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Abstract

To date, the vast majority of access control research and develop-
ment has been on gathering, managing, and exchanging information
about users. But an equally important component which has yet to be
fully developed is the Policy Decision Point - the system that decides
whether an access request should be granted given certain attributes
of the requestor. This paper describes the research and implemen-
tation of a new PDP system for an undergraduate honors project.
This PDP system employs three unique features which differentiate it
from existing technology: collaboration capabilities, trusted manage-
ment, and interoperability with other access control systems. Security
considerations and future research areas are also discussed.
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1 Introduction

This Honors Thesis was begun in the Fall of 2003 by Geoffrey Stowe under the

guidance of Dr. Edward Feustel. While it is a computer science thesis, and

hence inherently technical, I went to lengths to make this paper approachable

and interesting to all audiences. People without a technical background may

wish to read the appendix first for an explanation of some basic terms and

concepts.

1.1 Background

The explosive growth of the internet over the last ten years has changed the

way people live their lives in many different ways. Finding and sharing in-

formation from different parts of the world has gone from being a difficult

problem to something everyone takes for granted. The entire paradigm of

human communication has shifted to embrace the benefits of network tech-

nology. This shift has brought tremendous benefits, but with them come

new dangers from people exploiting weaknesses in electronic systems. Words

like ’hacker,’ ’virus,’ and ’encryption’ have entered the cultural vocabulary.

As government and industry continue to move their vital operations onto

the internet, the need for secure, reliable systems becomes more imperative.

This paper will discuss my research into a particular topic of network secu-

rity that has promising potential to secure one particular part of internet

communication.

Let’s use the analogy of medical records to take us through an electronic
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transaction. Say an insurance company enrolls a new client, and they want

to retrieve the patient’s records from his doctor across town. This is illus-

trated in Figure 1. The company sends a courier to the other office, and the

courier asks the receptionist there for the records. The receptionist calls a

doctor who must approve the release of the records. The receptionist will

probably ask for a signed note from the patient and might even call the in-

surance company to make sure the courier is supposed to be picking up this

information. The doctor will take all this information, decide the records

should be released, and will tell an assistant to retrieve the records from

their filing cabinet. The assistant then puts them in a sealed envelope and

gives them to the courier who brings them back to the insurance company.

This analogy transfers naturally to an electronic setting. Every time you visit

a webpage, a similar process will occur - your computer sends a request over

the internet to a webserver running on a remote system, and the webserver

sends back the webpage that you asked for. So for internet transactions,

the insurance office in our example is some application on your computer.

TCP/IP and other lower-level protocols play the role of the courier. The

doctor’s office is some remote server, the receptionist an application running

on that server, and the filing cabinet a database. Sealing the record in an

envelop is analogous to sending it over an encrypted channel, such as one

provided by SSL. 1 A certificate exchange 2 could simulate calling the insur-

1See Appendix A.3 for a description of SSL.
2See Appendix A.2 for a description of certificates.
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Figure 1: A model of obtaining medical records from a doctor’s office

ance company to make sure they authorized the courier. All of these steps

have been, and continue to be, thoroughly studied.

There is, however, another key component to this process which is only be-

ginning to be researched - the doctor. At the doctor’s office, he is the one

who decides whether to release the files or not. In an electronic setting this

is called the Policy Decision Point (PDP), and it is essentially an application

that decides whether to permit or deny a request. This is the topic of my

research and software development. Using common internet standards and

open source software, I developed a robust PDP system with features that,

to our knowledge, do not exist in any other software.
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In this paper I will first survey the current range of access control software.

Then, I will describe the components of my software implementation focus-

ing particularly on the original features. Finally, I will make suggestions

for future research and extensions of this project. In my appendices I also

continue discussion of various attempts and failures during the development

process.

2 Survey of Current Access Control Technol-

ogy

Access control and general network security are synonymous in many cases.

A firewall, such as iptables [Wel04], is the primary means of controlling access

to many online resources such as websites and email systems; firewalls are

also used to protect personal computers from hackers and viruses. This is a

program to moderate who is allowed to make any connection to a system.

For example, a company’s firewall might allow anyone in the world to access

the company’s website, but only allow certain people (or IP addresses, more

specifically) to access the company e-mail server. Firewalls and other similar

software can also be used to keep out viruses and protect against denial of

service attacks.3 However, as a means of access control they are limited to

making yes or no decisions regarding whether an IP address can make any

connection to a service. So, they can prevent unknown people from accessing

any part of a website, but they cannot figure out whether a certain person is

3See Appendix A.4 for a description of denial of service attacks.
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allowed to access a certain part of a website.

2.1 .htaccess

.htaccess is probably by far the most common access control scheme currently

used on the internet. When a website asks for a username and password be-

fore displaying a page, it is most likely using a .htaccess file. This essentially

password-protects a directory on a file system, so a web browser must present

a valid username/password pair when requesting a document from the server.

The content of a .htaccess file provides the simple rules for what usernames

or IP addresses can access a directory.

The .htaccess scheme is simple, so it can be secure in most circumstances,

but it is difficult to manage in a large system, and it does not hold up to seri-

ous attacks. Over regular channels, .htaccess is vulnerable to packet sniffing

and replay attacks, although these problems can be eliminated if it is run

over SSL. [Han01] Its decision-making capacity is limited to checking if a

username and password is correct. This means that access to a resource can

only be controlled by limiting who knows a valid password. In a large-scale

system, managing usernames and passwords for every user on every resource

is nearly impossible. Passwords might be written down or shared with other

users, defeating the objective of access control. The username/password

paradigm suffers other drawbacks such as the necessity to transmit pass-

words through some secure side channel, intruders cracking passwords, users

forgetting passwords, and other weaknesses that can be mitigated with Pub-
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lic Key Infrastructure (PKI).4 So, while .htaccess is a useful tool in many

circumstances, it cannot provide sufficient power and flexibility to the next

generation of distributed applications.

2.2 Shibboleth

Shibboleth, an Internet 2 project, is more sophisticated means of providing

access control decisions. The Shibboleth model is relatively straightforward:

a user contacts his or her institution and follows that institutions means of be-

ing authenticated. This part of the process could involve sharing personal in-

formation such as a person’s name, their credit card number, or a certificate.

When the user requests a service from a third party, that party can request

and obtain credentials from the user’s institution. If the credentials match

the service’s access control policy, it returns the requested service. [NS04]

Privacy is very important in the Shibboleth handshake, so Shibboleth in-

cludes a mechanism to allow the user to choose which attributes it wants

sent to the requested service. [Car01] In other words, a student trying to

access a course web page could allow his name to be sent to the web server

for verification, but the same student trying to access a political website

could forbid his name from being released. Also, since the service requests

credentials from the institution, many attributes will be generic instead of

uniquely identifying individuals. Also, Shibboleth includes the ability to use

an LDAP server to find more attributes about a person. This work is all

4See Appendix A.2 for a description of PKI.
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done at the origin site, so the Policy Decision Point itself does not contact

external attribute sources but rather uses only the information provided in

a request. These two features of privacy and LDAP support would probably

be useful in any robust access control system. Shibboleth is also embracing

SAML (which will be introduced later) and uses it for much of its query and

response traffic. [EC02] This could allow Shibboleth to communicate with

other access control systems, including ours.

