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Abstract. In 1965 Motzkin and Straus established a remarkable con-
nection between the local/global maximizers of the Lagrangian of a graph
G over the standard simplex ∆ and the maximal/maximum cliques of
G. In this work we generalize the Motzkin-Straus theorem to k-uniform
hypergraphs, establishing an isomorphism between local/global minimiz-
ers of a particular function over ∆ and the maximal/maximum cliques
of a k-uniform hypergraph. This theoretical result opens the door to a
wide range of further both practical and theoretical applications, con-
cerning continuous-based heuristics for the maximum clique problem on
hypergraphs, as well as the discover of new bounds on the clique num-
ber of hypergraphs. Moreover we show how the continuous optimization
task related to our theorem, can be easily locally solved by mean of a
dynamical system.

1 Introduction

Many problems of practical interest are inherently intractable, in the sense that
it is not possible to find fast (i.e., polynomial time) algorithms to solve them
exactly, unless the classes P and NP coincide. The Maximum Clique Problem
(MCP) is one of the most famous intractable combinatorial optimization prob-
lems, that asks for the largest complete subgraph of a given graph. This problem
is even hard to approximate within a factor of n/2(log n)1−ǫ

for any ǫ > 0 where
n is the number of nodes in the graph [15]. Although this pessimistic state
of affairs and because of its important applications in different fields such as
computer vision, experimental design, information retrieval and fault tolerance,
much attention has gone into developing efficient heuristics for the MCP, even if
no formal guarantee of performance may be provided, but are nevertheless useful
in practical applications. Moreover many important problems can be easily re-
duced to maximum clique problem e.g. boolean satisfiability problem, subgraph
isomorphism problem, vertex cover problem etc.

Plenty of heuristics have been proposed over the last 50 years and we re-
fer to [7] for a complete survey about complexity issues and applications of
the MCP. In this introduction, we will focus our attention in particular on the
continuous-based class of heuristics, since they are strongly related to the topics
addressed in this paper. The heuristics of this class are mostly based on a result



of Motzkin and Straus [18] that establishes a remarkable connection between
the maximum clique problem and the extrema of the Lagrangian of a graph
(1). In Section 2 we will see in deeper details the Motzkin-Straus theorem, but
briefly it states, especially in its regularized version, an isomorphism between
the set of maximal/maximum cliques of an undirected graph G and the set of
local/global maximizers of the Lagrangian of G. This continuous formulation of
the MCP suggests a fundamental new way of solving this problem, by allowing
a shift from the discrete domain to the continuous one in an elegant manner.
As pointed out in [21] continuous formulations of discrete problems are partic-
ularly attractive, because they not only allow us to exploit the full arsenal of
continuous optimization techniques, thereby leading to the development of new
algorithms, but may also reveal unexpected theoretical properties.

From an applicative point of view the Motzkin-Straus result led to the devel-
opment of several MCP heuristics [6, 8, 13, 22, 24], but very interesting are also its
theoretical implications. This result in fact was originally achieved by Motzkin
and Straus to support an alternative proof of a slightly weaker version of the
fundamental Turán theorem [27], moreover it was successfully used to achieve
several bounds for the clique number of graphs [9, 28, 29]. The Motzkin-Straus
theorem was also successfully generalized to vertex- weighted graphs [14] and
edge-weighted graphs [23].

Recently the interest of researchers in many fields is focusing on hypergraphs,
i.e. generalizations of graphs where edges are subsets of vertices, because of their
greater expressiveness in representing higher-order relations. Just as graphs natu-
rally represent many kinds of information in mathematical and computer science
problems, hypergraphs also arise naturally in important practical problems [10,
20, 30]. Moreover, many theorems involving graphs, as for example the Ramsey’s
theorem or the Szemerédi lemma, also hold for hypergraphs, in particular for k-
uniform hypergraphs (or more simply k-graphs), i.e. hypergraphs whose edges
have all cardinality k. Nevertheless, all known intractable problems on graphs
can be reformulated on hypergraphs and in particular the maximum clique prob-
lem.

