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Abstract

We propose a new definition of (causal) explana-
tion, using structural equations to model counter-
factuals. The definition is based on the notion of
actual cause, as defined and motivated in a com-
panion paper. Essentially, an explanation is a fact
that is not known for certain but, if found to be true,
would constitute an actual cause of the fact to be ex-
plained, regardless of the agent’s initial uncertainty.
We show that the definition handles well a number
of problematic examples from the literature.

1 Introduction
The automatic generation of adequate explanations is a task
essential in planning, diagnosis and natural language pro-
cessing. A system doing inference must be able to ex-
plain its findings and recommendations to evoke a user’s
confidence. However, getting a good definition of expla-
nation is a notoriously difficult problem, which has been
studied for years. (See [Chajewska and Halpern, 1997;
Gärdenfors, 1988; Hempel, 1965; Pearl, 1988; Salmon, 1989]
and the references therein for an introduction to and discus-
sion of the issues.)

In [Halpern and Pearl, 2001], we give a definition of ac-
tual causality using structural equations. Here we show how
the ideas behind that definition can be used to give an elegant
definition of (causal) explanation that deals well with many
of the problematic examples discussed in the literature. The
basic idea is that an explanation is a fact that is not known
for certain but, if found to be true, would constitute an actual
cause of the explanandum (the fact to be explained), regard-
less of the agent’s initial uncertainty.

2 Causal Models: A Review
To make this paper self-contained, this section repeats
material from [Halpern and Pearl, 2001]; we review the basic
definitions of causal models, as defined in terms of structural
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equations, and the syntax and semantics of a language for
reasoning about causality and explanations. See [Galles and
Pearl, 1997; Halpern, 2000; Pearl, 2000] for more details,
motivation, and intuition.

Causal Models: The basic picture is that the world is de-
scribed by random variables, some of which may have a
causal influence on others. This influence is modeled by a
set of structural equations Each equation represents a dis-
tinct mechanism (or law) in the world, which may be modi-
fied (by external actions) without altering the others. In prac-
tice, it seems useful to split the random variables into two
sets, the exogenous variables, whose values are determined
by factors outside the model, and the endogenous variables,
whose values are determined by the endogenous variables. It
is these endogenous variables whose values are described by
the structural equations.

More formally, a signature S is a tuple (U ;V ;R), where
U is a finite set of exogenous variables, V is a finite set of
endogenous variables, and R associates with every variable
Y 2 U [ V a nonempty set R(Y ) of possible values for Y .
A causal (or structural) model over signature S is a tuple
M = (S;F), where F associates with each variable X 2
V a function denoted FX such that FX : (�U2UR(U)) �
(�Y 2V�fXgR(Y )) ! R(X). FX tells us the value of X
given the values of all the other variables in U [ V .

Example 2.1: Suppose that we want to reason about a forest
fire that could be caused by either lightning or a match lit by
an arsonist. Then the causal model would have the following
endogenous variables (and perhaps others):

� F for fire (F = 1 if there is one, F = 0 otherwise)

� L for lightning (L = 1 if lightning occurred, L = 0
otherwise)

� ML for match lit (ML = 1 if the match was lit and
ML = 0 otherwise).

The set U of exogenous variables includes conditions that suf-
fice to make all relationships deterministic (such as whether
the wood is dry, there is enough oxygen in the air, etc.).
Suppose that ~u is a setting of the exogenous variables that
makes a forest fire possible (i.e., the wood is sufficiently dry,
there is oxygen in the air, and so on). Then, for example,
FF (~u; L;ML) is such that F = 1 if either L = 1 or ML = 1.



Given a causal model M = (S;F), a (possibly empty)
vector ~X of variables in V , and vectors ~x and ~u of val-
ues for the variables in ~X and U , respectively, we can de-
fine a new causal model denoted M ~X ~x

over the signature
S ~X = (U ;V � ~X;RjV� ~X

). Intuitively, this is the causal

model that results when the variables in ~X are set to ~x by
external action, the cause of which is not modeled explicitly.
Formally,M ~X ~x

= (S ~X ;F
~X ~x), where F ~X ~x

Y is obtained

from FY by setting the values of the variables in ~X to ~x.
We can describe (some salient features of) a causal model

M using a causal network. This is a graph with nodes cor-
responding to the random variables in V and an edge from a
node labeled X to one labeled Y if FY depends on the value
of X . Intuitively, variables can have a causal effect only on
their descendants in the causal network; if Y is not a descen-
dant of X , then a change in the value of X has no affect on
the value of Y .

We restrict attention to what are called recursive (or
acyclic) equations; these are ones that can be described with
a causal network that is a dag. It should be clear that ifM is a
recursive causal model, then there is always a unique solution
to the equations in M ~X ~x

, given a setting ~u for the variables
in U . Such a setting is called a context. Contexts will play the
role of possible worlds when we model uncertainty.

