assume
that applications require no real-time services.

There is a substantial class of applications where all five as-
sumptions are problematic. Monitoring applications are appli-
cations that monitor continuous streams of data. This class of
applications includes military applications that monitor read-
ings from sensors worn by soldiers (e.g., blood pressure, heart
rate, position), financial analysis applications that monitor
streams of stock data reported from various stock exchanges,
and tracking applications that monitor the locations of large
numbers of objects for which they are responsible (e.g., audio-
visual departments that must monitor the location of borrowed
equipment). Because of the high volume of monitored data
and the query requirements for these applications, monitor-
ing applications would benefit from DBMS support. Existing
DBMS systems, however, are ill suited for such applications
since they target business applications.

First, monitoring applications get their data from exter-
nal sources (e.g., sensors) rather than from humans issuing
transactions. The role of the DBMS in this context is to alert
humans when abnormal activity is detected. This is a DBMS-
active, human-passive (DAHP) model.

Second, monitoring applications require data management
that extends over some history of values reported in a stream
and not just over the most recently reported values. Consider
a monitoring application that tracks the location of items of
interest, such as overhead transparency projectors and laptop
computers, using electronic property stickers attached to the
objects. Ceiling-mounted sensors inside a building and the
GPS system in the open air generate large volumes of location
data. If a reserved overhead projector is not in its proper loca-
tion, then one might want to know the geographic position of
the missing projector. In this case, the last value of the moni-
tored object is required. However, an administrator might also
want to know the duty cycle of the projector, thereby requiring
access to the entire historical time series.

Third, most monitoring applications are trigger-oriented.
If one is monitoring a chemical plant, then one wants to alert
an operator if a sensor value gets too high or if another sensor
value has recorded a value out of range more than twice in the
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last 24 h. Every application could potentially monitor multi-
ple streams of data, requesting alerts if complicated conditions
are met. Thus, the scale of trigger processing required in this
environment far exceeds that found in traditional DBMS ap-
plications.

Fourth, stream data are often lost, stale, or intentionally
omitted for processing reasons. An object being monitored
may move out of range of a sensor system, thereby resulting
in lost data. The most recent report on the location of the ob-
ject becomes more and more inaccurate over time. Moreover,
in managing data streams with high input rates, it might be
necessary to shed load by dropping less important input data.
All of this, by necessity, leads to approximate answers.

Lastly, many monitoring applications have real-time re-
quirements. Applications that monitor mobile sensors (e.g.,
military applications monitoring soldier locations) often have
a low tolerance for stale data, making these applications effec-
tively real time. The added stress on a DBMS that must serve
real-time applications makes it imperative that the DBMS em-
ploy intelligent resource management (e.g., scheduling) and
graceful degradation strategies (e.g., load shedding) during
periods of high load. We expect that applications will supply
quality-of-service (QoS) specifications that will be used by
the running system to make these dynamic resource alloca-
tion decisions.

Monitoring applications are very difficult to implement
in traditional DBMSs. First, the basic computation model is
wrong: DBMSs have a HADP model while monitoring ap-
plications often require a DAHP model. In addition, to store
time-series information one has only two choices. First, he can
encode the time series as current data in normal tables. In this
case, assembling the historical time series is very expensive
because the required data is spread over many tuples, thereby
dramatically slowing performance. Alternately, he can encode
time series information in binary large objects to achieve phys-
ical locality, at the expense of making queries to individual
values in the time series very difficult. One system that tries
to do something more intelligent with time series data is the
Informix Universal Server, which implemented a time-series
data type and associated methods that speed retrieval of values
in a time series [1]; however, this system does not address the
concerns raised above.

If a monitoring application had a very large number of trig-
gers or alerters, then current DBMSs would fail because they
do not scale past a few triggers per table. The only alternative
is to encode triggers in some middleware application. Using
this implementation, the system cannot reason about the trig-
gers (e.g., optimization), because they are outside the DBMS.
Moreover, performance is typically poor because middleware
must poll for data values that triggers and alerters depend on.

Lastly, no DBMS that we are aware of has built-in facilities
for approximate query answering. The same comment applies
to real-time capabilities. Again, the user must build custom
code into his application.

For these reasons, monitoring applications are difficult to
implement using traditional DBMS technology. To do better,
all the basic mechanisms in current DBMSs must be rethought.
In this paper, we describe a prototype system, Aurora, which
is designed to better support monitoring applications. We use
Aurora to illustrate design issues that would arise in any system
of this kind.

Fig. 1. Aurora system model

Monitoring applications are applications for which
streams of information, triggers, imprecise data, and real-time
requirements are prevalent. We expect that there will be a large
class of such applications. For example, we expect the class
of monitoring applications for physical facilities (e.g., mon-
itoring unusual events at nuclear power plants) to grow in
response to growing needs for security. In addition, as GPS-
style devices are attached to an ever broader class of objects,
monitoring applications will expand in scope. Currently such
monitoring is expensive and restricted to costly items like au-
tomobiles (e.g., Lojack technology [2]). In the future, it will
be available for most objects whose position is of interest.

In Sect. 2, we begin by describing the basic Aurora ar-
chitecture and fundamental building blocks. In Sect. 3, we
show why traditional query optimization fails in our environ-
ment and present our alternate strategies for optimizing Au-
rora applications. Section 4 describes the run-time architecture
and behavior ofAurora, concentrating on storage organization,
scheduling, introspection, and load shedding. In Sect. 5, we
describe Aurora’s data stream operators in detail. In Sect. 6,
we discuss the myriad of related work that has preceded our
effort. We describe the status of our prototype implementation
in Sect. 7 and conclude in Sect. 8.

2 Aurora system model

Aurora data are assumed to come from a variety of data sources
such as computer programs that generate values at regular or
irregular intervals or hardware sensors. We will use the term
data source for either case. In addition, a data stream is the
term we will use for the collection of data values presented by
a data source. Each data source is assumed to have a unique
source identifier, andAurora timestamps every incoming tuple
to monitor the quality of service being provided.

The basic job of Aurora is to process incoming streams
in the way defined by an application administrator. Aurora is
fundamentally a data-flow system and uses the popular boxes
and arrows paradigm found in most process flow and work-
flow systems. Hence, tuples flow through a loop-free, directed
graph of processing operations (i.e., boxes). Ultimately, out-
put streams are presented to applications, which must be pro-
grammed to deal with the asynchronous tuples in an output
stream. Aurora can also maintain historical storage, primar-
ily in order to support ad hoc queries. Figure 1 illustrates the
high-level system model.

Aurora’s query algebra (SQuAl1) contains built-in sup-
port for seven primitive operations for expressing its stream

1 SQuAl is short for [S]tream [Qu]ery [Al]gebra.
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Fig. 2. Aurora query model

processing requirements. Many of these have analogs in the
relational query operators. For example, we support a filter
operator that, like the relational operator select, applies any
number of predicates to each incoming tuple, routing the tu-
ples according to which predicates they satisfy. Another oper-
ator, (Aggregate), computes stream aggregates in a way that
addresses the fundamental push-based nature of streams, ap-
plying a function across a window of values in a stream (e.g.,
a moving average). In environments where data can be stale
or time imprecise, windowed operations are a necessity.

There is no explicit split box; instead, the application ad-
ministrator can connect the output of one box to the input
of several others. This implements an implicit split operation.
On the other hand, there is an explicitAurora Union operation,
whereby two streams can be put together. If, additionally, one
tuple must be delayed for the arrival of a second one, then a
Resample box can be inserted in the Aurora network to ac-
complish this effect.

Arcs in an Aurora diagram actually represent a collec-
tion of streams with common schema. The actual number of
streams on an arc is unspecified, making it easy to have streams
appear and disappear without modification to the Aurora net-
work.

2.1 Query model

Aurora supports continuous queries (real-time processing),
views, and ad hoc queries all using substantially the same
mechanisms. All three modes of operation use the same con-
ceptual building blocks. Each mode processes flows based on
QoS specifications – each output in Aurora is associated with
two-dimensional QoS graphs that specify the utility of the out-
put in terms of several performance-related and quality-related
attributes (see Sect. 4.1). The diagram in Fig. 2 illustrates the
processing modes supported by Aurora.

The topmost path represents a continuous query. In isola-
tion, data elements flow into boxes, are processed, and flow
further downstream. In this scenario, there is no need to store
any data elements once they are processed. Once an input has
worked its way through all reachable paths, that data item is
drained from the network. The QoS specification at the end of

the path controls how resources are allocated to the processing
elements along the path. One can also view an Aurora network
(along with some of its applications) as a large collection of
triggers. Each path from a sensor input to an output can be
viewed as computing the condition part of a complex trigger.
An output tuple is delivered to an application, which can take
the appropriate action.

The dark circles on the input arcs to boxes b1 and b2 rep-
resent connection points. A connection point is an arc that
supports dynamic modification to the network. New boxes
can be added to or deleted from a connection point. When a
new application connects to the network, it will often require
access to the recent past. As such, a connection point has the
potential for persistent storage (see Sect. 4.2). Persistent stor-
age retains data items beyond their processing by a particular
box. In other words, as items flow past a connection point, they
are cached in a persistent store for some period of time. They
are not drained from the network by applications. Instead, a
persistence specification indicates exactly how long the items
are kept, so that a future ad hoc query can get historical results.
In the figure, the leftmost connection point is specified to be
available for 2 h. This indicates that the beginning of time for
newly connected applications will be 2 h in the past.