Even if clique problems on hypergraphs are gaining increasing popularity
in several scientific communities, a bridge from these discrete structures to the
continuous domain is still missing. With our work we will fill up this gap, in the
same way as the Motzkin-Straus theorem filled it up in the context of graphs.
Hence the contribution of this paper is purely theoretical and basically consists
in a generalization of the Motzkin-Straus theorem to k-uniform hypergraphs.
However, as happened for the Motzkin-Straus theorem, our hope is to open the
door to a wide range of further both practical and theoretical applications. First
of all, we furnish a continuous characterization of maximal cliques in k-graphs,
allowing the development of continuous-based heuristics for the maximum clique
problem over hypergraphs based on it. Thereby, in Section 5 we provide a discrete
dynamical system to elegantly find maximal cliques in k-graphs, that turns out
to include the heuristic for MCP developed by Pelillo [24] on graphs as a special
case (in fact graphs are 2-uniform hypergraphs). Moreover our theorem can be



used to achieve new bounds for the clique number on k-graphs, a very popular
problem in the extremal graph theory field, however we leave this topic as a
future development of this work.

2 The Motzkin-Straus theorem

Let G = (V, E) be an (undirected) graph, where V = {1, . . . , n} is the vertex set
and E ⊆

(

V
2

)

is the edge set, with
(

V
k

)

denoting the set of all k-element subsets of
V . A clique of G is a subset of mutually adjacent vertices in V . A clique is called
maximal if it is not contained in any other clique. A clique is called maximum
if it has maximum cardinality. The maximum size of a clique in G is called the
clique number of G and is denoted by ω(G).

Consider the following function LG : ∆ 7→ R, sometimes called the La-
grangian of graph G

LG(x) =
∑

{i,j}∈E

xixj (1)

where

∆ =

{

x ∈ R
n : x ≥ 0,

n
∑

i=1

xi = 1

}

is the standard simplex.
In 1965, Motzkin and Straus [18] established a remarkable connection be-

tween the maxima of the Lagrangian of a graph and its clique number.

Theorem 1 (Motzkin-Straus). Let G be a graph with clique number ω(G),
and x∗ a maximizer of LG then

LG(x∗) =
1

2

[

1 −
1

ω(G)

]

Additionally Motzkin and Straus proved that a subset of vertices S is a
maximum clique of G if and only if its characteristic vector xS is a global
maximizer of LG.1 The characteristic vector of a set S is the vector in ∆ defined
as:

xS
i =

1i∈S

|S|

where |S| indicates the cardinality of the set S and 1P is an indicator function
giving 1 if property P is satisfied and 0 otherwise. With σ(x) we will denote the
support of a vector x ∈ ∆, i.e. the set of positive components in x. For example,
the support of the characteristic vector of a set S is S.

1 Actually, Motzkin and Straus provided just the “only if” part of this theorem, even
if the converse direction is a direct consequence of their results [25].



Gibbons, Hearn, Pardalos and Ramana [14], and Pelillo and Jagota [25], ex-
tended the theorem of Motzkin and Straus, providing a characterization of max-
imal cliques in terms of local maximizers of LG, however not all local maximizers
were in the form of a characteristic vector. Finally Bomze et al. [6] introduced a
regularizing term in the graph Lagrangian obtaining Lτ

G : ∆ 7→ R defined as

Lτ
G(x) = LG(x) + τ

∑

i∈V

x2
i

and proved that all local maximizers of Lτ
G are strict and in one-to-one relation

with the characteristic vector of the maximal cliques of G, provided that 0 <
τ < 1

2 .

Theorem 2 (Bomze). Let G be a graph and 0 < τ < 1
2 . A vector x ∈ ∆ is

a local (global) maximizer of Lτ
G over ∆ if and only if it is the characteristic

vector of a maximal (maximum) clique of G.

The Motzkin-Straus theorem was successfully extended also to vertex-weighted
graphs by Gibbons et al. [14] and edge-weighted graphs by Pavan and Pelillo [23].

In this paper we provide a further generalization of the Motzkin-Straus as well
as the Bomze theorems to k-uniform hypergraphs, but firstly, we will introduce
hypergraphs and review another generalization of the Motzkin-Straus theorem
due to Sós and Straus [26].