Syntax and Semantics: Given a signature S = (U ;V ;R),
a formula of the form X = x, for X 2 V and x 2 R(X),
is called a primitive event. A basic causal formula is one of
the form [Y1  y1; : : : ; Yk  yk]', where ' is a Boolean
combination of primitive events; Y1; : : : ; Yk; X are variables
in V ; Y1; : : : ; Yk are distinct; x 2 R(X); and yi 2 R(Yi).
Such a formula is abbreviated as [~Y  ~y]'. The special
case where k = 0 is abbreviated as '. Intuitively, [Y1  
y1; : : : ; Yk  yk]' says that ' holds in the counterfactual
world that would arise if Yi is set to yi, i = 1; : : : ; k. A causal
formula is a Boolean combination of basic causal formulas.

A causal formula ' is true or false in a causal model, given
a context. We write (M;~u) j= ' if ' is true in causal model
M given context ~u. (M;~u) j= [~Y  ~y](X = x) if the vari-
able X has value x in the unique (since we are dealing with
recursive models) solution to the equations in M~Y ~y

in con-
text ~u (that is, the unique vector of values for the exogenous

variables that simultaneously satisfies all equations F
~Y ~y
Z ,

Z 2 V � ~Y , with the variables in U set to ~u). We extend the
definition to arbitrary causal formulas in the obvious way.

Note that the structural equations are deterministic. We
later add probability to the picture by putting a probability on
the set of contexts (i.e., on the possible worlds).

3 The Definition of Explanation
As we said in the introduction, many definitions of causal ex-
planation have been given in the literature. The “classical”
approaches in the philosophy literature, such as Hempel’s
1965 deductive-nomological model and Salmon’s 1989 sta-
tistical relevance model (as well as many other approaches)

have a serious problem: they fail to exhibit the directionality
inherent in common explanations. While it seems reasonable
to say “the height of the flag pole explains the length of the
shadow”, it would sound awkward if one were to explain the
former with the latter. Despite all the examples in the phi-
losophy literature on the need for taking causality and coun-
terfactuals into account, and the extensive work on causality
defined in terms of counterfactuals in the philosophy litera-
ture, as Woodward 2001 observes, philosophers have been
reluctant to build a theory of explanation on top of a theory
of causality. The concern seems to be one of circularity.

In [Halpern and Pearl, 2001], we give a definition of
causality that assumes that the causal model and all the rele-
vant facts are given; the problem is to determine which of the
given facts are causes. (We discuss this definition in more de-
tail below.) We give a definition of explanation based on this
defintion of causality. The role of explanation is to provide
the information needed to establish causation. As discussed
in the introduction, we view an explanation as a fact that is not
known for certain but, if found to be true, would constitute a
genuine cause of the explanandum, regardless of the agent’s
initial uncertainty. Thus, what counts as an explanation de-
pends on what you already know and, naturally, the definition
of explanation is relative to the agent’s epistemic state (as in
Gärdenfors 1988). It is also natural, from this viewpoint, that
an explanation includes fragments of the causal model M, or
reference to the physical laws which underly the connection
between the cause and the effect. To borrow an example from
[Gärdenfors, 1988], if we want an explanation of why Mr. Jo-
hansson has been taken ill with lung cancer, the information
that he worked in asbestos manufacturing for many years is
not going to be a satisfactory explanation to someone who
does not know anything about the effects of asbestos on peo-
ple’s health. In this case, the causal model (or relevant parts
of it) must be part of the explanation. On the other hand, for
someone who knows the causal model but does not know that
Mr. Johansson worked in asbestos manufacturing, the expla-
nation would involve Mr. Johansson’s employment but would
not mention the causal model.

Our definition of explanation is motivated by the following
intuitions. An individual in a given epistemic state K asks
why' holds. What constitutes a good answer to his question?
A good answer must provide information that goes beyondK
and be such that the individual can see that it would, if true,
be (or be very likely to be) a cause of '. We may also want
to require that ' be true (or at least probable). Although our
basic definition does not require this, but it is easy to do so.

To make this precise, we must explain (1) what it means
for  to be a cause of ' and (2) how to capture the agent’s
epistemic state. In [Halpern and Pearl, 2001], we dealt with
the first question. In the next subsection we review the defini-
tions. The following subsections discuss the second question.

3.1 The Definition of Causality
We want to make sense of statements of the form “event A is
an actual cause of event B in context ~u of model M”. Note
that we assume the context and model are given. Intuitively,
they encode the background knowledge. All the relevant facts
are known. The only question is picking out which of them



are the causes of '.
The types of events that we allow as actual causes are ones

of the formX1 = x1^: : :^Xk = xk—that is, conjunctions of
primitive events; we typically abbreviate this as ~X = ~x. The
events that can be caused are arbitrary Boolean combinations
of primitive events. We argue in [Halpern and Pearl, 2001]
that it is reasonable to restrict causes to conjunctions (and, in
particular, to disallow disjunctions). This restriction seems
less reasonable in the case of explanation; we return to this
point below. In any case, the definition of causality we give
is restricted to conjunctive causes.

Definition 3.1: (Actual cause) ~X = ~x is an actual cause of '
in (M;~u) if the following three conditions hold:

AC1. (M;~u) j= ( ~X = ~x) ^ '. (That is, both ~X = ~x and '
are true in the actual world.)