Connection points can be generalized to allow an elegant
way of including static data sets in Aurora. Hence we allow
a connection point to have no upstream node, i.e., a dangling
connection point. Without an upstream node the connection
point cannot correspond to an Aurora stream. Instead, the con-
nection point is decorated with the identity of a stored data set
in a traditional DBMS or other storage system. In this case,
the connection point can be materialized and the stored tuples
passed as a stream to the downstream node. In this case, such
tuples will be pushed through an Aurora network. Alternately,
query execution on the downstream node can pull tuples by
running a query to the store. If the downstream node is a filter
or a join, pull processing has obvious advantages. Moreover,
if the node is a join between a stream and a stored data set,
then an obvious query execution strategy is to perform itera-
tive substitution whenever a tuple from the stream arrives and
perform a lookup to the stored data. In this case, a window does
not need to be specified as the entire join can be calculated.
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The middle path in Fig. 2 represents a view. In this case,
a path is defined with no connected application. It is allowed
to have a QoS specification as an indication of the importance
of the view. Applications can connect to the end of this path
whenever there is a need. Before this happens, the system
can propagate some, all, or none of the values stored at the
connection point in order to reduce latency for applications
that connect later. Moreover, it can store these partial results at
any point along a view path. This is analogous to a materialized
or partially materialized view. View materialization is under
the control of the scheduler.

The bottom path represents an ad hoc query. An ad hoc
query can be attached to a connection point at any time. The
semantics of an ad hoc query is that the system will process
data items and deliver answers from the earliest time T (per-
sistence specification) stored in the connection point until the
query branch is explicitly disconnected. Thus, the semantics
for an Aurora ad hoc query is the same as a continuous query
that starts executing at tnow − T and continues until explicit
termination.

2.2 Graphical user interface

The Aurora user interface cannot be covered in detail because
of space limitations. Here, we mention only a few salient fea-
tures. To facilitate designing large networks, Aurora will sup-
port a hierarchical collection of groups of boxes. A designer
can begin near the top of the hierarchy where only a few super-
boxes are visible on the screen. A zoom capability is provided
to allow him to move into specific portions of the network,
by replacing a group with its constituent boxes and groups.
In this way, a browsing capability is provided for the Aurora
diagram.

Boxes and groups have a tag, an argument list, a description
of the Functionality, and, ultimately, a manual page. Users can
teleport to specific places in an Aurora network by querying
these attributes. Additionally, a user can place bookmarks in a
network to allow him to return to places of interest.

These capabilities give an Aurora user a mechanism to
query theAurora diagram. The user interface also allows mon-
itors for arcs in the network to facilitate debugging as well as
facilities for “single stepping” through a sequence of Aurora
boxes. We plan a graphical performance monitor as well as
more sophisticated query capabilities.

3 Aurora optimization

In traditional relational query optimization, one of the primary
objectives is to minimize the number of iterations over large
data sets. Stream-oriented operators that constitute the Aurora
network, on the other hand, are designed to operate in a data
flow mode in which data elements are processed as they appear
on the input. Although the amount of computation required by
an operator to process a new element is usually quite small,
we expect to have a large number of boxes. Furthermore, high
data rates add another dimension to the problem. Lastly, we
expect many changes to be made to an Aurora network over
time, and it seems unreasonable to take the network offline
to perform a compile time optimization. We now present our
strategies to optimize an Aurora network.

3.1 Dynamic continuous query optimization

We begin execution of an unoptimizedAurora network, i.e., the
one that the user constructed. During execution we gather run-
time statistics such as the average cost of box execution and
box selectivity. Our goal is to perform run-time optimization
of a network, without having to quiesce it. Hence combining
all the boxes into a massive query and then applying conven-
tional query optimization is not a workable approach. Besides
being NP-complete [25], it would require quiescing the whole
network. Instead, the optimizer will select a portion of the net-
work for optimization. Then it will find all connection points
that surround the subnetwork to be optimized. It will hold all
input messages at upstream connection points and drain the
subnetwork of messages through all downstream connection
points. The optimizer will then apply the following local tac-
tics to the identified subnetwork.

• Inserting projections. It is unlikely that the application ad-
ministrator will have inserted map operators (see Sect. 5)
to project out all unneeded attributes. Examination of an
Aurora network allows us to insert or move such map oper-
ations to the earliest possible points in the network, thereby
shrinking the size of the tuples that must be subsequently
processed. Note that this kind of optimization requires that
the system be provided with operator signatures that de-
scribe the attributes that are used and produced by the
operators.

• Combining boxes. As a next step, Aurora diagrams will be
processed to combine boxes where possible. A pairwise
examination of the operators suggests that, in general, map
and filter can be combined with almost all of the operators,
whereas windowed or binary operators cannot.
It is desirable to combine two boxes into a single box when
this leads to some cost reduction. As an example, a map
operator that only projects out attributes can be combined
easily with any adjacent operator, thereby saving the box-
execution overhead for a very cheap operator. In addition,
two filtering operations can be combined into a single,
more complex filter that can be more efficiently executed
than the two boxes it replaces. Not only is the overhead of a
second box activation avoided, but also standard relational
optimization on one-table predicates can be applied in the
larger box. In general, combining boxes at least saves the
box-execution overhead and reduces the total number of
boxes, leading to a simpler diagram.

• Reordering boxes. Reordering the operations in a conven-
tional relational DBMS to an equivalent but more efficient
form is a common technique in query optimization. For
example, filter operations can sometimes be pushed down
the query tree through joins. In Aurora, we can apply the
same technique when two operations commute.

To decide when to interchange two commutative operators,
we make use of the following performance model. Each Au-
rora box, b, has a cost, c(b), defined as the expected execution
time for b to process one input tuple. Additionally, each box
has a selectivity, s(b), which is the expected number of output
tuples per input tuple. Consider two boxes, bi and bj , with bj

following bi. In this case, for each input tuple for bi we can
compute the amount of processing as c(bi) + c(bj) × s(bi).
Reversing the operators gives a like calculation. Hence we
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can compute the condition used to decide whether the boxes
should be switched as:

(1 − s(bj))/c(bj) < (1 − s(bi))/c(bi))

It is straightforward to generalize the above calculation to
deal with cases that involve fan-in or fan-out situations. More-
over, it is easy to see that we can obtain an optimal ordering by
sorting all the boxes according to their corresponding ratios
in decreasing order. We use this result in a heuristic algorithm
that iteratively reorders boxes (to the extent allowed by their
commutativity properties) until no more reorderings are pos-
sible.

When the optimizer has found all productive transforma-
tions using the above tactics, it constructs a new subnetwork,
binds it into the composite Aurora network that is running,
and then instructs the scheduler to stop holding messages at
the input connection points. Of course, outputs affected by
the subnetwork will see a blip in response time; however, the
remainder of the network can proceed unimpeded.

An Aurora network is broken naturally into a collection of
k subnetworks by the connection points that are inserted by
the application administrator. Each of these subnetworks can
be optimized individually, because it is a violation of Aurora
semantics to optimize across a connection point. The Aurora
optimizer is expected to cycle periodically through all k sub-
networks and run as a background task.

3.2 Ad hoc query optimization

One last issue that must be dealt with is ad hoc query optimiza-
tion. Recall that the semantics of an ad hoc query is that it must
run on all the historical information saved at the connection
points to which it is connected. Subsequently it becomes a
normal portion of an Aurora network until it is discarded. Au-
rora processes ad hoc queries in two steps by constructing two
separate subnetworks. Each is attached to a connection point,
so the optimizer can be run before the scheduler lets messages
flow through the newly added subnetworks.

Aurora semantics require the historical subnetwork to be
run first. Since historical information is organized as a B-tree,
the Aurora optimizer begins at each connection point and ex-
amines the successor box(es). If the box is a filter, then Aurora
examines the condition to see if it is compatible with the stor-
age key associated with the connection point. If so, it switches
the implementation of the filter box to perform an indexed
lookup in the B-tree. Similarly, if the successor box is a join,
then the Aurora optimizer costs performing a merge-sort or in-
dexed lookup, chooses the cheapest one, and changes the join
implementation appropriately. Other boxes cannot effectively
use the indexed structure, so only these two need be consid-
ered. Moreover, once the initial box performs its work on the
historical tuples, the index structure is lost, and all subsequent
boxes will work in the normal way. Hence, the optimizer con-
verts the historical subnetwork into an optimized one, which
is then executed.

When it is finished, the subnetwork used for continuing
operation can be run to produce subsequent output. Since this
is merely one of the subnetworks, it can be optimized in the
normal way suggested above.

Fig. 3. Aurora run-time architecture

In summary, the initial boxes in an ad hoc query can pull
information from the B-tree associated with the correspond-
ing connection points. When the historical operation is fin-
ished, Aurora switches the implementation to the standard
push-based data structures and continues processing in the
conventional fashion.

4 Run-time operation

The basic purpose of an Aurora run-time network is to pro-
cess data flows through a potentially large workflow diagram.
Figure 3 illustrates the basic Aurora architecture. Here, inputs
from data sources and outputs from boxes are fed to the router,
which forwards them either to external applications or to the
storage manager to be placed on the proper queue. The stor-
age manager is responsible for maintaining the box queues
and managing the buffer. Conceptually, the scheduler picks
a box for execution, ascertains what processing is required,
and passes a pointer to the box description (together with a
pointer to the box state) to the multithreaded box processor.
The box processor executes the appropriate operation and then
forwards the output tuples to the router. The scheduler then
ascertains the next processing step and the cycle repeats. The
QoS monitor continually monitors system performance and
activates the load shedder when it detects an overload situation
and poor system performance. The load shedder then sheds
load till the performance of the system reaches an acceptable
level. The catalog in Fig. 3 contains information regarding the
network topology, inputs, outputs, QoS information, and rele-
vant statistics (e.g., selectivity, average box processing costs)
and is essentially used by all components.