3 k-uniform hypergraphs

A k-uniform hypergraph, or simply a k-graph, is a pair G = (V, E), where V =
{1, . . . , n} is a finite set of vertices and E ⊆

(

V
k

)

is a set of k-subsets of V , each
of which is called a hyperedge. 2-graphs are also called graphs. The complement
of a k-graph G is given by Ḡ = (V, Ē) where Ē =

(

V
k

)

\ E. A subset of vertices

C ⊆ V is called a clique if
(

C
k

)

⊆ E. A clique is said to be maximal if it is not
contained in any other clique, while it is called maximum if it has maximum
cardinality. The clique number of a k-graph G, denoted by ω(G), is defined as
the cardinality of a maximum clique.

Given a k-graph G with n vertices, the Lagrangian of G is the following
homogeneous multilinear polynomial in n variables:

LG(x) =
∑

e∈E

∏

i∈e

xi . (2)

In this paper, we are interested in studying a generalization of the Motzkin-
Straus Theorem to hypergraphs. As it turns out, LG cannot be directly used to
extend the Motkzin-Straus theorem to k-graphs. Frankl and Rödl in 1984 [12]
proved that by taking a maximizer x∗ of LG with support as small as possible, the
subhypergraph induced by S is a 2-cover, i.e. a hypergraph such that every pair
of vertices is contained in some hyperedge. Since 2-covers in graphs are basically



cliques, we could expect a possible generalization of the Motkzin-Straus theorem
where the clique number is replaced by the size l of the maximum 2-cover in the
hypergraph. However x∗ is not necessarily in the form of a characteristic vector,
and it is not in general possible to express l as a function of LG(x∗). Nevertheless,
this result was used by Mubay [19] to achieve a bound for LG(x∗) in terms of l
on k-graphs, obtaining

LG(x∗) ≤

(

l

k

)

l−k

and he used it to provide an hypergraph extension of the Turán’s theorem.
A further attempt to generalize the Motzkin-Straus theorem to hypergraphs

is due to Sós and Straus [26]. They attach a nonnegative weight x(Hl) to every
complete l-subgraph Hl of a graph G, normalized by the condition

∑

Hl⊆G

x(Hl)
l = 1

and to every complete (l + 1)-subgraph Hl+1 of G they attach the weight

x(Hl+1) =
∏

Hl⊂Hl+1

x(Hl)

and they define

fG(x) =
∑

Hl+1⊆G

x(Hl+1).

Then they get the following.

Theorem 3. maxx fG(x) =
(

k
l+1

)

/
(

k
l

)(l+1)/l
, where k is the order of a maximum

clique K of G. This maximum is attained by attaching weights
(

k
l

)−1/l
to the l-

subgraphs of K and weight 0 to all other complete l-subgraphs.

Note that, the case l = 1 is exactly the Motzkin-Straus theorem.
Even if this result does not explicitly apply to hypergraphs, actually this

theorem could be extended to k-graphs by attaching weights to subsets of hy-
peredges. However in order this theorem to work, the k-graph should satisfy a
strong property that it to be a complete-subgraph graph of an ordinary graph
(also said to be conformal [4]). This restricts the applicability of this theorem
to a class of hypergraphs isomorphic to a subclass of 2-graphs having cliques of
cardinality ≥ k. We will see in the subsequent sections that our generalization
applies to all k-uniform hypergraphs.

4 Characterization of maximal cliques on k-graphs

Given a k-graph G, consider the following non-linear program.

minimize hḠ(x) = LḠ(x) + τ

n
∑

i=1

xk
i

subject to x ∈ ∆

, (3)



where τ ∈ R and LḠ is the Lagrangian of the complement of G. In order to sim-
plify the notation we write h instead of hḠ where the context is non ambiguous.

A local solution of problem (3) is a vector x ∈ ∆ for which there exists a
local neighborhood Nx such that h(y) ≥ h(x) for all y ∈ Nx, while a global
solution is a vector x ∈ ∆ such that h(y) ≥ h(x), for every y ∈ ∆. We say that
x is a strict global/local solution if the inequalities are strict where y 6= x.