AC2. There exists a partition (~Z; ~W ) of V with ~X � ~Z and
some setting (~x0; ~w0) of the variables in ( ~X; ~W ) such
that if (M;~u) j= (Z = z�) for Z 2 ~Z, then

(a) (M;~u) j= [ ~X  ~x0; ~W  ~w0]:'. In words, chang-
ing ( ~X; ~W ) from (~x; ~w) to (~x0; ~w0) changes' from
true to false;

(b) (M;~u) j= [ ~X  ~x; ~W  ~w0; ~Z 0  ~z�]' for all
subsets ~Z 0 of ~Z. In words, setting ~W to ~w0 should
have no effect on ' as long as ~X is kept at its cur-
rent value ~x, even if all the variables in an arbitrary
subset of ~Z are set to their original values in the
context ~u.

AC3. ~X is minimal; no subset of ~X satisfies conditions AC1
and AC2. Minimality ensures that only those elements
of the conjunction ~X = ~x that are essential for changing
' in AC2(a) are considered part of a cause; inessential
elements are pruned.

For future reference, we say that ~X = ~x is a weak cause of '
in (M;~u) if AC1 and AC2 hold, but not necessarily AC3.

The core of this definition lies in AC2. Informally, the
variables in ~Z should be thought of as describing the “ac-
tive causal process” from ~X to '. These are the variables
that mediate between ~X and '. AC2(a) says that there exists
a setting ~x0 of ~X that changes ' to :', as long as the vari-
ables not involved in the causal process ( ~W ) take on value ~w0.
AC2(a) is reminiscent of the traditional counterfactual crite-
rion of Lewis 1986b, according to which ' should be false if
it were not for ~X being ~x. However, AC2(a) is more permis-
sive than the traditional criterion; it allows the dependence of
' on ~X to be tested under special circumstances.

AC2(b) is an attempt to counteract the “permissiveness” of
AC2(a) with regard to structural contingencies. Essentially, it
ensures that ~X alone suffices to bring about the change from
' to :'; setting ~W to ~w0 merely eliminates spurious side
effects that tend to mask the action of ~X. It captures the fact
that setting ~W to ~w0 should not affect the causal process, by
requiring that changing ~W from ~w to ~w0 has no effect on the
value of '.

This definition is discussed and defended in much more
detail in [Halpern and Pearl, 2001], where it is compared to
other definitions of causality. In particular, it is shown to
avoid a number of problems that have been identified with
Lewis’s account (e.g., see [Pearl, 2000, Chapter 10]), such as
commitment to transitivity of causes. For the purposes of this
paper, we ask that the reader accept the definition. We note
that, to some extent, our definition of explanation is modular
in its use of causality, in that another definition of causality
could be substituted for the one we use in the definition of
explanation (provided it was given in the same framework).

The following example will help to clarify the definition of
both causality and explanation.

Example 3.2: Suppose that two arsonists drop lit matches in
different parts of a dry forest; both cause trees to start burn-
ing. Consider two scenarios. In the first, called “disjunctive,”
either match by itself suffices to burn down the whole for-
est. That is, even if only one match were lit, the forest would
burn down. In the second scenario, called “conjunctive,” both
matches are necessary to burn down the forest; if only one
match were lit, the fire would die down before the forest was
consumed. We can describe the essential structure of these
two scenarios using a causal model with four variables:

� an exogenous variable U which determines, among
other things, the motivation and state of mind of
the arsonists. For simplicity, assume that R(U) =
fu00; u10; u01; u11g; if U = uij , then the first arsonist
intends to start a fire iff i = 1 and the second arsonist in-
tends to start a fire iff j = 1. In both scenarios U = u11.

� endogenous variables ML1 and ML2, each either 0 or 1,
where MLi = 0 if arsonist i doesn’t drop the match and
MLi = 1 if he does, for i = 1; 2.

� an endogenous variable FB for forest burns down, with
values 0 (it doesn’t) and 1 (it does).

Both scenarios have the same causal network (see Figure
1); they differ only in the equation for FB. Given u 2
R(U), for the disjunctive scenario we have FFB(u; 1; 1) =
FFB(u; 0; 1) = FFB(u; 1; 0) = 1 and FFB(u; 0; 0) = 0;
for the conjunctive scenario we have FFB(u; 1; 1) = 1 and
FFB(u; 0; 0) = FFB(u; 1; 0) = FFB(u; 0; 1) = 0.

In general, the causal model for reasoning about forest fires
would involve many other variables; in particular, variables
for other potential causes of forest fires such as lightning
and unattended campfires. Here we focus on that part of the
causal model that involves forest fires started by arsonists.
Since for causality we assume that all the relevant facts are
given, we can assume here that it is known that there were
no unattended campfires and there was no lightning, which
makes it safe to ignore that portion of the causal model.

Denote by M1 and M2 the (portion of the) causal models
associated with the disjunctive and conjunctive scenarios, re-
spectively. The causal network for the relevant portion ofM1

and M2 is described in Figure 1.
Despite the differences in the underlying models, it is not

hard to show that each of ML1 = 1 and ML2 = 1 is a cause
of FB = 1 in both scenarios. We present the argument for
ML1 = 1 here. To show that ML1 = 1 is a cause in M1 let
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Figure 1: The causal network for M1 and M2.