We now describe Aurora’s primary run-time architecture
in more detail, focusing primarily on the storage manager,
scheduler, QoS monitor, and load shedder.
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Fig. 4. QoS graph types

4.1 QoS data structures

Aurora attempts to maximize the perceived QoS for the outputs
it produces. QoS, in general, is a multidimensional function
of several attributes of an Aurora system. These include:

• Response times – output tuples should be produced in a
timely fashion, as otherwise QoS will degrade as delays
get longer.

• Tuple drops – if tuples are dropped to shed load, then the
QoS of the affected outputs will deteriorate.

• Values produced – QoS clearly depends on whether or not
important values are being produced.

Asking the application administrator to specify a multi-
dimensional QoS function seems impractical. Instead, Aurora
relies on a simpler tactic that is much easier for humans to deal
with: for each output stream, we expect the application admin-
istrator to give Aurora a two-dimensional QoS graph based on
the processing delay of output tuples produced (as illustrated
in Fig. 4a). Here, the QoS of the output is maximized if de-
lay is less than the threshold, δ, in the graph. Beyond δ, QoS
degrades with additional delay.

Optionally, the application administrator can give Aurora
two additional QoS graphs for all outputs in an Aurora sys-
tem. The first, illustrated in Fig. 4b, shows the percentage of
tuples delivered. In this case, the application administrator in-
dicates that high QoS is achieved when tuple delivery is near
100% and that QoS degrades as tuples are dropped. The sec-
ond optional QoS graph for outputs is shown in Fig. 4c. The
possible values produced as outputs appear on the horizontal
axis, and the QoS graph indicates the importance of each one.
This value-based QoS graph captures the fact that some out-
puts are more important than others. For example, in a plant
monitoring application, outputs near a critical region are much
more important than ones well away from it. Again, if the ap-
plication administrator has value-based QoS information, then
Aurora will use it to shed load more intelligently than would
occur otherwise.

Aurora makes several assumptions about the QoS graphs.
First, it assumes that all QoS graphs are normalized so that QoS
for different outputs can be quantitatively compared. Second,
Aurora assumes that the value chosen for δ is feasible, i.e., that
a properly sized Aurora network will operate with all outputs
in the good zone to the left of δ in steady state. This will require
the delay introduced by the total computational cost along the
longest path from a data source to this output not to exceed δ.
If the application administrator does not present Aurora with
feasible QoS graphs, then the algorithms in the subsequent
sections may not produce good results. Third, unless otherwise

Fig. 5. Queue organization

stated, Aurora assumes that all its QoS graphs are convex (the
value-based graph illustrated in Fig. 4c is an exception). This
assumption is not only reasonable but also necessary for the
applicability of gradient walking techniques used by Aurora
for scheduling and load shedding.

Note that Aurora’s notion of QoS is general and is not re-
stricted to the types of graphs presented here. Aurora can work
with other individual attributes (e.g., throughput) or composite
attributes (e.g., a weighted, linear combination of throughput
and latency) provided that they satisfy the basic assumptions
discussed above. In the rest of this paper, however, we restrict
our attention to the graph types presented here.

The last item of information required from the application
administrator is H , the headroom for the system, defined as
the percentage of the computing resources that can be used in
steady state. The remainder is reserved for the expected ad hoc
queries, which are added dynamically.

4.2 Storage management

The job of the Aurora Storage Manager (ASM) is to store all
tuples required by an Aurora network. There are two kinds of
requirements. First, ASM must manage storage for the tuples
being passed through an Aurora network, and second, it must
maintain extra tuple storage that may be required at connection
points.

Queue management. Each windowed operation requires a
historical collection of tuples to be stored, equal to the size of
the window. Moreover, if the network is currently saturated,
then additional tuples may accumulate at various places in the
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Fig. 6. Scheduler-storage manager interaction

network. As such, ASM must manage a collection of variable-
length queues of tuples. There is one queue at the output of
each box, which is shared by all successor boxes. Each such
successor box maintains two pointers into this queue. The head
indicates the oldest tuple that this box has not processed. The
tail, in contrast, indicates the oldest tuple that the box needs.
The head and tail indicate the box’s current window, which
slides as new tuples are processed. ASM will keep track of
these collections of pointers and can normally discard tuples
in a queue that are older than the oldest tail pointing into the
queue. In summary, when a box produces a new tuple, it is
added to the front of the queue. Eventually, all successor boxes
process this tuple and it falls out of all of their windows and
can be discarded. Figure 5 illustrates this model by depicting
a two-way branch scenario where two boxes, b1 and b2, share
the same queue (w’s refer to window sizes).

Normally queues of this sort are stored as main memory
data structures. However, ASM must be able to scale arbi-
trarily and has chosen a different approach. Disk storage is
divided into fixed-length blocks, of a tunable size, block size.
We expect the typical environment will use 128-KB or larger
blocks. Each queue is allocated one block, and queue man-
agement proceeds as above. As long as the queue does not
overflow, the single block is used as a circular buffer. If an
overflow occurs, ASM looks for a collection of two blocks
(contiguous if possible) and expands the queue dynamically
to 2×block size. Circular management continues in this larger
space. Of course, queue underflow can be treated in an analo-
gous manner.

At start-up time ASM is allocated a buffer pool for queue
storage. It pages queue blocks into and out of main memory
using a novel replacement policy. The scheduler and ASM
share a tabular data structure that contains a row for each box
in the network containing the current scheduling priority of
the box and the percentage of its queue that is currently in
main memory. The scheduler periodically adjusts the prior-
ity of each box, while the ASM does likewise for the main
memory residency of the queue. This latter piece of informa-
tion is used by the scheduler for guiding scheduling decisions
(see Sect. 4.3). The data structure also contains a flag to in-
dicate that a box is currently running. Figure 6 illustrates this
interaction.

When space is needed for a disk block, ASM evicts
the lowest-priority main memory resident block. In addition,
whenever ASM discovers a block for a queue that does not
correspond to a running block, it will attempt to “upgrade”
the block by evicting it in favor of a block for the queue cor-
responding to a higher-priority box. In this way, ASM is con-
tinually trying to keep all the required blocks in main memory
that correspond to the top-priority queues. ASM is also aware
of the size of each queue and whether it is contiguous on disk.
Using this information it can schedule multiblock reads and
writes and garner added efficiency. Of course, as blocks move
through the system and conditions change, the scheduler will
adjust the priority of boxes and ASM will react by adjusting
the buffer pool. Naturally, we must be careful to avoid the well-
known hysteresis effect, whereby ASM and the scheduler start
working at cross purposes, and performance degrades sharply.

Connection point management. As noted earlier, the Au-
rora application designer indicates a collection of connection
points to which collections of boxes can be subsequently con-
nected. This satisfies theAurora requirement to support ad hoc
queries. Associated with each connection point is a history
requirement and an optional storage key. The history require-
ment indicates the amount of historical information that must
be retained. Sometimes the amount of retained history is less
than the maximum window size of the successor boxes. In this
case, no extra storage need be allocated. Additional history is
usually requested.

In this case, ASM will organize the historical tuples in a
B-tree organized on the storage key. If one is not specified,
then a B-tree will be built on the timestamp field in the tuple.
When tuples fall off the end of a queue associated with a con-
nection point, then ASM will gather up batches of such tuples
and insert them into the corresponding B-tree. Periodically, it
will make a pass through the B-tree and delete all tuples that
are older than the history requirement. Obviously, it is more
efficient to process insertions and deletions in batches than
one by one.

Since we expect B-tree blocks to be smaller than
block size, we anticipate splitting one or more of the buffer
pool blocks into smaller pieces and paging historical blocks
into this space. The scheduler will simply add the boxes cor-
responding to ad hoc queries to the data structure mentioned
above and give these new boxes a priority. ASM will react by
prefetching index blocks, but not data blocks, for worthy in-
dexed structures. In turn, it will retain index blocks as long as
there are not higher-priority buffer requirements. No attempt
will be made to retain data blocks in main memory.

4.3 Real-time scheduling

Scheduling in Aurora is a complex problem due to the need to
simultaneously address several issues including large system
scale, real-time performance requirements, and dependencies
between box executions. Furthermore, tuple processing inAu-
rora spans many scheduling and execution steps (i.e., an in-
put tuple typically needs to go through many boxes before
potentially contributing to an output stream) and may involve
multiple accesses to secondary storage. Basing scheduling de-
cisions solely on QoS requirements, thereby failing to address
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end-to-end tuple processing costs, might lead to drastic per-
formance degradation, especially under resource constraints.
To this end, Aurora not only aims to maximize overall QoS
but also makes an explicit attempt to reduce overall tuple ex-
ecution costs. We now describe how Aurora addresses these
two issues.

Train scheduling. In order to reduce overall processing costs,
Aurora observes and exploits two basic nonlinearities when
processing tuples:

• Interbox nonlinearity. End-to-end tuple processing costs
may drastically increase if buffer space is not sufficient and
tuples need to be shuttled back and forth between memory
and disk several times throughout their lifetime. Thus one
important goal of Aurora scheduling is to minimize tu-
ple trashing. Another form of interbox nonlinearity occurs
when passing tuples between box queues. If the sched-
uler can decide in advance that, say, box b2 is going to
be scheduled right after box b1 (whose outputs feed b2),
then the storage manager can be bypassed (assuming there
is sufficient buffer space) and its overhead avoided while
transferring b1’s outputs to b2’s queue.