Shibboleth, however, is lacking in several regards. Shibboleth’s version of

the Policy Decision Point is called the Resource Manager, and it is very sim-

ilar in concept to our system. However, Shibboleth leaves this part of the

model as essentially a black box without defining standard policy language,

combining algorithms, etc. Thus, it does not allow for collaboration between

multiple decision points on the service side. Dartmouth researchers have de-

veloped a SDSI/SPKI system called SPADE that will allow users to control

what attributes they release to their institution. This allows for decision

point collaboration, but it applies only to the client authentication part of a

Shibboleth exchange. [NS04] So, Shibboleth’s RM model allows for only one

institution to control a given database. Also, it does not define any uniform

policy language, so it cannot utilize the flexibility found in XACML. Our

system includes both these features. So, our access control system utilizing

XACML could conceivable be used with Shibboleth through the common lan-

guage of SAML and also improve upon Shibboleth by including additional

features.
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2.3 PERMIS

The PrivilEge and Role Management Infrastructure Standards validation

(Permis) is a European project designed to determine user authorization

when accessing a computer system. One of their large-scale implementations

is in Bologna, Italy and it allows architects and other construction profes-

sionals to view, modify, and comment on building plans online. Permis takes

the approach of dividing certificates into two categories: permanent identity

(PKI certificates) and changeable attributes (PMI certificates). PKI certifi-

cates can be issued by standard CAs just as they are under other schemes,

but PMI certificates are only issued by the responsible organization. In other

words, if an individual wants to certify that he is an architect for Company

A, he will get a certificate issued by Company A.

The Permis infrastructure is similar to that of Shibboleth in that it allows

for individual sites to issue certificates attesting to attributes they can verify.

Also, like Shibboleth, it leaves definitions of specific Policy Decision Point

operation to whoever implements the system. Currently, Permis is being in-

tegrated into the Internet 2 project NMI, so I would expect it to begin using

some of the SAML standards in later versions. [BL03]

2.4 CORBA

CORBA is a middleware infrastructure that allows processes running on dis-

tributed hosts to securely communicate over the internet. [Gro02] While this

is not directly applicable to access control, communicating between processes
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involves many of the same problems. For example, when a CORBA object

on one computer receives a stub request, it must figure out whether or not

to execute the request. CORBA is used as guidance for some of the protocol

issues which arise in our system.

2.5 Home Grown System

In the summer and fall of 2003, I worked on a Homeland Security Council

project called Livewire which involved government and private sector em-

ployees playing a simulated cyber attack on the nation’s infrastructure. One

of my responsibilities was to restrict webpages on our system so only appro-

priate players could see them. I mention this problem because I believe it

will become very common in other settings. We were using client certificates

to authenticate users and keep unauthorized individuals out of the system, so

we felt using passwords and .htaccess files was cumbersome and unnecessary.

Since we created the client certificates ourselves, we included both unique

identifiers and group identifiers that we planned to use to control access. We

wanted a straightforward way of pulling a single field off the client certificate

and performing a simple check to either permit or prohibit access. We also

wanted to prevent users from accessing the system outside of the appropriate

timeframe, and we wanted to be able to make changes to our policy quickly

without disrupting the rest of the system. Finally, we did not want to use a

system like Shibboleth that would first require learning the nuances of their

system, then setting up a Shibboleth site in front of our servers and, ideally,
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a Shibboleth site at each of our clients.

We could find no system which fit all of our needs. Ultimately, we modified

the Apache configuration files to hardcode which certificates were allowed

into which directories. While this solution worked, it was less than optimal

for two reasons: security and ease of use. Since we relied on our web server

to make access control decisions, any hack of our webserver would compro-

mise the entire system. This was a particularly dangerous vulnerability since

webservers are complicated systems - thus they are prone to exploits and

cannot easily be run on secure hardware. Also, modifying Apache configura-

tion files is a tedious process that is prone to error. Making changes on the

fly is impossible since the webserver must be restarted before changes take

effect. What we ideally wanted was a way to write an access control policy,

plug various components into Apache, and have everything work. This was

a large part of my motivation for building this system.

2.6 SAML and XACML

The Organization for the Advancement of Structured Information Standards

(OASIS) is a group representing both academia and industry that defines

standard ways of encoding different types of information. The two OA-

SIS standards we are concerned with are the Security Assertion Markup

Language (SAML) and the eXtensible Access Control Markup Language

(XACML). These are both XML5 specifications, meaning they define what

5See Appendix A.1 for a description of XML.
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information can and must be included in communications at various stages

of an access control dialogue. SAML defines mechanisms to relay access re-

quests, results, and any required intermediary information. This is used by

many organizations as a method of communicating authorization informa-

tion. However, SAML does not specifically define how the Policy Decision

Point should operate. In other words, both a SAML request and a SAML

response are well defined, but getting from one to the other is left up to the

user to implement in any way.

XACML version 1.0 was published in 2003, 2 years after the original SAML

specification. Its major feature is that it defines a common way to represent

access control policies. This is the mechanism that takes a request and de-

cides what response to return - the heart of a PDP. However, XACML also

defines its own request and response formats, so it is not directly compatible

with SAML. Sun Microsystems has written an implementation of XACML

in Java which includes the XML parsing, basic decision making algorithms,

policy combining algorithms, and the capability to add custom attributes

and algorithms. But, the Sun implementation does not include the capabil-

ity to run on a network and read requests over a secure socket. This is a key

step in enabling XACML to be used in real-life settings.

Using the Sun XACML implementation as a core for my software, I extended

the software to develop a new conception of the PDP. I designed the PDP

to function as an isolated node enabling three new features: reliable policy

management, PDP collaboration, and compatibility with other access con-
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trol systems. Policy management works by sending XACML requests to the

PDP server in order to add policies or start instances of a PDP. Since they

take the form of an XACML request, they can be permitted or denied the

same as any other request. PDP collaboration can allow multiple computers,

and even multiple organizations, to all simultaneously control access to one

resource. Since the PDP server is one distinct node, it can forward requests

to other PDP servers and require approval from them all before granting

access. Finally, I implemented a simple translation from SAML to XACML

that will allow this PDP system to communicate with other access control

programs using the common language of SAML.

2.7 Cardea

Cardea is one of the test sites currently experimenting with both SAML

and XACML. A project of the NASA Advanced Supercomputing Division,

Cardea employs a very similar model of access control to ours, which I will

describe in the next section. It’s unclear how much of their model they

have implemented, but they propose having both a SAML PDP and an

XACML PDP. Also, their PDPs cannot communicate with each other to

both independently verify a decision, nor with other PDPs outside their

system. [Lep03] Our model proposes a PDP that can handle both SAML

and XACML as well as communicate with PDPs in other systems. So while

Cardea approaches the same questions as we do in much the same way, the

PDP described in this paper allows for more extensive operability than is
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found in their system.

2.8 Our Entire Project

This research was carried out in collaboration with Paul Mazzuca and Fang

Pei, both of Dartmouth College. Our goal is to produce a complete access

control system implementation following the diagram below. The general

Figure 2: Our access control model

paradigm we are using is that some client makes a request to a service. A

13



common example is a web browser requesting a webpage from a webserver.

The service then collects whatever relevant attributes it knows about the

client. Typical attributes could be the client’s IP address, a client certificate,

or a name the client has sent to the webserver. The service will bundle all

this information into either an XACML request or a SAML request and then

send it to the PDP. The PDP will make a decision based on the request, its

internal policies, environment information such as the date and time, and any

other external attributes it wishes to gather. Once it has made a decision, it

will create an XACML or SAML response which it sends to the PEP. If the

PEP believes the response is valid, it will release the requested resource to

the service. In the webpage example, this would entail reading the contents

of a file from a disk and transmitting the contents to the service. The service

will then return the requested information to the client.