A necessary point for a vector x to be a local solution of our program is to
satisfy the Karush-Kuhn-Tucker (KKT) conditions [16] for (3), i.e. there should
exists λ ∈ R such that for all j ∈ V ,

hj(x)

{

= λ if j ∈ σ(x)

≥ λ if j /∈ σ(x)
. (4)

Here, hj(x) denotes the partial derivative of h with respect to xj , i.e.

hj(x) =
∑

e∈Ē

1j∈e

∏

i∈e\{j}

xi + τkxk−1
j ,

and similarity hjℓ(x) will denote the partial derivative with respect to xj and
xℓ, i.e.

hjℓ(x) = 1j 6=ℓ

∑

e∈Ē

1j,ℓ∈e

∏

i∈e\{j,ℓ}

xi + 1j=ℓτk(k − 1)xk−2
j .

A sufficient condition for x to be a local solution of program (3) is to be a
KKT point and to have the Hessian matrix of h in x positive definite on the
subspace M(x) defined as

M(x) = {ε ∈ R
n :

n
∑

i=1

εi = 0, εj = 0 for all j such that hj(x) > λ},

where the Hessian matrix of h in x is defined as

H(x) = [hjℓ(x)]j,ℓ∈V

In other words if x is a KKT point and for all ε ∈ M(x), ε′H(x)ε > 0, then x

is a local solution of (3).

Lemma 1. Let G be a k-graph and let x be a local (global) solution of (3) with
τ > 0. If C = σ(x) is a clique of G then it is a maximal (maximum) clique and
x is the characteristic vector of C.

Proof. Since x is a local solution of (3), it satisfies the KKT conditions (4).
Therefore for all j ∈ C we have that λ = τkxk−1

j and it follows that x is the
characteristic vector of C. Moreover if there exists a larger clique D that contains
C, then there exists a vertex j ∈ D\C such that hj(x) = 0 < λ. This contradicts
conditions (4). Hence, C is a maximal clique of G.

Finally, h(x) = τ |σ(x)|1−k attains its global minimum when x is the char-
acteristic vector of a maximum clique. ⊓⊔



Lemma 2. Let G be a k-graph and x a local (global) solution of (3). If one of
the following conditions holds

1. 0 < τ < 1
k(k−1) ,

2. τ = 1
2 , k = 2 and σ(x) is as small as possible,

3. τ = 1
k(k−1) and k > 2,

then x is the characteristic vector of a maximal (maximum) clique of G.

Proof. We claim that the support of x is a clique of G. Otherwise suppose that
an edge ẽ ⊆ σ(x) is missing. Let j, ℓ ∈ ẽ such that xj ≤ xℓ ≤ mini∈ẽ\{j,ℓ} xi and

take y = x + ε(ej − eℓ) ∈ ∆, where ej denotes a zero vector except for the j-th
element set to 1 and where 0 < ε ≤ xℓ.

We study the sign of h(y) − h(x) in a local neighborhood of x as ε → 0
by means of the Taylor expansion of h(x) truncated at the second-order term,
where the first-order term cancels out since x satisfies (4), as it is a local solution
of (3), and thereby hj(x) = hℓ(x):

h(y) − h(x) =

=
ε2

2
[hjj(x) + hℓℓ(x) − 2hjℓ(x)] + · · · =

=
ε2

2



τk(k − 1)
(

xk−2
j + xk−2

ℓ

)

− 2
∑

e∈Ē

1j,ℓ∈e

∏

i∈e\{j,ℓ}

xi



+ . . .

.

Let µ = 2
∑

e∈Ē 1j,ℓ∈e

∏

i∈e\{j,ℓ} xi − (xk−2
j + xk−2

ℓ ). Clearly µ ≥ 0.
Then we can write

h(y) − h(x) =

=
ε2

2

[

τk(k − 1)(xk−2
j + xk−2

ℓ ) − µ − (xk−2
j + xk−2

ℓ )
]

+ · · · =

=
ε2

2

{(

xk−2
j + xk−2

ℓ

)

[τk(k − 1) − 1] − µ
}

+ . . .