~Z = fML1;FBg, so ~W = fML2g. It is easy to see that the
contingency ML2 = 0 satisfies the two conditions in AC2.
AC2(a) is satisfied because, in the absence of the second ar-
sonist (ML2 = 0), the first arsonist is necessary and sufficient
for the fire to occur (FB = 1). AC2(b) is satisfied because, if
the first match is lit (ML1 = 1) the contingency ML2 = 0 does
not prevent the fire from burning the forest. Thus, ML1 = 1
is a cause of FB = 1 in M1. (Note that we needed to set ML2
to 0, contrary to facts, in order to reveal the latent depen-
dence of FB on ML1. Such a setting constitutes a structural
change in the original model, since it involves the removal
of some structural equations.) The argument that ML1 = 1
is also a cause of FB = 1 in M2 is similar. (Again, taking
~Z = fML1;FBg and ~W = fML2g works.)

This example also illustrates the need for the minimality
condition AC3. For example, if lighting a match qualifies
as the cause of fire then lighting a match and sneezing would
also pass the tests of AC1 and AC2, and awkwardly qualify as
the cause of fire. Minimality serves here to strip “sneezing”
and other irrelevant, over-specific details from the cause.

It might be argued that allowing disjunctive causes would
be useful in this case to distinguish M1 from M2 as far as
causality goes. A purely counterfactual definition of causal-
ity would make ML1 = 1 _ ML2 = 1 a cause of FB = 1
in M1 (since, if ML1 = 1 _ ML2 = 1 were not true, then
FB = 1 would not be true), but would make neither ML1 = 1
nor ML2 = 1 individually a cause (for example, if ML1 = 1
were not true inM1, FB = 1 would still be true). Clearly, our
definition does not enforce this intuition. Purely counterfac-
tual definitions of causality have other well-known problems.
We do not have a strong intuition as to the best way to deal
with disjunction in the context of causality, and believe that
disallowing it is reasonably consistent with intuitions. Inter-
estingly, as we shall see in Section 3.2, our definition of ex-
planation does distinguish M1 from M2; each of ML1 = 1
and ML2 = 1 is an explanation of FB = 1 in M1 under
our definition of explanation, but neither is an explanation
of FB = 1 in M2. In M2, the explanation of FB = 1 is
ML1 = 1^ML2 = 1: both matches being lit are necessary to
explain the forest burning down.

3.2 The Basic Definition of Explanation

All that remains to do before giving the definition of expla-
nation is to discuss how to capture the agent’s epistemic state
in our framework. For ease of exposition, we first consider
the case where the causal model is known and the context is
uncertain. (The minor modifications required to deal with the
general case are described in Section 3.4.) In that case, one
way of describing an agent’s epistemic state is by simply de-

scribing the set of contexts the agent considers possible. This
choice is very much in the spirit of the standard “possible
worlds” definitions of knowledge and belief.

Definition 3.3: (Explanation) Given a structural model M ,
~X = ~x is an explanation of ' relative to a set K of contexts
if the following conditions hold:

EX1. (M;~u) j= ' for each context ~u 2 K. (That is, ' must
hold in all contexts the agent considers possible—the
agent considers what she is trying to explain as an es-
tablished fact)

EX2. ~X = ~x is a weak cause of ' in (M;~u) (that is, AC1
and AC2 hold, but not necessarily AC3) for each ~u 2 K
such that (M;~u) j= ~X = ~x.

EX3. ~X is minimal; no subset of ~X satisfies EX2.

EX4. (M;~u) j= :( ~X = ~x) for some ~u 2 K and (M;~u0) j=
~X = ~x for some ~u0 2 K. (This just says that the
agent considers a context possible where the explanation
is false, so the explanation is not known to start with,
and considers a context possible where the explanation
is true, so that it is not vacuous.)

Our requirement EX4 that the explanation is not known
may seem incompatible with linguistic usage. Someone dis-
covers some factA and says “Aha! That explains whyB hap-
pened.” Clearly, A is not an explanation of why B happened
relative to the epistemic state after A has been discovered,
since at that point A is known. However, A can legitimately
be considered an explanation of B relative to the epistemic
state before A was discovered.

Consider the arsonists in Example 3.2. If the causal model
has only arsonists as the cause of the fire, there are two pos-
sible explanations in the disjunctive scenario: arsonist 1 did
it or arsonist 2 did it (assuming K consists of three contexts,
where either 1, 2, or both set the fire). In the conjunctive sce-
nario, no explanation is necessary, since the agent knows that
both arsonists must have lit a match if arson is the only possi-
ble cause of the fire (assuming that the agent considers these
to be the only possible arsonists).

Perhaps more interesting is to consider a causal model with
other possible causes, such as lightning and unattended camp-
fires. Since the agent knows that there was a fire, in each of
the contexts in K, at least one of the potential causes must
have actually occurred. If we assume that there is a context
where only arsonist 1 lit the fire (and, say, there was light-
ning) and another where only arsonist 2 lit the fire then, in
the conjunctive scenario, ML1 = 1 ^ ML2 = 1 is an expla-
nation of FB = 1, but neither ML1 = 1 nor ML2 = 1 by
itself is an explanation (since neither by itself is a cause in all
contexts in K that satisfy the formula). On the other hand,
in the disjunctive scenario, both ML1 = 1 and ML2 = 1 are
explanations.