• Intrabox nonlinearity. The cost of tuple processing may
decrease as the number of tuples that are available for pro-
cessing at a given box increases. This reduction in unit
tuple processing costs may arise for two reasons. First, the
total number of box calls that need to be made to process a
given number of tuples decreases, cutting down low-level
overheads such as calls to the box code and context switch.
Second, a box may, depending on its semantics, optimize
its execution better with a larger number of tuples avail-
able in its queue. For instance, a box can materialize in-
termediate results and reuse them in the case of windowed
operations or use merge-join instead of nested loops in the
case of joins.

Aurora exploits the benefits of nonlinearity in both in-
terbox and intrabox tuple processing primarily through train
scheduling, a set of scheduling heuristics that attempt to (1)
have boxes queue as many tuples as possible without process-
ing, thereby generating long tuple trains; (2) process complete
trains at once, thereby exploiting intrabox nonlinearity; and (3)
pass them to subsequent boxes without having to go to disk,
thereby exploiting interbox nonlinearity. To summarize, train
scheduling has two goals: its primary goal is to minimize the
number of I/O operations performed per tuple. A secondary
goal is to minimize the number of box calls made per tuple.
Henceforth we will use the term train scheduling to describe
the batching of multiple tuples as input to a single box and the
term superbox scheduling to describe scheduling actions that
push a tuple train through multiple boxes.

One important implication of train and superbox schedul-
ing is that, unlike traditional blocking operators that wake up
and process new input tuples as they arrive, the Aurora sched-
uler tells each box when to execute and how many queued
tuples to process. This somewhat complicates the implemen-
tation and increases the load of the scheduler but is necessary
for creating and processing tuple trains, which will signifi-
cantly decrease overall execution costs.

Priority assignment. The latency of each output tuple is the
sum of the tuple’s processing delay and its waiting delay. Un-
like the processing delay, which is a function of input tuple
rates and box costs, the waiting delay is primarily a function
of scheduling. Aurora’s goal is to assign priorities to outputs
so as to achieve the per-output waiting delays that maximize
the overall QoS.

The priority of an output is an indication of its urgency.
Aurora currently considers two approaches for priority assign-
ment. The first one, a state-based approach, assigns priorities
to outputs based on their expected utility under the current
system state and then picks for execution, at each scheduling
instance, the output with the highest utility. In this approach,
the utility of an output can be determined by computing how
much QoS will be sacrificed if the execution of the output
is deferred. A second, feedback-based approach continuously
observes the performance of the system and dynamically re-
assigns priorities to outputs, properly increasing the priorities
of those that are not doing well and decreasing priorities of
the applications that are already in their good zones.

Putting it all together. Because of the large scale, highly dy-
namic nature of the system, and granularity of scheduling,
searching for optimal scheduling solutions is clearly infeasi-
ble.Aurora therefore uses heuristics to simultaneously address
real-time requirements and cost reduction by first assigning
priorities to select individual outputs and then exploring op-
portunities for constructing and processing tuple trains.

We now describe one such heuristic used by Aurora. Once
an output is selected for execution, Aurora will find the first
downstream box whose queue is in memory (note that for a
box to be schedulable, its queue must be nonempty). Going
upstream, Aurora will then consider other boxes until it either
considers a box whose queue is not in memory or runs out
of boxes. At this point there is a sequence of boxes (i.e., a
superbox) that can be scheduled one after another.

In order to execute a box,Aurora contacts the storage man-
ager and asks that the queue of the box be pinned to the buffer
throughout the box’s execution. It then passes the location of
the input queue to the appropriate box processor code, speci-
fies how many tuples the box should process, and assigns it to
an available worker thread.

Scheduler performance. We now consider some simple mea-
surements of ourAurora prototype.We built anAurora applica-
tion (a query network) in response to an advanced data dissem-
ination problem that the Mitre Corporation [3] was working
on. The resulting network contained approximately 40 boxes,
and we ran it against a simulated input of 50,000 tuples. The
tuples represented position reports of enemy units, and theAu-
rora outputs corresponded to different consumers of this data.
Each consumer had different requirements (QoS). For this net-
work, which had a depth of about four, running a scheduler
that uses both superbox and tuple train scheduling we were
able to process about 3200 boxes per second, which produced
about 830 tuples per second at the outputs.

To illustrate the effectiveness of our scheduling ap-
proaches, we ran a set of experiments that measured the
scheduling overhead that was incurred in running the above
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Fig. 7. Execution overhead

40-box network with the same inputs as before. The results are
shown in Fig. 7. In this figure, it can be seen that the time spent
in the scheduler can be reduced by a factor of 0.48 when we
shift from a box-at-a-time scheduling discipline to using tuple
trains. Further, adding a simple version of superbox schedul-
ing decreases the time spent in the scheduler by an additional
factor of 0.43.

The figure further shows that the overall execution costs
are also reduced. This is because execution costs include such
things as the cost of making a box call, the cost of managing
the tuple queues and their associated currency pointers, and
the cost of mapping scheduled actions to the pool of worker
threads.

4.4 Introspection

Aurora employs static and run-time introspection techniques
to predict and detect overload situations.

Static analysis. The goal of static analysis is to determine if
the hardware running the Aurora network is sized correctly. If
insufficient computational resources are present to handle the
steady-state requirements of an Aurora network, then queue
lengths will increase without bound and response times will
become arbitrarily large.

As described above, each box b in an Aurora network has
an expected tuple processing cost, c(b), and a selectivity, s(b).
If we also know the expected rate of tuple production r(d)
from each data source δ, then we can use the following static
analysis to ascertain if Aurora is sized correctly.

From each data source, we begin by examining the imme-
diate downstream boxes: if box bi is directly downstream from
data source di, then, for the system to be stable, the throughput
of bi should be at least as large as the input data rate, i.e.,

1/c(bi) ≥ r(di) .

We can then calculate the output data rate from bi as:

min(1/c(bi), r(di)) × s(bi)

Proceeding iteratively, we can compute the output data
rate and computational requirements for each box in an Au-
rora network. We can then calculate the minimum aggregate
computational resources required per unit time, min cap, for
stable steady-state operation. Clearly, the Aurora system with
a capacity C cannot handle the expected steady-state load if C
is smaller than min cap. Furthermore, the response times will
assuredly suffer under the expected load of ad hoc queries if

C × H < min cap

Clearly, this is an undesirable situation and can be cor-
rected by redesigning applications to change their resource
requirements, by supplying more resources to increase sys-
tem capacity, or by load shedding.

Dynamic analysis. Even if the system has sufficient resources
to execute a given Aurora network under expected conditions,
unpredictable, long-duration spikes in input rates may deteri-
orate performance to a level that renders the system useless.

Our technique for detecting an overload relies on the use
of delay-based QoS information. Aurora timestamps all tuples
from data sources as they arrive. Furthermore, all Aurora op-
erators preserve the tuple timestamps as they produce output
tuples (if an operator has multiple input tuples, then the earlier
timestamp is preserved). When Aurora delivers an output tu-
ple to an application, it checks the corresponding delay-based
QoS graph (Fig. 4a) for that output to ascertain that the delay
is at an acceptable level (i.e., the output is in the good zone).
If enough outputs are observed to be outside of the good zone,
this is a good indication of overload.

4.5 Load shedding

When an overload is detected as a result of static or dynamic
analysis, Aurora attempts to reduce the volume of Aurora tu-
ple processing via load shedding. The naı̈ve approach to load
shedding involves dropping tuples at random points in the
network in an entirely uncontrolled manner. This is similar
to dropping overflow packets in packet-switching networks
[30] and has two potential problems: (1) overall system utility
might be degraded more than necessary and (2) application
semantics might be arbitrarily affected. In order to alleviate
these problems, Aurora relies on QoS information to guide the
load-shedding process. We now describe two load-shedding
techniques that differ in the way they exploit QoS.

Load shedding by dropping tuples. The first approach ad-
dresses the former problem mentioned above: it attempts to
minimize the degradation (or maximize the improvement) in
the overall system QoS, i.e., the QoS values aggregated over
all the outputs. This is accomplished by dropping tuples on
network branches that terminate in more tolerant outputs.

If load shedding is triggered as a result of static analy-
sis, then we cannot expect to use delay-based or value-based
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QoS information (without assuming the availability of a pri-
ori knowledge of the tuple delays or frequency distribution of
values). On the other hand, if load shedding is triggered as a
result of dynamic analysis, we can also use delay-based QoS
graphs.

We use a greedy algorithm to perform load shedding. Let
us initially describe the static load-shedding algorithm driven
by drop-based QoS graphs. We first identify the output with
the smallest negative slope for the corresponding QoS graph.
We move horizontally along this curve until there is another
output whose QoS curve has a smaller negative slope at that
point. This horizontal difference gives us an indication of the
output tuples to drop (i.e., the selectivity of the drop box to
be inserted) that would result in the minimum decrease in
the overall QoS.2 We then move the corresponding drop box
as far upstream as possible until we find a box that affects
other outputs (i.e., a split point) and place the drop box at this
point. Meanwhile, we can calculate the amount of recovered
resources. If the system resources are still not sufficient, then
we repeat the process.