. (5)

Note from (5) that the second-order term is nonpositive and becomes zero
only if τ = 1

k(k−1) and µ = 0. We proceed now by distinguishing 3 cases, each of

which yields a contradiction, thereby proving that σ(x) is a clique of G. This in
conjunction with Lemma 1 concludes the proof.

Case 1: 0 < τ < 1
k(k−1) or µ > 0.

In this case, h(y)− h(x) is strictly negative for sufficiently small values of ε,
contradicting the local minimality of x.

Case 2: τ = 1
k(k−1) , k = 2 and µ = 0.

Here, from the hypothesis, we have that σ(x) is as small as possible. For
k = 2 we have trivially that h(y) − h(x) = 0, contradicting the minimality of
the support size of x.

Case 3: τ = 1
k(k−1) , k > 2 and µ = 0.



Note that if µ = 0, then ẽ is the only edge in Ē with vertices in σ(x) that
contains both j and ℓ. Moreover xi is constant for all i ∈ ẽ. It follows that
we could arbitrarily have chosen j, ℓ in ẽ for the construction of y. Hence, for
every pair of vertices in ẽ there exists only one edge in Ē with vertices in σ(x)
containing them, namely ẽ.

Let m ∈ arg mini∈ẽ\{j,ℓ} xi and take z = x+ε
[

(ej + eℓ)/2 − em
]

∈ ∆ where
0 < ε ≤ xm. We study the sign of h(z) − h(x) in a local neighborhood of x

as ε → 0 by means of the Taylor expansion of h(x) truncated at the third-
order term. Here again, the first-order term cancels out since x satisfies (4) and
therefore we yield

h(z) − h(x) =

=
ε2

2

[

hjj(x) + hℓℓ(x)

4
+ hmm(x) − hjm(x) − hℓm(x) +

hjℓ(x)

2

]

+

+
ε3

6

[

hjjj(x) + hℓℓℓ(x)

8
− hmmm(x) −

3

2
hjℓm(x)

]

+ . . .

(6)

where huvw denotes the partial derivative of h with respect to xu, xv and xw,
i.e.

huvw(x) = 1u6=v1u6=w1v 6=w

∑

e∈Ē

1u,v,w∈e

∏

i∈e\{u,v,w}

xi + 1u=v=w(k − 2)xk−3
u .

By the observation made at the beginning of this case and by setting ξ = xj ,
it follows that ∀u, v ∈ ẽ.huv(x) = ξk−2, and ∀u ∈ ẽ.huuu(x) = (k − 2)ξk−3

and finally hjℓm(x) = ξk−3. Hence, the sign of h(z)− h(x) for sufficiently small

values of ε is given by the sign of − ε3

8 kξk−3 which is clearly negative and this
contradicts the local minimality of x. ⊓⊔

An interesting observation deriving in a straightforward manner from Lemma 2
is that all minimizers of (3) are strict provided that conditions (1) and (3) hold.
The only case where “spurious” solutions could arise is when considering k = 2
and τ = 1

2 that is equivalent to maximize the Lagrangian of graphs over ∆.
The following theorem provides a generalization of the Motzkin-Straus The-

orem (1) to k-graphs.

Theorem 4. Let G be a k-graph with clique number ω(G). Then h attains its
minimum over ∆ at τ ω(G)1−k provided that 0 < τ ≤ 1

k(k−1) .

Proof. Let x be a global solution of (3) with support as small as possible. Then
by Lemma 2 we have that x is the characteristic vector of a maximum clique of
G. It follows that h(x) = τ |σ(x)|1−k = τω(G)1−k. ⊓⊔

Note that this result is equivalent to the original Motzkin-Straus Theorem
(1) for graphs, if we take k = 2 and τ = 1

2 . In fact, in this case we obtain

LG(x) =
∑

{i,j}∈E

xixj =
1

2
−

∑

{i,j}∈Ē

xixj −
1

2

n
∑

i=1

x2
i =

1

2
− h(x)



and it follows that

max
x∈∆

LG(x) =
1

2
− min

x∈∆
h(x) =

1

2
−

1

2ω(G)
=

1

2

[

1 −
1

ω(G)

]

.