3 The Core Software

My software consists of several different components of different levels of

complexity. Since I designed them sequentially, my design of earlier compo-

nents fed naturally into the design of later components. So, I will describe

the software in roughly the chronological order of implementation. Some

of the later features were designed to replace the earlier ones, for example

SSL sockets should be used instead of regular sockets, but the final software

includes all the components I will describe below. The original features I

added are discussed in subsequent sections.
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3.1 Sun’s XACML Software

As a member of OASIS and a leader in their field, Sun Microsystems is at

the cutting edge of distributed network systems. After OASIS published

its XACML standard, Seth Proctor, a Sun employee, led an open-source

development team to implement the XACML standard in Java. The result

was a powerful piece of software which implemented all the OASIS standards.

Specifically, it provided for the creation of Policy Decision Points which could

process request objects and return responses. Many of the standard policy

combining algorithms were included. However, it would only function if all

the information it required was on a single computer. As the documentation

says: ”This distribution does not provide any kind of support for sending

requests and responses over a network (e.g., to support an online PDP ser-

vice)”. [Mic03b]

Sun’s XACML implementation is freely available at their website, sunx-

acml.sourceforge.net, and it includes some helpful guides for installing and

using it. My first tests with the software involved reading in sample XACML

policies from local files, evaluating them, and returning a result. For example,

the sample program that comes with the implementation is as follows:

// load the policies

FilePolicyModule policyModule = new FilePolicyModule();

policyModule.addPolicy("Policy.xml");

// setup the policy finder

PolicyFinder policyFinder = new PolicyFinder();

Set policyModules = new HashSet();

policyModules.add(policyModule);

policyFinder.setModules(policyModules);

// module to provide the current date & time

CurrentEnvModule envModule = new CurrentEnvModule();
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// setup the attribute finder

AttributeFinder attrFinder = new AttributeFinder();

List attrModules = new ArrayList();

attrModules.add(envModule);

attrFinder.setModules(attrModules);

// create the PDP

PDP pdp = new PDP(new PDPConfig(attrFinder, policyFinder, null));

// now work on the request

RequestCtx request =

RequestCtx.getInstance(new FileInputStream("request.xml"));

ResponseCtx response = pdp.evaluate(request);

// for this example we’ll just print out the result

response.encode(System.out);

As the comments indicate, creating a PDP involves several steps: loading

in an XML file that describes the policy, setting up a policy finder, setting

up an attribute finder, and finally starting the PDP. Then, a request can be

read in from an XML file and passed along to that PDP. Finally, the response

will be printed out.

3.2 Integrating Network Sockets

The simplest feature of my PDP system is the ability to read in requests

over a network socket. This required creating a new class that would do the

following:
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• Create a PDP

• Read requests from a socket

• Process those requests

• Return the result over a socket

• Handle errors so a failure will not crash the entire system

Since creating a PDP involves specifying which policies it should use, this

software needed to include a mechanism for reading this information over a

socket. Thus, since the code had to respond to different requests in different

ways, designing my software included designing a protocol and a mechanism

to manage policies.

3.3 Simple Policy Management

I created a new class called PolicySet which would store a list of policies

someone wanted to include in a PDP. This class basically consists of a Hash-

Set of policies and some helper functions. For a user to add a policy, he or

she would first store the policy on the local file system through passing the

STORE command followed by the XML text of the policy. Then, the user

would ADD that policy to a PDP. Although it appears to the user as if he or

she is adding policies directly into a PDP, in reality the policies are simply

being collected to be added all at once when the PDP is started. The user

can also LIST which policies are stored on the system, or in a particular

PDP.
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3.4 Multiplexing PDPs

Let’s return to our model for access control and envision a theoretical com-

pany implementing it. Since the PDP can be separated entirely from the

rest of the system, it could ideally run on a secure system which will provide

the utmost assurance that the decisions it makes can be trusted. However,

since secure hardware is expensive, it would be reasonable for this company

to want all of its access control decisions made on one system. Therefore, I

endeavored to allow multiple PDPs using shared policies to run on the same

platform. Since they would all be listening on the same port, this meant

building a layer of multiplexing that would direct requests to the correct

PDP.

On a low level, multiplexing PDPs meant building a Java Set of references to

different PDP objects. So, I created a class called PDPSet which would store

PDP objects along with a name and allow access to those PDPs in order to

evaluate requests. This again involved creating a class that stored references

using a HashSet and managed modifications to that HashSet with various

helper functions. One issue which arose was how to handle a user who re-

quests creating a PDP which has the same name as an existing PDP. In my

implementation I ignore such requests, but theoretically one could design a

policy for how to handle this issue. Later I will discuss my approach to the

generalized question of how to authorize modifications to the PDP server.

The source code for these two classes can be found in the files PolicySet.java

and PDPSet.java.
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3.5 Original Protocol

My original text-based protocol was modeled after the File Transfer Proto-

col [PR85] and the Simple Mail Transfer Protocol [Pos82]. Basically, the

client would connect to the server’s port and issue commands followed by

parameters. The options are as follows:

• STORE policy - This command should be followed by a newline, then

the text of an XACML policy. The policy should be terminated by a

’.’ on a new line. It will save the policy on the local file system and

allow the user to LOAD that policy into a PDP.

• LOAD pdp policy - This will add the specified policy to the specified

PDP. Once the PDP is started, it will be created with all of the policies

that have been loaded.

• LIST pdp - Lists the policies that have been loaded into the specified

PDP.

• LIST ALL - Lists all the policies that have been stored on the system.

• START pdp - Will start running the specified PDP.

• EVAL pdp - This command should be followed by a newline, then the

text of an XACML request. The request should be terminated by a ’.’

on a new line.
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• DEFAULT pdp - This command will set the default PDP to be used

in evaluating binary requests (discussed in the next section.)

• HELP - Will print out a summary of the commands and their func-

tions.

The code implementing these features can be found in the Appendix in the

file TextListener.java.

3.6 Binary Requests

The text-based protocol worked well in testing, but in an actual implemen-

tation the PDP would communicate mainly through an automated protocol

with a PEP. Therefore, we realized it was necessary to make the process of

sending a request to the PDP as simple as possible. Note that in the sam-

ple code shown in a previous section, requests are parsed into RequestCtx

objects which are then passed to the PDP object. We wanted to create the

simplest way to transmit a RequestCtx object from one system to another.

A RequestCtx object, and a ResponseCtx object will return their XML en-

coding by using the encode() method. This method takes an OutputStream

as a parameter, so this allows us to stream XML over a socket. At the other

end of the transaction, we can call the RequestCtx.getInstance() method and

pass in the InputStream which comes out of the other end of the socket. As-

suming the XML was successfully transmitted over the socket, this method

will send both RequestCtx and ResponseCtx objects over a network.

After trying several approaches to the problem of reliably transmitting XML
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over a socket6, we settled on an implementation that would read all necessary

input into a byte array, then convert that to a stream to send to the XML

parser. This allowed us to keep the streams (running over a socket) open for

multiple requests. The one drawback to this approach is that it uses a class

called StringBufferInputStream [Mic03a] which is deprecated as of the JDK

1.1. If future implementations also buffer the data coming across the socket,

I would recommend using a method that does not involve the StringBuffer-

InputStream class. However, this method has worked fine for us in all of our

tests.

3.7 Adding Threads

Once I updated the PDPNode software to listen on multiple ports for different

kinds of requests, I needed to add threads so it could wait for a connection on

two ports at once. Because the Java Socket.accept() method is bound to one

socket, the method will pause the entire program until a connection is made

if threads are not used. I used the built-in support for threads included with

Java; the one trade-off in this addition is a slightly degraded performance

speed.