For the run-time case, the algorithm is similar except that
we can use delay-based QoS graphs to identify the problematic
outputs, i.e., the ones that are beyond their delay thresholds,
and we repeat the load-shedding process until the latency goals
are met.

In general, there are two subtleties in dynamic load shed-
ding. First, drop boxes inserted by the load shedder should be
among the ones that are given higher priority by the scheduler.
Otherwise, load shedding will be ineffective in reducing the
load of the system. Therefore, the load shedder simply does
not consider the inactive (i.e., low-priority) outputs, which are
indicated by the scheduler. Second, the algorithm tries to move
the drop boxes as close to the sources as possible to discard tu-
ples before they redundantly consume any resources. On the
other hand, if there is a box with a large existing queue, it
makes sense to temporarily insert the drop box at that point
rather than trying to move it upstream closer toward the data
sources.

Presumably, the application is coded so that it can tolerate
missing tuples from a data source caused by communication
failures or other problems. Hence, load shedding simply ar-
tificially introduces additional missing tuples. Although the
semantics of the application are somewhat different, the harm
should not be too damaging.

Semantic load shedding by filtering tuples. The load-
shedding scheme described above effectively reduces the
amount of Aurora processing by dropping randomly selected
tuples at strategic points in the network. While this approach
attempts to minimize the loss in overall system utility, it fails
to control the impact of the dropped tuples on application se-
mantics. Semantic load shedding addresses this limitation by
using value-based QoS information, if available. Specifically,
semantic load shedding drops tuples in a more controlled way,

2 Drop is a system-level operator that drops tuples randomly from
a stream at some specified rate. Users cannot use it explicitly. Thus,
we do not include it in our discussion of the Aurora query algebra,
SQuAl, which follows.

i.e., it drops less important tuples, rather than random ones,
using filters.

If value-based QoS information is available, then Aurora
can watch each output and build up a histogram containing the
frequency with which value ranges have been observed. In ad-
dition, Aurora can calculate the expected utility of a range of
outputs by multiplying the QoS values with the corresponding
frequency values for every interval and then summing these
values. To shed load,Aurora identifies the output with the low-
est utility interval, converts this interval to a filter predicate,
and then, as before, attempts to propagate the corresponding
filter box as far upstream as possible to a split point. This
strategy, which we refer to as backward interval propagation,
admittedly has limited scope because it requires the applica-
tion of the inverse function for each operator passed upstream
(Aurora boxes do not necessarily have inverses). In an alterna-
tive strategy, forward interval propagation, Aurora starts from
an output and goes upstream until it encounters a split point
(or reaches the source). It then estimates a proper filter pred-
icate and propagates it in downstream direction to see what
results at the output. By trial and error, Aurora can converge
on a desired filter predicate. Note that a combination of these
two strategies can also be utilized. First, Aurora can apply
backward propagation until it reaches a box, say b, whose op-
erator’s inverse is difficult to compute. Aurora can then apply
forward propagation between the insertion location of the fil-
ter box and b. This algorithm can be applied iteratively until
sufficient load is shed.

The details of the algorithms that determine where to insert
drop boxes and how selective they should be are not discussed
here. This will be the topic of a future paper.

5 SQuAl: the Aurora query algebra

The Aurora [S]tream [Qu]ery [Al]gebra (SQuAl) supports
seven operators that are used to construct Aurora networks
(queries). These are analogous to operators in the relational al-
gebra; however, they differ in fundamental ways to address the
special requirements of stream processing. The current design
has been driven by real example queries from several stream
processing applications. This section will describe these op-
erators in some detail as well as the rationale for their design.

5.1 The model

A stream is an append-only sequence of tuples with uniform
type (schema). In addition to application-specific data fields
A1, . . . , An, each tuple in a stream has a timestamp (ts) that
specifies its time of origin within the Aurora network and is
used for QoS calculations (while hidden from queries).3 In
summary, a stream type has the form

(TS, A1, . . . , An)

and stream tuples have the form

(ts, v1, . . . , vn)
3 Every input tuple to Aurora is tagged with this timestamp upon

entry to the Aurora network. Every tuple generated by an Aurora
operator is tagged with the timestamp of the oldest tuple that was
used in generating it.
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For notational convenience, we will describe a tuple in terms
of its type and values as seen by queries:

(A1 = v1, . . . , An = vn)

adding the implicit QoS timestamp attribute (TS = ts) only
when it is relevant to the discussion.

It is common practice to assume that tuples arrive in an or-
der that corresponds to a monotonically increasing data value
such as a counter or time. This assumption simplifies the def-
inition of a window, which can be defined as a range over the
ordered value. However, no arrival order is assumed in the Au-
rora data model. This decision is motivated by the following
observations:

1. TheAurora network might not be able to guarantee ordered
delivery – for example, when multiple streams are merged.

2. Aurora permits windowing on any attribute (not just times-
tamps and tuple counts). Naturally, this means that win-
dows might be defined on attributes for which there is some
disorder.

3. By tolerating disorder, we gain latitude for producing out-
puts out of order, allowing us to service high-priority tuples
first.

While some operators are order-agnostic (Filter, Map,
Union) others are order-sensitive (BSort, Aggregate, Join, Re-
sample in that they can only be guaranteed to execute with
finite buffer space and in finite time if they can assume some
ordering (with bounded disorder) over their input streams.
Therefore, SQuAl’s order-sensitive operators require order
specification arguments that indicate the expected tuple arrival
order. We discuss order specifications further in Sect. 5.2.2.

5.2 The operators

We divide the discussion of SQuAl operators into two sec-
tions. In Sect. 5.2.1, we describe SQuAl’s three order-agnostic
operators (Filter, Map, and Union). Then in Sect. 5.2.2, we
describe SQuAl’s four order-sensitive operators (BSort, Ag-
gregate, Join, and Resample). We close the section with two
example queries that illustrate the use of these operators.

It should be noted that much like the relational algebra, we
make no attempt to provide a minimal operator set. Operator
redundancy enables opportunities for optimization. Further,
given the extensible nature of our Map and our Aggregate
operators, this operator set is Turing complete.

5.2.1 Order-agnostic operators

In this section, we present the three SQuAl operators that can
always process tuples in the order in which they arrive. Filter
is similar to relational selection but can filter on multiple pred-
icates and can route tuples according to which predicates they
satisfy. Map is similar to relational projection but can apply ar-
bitrary functions to tuples (including user-defined functions),
and Union merges two or more streams of common schema.
Each operator is described assuming input tuples of the form

t = (TS = ts, A1, = v1, . . . , Ak = vk)

where TS is t’s QoS timestamp attribute and A1, . . . , Ak are
t’s value attributes.

5.2.1.1 Filter

Filter acts much like a case statement and can be used to route
input tuples to alternative streams. It takes the form

Filter(P1, . . . , Pm)(S)

such that P1, . . . , Pm are predicates over tuples on the input
stream, S. Its output consists of m+1 streams, S1, . . . , Sm+1,
such that for every input tuple, t, t is output to stream Si if
(i = m + 1 or Pi(t)) and ∀j < i(¬Pj(t)). In other words,
the tuples on the input stream that satisfy predicate P1 are
output on the first output stream, tuples on the input stream
that satisfy predicate P2 (but not P1) are output on the second
output stream, and so on. (The (m + 1)st stream contains all
tuples satisfying none of the predicates.) Note that because
Filter outputs the tuples from its input, output tuples have the
same schema and values as input tuples, including their QoS
timestamps.

5.2.1.2 Map

Map is a generalized projection operator that takes the form

Map (B1 = F1, . . . , Bm = Fm)(S)

such that B1, . . . , Bm are names of attributes and F1, . . . , Fm

are functions over tuples on the input stream, S. Map outputs
a stream consisting of tuples of the form

(TS = t.TS, B1 = F1(t), . . . , Bm = Fm(t))

for each input tuple, t. Note that the resulting stream can (and
in most cases will) have a different schema than the input
stream, but the timestamps of input tuples are preserved in
corresponding output tuples.

5.2.1.3 Union

Union is used to merge two or more streams into a single
output stream. This operator takes the form

Union (S1, . . . , Sn)

such that S1, . . . , Sn are streams with common schema. Union
can output tuples in any order, though one obvious process-
ing strategy is to emit tuples in the order in which they arrive
regardless of which input stream they arrive on. Note that be-
cause Union outputs all input tuples it processes, output tuples
have the same schema and values as input tuples including
their QoS timestamps.

5.2.2 Order-sensitive operators

SQuAl’s other four operators can only be guaranteed to exe-
cute with finite buffer space and in finite time if they can as-
sume some ordering (potentially with bounded disorder) over
their input streams. These operators require order specifica-
tion arguments that describe the tuple arrival order they expect.
Order specifications have the form

Order (On A, Slack n, GroupBy B1, . . . , Bm)
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Fig. 8. An example application of BSort

such that A, B1, . . . , Bm are attributes and n is a nonnega-
tive integer.4 When Slack = 0 and the GroupBy set is empty,5

an order specification indicates that tuples are expected to ar-
rive in ascending order on A and all tuples that arrive out-of-
order (i.e., whose value for A is less than that for some tuple
that appears before it in the stream) are ignored. A nonzero
slack specification relaxes this constraint somewhat, making
for fewer tuples being discarded at the expense of some latency
in computation. More specifically, the effect of nonzero Slack
and nonempty GroupBy arguments is to relax the determina-
tion of what constitutes an out-of-order tuple. A tuple, t, is
“out of order by n wrt A in S” if there are more than n tuples,
u, preceding t in S such that u.A > t.A. Alternatively, we say
that a tuple t is “out of order wrt O in S” (for O = Order (On
A, Slack n, GroupBy B1, . . . , Bm) if t is out of order by n wrt
A in S. Thus, an operator that assumes an order specification,
O, over its input stream discards all tuples in its input stream,
S, that are out of order wrt O in S.