It is worth noting here that the minimality clause EX3 ap-
plies to all contexts. This means that our rough gloss of
~X = ~x being an explanation of ' relative to a set K of con-
texts if ~X = ~x is a cause of ' in each context in K where
~X = ~x holds is not quite correct. For example, although



ML1 = 1 ^ML2 = 1 is an explanation of fire in the conjunc-
tive scenario (if K includes contexts where there are other
possible causes of fire), it is a cause of fire in none of the con-
texts in which it holds. The minimality condition AC3 would
say that each of ML1 = 1 and ML2 = 1 is a cause, but their
conjunction is not.

Note that, as for causes, we have disallowed disjunctive ex-
planations. Here the motivation is less clear cut. It does make
perfect sense to say that the reason that ' happened is either
A or B (but I don’t know which). There are some techni-
cal difficulties with disjunctive explanations, which suggest
philosophical problems. For example, consider the conjunc-
tive scenario of the arsonist example again. Suppose that the
structural model is such that the only causes of fire are the ar-
sonists, lightning, and unattended campfires and that K con-
sists of contexts where each of these possibilities is the actual
cause of the fire. Once we allow disjunctive explanations,
what is the explanation of fire? One candidate is “either there
were two arsonists or there was lightning or there was an unat-
tended campfire (which got out of hand)”. But this does not
satisfy EX4, since the disjunction is true in every context in
K. On the other hand, if we do not allow the disjunction of
all possible causes, which disjunction should be allowed as
an explanation? As a technical matter, how should the min-
imality condition EX3 be rewritten? We could not see any
reasonable way to allow some disjunctions in this case with-
out allowing the disjunction of all causes (which will not in
general satisfy EX4).

We believe that, in cases where disjunctive explanations
seem appropriate, it is best to capture this directly in the
causal model by having a variable that represents the disjunc-
tion. (Essentially the same point is made in [Chajewska and
Halpern, 1997].) For example, consider the disjunctive sce-
nario of the arsonist example, where there are other potential
causes of the fire. If we want to allow “there was an arsonist”
to be an explanation without specifically mentioning who the
arsonist is, then it can be easily accomplished by replacing the
variables ML1 and ML2 in the model by a variable ML which
is 1 iff at least one arsonist drops a match. Then ML = 1
becomes an explanation, without requiring disjunctive expla-
nations.

Why not just add ML to the model rather than using it to
replace ML1 and ML2? We have implicitly assumed in our
framework that all possible combinations of assignments to
the variables are possible (i.e., there is a structural contin-
gency for any setting of the variables). If we add ML and view
it as being logically equivalent to ML1_ML2 (that is, ML = 1
by definition iff at least one of ML1 and ML2 is 1) then, for
example, it is logically impossible for there to be a structural
contingency where ML1 = 0, ML2 = 0, and ML = 1. Thus,
in the presence of logical dependences, it seems that we need
to restrict the set of contingencies that can be considered to
those that respect the dependencies. We have not yet consid-
ered the implications of such a change for our framework, so
we do not pursue the matter here.

3.3 Partial Explanations and Explanatory Power
Not all explanations are considered equally good. Some ex-
planations are more likely than others. An obvious way to

define the “goodness” of an explanation is by bringing prob-
ability into the picture. Suppose that the agent has a prob-
ability on the set K of possible contexts. In this case, we
can consider the probability of the set of contexts where the
explanation ~X = ~x is true. For example, if the agent has
reason to believe that the first arsonist is extremely unlikely
to have caused the fire (perhaps he had defective matches),
then the set of contexts where ML2 = 1 holds would have
higher probability than those where ML1 = 1 holds. Thus,
ML2 = 1 would be considered a better explanation of the fire
in the disjunctive model than ML1 = 1.

But the probability of an explanation is only part of the
story; the other part concerns the degree to which an explana-
tion fulfills its role (relative to ') in the various contexts con-
sidered. This becomes clearer when we consider partial ex-
planations. The following example, taken from [Gärdenfors,
1988], is one where partial explanations play a role.

Example 3.4:Suppose I see that Victoria is tanned and I seek
an explanation. Suppose that the causal model includes vari-
ables for “Victoria took a vacation in the Canary Islands”,
“sunny in the Canary Islands”, and “went to a tanning salon”.
The set K includes contexts for all settings of these variables
compatible with Victoria being tanned. Note that, in partic-
ular, there is a context where Victoria both went to the Ca-
naries (and didn’t get tanned there, since it wasn’t sunny) and
to a tanning salon. Gärdenfors points out that we normally
accept “Victoria took a vacation in the Canary Islands” as a
satisfactory explanation of Victoria being tanned and, indeed,
according to his definition, it is an explanation. Victoria tak-
ing a vacation is not an explanation (relative to the context
K) in our framework, since there is a context ~u� 2 K where
Victoria went to the Canary Islands but it was not sunny, and
in ~u� the actual cause of her tan is the tanning salon, not the
vacation.

For us, the explanation would have to be “Victoria went to
the Canary Islands and it was sunny.” In this case we can view
“Victoria went to the Canary Islands” as a partial explanation
(in a formal sense to be defined below).