A further complication is that these multiple threads need to share the same

resource. That is, both the binary listener and the text listener need to use

the HashTable of PDPs because they will be evaluating decisions using the

same PDPs. So, we need to synchronize the threads. This requires creating

6See the Appendix for a more detailed description of our other attempts at sending
RequestCtx objects across a socket
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the shared data objects in the parent class and then passing in the same

objects as parameters to both threaded listener classes. [Mic03c]

The final version of my software has four threads running simultaneously:

one listening for text-based requests, one listening for object-based requests,

one listening for object-based requests on an SSL socket, and one listening

for management requests on an SSL socket.

3.8 Integrating SSL

As I describe in the Appendix, SSL is a mechanism for encrypting commu-

nications over a network. This is vital to the security of our PDP for several

reasons: it prevents 3rd parties from tampering with data passing into or out

of the PDP, it prevents 3rd parties from seeing private information that may

be included with a request, and it authenticates both the client and server in

an interaction. To take advantage of this last feature, we require both client

and server authentication for all our connections.

Java includes support for SSL sockets, so I based the SSL support in my soft-

ware off of previous examples. [Par02] To communicate with another com-

puter over SSL, both systems need to obtain a certificate, set up a key store

and a trust store. For each certificate a computer generates, it must add the

corresponding private key to the key store. The key stores we set up are

protected by a password, but they are not particularly secure. Ideally, the

key store will be protected by being located on special hardware. The trust

store is a collection of certificates from other computers you intend to com-
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municate with. Ideally they will be signed by a CA that you trust, hence the

term trust store. In our experiments we used self-signed certificates which

are not optimal from a security standpoint but are easier to manage.

The final version of my SSL software is located in the file SSLListener.java.

4 PDP Collaboration

No existing access control system that we have encountered can employ mul-

tiple Policy Decision Points. In many ways, the notion of multiple PDPs

is a contradiction - how can one decision be made in multiple places? But

implementing collaboration between PDPs allows for interesting scenarios in

the realms of both technology and society.

Collaboration in a capitalist economy is a double-edged sword because it

can both increase productivity and limit competition. Often times com-

petitors use subtle back-channel means to communicate. [DS96] Sometimes

competitors even attempt to sabotage each other by withholding important

information. [Ker99] As network technology becomes more and more perva-

sive in everyday life, communication becomes easier to disguise and collusion

becomes more difficult to adequately control. I believe a reliable, open-source

PDP system, such as the one I have developed, can enable trusted cooper-

ation between organizations and alleviate fear of illegal collusion. If a PDP

policy is understandable, and the PDP software is resistant to tampering,

then people can commit to a cooperative effort confident that they know the

exact extent of their involvement.
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Consider the following scenario: Company A, Company B, and Company C

are competitors in the same industry, and none of them trust each other.

They all collect copious data on their customers, and they all want to per-

form market research. However, they all want to include each other’s data in

their analyses in order to utilize the largest sample possible. Clearly they are

not willing to provide each other with detailed records of their clients, but

they are willing to share anonymous or aggregated data. Furthermore they

want to continue sharing data in the future instead of setting up a one-time

aggregated database. The government learns of this, and wants to ensure

that this collaboration is limited to market research and is not a means of

shrewdly colluding to fix prices.

This scenario is realistic, but with existing technology it cannot be accom-

plished. Currently there is no generic system which can allow multiple entities

to collectively make access control decisions. Our model specifically isolates

the Policy Decision Point as a separate system. This allows the PDP to

perform any actions before returning a decision, including contacting other

PDPs.

Since PDP collaboration is a new idea, our software approaches it in a fairly

simple, yet highly extendable, fashion. I will explain how our implementation

works, what issues arose, and how we chose to address them.
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4.1 PDP Collaboration in Our Software

When setting up a PDP, the user can specify other ”external PDPs” that

must agree on a decision before the PDP returns a result. These are specified

by providing an IP address, a port on which the PDP is listening for object

requests, and the name of the PDP. When a request comes in, the PDP firsts

evaluates it using its own policy. Then, it contacts each external PDP, sends

the request, and gets a response. Lastly, it combines all the results together

into a final decision that it sends to the user. This is loosely modeled after

the protocol for DNS queries - if a local DNS server cannot resolve a request,

it will forward the request to another server. [Moc87] An alternative model

would have been to require the PEP to obtain permission from multiple

PDPs. However, we felt this would have changed the role of the PEP by

requiring it to store something resembling a policy.

Manually specifying which external PDPs to collaborate with when the PDP

is created is inconvenient, hard to replicate, and hard to keep records of.

This can be solved by including the list of external PDPs in the XACML

policy itself. That way the decision making process is documented in XML

and can be replicated by loading the same policy into a different PDP. This

would also allow for some degree of logic tests to be performed in choosing

which external PDPs to contact. For example, maybe requests during the

day require the additional consent of another PDP, but requests at night

require the additional consent of a different PDP. It is hard to imagine any

such scenario, but the possibility should be provided. However, for now we

25



chose not to encode external PDPs in policies because we did not want to

make any modifications to XACML as it is currently specified.

Figure 3: A sample PDP collaboration configuration

Figure 3 illustrates an interaction that might occur when a request comes

in to PDP 1. It contacts PDP 2 and receives a permit decision. It then

contacts PDP 3 which contacts PDP 4 and receives a deny decision. This

is relayed to PDP 1 which issues a deny decision. This configuration could

be the result of Companies 1, 2, and 3 jointly protecting a resource. Also,

Company 3 and Company 4 might have a separate agreement to monitor

and authorize each other’s actions. PDP 4 could also be a regulatory agency

charged with assuring Company 3 is not participating in any questionable
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practices.

This current scheme does not consider what happens if one of the required

PDPs is unreachable. This could legitimately result in either ignoring that

PDP or automatically rejecting the request. Say, for example, that one of

the external PDPs is connected through an unreliable ISP in Asia and wants

to be contacted solely for logging purposes. It may be reasonable to ignore

this PDP if it cannot be contacted. However, in a different scenario the

desired behavior may be to reject any request when all PDPs cannot be

reached. Say Company A and Company B are controlling a database, and

clever hackers infiltrate Company A. This allows them to create all the faulty

credentials they need to successfully trick Company A’s PDP into granting

access.7 Then, they launch a Denial of Service attack against Company

B’s PDP causing it to be unreachable from Company A. In this scenario,

Company A’s PDP will hopefully return a decision that denies access. The

point of these examples is to illustrate that the question of what to do when a

PDP is unreachable should also be specified in a policy. This will allow users

to control PDP behavior in an easily customizable, replicable way. Again, we

did not pursue any development in this direction because the current version

of XACML does not include any such capability.

The final aspect of this scheme was to combine the responses from external

PDPs. For our purposes, we simply checked to see if any denied access,

7In this scenario, the PDP itself is not infiltrated - just other parts of the network. In
the Security Considerations section, I will discuss the possibility of the PDP itself being
compromised.
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otherwise the PDP will permit the request. This will probably be the most

common combination algorithm desired because it requires all parties to grant

access. However, it is conceivable that some scheme could require just one

PDP to permit access. Or, perhaps two specific PDPs would have to permit,

then one of any three others would have to permit. Since we recommend

that the list of external PDPs be written in the XACML policy, it is only

natural for that policy to include the rules for combining the results.

4.2 Future Developments

Communication between PDPs is a new paradigm, and hence opens many

other possibilities for future development. For instance, load balancing or

fault protection can be incorporated into future distributed PDP implemen-

tations. As long as all nodes speak the common language of SAML, their

collaboration can produce interesting results. Using SAML also provides a

means of keeping authoritative records of what decisions were made and who

approved them. Since SAML objects can be signed, a permit decision that

includes a digital signature would provide incontrovertible evidence that a

PDP authorized an action. This could be tremendously beneficial to busi-

nesses that require strict accountability.