GroupBy arguments (B1, . . . , Bm) implicitly partition the
input stream according to each tuple’s values for B1, . . . , Bm

and considers the order of each partition independently. An
operator assuming the order specification “Order (On A, Slack
n, GroupBy B1, . . . , Bm)” discards all tuples, t, in S that are
out of order by n wrt A in the partition of S consisting of
all tuples whose values for B1, . . . , Bm are t.B1, . . . , t.Bm,
respectively.

In the next section, we describe SQuAl’s remaining four
operators: BSort is an approximate sort operator with seman-
tics equivalent to a bounded pass bubble sort; Aggregate ap-
plies a window function to sliding windows over its input
stream; Join is a binary operator that resembles a band join
[27], but applied to infinite streams; and Resample is an inter-
polation operator used to align streams. Each of these opera-
tors requires an order specification for each of its input streams
and ignores tuples on these input streams that are out of order
according to these specifications. Thus when an operator is
described as performing some action with “every tuple t” on

4 A can be the “virtual” attribute, Tup#, which maps consecutive
tuples in a stream to consecutive integers. This allows for an order
to be specified on arrival time, which is useful when one wants to
define a window based on a tuple count.

5 These are the default values for Slack and GroupBy taken when
these clauses are omitted.

some input, it should be assumed that this does not refer to the
out-of-order tuples that are ignored.

5.2.2.1 BSort

BSort is an approximate sort operator that takes the form

BSort (Assuming O) (S)

such that O = Order (On A, Slack n, GroupBy B1, . . . , Bm) is
a specification of the assumed ordering over the output stream.
While a complete sort is not possible over an infinite stream
with finite time or space, BSort performs a buffer-based ap-
proximate sort equivalent to n passes of a bubble sort where
slack = n. This is achieved by maintaining a buffer of n + 1
tuples while processing the input stream. Every time the buffer
fills, a tuple in the buffer with minimal value for A is evicted
from the buffer and emitted as output. For example, suppose
tuples in a stream have A values:

1, 3, 1, 2, 4, 4, 8, 3, 4, 4

Evaluating BSort with Slack = 2 results in the behavior illus-
trated in the diagram in Fig. 8. The top row of this diagram
shows a timeline and below it the input stream with tuples
arriving to the BSort operator in order from left to right. Also
shown at each time are the contents of the three-tuple buffer
maintained by BSort. Each arriving tuple is added to the buffer
and evicted (as shown in the output stream). Observe that the
output stream is equivalent to the sequence resulting from exe-
cuting two passes of a bubble sort over the input stream (more
accurately the first eight values of this sequence, as the remain-
ing two values are still in the buffer). Note also that because
BSort outputs exactly the tuples it processes (though poten-
tially in different order), output tuples have the same schema
and values as input tuples, including their QoS timestamps.

5.2.2.2 Aggregate

Aggregate applies “window functions” to sliding windows
over its input stream. This operator has the form

Aggregate (F , Assuming O, Size s, Advance i) (S)
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Fig. 9. An example trace of aggregate

such that F is a “window function” (either a SQL-style ag-
gregate operation or a Postgres-style user-defined function),
O = Order (On A, Slack n, GroupBy B1, . . . , Bm) is an order
specification over input stream S, s is the size of the window
(measured in terms of values of A), and i is an integer or predi-
cate that specifies how to advance the window when it slides.6

This operator outputs a stream of tuples of the form

(TS = ts, A = a, B1 = u1, . . . , Bm = um) + +(F (W ))

such that W is a “window” (i.e., subsequence) of tuples from
the input stream with values of A between a and a + s − 1
(inclusive) and values for B1, . . . , Bm of u1, . . . , um, respec-
tively, and ts is the smallest of the timestamps associated with
tuples in W . We use the notation “++” to denote the con-
catenation of two tuples. Thus it is assumed that the function
F returns a tuple of aggregate computations (perhaps with
only one field) and that this tuple is concatenated to a tuple
consisting of fields that identify the window over which the
computation took place (B1, . . . , Bm, and A).

As a simple example, suppose one wishes to compute an
hourly average price (Price) per stock (Sid) over a stream of
stock quotes that is known to be ordered by the time the quote
was issued (Time). This can be expressed as:

Aggregate [Avg (Price),
Assuming Order (On Time, GroupBy Sid),
Size 1 hour,
Advance 1 hour]

which will compute an average stock price for each stock ID
for each hour. This is illustrated in Fig. 9 where 11 input stock
price tuples with schema

(Sid, Time, Price)
6 UDFs have the form

Agg (init, incr, final)

such that init is a function called to initialize a computation state
whenever a window is opened, incr is called to update that state
whenever a tuple arrives, and final is called to convert the state to
a final result when the window closes.

are shown on the left. Each window computation is summa-
rized by a box in the middle of the figure, with each window
uniquely identified by a stock ID and an hour-long time inter-
val over which the average price is computed. At the right of
the figure are the emitted tuples with schema

(Sid, Time, AvgPrice)

The Time field in result tuples specifies the initial time of the
interval whose calculation is shown in the tuple, and the Avg-
Price field shows the average price for the indicated stock over
that interval.

The order specification argument to Aggregate makes it
possible to cope with disorder in the input stream. For example,
suppose the input stream of Fig. 9 had the arrival order shown
below where the 1:45 IBM quote arrives late:

1. (MSF,1:00,$20)
2. (INT,1:00,$16)
3. (IBM,1:00,$24)
4. (IBM,1:15,$20)
5. (IBM,1:30,$23)
6. (MSF,1:30,$24)
7. (INT,1:30,$12)
9. (IBM,2:00,$17)
10. (INT,2:00,$16)
11. (MSF,2:00,$22)
8. (IBM,1:45,$13)
. . .

If the order specification associated with Aggregate has a slack
argument of 1 or more, then the late-arriving tuple will still
be accounted for in the 1:00–1:59 IBM computation and the
output of Aggregate will be as in Fig. 9. This is because there
is only one tuple in the partition of the stream defined by Sid
= IBM, whose value for Time exceeds the out-of-order tuple.
Hence a slack setting of 1 suffices to ensure that this tuple is
included in the computation.

In general, the Aggregate expression

Aggregate (F , Assuming Order (On A, Slack n, GroupBy

B1, . . . , Bm), Size s, Advance i)(S)



D.J. Abadi et al.: Aurora: a new model and architecture for data stream management 133

is equivalent to the composition of an Aggregate with 0 slack
and a buffered sort where Slack is n:

Aggregate (F , Assuming Order (On A, Slack 0, GroupBy

B1, . . . , Bm), Size s, Advance i)

(BSort (Assuming Order (On A, Slack n, GroupBy

B1, . . . , Bm))(S))

This is potentially a useful identity for query optimization, as
the result of a prior sort might be used by multiple queries
that apply window functions to the same stream, assuming an
ordering over the same attribute. However, it is important to
point out that the evaluation of Aggregate does not require
first sorting its input stream.7

Aside from disorder, another complication with regard to
stream aggregation is blocking: waiting for lost or late tuples
to arrive in order to finish window calculations. Given the real-
time requirements of many stream applications, it is essential
that it be possible to “time out” aggregate computations, even
if this happens at the expense of accuracy. For example, sup-
pose we are monitoring the geographic center of mass for a
military platoon. Soldiers may turn off their communication
units, go out of range, or merely be located in a region with
very high network latency. In such circumstances, the center-
of-mass computation might block while waiting for missing
data, and it is likely beneficial to output an approximate center-
of-mass calculation before all relevant sensor readings have
been received.

To counter the effects of blocking, Aggregate can accept
an optional Timeout argument, as in:

Aggregate (F , Assuming O, Size s, Advance i, Timeout t)

where t is some measure of time. When Aggregate is declared
with a timeout, each window’s computation is timestamped
with the local time when the computation begins. A window’s
computation then times out if a result tuple for that window
has not been emitted by the time that the local time exceeds
the window’s initial time +t.8 As a result of a timeout, a re-
sult tuple for that window gets emitted early and all tuples
that arrive afterwards and that would have contributed to the
computation had it not timed out are ignored.

5.2.2.3 Join

Join is a binary join operator that takes the form

Join (P , Size s, Left Assuming O1, Right Assuming O2)

(S1, S2)

such that P is a predicate over pairs of tuples from input
streams S1 and S2, s is an integer, and O1 (on some numeric

7 An algorithm for Aggregate that does not require sorting its input
simply delays emitting result tuples according to the slack specifi-
cation, allowing for late-arriving tuples to contribute to the window
computation.

8 The actual time a window computation times out may exceed the
declared timeout if the Aggregate box is not scheduled immediately
following the declared timeout.

Fig. 10. An example trace of join

or time-based attribute of S1, A) and O2 (on some numeric or
time-based attribute of S2, B) are specifications of orderings
assumed of S1 and S2, respectively. For every in-order tuple
t in S1 and u in S2, the concatenation of t and u (t + +u) is
output if |t.A − u.B| ≤ s and P holds of t and u. The QoS
timestamp for the output tuple is the minimum timestamp of
t and u.