The next lemma is instrumental to prove a generalization of the Bomze The-
orem (2) to k-graphs.

Lemma 3. Let G be a k-graph and xC the characteristic vector of a maximal
(maximum) clique C of G. Then xC is a strict local (global) solution of (3)
provided that 0 < τ < 1

k .

Proof. For simplicity let x = xC . We will show that x is a strict local solution
of (3) by proving that it satisfies the sufficient conditions introduced at the
beginning of this section. First we prove that x satisfies (4) and then we show
that H(x) is positive definite on the subspace M(x).

For all j ∈ σ(x) we have hj(x) = τk|C|1−k = λ, while for all ℓ /∈ σ(x) we
have hℓ(x) ≥ |C|1−k > λ, since σ(x) is a maximal clique and therefore at least
one edge joining ℓ and k − 1 vertices in C is missing. Hence, x is a KKT point.

Moreover all eigenvalues of H(x)|σ(x), i.e. the Hessian in x restricted to the
support of x, are positive. In fact, H(x)|σ(x) is a diagonal matrix with positive
diagonal entries

H(x)|σ(x) = τk(k − 1)|C|2−kI

where I is the identity matrix. This implies that H(x) is positive definite on the
subspace M(x).

Finally, h(xC) = τ |C|1−k attains its global minimum where C is as large as
possible, i.e. a maximum clique. ⊓⊔

Theorem 5. Let G be a k-graph and 0 < τ ≤ 1
k(k−1) (with strict inequality for

k = 2). A vector x ∈ ∆ is a local (global) solution of (3) if and only if it is the
characteristic vector of a maximal (maximum) clique of G.

Proof. It follows from Lemmas 2 and 3. ⊓⊔

Note that if we take k = 2 and 0 < τ < 1
2 then local (global) minimizers of h

correspond to local (global) maximizers of L
1
2
−τ

G . In fact

h(x) =
∑

{i,j}∈Ē

xixj + τ

n
∑

i=1

x2
i =

1

2
−

∑

{i,j}∈E

xixj +

(

τ −
1

2

) n
∑

i=1

x2
i =

=
1

2
−





∑

{i,j}∈E

xixj +

(

1

2
− τ

) n
∑

i=1

x2
i



 =
1

2
− L

1
2
−τ

G (x).

Since 0 < 1
2 − τ < 1

2 , what we obtain is an equivalent formulation of the Bomze
Theorem on graphs in terms of a minimization task.



5 Finding maximal cliques of k-graphs

Summarizing our results, we propose a generalization of a well-known theorem
in the extremal graph theory field to k-graphs that turns out to provide a contin-
uous characterization of a purely discrete problem, i.e. finding maximal cliques
in k-graphs. More precisely, we implicitly provide an isomorphism between the
set of maximal/maximum cliques of a k-graph G and the set of local/global
minimizers of a particular function hḠ over ∆, that permits to perform local
optimization on hḠ in order to extract, through the isomorphism, a maximal
clique of the k-graph G. In this section we will see that the optimization of hḠ

may be easily carried out thanks to a theorem due to Baum and Eagon [1].
In the late 1960s, Baum and Eagon [1] introduced a class of nonlinear trans-

formations in probability domain and proved a fundamental result which turns
out to be very useful for the optimization task at hand. Their result generalizes
an earlier one by Blakley [5] who discovered similar properties for certain homo-
geneous quadratic transformations. The next theorem introduces what is known
as the Baum-Eagon inequality.

Theorem 6 (Baum-Eagon). Let P (x) be a homogeneous polynomial in the
variables xi with nonnegative coefficients, and let x ∈ ∆. Define the mapping
z = M(x) as follows:

zi = xi
∂P (x)

∂xi

/

n
∑

j=1

xj
∂P (x)

∂xj
, i = 1, . . . , n. (7)

Then P (M(x)) > P (x), unless M(x) = x. In other words M is a growth
transformation for the polynomial P .