In Example 3.4 the partial explanation can be extended to
a full explanation by adding a conjunct. But not every partial
explanation can be extended to a full explanation. Roughly
speaking, the full explanation may involve exogenous fac-
tors, which are not permitted in explanations. Assume, for
example, that going to a tanning salon was not considered
an endogenous variable in our model but, rather, the model
simply had an exogenous variable Us that could make Victo-
ria suntanned even in the absence of sun in Canary islands.
Likewise, assume that the weather in Canary island was also
part of the background context. In this case, we would still
consider Victoria’s vacation to provide a partial explanation
of her sun tan, since the context where it fails to be a cause
(no sun in the Canary island) is fairly unlikely, but we can-
not add conjuncts to this event to totally exclude that context
from the agent’s realm of possibilities.

The situation actually is quite common, as the following
example shows.

Example 3.5: Suppose that the sound on a television works
but there is no picture. Furthermore, the only cause of there



being no picture that the agent is aware of is the picture tube
being faulty. However, the agent is also aware that there are
times when there is no picture even though the picture tube
works perfectly well—intuitively, “for inexplicable reasons”.
This is captured by the causal network described in Figure 2,
where T describes whether or not the picture tube is working
(1 if it is and 0 if it is not) and P describes whether or not
there is a picture (1 if there is and 0 if there is not). The ex-

U0

1U

P

T

Figure 2: The television with no picture.

ogenous variableU0 determines the status of the picture tube:
T = U0. The exogenous variableU1 is meant to represent the
mysterious “other possible causes”. If U1 = 0, then whether
or not there is a picture depends solely on the status of the
picture tube—that is, P = T . On the other hand, if U1 = 1,
then there is no picture (P = 0) no matter what the status of
the picture tube. Thus, in contexts where U1 = 1, T = 0 is
not a cause of P = 0. Now suppose thatK includes a context
~u00 whereU0 = U1 = 0. Then it is easy to see that there is no
explanation of P = 0. The only plausible explanation, that
the picture tube is not working, is not a cause of P = 0 in the
context ~u00. On the other hand, T = 0 is a cause of P = 0
in all other contexts in K satisfying T = 0. If the probability
of ~u00 is small (capturing the intuition that it is unlikely that
more than one thing goes wrong with a television at once),
then we are entitled to view T = 0 as a quite good partial
explanation of P = 0.

These examples motivate the following definition.

Definition 3.6: Let K ~X=~x;'
be the largest subset K0 of K

such that ~X = ~x is an explanation of ' relative to K ~X=~x;'
.

(It is easy to see that there is a largest such set.) Then ~X = ~x

is a partial explanation of ' with goodness Pr(K ~X=~x;'
j ~X =

~x). Thus, the goodness of a partial explanation measures the
extent to which it provides an explanation of '.1

In Example 3.4, if the agent believes that it is sunny in
the Canary Islands with probability .9 (that is, the probability
that it was sunny given that Victoria is suntanned and that she
went to the Canaries is .9), then Victoria going to the Canaries
is a partial explanation of her being tanned with goodness
.9. The relevant set K0 consists of those contexts where it is
sunny in the Canaries. Similarly, in Example 3.5, if the agent

1Here and elsewhere, a formula such as ~X = ~x is being identi-
fied with the set of contexts where the formula is true. Recall that,
since all contexts in K are presumed to satisfy ', there is no need to
condition on '; this probability is already updated with the truth of
the explanandum '. Finally, note that our usage of partial explana-
tion is related to, but different from, that in [Chajewska and Halpern,
1997].

believes that the probability of both the picture tube being
faulty and the other mysterious causes being operative is .1,
then T = 0 is a partial explanation of P = 0 with goodness
.9 (with K0 consisting of all the contexts where U1 = 1).

A full explanation is clearly a partial explanation with
goodness 1, but we are often satisfied with partial explana-
tions ~X = ~x that are not as good, especially if they have high
probability (i.e., if Pr( ~X = ~x) is high). In general, there
is a tension between the goodness of an explanation and its
probability.

These ideas also lead to a definition of explanatory power.
Consider Example 3.2 yet again, and suppose that there is
an endogenous random variableO corresponding to the pres-
ence of oxygen. Now if O = 1 holds in all the contexts that
the agent considers possible, then O = 1 is excluded as an
explanation by EX4. But suppose that O = 0 holds in one
context that the agent considers possible (for example, there
may be another combustible gas), albeit a very unlikely one.
In that case, O = 1 becomes a very good partial explanation
of the fire. Nevertheless, it is an explanation with, intuitively,
very little explanatory power. How can we make this precise?

Suppose that there is a probability distribution Pr� on a
set K� of contexts larger than K that intuitively represents
the agent’s prior probability before the explanandum ' is
discovered. That is, Pr is the result of conditioning Pr�

on ' and K consists of the subset of K� that satisfies '.
Gärdenfors identifies the explanatory power of the (partial)
explanation ~X = ~x of ' with Pr�('j ~X = ~x) (see [Cha-
jewska and Halpern, 1997; Gärdenfors, 1988]). If this prob-
ability is higher than Pr�('), then the explanation makes '
more likely. While this explanatory power, we would argue
that a better measure of the explanatory power of ~X = ~x is
Pr�(K ~X=~x;'

j ~X = ~x). According to either definition, under

reasonable assumptions about Pr�, O = 1 has much lower
explanatory power than, say ML = 1. Moreover, the two
definitions agree in the case that ~X = ~x is a full explanation
(since thenK ~X=~x;'

is justK, the set of contexts inK� where
' is true). The difference between the two definitions arises
if there are contexts where ' and ~X = ~x both happen to be
true, but ~X = ~x is not a cause of '. Such spurious correla-
tions are exculded by our suggested definition. (See [Pearl,
2000] for some examples showing that considering spurious
correlations leads to bad outcomes.)