As a simple example, suppose that we are processing two
streams, X and Y , consisting of soldier position reports for
two respective platoons. Suppose each stream has schema

(Sid, Time, Pos)

such that Sid is the soldier ID, Pos is the position report,9

and Time is the time the report was issued, and that we wish to
detect all pairs of soldiers from respective platoons who report
identical positions within 10 min of each other. This could be
expressed as:

Join (P , Size 10 min, Assuming Left O, Assuming Right O)

(X, Y )

such that:

• O = Order (On Time) and
• P (x, y) ⇔ x.pos = y.pos

The execution of this query on example readings from X and
Y is shown in Fig. 10.A simple variation of the symmetric hash
join [28] (that prunes internal tables of tuples that, because of
the assumed orderings, are guaranteed not to join with tuples
that have yet to arrive from the opposite stream) produces
the correct join result, regardless of the interleaving of input
streams (i.e., independent of the arrival times of tuples).

As with Aggregate, Join can be expressed so as to tolerate
disorder in input streams. Thus the following identity holds:

Join (P , Size s, Assuming Left O1, Assuming Right O2)
(S1, S2) =

Join (P , Size s, Assuming Left O′
1, Assuming Right O′

2)

(BSort (Assuming O1) (S1) BSort (Assuming O2) (S2))

such that:

• O1 = Order (On A, Slack n1, GroupBy A1, . . . , Am1),
9 To keep the example simple, we are assuming position values are

integers. Obviously in a more realistic scenario, the representation of
position and the calculation of distance will be more complicated.
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Fig. 11. An example trace of resample

• O2 = Order (On B, Slack n2, GroupBy B1, . . . , Bm2),
• O′

1 = Order (On A, GroupBy A1, . . . , Am1), and
• O′

2 = Order (On B, GroupBy B1, . . . , Bm2)

As with Aggregate, Join need not sort its inputs in order
to process disordered streams but can instead delay pruning
tuples to account for slack.

Join also permits one or both of its inputs to be static tables.
A static table is a special case of a window on a stream that is
infinite in size.

5.2.2.4 Resample

Resample is an asymmetric, semijoin-like synchronization op-
erator that can be used to align pairs of streams. This operator
takes the form

Resample (F , Size s, Left Assuming O1, Right Assuming O2)

(S1, S2)

such that F is a “window function” over S1 (defined in the
same fashion as the window function arguments to Aggre-
gate), s is an integer, A is an attribute over S1 (upon which
S1 is assumed to be ordered), and O1 (on some numeric or
time-based attribute of S1, A) and O2 (on some numeric or
time-based attribute of S2, B) are specifications of orderings
assumed of S1 and S2, respectively. For every tuple, t, from
S1, tuple

(B1 : u.B1, . . . , Bm : u.Bm, A : t.A) + +F (W (t))

is output such that:

W (t) =
{u ∈ S2|u in order wrtO2 in S2 ∧ |t.A − u.B| ≤ s}

Thus, for every tuple in S1, an interpolated value is generated
from S2 using the interpolation function, F , over a window of
tuples of size 2s.

As a simple example, suppose that X is a stream of position
reports for soldiers from platoon X emitted at irregular time
intervals and H is a stream of “heartbeats” that are emitted
every 15 min. Suppose a simple interpolation of X is desired
whereby the position of every soldier is estimated at some time
t, by applying some function F over the window of all of the
soldiers’ position reports that are within 10 min of t.10 This

10 F could, for example, calculate a weighted average of positions
reported, with weights determined by the difference between the time
of the reports and t. For this example, we assume a much simpler
function that simply reports the average position reported by tuples
in the window.

Fig. 12. Query 1

Fig. 13. An example trace of query 1

can be expressed as:

Resample (F , Size 10, Left Assuming O1, Right AssumingO2)
(H, X)

such that O1 = Order (On Time) and O2 = Order (On Time,
GroupBy Sid). A sample trace of this operator above is shown
in Fig. 11 in terms of a heartbeat stream (with schema Time
and values in 15-min intervals) and a soldier position stream
(as before, with schema Sid, Time, Pos. Note that tuples are
emitted in the order in which their computations conclude.
Therefore, even though a position report for the soldier with
Sid = 1 (tuple #1) arrives before one from the soldier with
Sid = 2 (tuple #2), the first interpolated result comes from the
latter soldier as this calculation concludes with the arrival of
the first tuple from this soldier with a timestamp that is later
than 2:10 (tuple #3).

5.3 Query examples

We now describe two queries that demonstrate SQuAl, mo-
tivated by conversations with Mitre Corporation concerning
military logistics applications. For these queries we assume
that inputs are streams of soldier position reports with schema
Sid, Time, Pos, as in previous examples. Once again, we sim-
plify the examples by assuming integer-valued positions and
also assume integer-valued timestamps.

Query 1: Produce an output whenever m soldiers are across
some border k at the same time (with border crossing detection
determined by the predicate Pos ≥ k).
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Fig. 14. A streamlined version of query 1

Fig. 15. An example trace of query

The SQuAl expression of this query is shown in Fig. 12.
The first box of the query filters position reports for those that
reveal that a soldier is across the border. Then, an aggregation
on the resulting stream (assuming an ordering on Time) pro-
duces a count of soldiers reporting a position beyond border
k at each point in time. Finally, a filter identifies those times
where the soldier count exceeds m.

An example trace of this query on a stream of soldier re-
ports (assuming k = 30, m = 3, and n(Slack) = 1) is shown
in Fig. 13. It can be seen from this example that outputs are
not produced immediately when m soldiers are recognized as
being across the border. For example, upon the processing of
the fifth tuple to Aggregate it is known that a tuple should be
output indicating that there are three soldiers across the border
at Time = 2. However, this tuple does not get output until the

Fig. 16. Query 2

seventh tuple to Aggregate gets processed, as it is only then
that the window for Time = 2 is closed.

The alternative query shown in Fig. 14 with a C-like user-
defined window function eliminates this latency. This query
first sorts all position reports showing soldiers across the bor-
der on Time. The following Aggregate box then maintains a
window of exactly m tuples, and whenever every tuple in this
window has the same value for Time (indicating that there are
m soldier reports at that time for soldiers across the border),
a tuple is output reporting the time. The trace of this query
on the same input stream as in Fig. 12 is shown in Fig. 15
and shows that this query will output k tuples any time there
are n + k − 1 soldiers across the border (e.g., three tuples are
emitted for Time = 2 because five soldiers are across the
border at this time.) The additional tuples can be removed by
adding an additional Aggregate box whose window has a size
of two tuples and that emits a tuple only when it is the newest
tuple in the window and with a different value for time than
the oldest tuple in the window.

Query 2: Compute the center of mass of every soldier’s posi-
tion for every timestamp. Alert when it differs from the previ-
ous reading by 100m. Assume that it is not worth waiting more
than t seconds for soldier position reports when calculating
center of mass for a given time.

The SQuAl expression of this query is shown in Fig. 16.
The first box calculates the center of mass (using a user-defined
function) over all position reports assuming an ordering on
Time. Note that the Timeout argument to this box ensures that
a center-of-mass calculation never requires waiting more than
t seconds from the time of the first soldier report to the last. A
second Aggregate box maintains a window of size two tuples,
so as to compare the most recent two center-of-mass calcu-
lations to see if they differ by 100 or more. The user-defined
window function, F , performs this calculation and outputs a
flag (Diff) which is set to TRUE if the last center-of-mass
calculation differs by the previous one by 10 m or more. The
final Filter box returns the center-of-mass calculations and
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Fig. 17. An example trace of query 2

the associated timestamps for those that have this flag set. An
example trace with n(Slack) = 2 is shown in Fig. 17.

6 Related work

Query indexing [4] is an important technique for enhancing the
performance of large-scale filtering applications. In Aurora,
this would correspond to a merge of some inputs followed by a
fan-out to a large number of filter boxes. Query indexing would
be useful here, but it represents only one Aurora processing
idiom.

As in Aurora, active databases [23,24] are concerned with
monitoring conditions. These conditions can be a result of any
arbitrary update on the stored database state. In our setting,
updates are append-only, thus requiring different processing
strategies for detecting monitored conditions. Triggers evalu-
ate conditions that are either true or false.

Our framework is general enough to support queries over
streams or the conversion of these queries into monitored con-
ditions. There has also been extensive work on making active
databases highly scalable (e.g., [13]). Similar to continuous
query research, these efforts have focused on query indexing,
while Aurora is constructing a more general system.

Adaptive query processing techniques (e.g., [5,15,28]) ad-
dress efficient query execution in unpredictable and dynamic
environments by revising the query execution plan as the char-
acteristics of incoming data changes. Of particular relevance
is the Eddies work [5]. Unlike traditional query processing
where every tuple from a given data source gets processed in
the same way, each tuple processed by an Eddy is dynam-
ically routed to operator threads for partial processing, with
the responsibility falling upon the tuple to carry with it its pro-
cessing state. Recent work [18] extended Eddies to support the
processing of queries over streams, mainly by permitting Ed-
dies systems to process multiple queries simultaneously and
for unbounded lengths of time. The Aurora architecture bears
some similarity to that of Eddies in its division of a single
query’s processing into multiple threads of control (one per
query operator). However, queries processed by Eddies are
expected to be processed in their entirety; there is neither the
notion of load shedding nor QoS.

A special case of Aurora processing is as a continuous
query system. A system like NiagaraCQ [9] is concerned
with combining multiple data sources in a wide area setting,
while we are initially focusing on the construction of a gen-

eral stream processor that can process very large numbers of
streams. Further work on continuous queries by Viglas and
Naughton [29] discusses rate-based query optimization for
streaming wide-area information sources in the context of Ni-
agaraCQ.