This result applies to homogeneous polynomials, however in a subsequent
paper, Baum and Sell [3] proved that Theorem 6 still holds in the case of arbitrary
polynomials with nonnegative coefficients, and further extended the result by
proving that M increases P homotopically, which means that

P (ηM(x) + (1 − η)x) ≥ P (x), 0 ≤ η ≤ 1

with equality if and only if M(x) = x.
The Baum-Eagon inequality provides an effective iterative means for maxi-

mizing polynomial functions in probability domains, and in fact it has served as
the basis for various statistical estimation techniques developed within the the-
ory of probabilistic functions of Markov chains [2]. As noted in [3], the mapping
M defined in Theorem 6 makes use of the first derivative only and yet is able to
take finite steps while increasing P . This contrasts sharply with classical gradi-
ent methods, for which an increase in the objective function is guaranteed only
when infinitesimal steps are taken, and determining the optimal step size entails
computing higher-order derivatives. Additionally, performing gradient ascent in
∆ requires some projection operator to ensure that the constraints not be vio-
lated, and this causes some problems for points lying on the boundary [11, 17].
In (7), instead, a computationally simple vector normalization is required.



It is worth noting that not all stationary points of the mapping M correspond
to local maxima of the polynomial P ; consider the vertices of ∆ as an example.
However all local maxima are the only stationary states that are stable, or even
asymptotically stable if they are strict. Therefore if the dynamics gets trapped
in non optimal stationary states, it suffices a small perturbation to get rid of the
problem. We will see an example of this fact in Section 6.

Moving a step back to our function hḠ, it satisfies the hypothesis of Theorem
6 since it is a homogeneous polynomial of degree k with nonnegative coefficients
in the variables xi with x ∈ ∆. However our targets are not local maxima but
local minima. Fortunately, it turns out that we can transform our minimiza-
tion problem into an equivalent maximization one, by keeping the conditions of
Theorem 6 still satisfied.

Note that all coefficients of hḠ(x) are positive and upper bounded by 1.
Furthermore, let ξ = max

[

τ, 1
k!

]

and note that ξ can be expressed as a complete
homogeneous polynomial π(x) of degree k in the variables xi as follows

ξ = ξ

(

n
∑

i=1

xi

)k

= π(x), ∀x ∈ ∆.

It is trivial to verify that the polynomial π(x) − hḠ(x) is a homogeneous poly-
nomial of degree k with nonnegative coefficients. Moreover

arg min
x∈∆

hḠ(x) = arg max
x∈∆

[ξ − hḠ(x)] = argmax
x∈∆

[π(x) − hḠ(x)] .

Therefore, in order to minimize hḠ we can apply Theorem 6 considering P (x) =
π(x) − hḠ(x), and since

∂π(x)

∂xi
= kξ

(

n
∑

i=1

xi

)k−1

= kξ

we end up with the following dynamics for the minimization of hḠ over ∆

x
(t+1)
i =

x
(t)
i

[

kξ − hi
Ḡ

(x(t))
]

kξ −
∑n

j=1 x
(t)
j hj

Ḡ
(x(t))

, (8)

that will converge to a local minima of hḠ starting from any state x in the interior
of ∆, which corresponds by Theorem 5 to a maximal clique of the k-graph G.

6 A toy example

This section is not intended to provide experimental evidence that the dynamics
(8) works, since we have a proof that guarantees it. Indeed, we provide a very
simple toy example.

Figure 1 represents a 3-graph T , and the two sets that seem to be 4-edges are
actually complete 3-subgraphs on the respective vertex sets. Hence T contains



all possible 3-edges on the 5 vertices except for {0, 3, 4} and {1, 3, 4}. T is a small
example of a non conformal graph, i.e. it is not a complete-subgraphs graph of
an ordinary graph. In other words, there exists no ordinary graph that has the
same maximal cliques and therefore the generalization of the Motzkin-Straus
theorem due to Sós and Straus [26] does not hold on this 3-graph. The set of
maximal cliques of T is {{0, 1, 2, 3}, {0, 1, 2, 4}, {2, 3, 4}}.