Again, (partial) explanations with higher explanatory
power typically are more refined and, hence, less likely. than
explanations with less explanatory power. There is no ob-
vious way to resolve this tension. (See [Chajewska and
Halpern, 1997] for more discussion of this issue.)

As this discussion suggests, our definition shares some fea-
tures with that of Gärdenfors’ 1988. Like him, we consider
explanation relative to an agent’s epistemic state. Gärdenfors
also considers a “contracted” epistemic state characterized by
the distribution Pr�. Intuitively, Pr� describes the agent’s
beliefs before discovering '. (More accurately, it describes
an epistemic state as close as possible to Pr where the agent
does not ascribe probability 1 to '.) If the agent’s current be-
lief in ' came about as the result of an observation  , then



we can take Pr to be the result of conditioning Pr� on  ,
as we have done above. However, Gärdenfors does neces-
sarily assume such a connection between Pr and Pr�. In
any case, for Gärdenfors, ~X = ~x is an explanation of ' rel-
ative to Pr if (1) Pr(') = 1, (2) 0 < Pr( ~X = ~x) < 1,
and (3) Pr�('j ~X = ~x) > Pr�('). (1) is the probabilistic
analogue of EX1. Clearly, (2) is the probabilistic analogue
of EX4. Finally, (3) says that learning the explanation in-
creases the likelihood of '. Gärdenfors focuses on the ex-
planatory power of an explanation, but does not take into ac-
count its prior probability. As pointed out in [Chajewska and
Halpern, 1997], Gärdenfors’ definition suffers from another
defect: Since there is no minimality requirement like EX3, if
~X = ~x is an explanation of ', so too is ~X = ~x ^ ~Y = ~y.

In contrast to Gärdenfors’ definition, the dominant ap-
proach to explanation in the AI literature, the maximum a
posteriori (MAP) approach (see, for example, [Henrion and
Druzdzel, 1990; Pearl, 1988; Shimony, 1991]), focuses on
the probabability of the explanation, given the explanandum
(i.e, Pr�( ~X = ~xj') = Pr( ~X = ~x)), but does not take ex-
planatory power into account. The MAP approach is based
on the intuition that the best explanation for an observation is
the state of the world (in our setting, the context) that is most
probable given the evidence. The most probable explanation
for ' is then the context ~u� such that Pr(~u�) = max~u Pr(~u).
Thus, an explanation is a (complete) context. This means that
part of the explanation will include totally irrelevant facts (the
agent sneezed). Moreover, it is quite sensitive to the descrip-
tion of the context (see [Chajewska and Halpern, 1997] for
details) and does not directly take causality into account.

To some extent, these problems can be dealt with by lim-
iting the set of candidate explanations to ancestors (of the
explanandum) in the causal network; this also avoids many
of the problems associated with non-causal approaches (al-
though it requires there to be a causal network in the back-
ground). However, the MAP approach does not go far
enough. One problem is that propositions with extremely
high prior probabilities (e.g., that oxygen is present in the
room) will also receive high posterior probabilities, regard-
less of how relevant they are to the events explained. To rem-
edy this problem, more intricate combinations of the quanti-
ties Pr( ~X = ~x), Pr�('j ~X = ~x), and Pr�(') have been sug-
gested to quantify the causal relevance of ~X = ~x on ' but, as
argued in [Pearl, 2000, p. 221], without taking causality into
account, no such combination of parameters can work.

3.4 The General Definition
In general, an agent may be uncertain about the causal model,
so an explanation will have to include information about it.
(Gärdenfors 1988 and Hempel 1965 make similar observa-
tions). It is relatively straightforward to extend our definition
of explanation to accommodate this. Now an epistemic state
K consists not only of contexts, but of pairs (M;~u) consisting
of a causal model M and a context ~u. Call such a pair a situ-
ation. Intuitively, now an explanation should consist of some
causal information (such as “prayers do not cause fires”) and
the facts that are true. Thus, a (general) explanation has the
form ( ; ~X = ~x), where  is an arbitrary formula in our

causal language and, as before, ~X = ~x is a conjunction of
primitive events. We think of the  component as consisting
of some causal information (such as “prayers do not cause
fires”, which corresponds to a conjunction of statements of
the form F = i ) [P  x](F = i), where P is a random
variable describing whether or not prayer takes place). The
first component in a general explanation is viewed as restrict-
ing the set of causal models. To make this precise, given a
causal model M , we say  is valid in M , and write M j=  ,
if (M;~u) j=  for all contexts ~u consistent withM . With this
background, it is easy to state the general definition.