5 SAML

The leading open-source implementation of SAML is written by Scott Can-

tor at Ohio State University and called OpenSAML. There is practically no
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sample OpenSAML code available anywhere on the internet. As the Open-

SAML readme file says, ”[t]here are no explicit samples yet, but there are

test programs and higher level code in the Shibboleth codebase that would

help a novice see what some of the classes do.” [Can02]

The following packages all needed to be downloaded, installed, and added to

the project build path in order for OpenSAML to function, so they are all

included in the final version of my software:

• xmlsec - This package provides various XML security services including

the ability to sign XML documents. [GPLMvdK03]

• log4j - This is a an efficient, general-purpose logging utility. It uses the

concept of inheritance to provide its users with a high degree of control

over logging activity. [Bea04]

• Xerces - This is an XML parser developed by The Apache Software

Foundation. It implements the XML Document Object Model which

is required for using Open SAML. [Fou04c]

• Xalan - This is an XSLT processor also developed by the Apache Soft-

ware Foundation. [ea03]

I also upgraded to the Beta version of the Java 1.5.0 Runtime Environ-

ment. [Mic04a] With all of these packages, I was finally able to create simple

SAML objects.
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5.1 Translating SAML into XACML

Currently the functions of SAML and XACML overlap in the realm of making

access requests. A system employing OpenSAML would send a SAMLAutho-

rizationDecisionQuery to the Policy Decision Point and receive a SAMLAu-

thorizationDecisionStatement in response. To use XACML for our policies,

on the other hand, we must send a RequestCtx into the PDP and receive a

ResponseCtx. So while SAML and XACML perform a similar function in en-

coding requests and responses, they are not strictly compatible. To reconcile

this problem, our model puts a system in front of the PDP that translates

requests in other formats into XACML requests. So, a SAML request will

enter our system where it is translated into an XACML request and then

sent to the PDP. The challenge at this stage becomes to translate from a

SAML request to an XACML request. According to Scott Cantor, no one

has yet come up with a way to convert between these two. [Can03] I will first

outline the parts of a SAML request in the OpenSAML implementation, and

then explain the choices I made in implementing the translation.

A SAMLAuthorizationDecisionQuery has four components: a SAMLSub-

ject, a resource, a Collection of actions, and a Collection of evidence. SAML

Subjects have two parts, and either or both can be present in a SAML sub-

ject. The first is the NameIdentifier. This consists of a name, a name quali-

fier which is used when usernames from multiple locations can overlap, and a

name format. The second is SubjectConfirmation which allows the identity

of the user to be confirmed. This consists of a ConfirmationMethod which is
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Figure 4: A SAML request and the corresponding XACML request

a URI reference which can be used to validate the subject, additional Sub-

jectConfirmationData, and KeyInfo to allow the subject’s cryptographic key

to be checked. [MMea03]

A Subject in XACML is essentially a set of Attributes, with the option of

specifying a subject category. If none is specified, then the default is used.

Each Attribute has 4 parts: the URI to identify what kind of attribute it is,

an issuer to declare who is asserting this attribute belongs to this subject, a

timestamp, and finally the attribute value. This is closely analogous to, for

example, a government issued ID card. Its size and layout distinguish it as

an ID card (analogous to the URI), the issuer is indicated by the template,

a seal, and possibly a hologram, the issue date is the same as a timestamp,
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and finally the person’s name, birth date, and address printed on the card

is the value of the attribute. A subject can have more than one attribute.

Following the ID card example, a person would be a subject, and the drivers

license, college ID, and credit cards in their wallet would be their multiple

attributes. To us a computer example, a subject could be a UNIX user-id,

and attributes could be what their password is, what groups they belong to,

and what processes they are running.

SAML is built upon the assumption that each request will have only one

subject - this is reasonable in most cases, particularly those of single-sign-on

scenarios which is one of the major goals of SAML. However, XACML extends

the abstraction of access control to allow for multiple subjects. Therefore, in

translating between SAML and XACML we will always build requests with

one subject.

So, returning to the challenge of converting from SAML to XACML. An

XACML request includes four components: a Set of subjects, a Set of re-

sources, a Set of actions, and a Set of environments. The action and the re-

source can be translated almost directly from the SAML request, and SAML

does not contain any environment information, so we can ignore that. The

difficult part is converting a SAML subject into an XACML subject.

XACML as it is currently defined does not include any means of verifying

information in a subject statement, so we’ll ignore the ConfirmationMethod

and ConfirmationData sections of the SAML subject. Therefore, we are left

with a name, a name qualifier, and a format. The format isn’t applicable to
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XACML because the subjects we will handle will always have a subject-id,

and additional attributes are evaluated separately. We will construct two

attributes - for one the value will be the name, for the other the value will

be the name qualifier. When we bundle these two Attributes in a Set, they

are ready to be included in an XACML request.

Our final step is to then construct the XACML request so it can be passed

off to the PDP. In implementing this I ran into Java exceptions when I tried

printing out the initial SAMLAuthorizationDecisionQuery. It appears other

people have encountered this same error [Dor03] so I avoid printing this out

in my code. Aside from that, this conversion appears to work for all the

SAML requests I tested it on. The algorithm may require some modifica-

tions for more complicated transactions since I don’t utilize all the elements

of SAML and also only use SAMLAuthorizationDecisionQuery objects in-

stead of utilizing all of the components of SAML communication. However,

this has worked for our purposes and provided the first PDP that can handle

both SAML and XACML requests.

6 PDP Management

The next major feature of this PDP system is an improved mechanism for

managing policies and individual PDPs. Let’s review the essential actions

we can perform on a PDP. We can store a policy, load a policy, set a default

policy, list policies, start a PDP, and evaluate a request. The management

features we’ll consider are storing, loading, setting a default, and starting.
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We need to ensure that only people who are properly authorized can perform

these actions. But we, of course, already have a system to determine if

someone is authorized to perform an action - XACML.

To use XACML as the authorization tool for PDP managment, I needed to

do two things - formulate a way for management requests to be written in

XACML, and create management policies to evaluate these requests. An

XACML request contains a subject, an action, and a resource. The subject

will be used to identify who is making the request. For management requests,

the action will be one of the actions listed above - store, load, default, start.8

Since all these actions (except store) are performed on individual PDPs, the

resource will be the name of a PDP. For example, if I want to load the policy

myPolicy2 into the PDP myPDP we would send a request where the action

is load myPolicy2 and the resource on which we’re performing this action is

myPDP. One complication arises in the action of storing a policy. Remember

this requires passing in the XML text of the policy. So, in this case the text

of the policy will be the second action passed in.

If we are modifying policies based on the decision of policies, we of course need

some ”root” policy to start from. When this software first starts, it reads a

configuration file that specifies where the root policy is. Ideally this will exist

on the local filesystem, but theoretically the software could be extended to

put the root policy anywhere. Using this approach, the PDP node becomes

8I intentionally chose not to include EVAL in this feature for reasons I will explain in
the Security Considerations section.
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even more independent. Once started, an administrator should be able to

make any modifications by communicating with the PDP. In other words,

making changes does not require rewriting a configuration file, and the PDP

should never have to be restarted.

The idea of using a system to manage itself is by no means new to computer

science. In fact, the basic tenant of a computer that differentiates it from

other electronics in that it can reprogram itself. But as far as we know, this is

the first time this approach has been applied to an XML-based access control

system.

This code can be found in the file ManagementListener.java. It currently

runs over an SSL socket so the text of policies cannot be intercepted by an

adversary.

7 Security Considerations

Since the goal of this PDP Node software is to improve the security of other

systems, it is imperative that it be as invulnerable to exploitation as possible.