Recent work on stream data query processing architec-
tures shares many of the goals and target application domains
with Aurora. The Fjords architecture [17] combines query-
ing of push-based sensor sources with pull-based traditional
sources by embedding the pull/push semantics into queues be-
tween query operators. It is fundamentally different from Au-
rora in that operator scheduling is governed by a combination
of schedulers specific to query threads and operator-queue in-
teractions. Tribeca [27] is an extensible, stream-oriented data
processor designed specifically for supporting network traf-
fic analysis. While Tribeca incorporates some of the stream
operators and compile-time optimizations supported by Au-
rora, it does not address scheduling or load-shedding issues
and does not have the concept of ad hoc queries. Like Au-
rora, the STREAM project [7] attempts to provide compre-
hensive data stream management and processing functional-
ity. Even though both systems address many common data
and resource management issues, the proposed approaches
and solutions are different due to different assumptions and
performance criteria. In particular, Aurora drives all resource
management decisions, such as scheduling, storage manage-
ment, and load shedding, based on various QoS specifications,
whereas Stream does not have a notion of QoS. Another high-
level difference involves the specification of stream processing
requirements: Stream uses a variant of SQL, whereas Aurora
assumes more direct, workflow-style specification of queries.
A more detailed comparison of these systems is beyond the
scope of this paper and can be found elsewhere [20].

The SEQ model [26], developed for sequence databases,
provides a set of positional and record-oriented operators.
Even though some SEQ operators demonstrate strong resem-
blance to Aurora operators (e.g., our Filter and Map operators
can be encoded using SEQ’s Transform operator), there are
also significant differences. First, due to the conceptual differ-
ences between stored data sequences and online data streams,
SEQ operators do not deal with issues such as one-time occur-
rence of tuples, late delivery, or tuple ordering issues; they as-
sume that the sequence data is finite and readily available from
persistent storage. Second, SEQ does not provide any binary
windowed operators such as Aurora’s Join. Instead, positional
binary operators in SEQ act only on tuples at matching po-
sitions of two sequences. Therefore, notions such as Timeout
and Slack do not exist in SEQ. Finally, SEQ does not provide
any operator that works across streams in a composite stream,
such as Aurora’s XSection.

The Chronicle Data Model [23] defined a restricted
view definition and manipulation language over append-
only sequences (so-called chronicles). The operators used
in this model are sequence counterparts of relational oper-
ators such as Selection, Projection, Join, Union, Difference,
GroupBy, and CrossProduct. Selection corresponds to our Fil-
ter, whereas Projection is a special case of Aurora’s general-
purpose Map operation. Unlike our Join operator, Chronicle’s
join predicate is restricted to equality on the sequencing. As a
result, windowed joins are not possible. GroupBy is similar to
our Tumble except that, as in SEQ, Chronicle Data Model is
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Fig. 18. Aurora GUI

not concerned with blocking issues and hence does not have
Timeout and Slack concepts. The composite stream concept
used in Aurora somewhat corresponds to Chronicle’s group
concept, which, however, is mainly used to restrict binary op-
erators to act on chronicles of the same group.

Our work is also relevant to materialized views [12],
which are essentially stored continuous queries that are reex-
ecuted (or incrementally updated) as their base data are mod-
ified. However, Aurora’s notion of continuous queries differs
from materialized views primarily in that Aurora updates are
append-only, thus making it much easier to incrementally ma-
terialize the view. Also, query results are streamed (rather than
stored), and high stream data rates may require load shedding
or other approximate query processing techniques that trade
off efficiency for result accuracy.

Our work is likely to benefit from and contribute to the con-
siderable research on temporal databases [22], main-memory
databases [10], and real-time databases [16,22]. These studies
commonly assume an HADP model, whereasAurora proposes
a DAHP model that builds streams as fundamental Aurora ob-
jects. In a real-time database system, transactions are assigned
timing constraints and the system attempts to ensure a degree
of confidence in meeting these timing requirements. The Au-
rora notion of QoS extends the soft and hard deadlines used in
real-time databases to general utility functions. Furthermore,
real-time databases associate deadlines with individual trans-
actions, whereas Aurora associates QoS curves with outputs
from stream processing and, thus, must support continuous
timing requirements. Relevant research in workflow systems
(e.g., [19]) primarily focused on organizing long-running in-
terdependent activities but did not consider real-time process-
ing issues.

There has been extensive research on scheduling tasks in
real-time and multimedia systems and databases [21,22]. The
proposed approaches are commonly deadline driven, i.e., at
each scheduling point, the task that has the earliest deadline

or the one that is expected to provide the highest QoS (e.g.,
throughput) is identified and scheduled. InAurora, such an ap-
proach is not only impractical because of the sheer number of
potentially schedulable tasks (i.e., tuples) but is also inefficient
because of the implicit assumption that all tasks are memory-
resident and are scheduled and executed in their entirety. To
the best of our knowledge, however, our train scheduling ap-
proach is unique in its ability to reduce overall execution costs
by exploiting intra- and interbox nonlinearities described here.

The work of [28] takes a scheduling-based approach to
query processing; however, they do not address continuous
queries, are primarily concerned with data rates that are too
slow (we also consider rates that are too high), and only address
query plans that are trees with single outputs. Chain [6] is an
operator scheduling algorithm for stream processing streams.
Chain’s goal is to minimize run-time memory consumption;
it does not address user-level performance metrics such as
latency, whereas our goal is to maximize QoS.

The congestion control problem in data networks [30] is
relevant to Aurora and its load-shedding mechanism. Load
shedding in networks typically involves dropping individual
packets randomly, based on timestamps, or using (application-
specified) priority bits. Despite conceptual similarities, there
are also some fundamental differences between network load
shedding andAurora load shedding. First, unlike network load
shedding, which is inherently distributed, Aurora is aware of
the entire system state and can potentially make more intel-
ligent shedding decisions. Second, Aurora uses QoS infor-
mation provided by the external applications to trigger and
guide load shedding. Third, Aurora’s semantic load-shedding
approach not only attempts to minimize the degradation in
overall system utility but also quantifies the imprecision due
to dropped tuples.

Aurora load shedding is also related to approximate query
answering (e.g., [14]), data reduction, and summary tech-
niques [8,11], where result accuracy is traded for efficiency. By
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Fig. 19. Queue monitoring

throwing away data, Aurora bases its computations on sam-
pled data, effectively producing approximate answers using
data sampling. The unique aspect of our approach is that our
sampling is driven by QoS specifications.

7 Implementation status

As of March 2003, we have a prototype Aurora implementa-
tion. The prototype has a Java-based GUI that allows construc-
tion and execution of Aurora networks. The current interface
supports construction of arbitrary Aurora networks, specifi-
cation of QoS graphs, stream-type inferencing, and zooming.
Figure 18 is a screenshot of our current Aurora GUI. Users
construct an Aurora network by simply dragging and drop-
ping operators from the operator palette (shown on the left
of the GUI) and connecting them. The small black boxes on
the left of the drawing area represent the input ports, which
are connected to the external stream sources. The small boxes
on the right are output ports that connect to the applications.
Figure 19 shows another screenshot that demonstrates an in-
tegrated queue-monitoring tool used to examine the queued
tuples in the network. The smaller dark windows display the
state of each arc in the network. The interface also supports
pause functionality, which is used for debugging and perfor-
mance monitoring.

The run-time system contains a scheduler, a rudimentary
storage manager, and code to execute most of the boxes. We
are currently experimenting with competing scheduling algo-
rithms and extending the functionality of the storage manager
to define and manage connection points. Aurora metadata is
stored in a schema, which is stored in a Berkeley DB database.
Aurora is functionally complete, and multibox networks can
be constructed and run. However, there is currently no opti-
mization and load shedding.

8 Conclusions and future work

Monitoring applications are those where streams of informa-
tion, triggers, real-time requirements, and imprecise data are
prevalent. Traditional DBMSs are based on the HADP model
and thus cannot provide adequate support for such applica-
tions. In this paper, we have presented the basic data stream
model and architecture of Aurora, a DAHP system oriented
toward monitoring applications. We argued that providing ef-
ficient support for these demanding applications requires not
only critically revisiting many existing aspects of database de-
sign and implementation but also developing novel proactive
data storage and processing concepts and techniques.

In this paper, we first presented the basicAurora model and
architecture along with the primitive building blocks for work-
flow processing. We followed with several heuristics for opti-
mizing a large Aurora network. We then focused on run-time
data storage and processing issues, discussing storage organi-
zation, real-time scheduling, introspection, and load shedding
and proposed novel solutions in all these areas. Finally, we
provided a detailed discussion of a new set of data stream
processing operators.

We are currently investigating two important research di-
rections. While the bulk of the discussion in this paper de-
scribes how Aurora works on a single computer, many stream-
based applications demand support for distributed processing.
To this end, we are working on a distributed architecture, Au-
rora*, that will enable operators to be pushed closer to the data
sources, potentially yielding significantly improved scalabil-
ity, energy use, and bandwidth efficiency. Aurora* will pro-
vide support for distribution by running a full Aurora system
on each of a collection of communicating nodes. In particu-
lar, Aurora* will manage load by replicating boxes along a
path and migrating a copy of this subnetwork to another more
lightly loaded node. A subset of the stream inputs to the repli-
cated network would move along with the copy. We are also
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extending our basic data and processing model to cope with
missing and imprecise data values, which are common in ap-
plications involving sensor-generated data streams.
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