Definition 3.7: ( ; ~X = ~x) is an explanation of ' relative to
a set K of situations if the following conditions hold:

EX1. (M;~u) j= ' for each situation (M;~u) 2 K.

EX2. For all (M;~u) 2 K such that (M;~u) j= ~X = ~x and
M j=  , ~X = ~x is a weak cause of ' in (M;~u).

EX3. ( ; ~X = ~x) is minimal; there is no pair ( 0; ~X 0 =

~x0) 6= ( ; ~X = ~x) satisfying EX2 such that fM 00 2
M(K) : M 00 j=  0g � fM 00 2 M(K) : M 00 j=  g,
whereM(K) = fM : (M;~u) 2 K for some ~ug, ~X 0 �
~X, and ~x0 is the restriction of ~x to the variables in ~X 0.
Roughly speaking, this says that no subset ofX provides
a weak cause of ' in more contexts than those where  
is valid.

EX4. (M;~u) j= :( ~X = ~x) for some (M;~u) 2 K and
(M 0; ~u0) j= ~X = ~x for some (M 0; ~u0) 2 K.

Note that, in EX2, we now restrict to situations (M;~u) 2 K

that satisfy both parts of the explanation ( ; ~X = ~x), in that
M j=  and (M;~u) j= ~X = ~x. Furthermore, although
both components of an explanation are formulas in our causal
language, they play very different roles. The first component
serves to restrict the set of causal models considered (to those
with the appropriate structure); the second describes a cause
of ' in the resulting set of situations.

Clearly Definition 3.3 is the special case of Definition 3.7
where there is no uncertainty about the causal structure (i.e.,
there is some M such that if (M 0; ~u) 2 K, then M = M 0).
In this case, it is clear that we can take  in the explanation
to be true.

Definition 3.7 can also be extended to deal naturally with
statistical information of the kind considered by Gärdenfors
and Hempel. Let a probabilistic causal model be a tuple
MPr = (S;F ;Pr), whereM = (S;F) is a causal model and
Pr is a probability measure on the contexts defined by signa-
ture S of M . Information like “with probability .9, X = 3”
is a restriction on probabilistic models, and thus can be cap-
tured using a formula in an appropriate extension of our lan-
guage that allows such probabilistic reasoning. With this ex-
tended language, the definition of explanation using proba-
bilistic causal models remains unchanged.

As an orthogonal issue, there is also no difficulty consider-
ing a probability on the setK of situations and defining partial
explanation just as before.



Example 3.8: Using this general definition of explanation,
consider Scriven’s 1959 famous paresis example. Paresis de-
velops only in patients who have been syphilitic for a long
time, but only a small number of patients who are syphilitic
in fact develop paresis. Furthermore, according to Scriven,
no other factor is known to be relevant in the development
of paresis.2 This description is captured by a simple causal
model MP . There are two endogenous variables, S (for
syphilis) and P (for paresis), and two exogenous variables,
U1, the background factors that determine S, and U2, which
intuitively represents “disposition to paresis”, i.e., the factors
that determine, in conjunction with syphilis, whether or not
paresis actually develops. An agent who knows this causal
model and that a patient has paresis does not need an expla-
nation of why: the agent knows without being told that the
patient must have syphilis and that U2 = 1. On the other
hand, for an agent who does not know the causal model (i.e.,
considers a number of causal models of paresis possible),
(fMP g; S = 1) is an explanation of paresis.

4 Discussion
We have given a formal definition of explanation in terms of
causality. As we mentioned earlier, there are not too many
formal definitions of explanation in terms of causality in the
literature. One of the few exceptions is Lewis 1986a, who
defends the thesis that “to explain an event is to provide some
information about its causal history”. While this view is com-
patible with our definition, there is no formal definition given
to allow for a careful comparison between the approaches. In
any case, if were to define causal history in terms of Lewis’s
1986b definition of causality, we would inherit all the prob-
lems of that definition. As we said earlier, our definition
avoids these problems.

So what are the problems with our definition? For one
thing, it inherits whatever problems our definition of causal-
ity has. As observed in [Halpern and Pearl, 2001], our defini-
tion at times declares certain events to be causes (and hence
candidate explanations) that, intuitively, should not be causes
because they should fail AC2(a). The only reason that they
do not fail AC2(a) is because of extremely unlikely structural
contingencies. To some extent, we can avoid this problem by
simply ignoring structural contingencies that are extremely
unlikely (this is essentially the solution suggested in [Halpern
and Pearl, 2001] in the context of causality). Of course, we
can do this in the context of explanation too. Another possi-
bility is to take the probability of the structural contingency
into account more directly when computing the probability of
the explanation. We are currently exploring this option.

We have mentioned the other significant problem of the
definition already: dealing with disjunctive explanations.
Disjunctions cause problems in the definition of causality,
which is why we do not deal with them in the context of ex-
planation. As we pointed out earlier, it may be possible to
modify the definition of causality so as to be able to deal with
conjunctions without changing the structure of our definition
of explanation. We are currently exploring this.

2Apparently there are now other known factors, but this does not
change the import of the example.

Finally, our definition gives no tools for dealing with the in-
herent tension between explanatory power, goodness of par-
tial beliefs, and the probability of the explanation. Clearly
this is an area that requires further work.
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