I will describe the security decisions I made, and the features I included in

this software. I will also discuss possible improvements that can be made in

the future. Note that the best possibility of completely securing the PDP

system would be to implement it on secure hardware. I discuss my research

into this possibility in the Appendix.
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7.1 Core Software

The major security feature of the core software is its SSL capability. This

will prevent anyone from intercepting requests or responses and also prevent

replay attacks. Also, since we require client authentication, the possibility

of an intruder masquerading as the PDP, or fooling the PDP into communi-

cating with a bogus service or PEP, is almost nil.

The question of how the PEP, PDP, and service first find each other, however,

has not yet been addressed in this paper. Presumably, in most installations

now conceivable, the same administrators will set up each component. In

this case, the IP addresses or hostnames of each can be hardcoded, and the

relevant certificates can be loaded into the appropriate trust stores. An IP

address alone is not very secure, but using certificates as an additional means

of authentication should make connections reliable. However, as more and

more people begin to take access control seriously, the desire for, and abun-

dance of PDP servers will expand. In this case, a service and PEP may

have different choices for which PDP to utilize. Here some secure, trusted

variation of a DHCP [RDBV+03] server could be implemented to mitigate

associations with different PDPs.

7.2 PDP Collaboration

Since PDP collaboration uses the same interfaces as the regular request-and-

response protocol, it presents few additional security risks. As I discussed

earlier, policies for handling unreachable PDPs and combining PDP results
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should be specified by an administrator, so managing the reliability of other

systems and the connections to those systems is left in the hands of the those

setting up the PDP.

The major vulnerability PDP collaboration presents could come in a situation

where two PDPs are controlling the same resource. If one of the PDPs

is hacked, then an attacker could use that PDP to manufacture ”permit”

decisions without consulting the other PDP. This decisions would appear

valid to the PEP, so an attacker could gain access to the protected resource.

There are two approaches to preventing this possibility: securing the PDP

or forcing the PEP to check with multiple PDPs. We recommend the former

solution because it best fits with out model. But, if PDP hacks become a

problem, the latter solution may have to be examined.

7.3 PDP Management

As I mentioned earlier, the PDP will evaluate all management requests

against a root policy - including modifications to the root policy itself. So,

the security of the root policy is essential to assuring that the other policies

are legitimate. Here I faced a trade-off between security and convenience:

locking the root policy to prevent it from ever being modified would lessen

the chances of a hacker compromising the entire system, but would force ad-

ministrators to stop and restart the PDP if they ever wanted to change the

root policy. I chose the convenience solution because it allowed for greater

flexibility and ease of use. Also, if this PDP is implemented on secure hard-
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ware then the question of hacks becomes almost a moot point.

Up until now I have not addressed the issue of denial of service attacks.

This is the malicious flooding of a system with seemingly legitimate requests

designed to crash a server or prevent valid requests from being processed.

Since the PDP Management feature is most vulnerable to a denial of service

attack, I will discuss protective measures in this section.

By nature, it is difficult to differentiate between legitimate traffic and ma-

licious traffic because there is nothing inherently malicious in the packets

of a denial of service attack - just the sheer volume of those packets. The

best defense against these attacks is at the firewall level where packets from

certain IP addresses or packets destined for certain ports can be dropped.

This is an effective defense because very little time is required to process the

header of an TCP/IP packet and perform simple checks.

But, what happens if an adversary gets past our firewall and bombards our

PDP with XACML requests? Remember that we do not check evaluation

requests against our root policy to see who is allowed to make requests. So,

our system will dutifully process and reply to these requests. While this may

not be the ideal implementation, the alternative is no better. If we must

authorize the requestor before we process the request, then we’ve already

dedicated a substantial amount of processing power and time. Remember

that processing an XACML request requires parsing XML, searching for an

applicable policy, and matching that policy to the parsed request. All of these

operations are costly in terms of memory and latency. So even if we refuse
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to evaluate the individual requests made by a request in a denial of service

attack, the attack will still achieve its purpose of clogging our system. There-

fore, we leave security against denial of service attacks to alternate means. In

reality, most PDP systems could sit comfortably behind a strict firewall be-

cause they only need to communicate with a few external systems as shown in

our model. So accepting only connections from those system’s IP addresses,

and only listening on the limited number of ports that this software uses,

will protect against all but the cleverest denial of service attacks.

8 Conclusion

The concept of the Policy Decision Point has been evolving over the last

decade. In most software, it is intertwined with other components or ignored

altogether. But the PDP is starting to be defined as a separate system in

packages like Shibboleth. XACML takes this to the next level by providing a

language for writing, combining, and evaluating access control policies. This

software is an implementation of a PDP system built upon the Sun XACML

implementation and other open source projects. Also, I approach the PDP

as not just a separate system, but as one node in a network. This allows for

PDP collaboration and interaction with PDPs in other access control sys-

tems. Also, it enables all management to take place remotely so the PDPs’

operations can be thoroughly trusted.

This paper also suggests avenues for future research. The management

scheme I created works in many circumstances, but it should be standard-
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ized. With XACML, any environment information can be considered in mak-

ing decisions, so factors like disk size, remaining quota space, or processor

load can be considered in writing management policies. I recommended that

collaboration information also be stored as part of a policy, but the exact

parameters of this mechanism need to be developed. Also, the PDP should

be capable of keeping signed records to prove what decisions were made by

what PDPs. To keep the PDP decisions reliable, the system should be im-

plemented on secure hardware. This could be accomplished by running the

Java Virtual Machine on a secure platform or by compiling the PDP code

to run on the IBM 4758. Finally, my biggest recommendation is for people

to use this technology. Only by exposing these systems to thousands and

millions of users can we learn what challenges await.
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10 Glossary

• Certificate - A public key and some other information signed with a

private key. These are used to certify that a public key belongs to some

entity.

• DDOS - A Distributed Denial of Service attack is one that floods a

computer with bogus traffic from many different points on the internet.

• DNS - The Domain Name Server maps domain names to IP addresses.

For example, if you type ’dartmouth.edu’ into a web browser, it will

first make a DNS query to find out the IP address of Dartmouth’s

webserver so it can send the request to the right place.

• DOM - The Document Object Model is an interface for using and

manipulating the data in an XML document.

• Firewall - Software that regulates who is allowed to connect to a sys-

tem.

• IP Address - A unique number of the format xxx.xxx.xxx.xxx which

identifies a connection to the internet. These are used in routing packets

of data from one point on the internet to another.

• PKI - Public Key Infrastructure is a way of managing public key ex-

change through the use of certificates. The key component of PKI is a
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Certificate Authority that manufactures new certificates and manages

revocation lists.

• TCP/IP - The Transmission Control Protocol / Internet Protocol is

the mechanism for transferring data over the internet. Data is divided

into packets, sent through the infrastructure of the internet, then re-

assembled at the receiving computer.

• SAML - The Security Assertion Markup Language is an OASIS stan-

dard defining the XML format for exchanging various pieces of infor-

mation regarding access control.

• SSL - The Secure Socket Layer is a protocol to encrypt communications

over the internet. See Appendix A.2 for a more detailed description.

• XACML - The eXtendable Access Control Markup Language is an

OASIS standard defining the XML format for access control requests,

response, and most importantly policies.

• XML - The eXtensible Markup Language is a way of encoding ”self

describing data.” See Appendix A.1 for a more detailed description.
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A Some Terminology

This will briefly explain some of the concepts and technologies that will be

referred to throughout this paper.