1

2

30

4

Fig. 1. A non conformal 3-graph T . Note that the sets {0, 1, 2, 3} and {0, 1, 2, 4} should
be interpreted as complete 3-subgraphs on the respective vertex set. We draw them as
4-edges only for graphical clarity. In other words T contains all possible 3-edges on the
5 vertices except for {0, 3, 4} and {1, 3, 4}.

We illustrate the behaviour of the dynamics (8) when applied to our toy
example. Our parameters choice in this test is τ = 1

12 , but no matter what
is chosen as long as 0 < τ < 1

6 as stated in Theorem 5, and therefore in the
dynamics we have kξ = 1

2 . The initial state encodes the hypothesis we make
about the likelihood of a vertex to be part of a maximal clique, in fact if we set
for example the i-th component of the initial state vector to zero then the i-th
vertex will never be considered in a solution. Figure 2 presents three plots of the
evolution of the state vector of the dynamics (8) for the 3-graph T over time.
The initial states are respectively set to the simplex barycenter in the first two
plots in order to have full uncertainty, and to x(0) = (0.1, 0.1, 0.1, 0.35, 0.35)′ in
the last one in order to provide an initial stronger preference on the vertices 3
and 4.

Analysing our toy graph, we see that vertex 2 belongs to every maximal
clique of T , while vertices 0 and 1 are shared between the two maximal 4-cliques
and finally vertices 3 and 4 belong individually to a different maximal 4-clique,
but together to the maximal 3-clique. Considering the first 114 iterations of the



first two plots in Figure 2, we see that without advancing preferences of vertices,
i.e. we start from the barycenter of the simplex, the dynamics converges to a
stationary state, that is not optimal and hence not stable, but very informative.
In fact, vertex 2 that certainly belongs to a maximal clique, has the highest
likelihood, followed by vertices 0 and 1, that are shared between the two biggest
maximal cliques in T and finally we find vertices 3 and 4. By inducing a small
perturbation at that point, we introduce some random preference on vertices
that leads the dynamics to a certain solution; in the first case we end up with
the maximal 4-clique {0, 1, 2, 3}, while in the second one we end up with the
maximal 4-clique {0, 1, 2, 4}. Let us move now our attention on the last plot in
Figure 2. In order to extract the smallest maximal clique, that has a smaller basin
of attraction we have to put stronger preferences on some vertices; for example
we put stronger hypothesis on the vertices 3 and 4, since the only maximal clique
they share is the smallest one. As we can see, the dynamics is able to extract also
the maximal clique {2, 3, 4}. The solutions we found for this small example are
the only stable ones for the dynamics (8) when applied to T . Hence randomly
choosing the initial state we will certainly end up with a maximal clique, but
clearly the maximal cliques with a larger basin of attraction are more likely to
be extracted.

7 Conclusions and future work

In this paper we provide a generalization of a well-known extremal graph theory
result, i.e. the Motzkin-Straus theorem, to k-uniform hypergraphs, and through
it, we are able to provide a bridge between the purely discrete problem of finding
maximal cliques in k-graphs and a minimization task of a continuous function.
More precisely we introduce an isomorphism from the set of maximal/maximum
cliques of a k-graph G and the set of local/global minima of the function hḠ. In
this way we can focus our attention on minimizing hḠ in order to find maximal
cliques in G. Nevertheless, in the last section we provide also a dynamical system,
derived from a result due to Baum and Eagon, to easily solve the optimization
problem at hand. This basically furnishes an heuristic for the maximum clique
problem on k-graphs.

This result opens a wide range of possible future works. First of all, we may
conduct experiments on the effectiveness of our heuristic for the maximum clique
problem on k-graphs, however we expect in general performances on hypergraphs
comparable with those obtained by Pelillo [24] on simple graphs. Even more
interesting could be the theoretical applications carrying on with our work, such
as finding new bounds on the clique number of k-uniform hypergraphs, or further
generalizing the Motzkin-Straus theorem to vertex-weighted and edge-weighted
hypergraphs.
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