A.1 XML

XML [YBP+04] is a means of encoding information to include both data and

field names in one document. For example, a way of encoding your name

and e-mail address in XML could be the following:

<name>Geoffrey Stowe</name>

<emailPrefix>geoffrey.stowe</emailPrefix>

<emailDomain>dartmouth.edu</emailDomain>

If a standard database were to store the same information, it would probably

use a much simplified form such as:

Geoffrey Stowe,geoffrey.stowe@dartmouth.edu

If an application wishes to store data for its own retrieval, XML is clearly a

wasteful approach because of the extra storage space it requires. However,

it is useful in transmitting information between different systems because it

does not rely on specific spacing, character encoding, etc. So, it is widely

used on the internet where communication can take place between different

programs running on different platforms used by people speaking different

languages.
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When XML is used in practice, specifically in the applications described in

this paper, it must be parsed by a program which extracts relevant informa-

tion and makes it available for use. Since all communications between the

components of our model use XML, we encountered many complications due

to XML-specific issues in implementing our model.

A.2 Public Key Cryptography and Certificates

Cryptography is the science of altering data in the hopes that only intended

recipients can understand it. An example taken from the pages of spy novels

could be one spy sending another a list of numbers like 12:56, 16:32, etc. The

receiving spy would then find some prearranged book and take the 56th word

on the 12th page, the 32nd word from the 16th page, etc. and reconstruct

the message. This is called a symmetric code because both the sender and

receiver need to have the same ”key” (which is a book in this case) in order

to communicate.

In the late 1970’s, three researchers at MIT named Ronald Rivest, Adi

Shamir, and Leonard Adleman developed a revolutionary new method of

encryption. It used two keys - one public and one private. If something is

encrypted with the public key, it can only be decrypted with the private key,

and vice versa. The benefit of this system is that anyone can know your

public key. In order to send a message to someone, you find their public key

(by asking them for it or by looking it up in a directory, for example) and

use it to encrypt a message to them. Then, the recipient can use their key
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to decrypt the message. This process can also work in reverse - someone can

encode a message using their private key. Then, anyone else can decode it

using that person’s freely available public key. This is called signing a docu-

ment because anyone can verify that only a person with access to the private

key could have produced the signed document.

While this system facilitated a new era of secure communication, it still has

a basic flaw - how does one know a public key is legitimate? Say Alice wants

to send a message to Bob, so she sends him an email asking for his public

key. But, a clever intruder whom we’ll call Trudy intercepts that message so

Bob never gets it. Trudy then send Alice a different public key (for which

she has the corresponding key) pretending to be Bob. Alice then encrypts

the message with Trudy’s public key and sends this to Bob. Trudy again

intercepts the message and is able to decode it. This is a version of what is

known as the ”man in the middle” attack.

The solution to this attack is to employ what are known as certificates.

A certificate is essentially a public key which some trusted authority has

signed. A system of Certificate Authorities and other public key verification

mechanisms is called a Public Key Infrastructure (PKI.) While browsing the

internet, you have probably seen a message about a certificate verified by a

company like Verisign, Entrust, or some other certificate authority. This is

a way of verifying that you, the buyer, are using the proper public key to

make a purchase. The actual mechanics of this communication are described

in the next section.
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A.3 SSL

If you’ve ever bought something online, chances are you’ve used SSL. [FKK96]

Designed by Netscape, it is a protocol to allow for secure communication be-

tween a client and a server. It can authenticate both the client and the

server, so both sides can be assured they are only communicating with an

entity that holds a certain private key. A slightly simplified version of the

process is the following: [Bas03]

• A client will contact a server and say it wants to use SSL for the

upcoming transaction.

• The server then sends a certificate back to the client (remember that

this certificate will contain the public key of the server.) The server

can also request the client’s certificate if it wishes to verify the identity

of the client. If it does so, it will send a structured message including

a random number which the client will use to validate itself.

• The client verifies that the server has sent a valid certificate, and it

makes up a pseudo-random which will be used as the session key. It

also signs the random number sent from the server and then sends this

information along with its certificate to the server.

• The server receives the client’s certificate and uses that public key to

decrypted the signed number the client sent. If it matches the number

the server originally sent, it knows with reasonable certainty that the
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client does indeed possess the private key it claims to.

• At this point, both the client and server have the session key. They

then use this to encrypt any information they want to send to each

other.

The reason a session key is generated is that this allows for faster encryption.

RSA is a costly algorithm relative to symmetric encryption, so SSL takes

advantage of the strengths of both symmetric and asymmetric encryption.

SSL is widely used because people are confident it is practically impossible

to break. Although problems have been found in some implementations of

SSL [CER03] the underlying protocol is sound. An attacker would presum-

ably need to either forge a certificate or guess the random session key in order

to eavesdrop on an SSL session. Both of these tasks are quite difficult if not

impossible to do in any reasonable amount of time.

A.4 Denial of Service Attacks

A denial of service attack is basically a flood of data directed at some system

on the internet. These attacks are commonly referred to as distributed de-

nial of service (DDOS) attacks because often times they come from multiple

sources. The key to a successful DDOS attack is to find a request you can

send to a server that uses a non-negligible amount of system resources. For

example, perhaps a poorly designed webserver will wait 1 second from the

time an initial connection is made for the client to request a webpage. While

it is waiting, it will not handle any other requests. More realistically, perhaps
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a webserver puts aside a small amount of memory every time a connection

is made to prepare for transferring data. In either case, flooding the server

with millions of bogus connection requests will stop it from functioning for

legitimate users. In the first case, it will be constantly waiting in response

to the bogus requests. In the second case, it will allocate all of its memory

for the bogus requests and crash.

In February, 2000, a wave of DDOS attacks were launched against popular

internet sites such as Yahoo, eBay, and ZDNet, shutting many of them down

for hours at a time. Since then, webservers have employed sophisticated

means of protecting against such attacks. [Har03] But although these com-

mon methods of launching DDOS attacks are now no longer as effective, the

threat is still very real on the internet. When some particularly infectious

viruses proliferate through the internet, the increased traffic has the effect

of a DDOS attack and can shut down networks. For this reason any secure

system should be designed with the possibility of a DDOS attack in mind.

B Choosing a Development Environment

I chose to use Java as my principle programming language because it was the

language used for Sun’s XACML implementation, and because I had the most

experience with it in the recent past. To choose a development environment,

I downloaded and tried out 4 Java IDE programs: NetBeans, Eclipse, Sun

One, and Code Warrior. I decided to go with Eclipse for a variety of reasons:

• Sun One had a trial period after which it cost money
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• Eclipse worked right off the bat unlike NetBeans, and the program is

about a quarter the size of NetBeans

• Eclipse was recommended by a few peers

• I have used Code Warrior in the past, but have experienced a lot of

unexplainable problems

• The Eclipse debugger seemed more robust than the debuggers included

with Code Warrior or NetBeans

• Eclipse successfully imported the sample PDP and basic XACML poli-

cies and requests with a minimal amount of debugging

Eclipse ultimately saved me a lot of time by managing library imports, pro-

viding built-in support for Javadoc, and automatically finding errors and

suggesting fixes. It is highly recommended to anyone embarking on a large-

scale coding project.

C Other Attempts at Creating Object Streams

Before developing the method of exchanging RequestCtx objects that we use

in our software, we tried several other approaches. I describe them here

because they represent some common problems other researchers might en-

counter, and suggest areas for future improvement.
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C.1 ObjectOutputStream

The first way we tried to send the object was with the native Java ObjectOut-

putStream and corresponding ObjectInputStream. These are subclasses of

the regular InputStream and OutputStream, so they can theoretically send

objects over a socket in much the same way that text can be sent. However,

the object must be serializable by implementing the Serializable interface in

order for the object streams to work. [Mic01a] Interestingly, the Serializable

interface does not require implementing any methods, but rather ”serves only

to identify the semantics of being serializable.” [Mic01b] RequestCtx objects

do not implement the serializable interface, so instead of changing the core

XACML code I created a wrapper class. This class ReqWrapper had a Re-

questCtx object as its only private variable. One interesting problem we ran

into was an apparent bug in Java that requires ObjectOutputStream objects

to be created before ObjectInputStream objects. [Roh01] However, even af-

ter fixing this problem we were unable to stream these wrapper functions,

probably because all subclasses of a serializable class need to be serializable.

C.2 Streaming XML

Our next approach was to stream the XML of a RequestCtx object over

a socket and rebuild the request to the other end. To accomplish this, we

used a similar set-up as with the Object Streams: a stream running in each

direction over a socket between the PEP and PDP. We then used the encode()

function built into the request to stream its XML encoding to the PDP which
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rebuilt the request by calling the getInstance() method. We then planned to

process the request and return the response over the same socket. However,

in testing this process, the socket kept closing before sending the response

back. We traced this problem to the native Java XML parser which is part

of JAXP. [Mic04c] The method javax.xml.parsers.DocumentBuilder.parse()

takes an InputStream as input, and it appears it closes that InputStream

at some point. So, we were left with a catch-22. Getting the XML parser

to work required closing the stream, but closing the stream resulted in the

socket closing which meant we could not return a response.

Some research confirmed our suspicion and presented a possible solution:

Xerces. Xerces is an XML parser for Java implemented by Apache. [Fou04c]

Included in its packages is a class called socket.KeepSocketOpen which can

be used to stream multiple XML files over a socket. It works by wrapping

the stream in a WrappedInputStream [Cla02] and sending bytes over the

socket to be recombined at the other end. [Fou04b] Using this approach

the socket will not get closed after a single XML document has been sent.

Therefore, we could probably could have used this model to implement our

system. However, this would have required changing the core Sun XACML

implementation as well as rewriting our communications paradigm. Also,

since we were aiming to utilize SAML for sending our requests, we decided

against pursuing Xerces-specific classes too extensively.

Our temporary solution was to close the socket connection after the request

was sent. Then, the client would reconnect and receive the response to their
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request. This was a way to get around the problem of our socket closing, but

it also provided the benefit of enabling a request queue in the PDP. Under

this paradigm the client would ”drop off” a request for the PDP to process,

then come back when it needed the result. This would allow the PDP to

prioritize requests and work on the most important ones first. Also, it could

conceivably search more thoroughly to find attributes to support a request

if it didn’t have other requests to process. This approach, however, presents

serious security problems, the most major of which is how the PDP ensures

it returns a response to the same entity that made the request.

C.3 SOAP

One final approach we tried to improve upon the communication protocol

currently in our code was to use the Simple Object Access Protocol (SOAP).

The SOAP protocol is designed to exchange structured data between different

processes running on different systems. [GHM+03] In other words, it solves

many of the problems we encountered trying to stream XML directly over a

socket.

To use SOAP, we decided to try setting up a SOAP server and a SOAP

client. In the framework of our software, the PDP would function as a

SOAP server, and it could process requests from either the service or the

PEP. The SOAP server we chose to experiment with was Tomcat, an Apache

project. [Fou04a] Installing the Tomcat servlet engine required adding the

SOAP jar file and the JavaBeans Activation Framework [Mic04e]. It also
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required JavaMail [Mic04f] in order to support SMTP transfers which are

required by SOAP. I never succeeded in resolving classpath errors in my

Tomcat installation, so I did not integrate it with our framework. I also

chose to stop pursuing the option because it did not fit explicitly with our

communications model. If the PDP were the only ”server” then both the

service and PEP would have to initiate contact. Our model allows for the

PDP to initiate contact with the PEP. And although the PEP needs to

handle requests from the PDP, it should not be a server in the standard

sense because it handles a limited range of requests from a small group of

clients. Also, it will not return any information to the PDP.

Future access control implementations should consider using SOAP because

of its versatility in transmitting XML data. However, the model of access

control components may have to be altered to accomplish full integration

with SOAP.

D Implementing in a Secure Environment

Even if the communication channels between a PDP and the outside world

are secured through double-authenticated SSL encryption, a PDP can be

compromised by attacking the platform it runs on. For example, if a PDP is

running on an ordinary Windows desktop that an attacker has compromised,

incoming requests could be intercepted and always accepted. Or, if the poli-

cies can be altered, decisions can no longer be considered valid. So, the PDP

system should ideally be implemented on a secure platform that will ensure
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it makes consistent, reliable decisions.

I attempted to implement all my software on a secure platform, but was

unable to find an appropriate system. I will first survey some of the secure

hardware presently available, then discuss methods of implementing this PDP

system on a secure platform.

D.1 Secure Hardware

The theory behind the field of trusted computing is to find ways of estab-

lishing trust with the system you’re communicating with. It relies on some

trusted hardware which can be used to create a basis of trust for software.

Currently, secure hardware runs the gamut from tiny memory chips to large

processors. This technology is still in its infancy, yet even now it can provide

benefits to business. [Pea02]

Since our PDP system involves making decisions that cannot be tampered

with, we would require a secure processor. If we only used cryptographic

tokens, for example, we could ensure that policies were not tampered with

between storing them on the system and reading them into the PDP. How-

ever, if we were not running the PDP on trusted platform, a policy could

be tampered with once it is decoded but before it is processed by the actual

PDP system. Also, the PDP system could be altered to produce fraudu-

lent results. In a recent paper, John Marchesini describes a method to steal

private keys from web browsers by using a DLL Inject. This will place an

attacker between a program and its library functions allowing the attacker to
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view and possibly alter the functioning of a running process. [MSM04] This

same approach could be used to tamper with the PDP.

D.2 Using the IBM 4758 Secure Coprocessor

There is essentially one option for a completely secure processor: the IBM

4758 secure coprocessor. This is an ordinary microprocessor housed in an

environment that is both physically and electronically protected. The 4758

features battery-backed RAM so any unauthorized attempt to access the

memory will erase anything in storage. This is just one of the hardware

tamper responses that will detect intrusion attempts and automatically re-

spond by erasing sensitive information. The boot process, and all subsequent

operations, follow a careful sequence of trusted operations to ensure no unau-

thorized code is being executed. [DLP+01] The end result is a processor that

will execute precisely the software you load onto it, without intruders being

able to detect what operations it is performing, no matter how hostile an

environment it runs in.

The 4758 runs a stripped down version of the linux kernel, so my first efforts

concentrated on using Java on the 4758. It does not have the capacity to

run the full Java Virtual Machine, so it was not directly compatible with

my software. However, Java produces other versions of the Java Runtime

Environment, one of which is called the Java Micro Edition (JME). [Mic04b]

Researchers at Dartmouth have succeeded in running this version on the

4758. However the JME does not include an XML-parser, so we could not
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use the JME directly.

If not everything can run inside the 4758, an alternative is to run part of

the code on the secure platform and other parts on the host machine. For

example, policies could be read in through the secure platform, compute a

hash, sign the hash, and then stored externally. When the program needs to

use them, it will read them in from the external source, compute the hash,

then compare it to the signed hash. Only if these two match will the program

proceed. However, we would need to at least perform XML parsing outside

the secure environment leaving it vulnerable to the attacks described above.

So although we could ensure that the xml text which the processor received

has not been tampered with, we cannot ensure that the parsed XML tree is

valid. The only way we could ensure this is by parsing the XML text inside

a secure environment. It would seem reasonable for an XML parser to work

with the Java Micro Edition, but we were unable to find one. Therefore,

short of writing our own XML parser from the libraries in the JME, there

was nothing we could do to get our system running securely in Java on the

4758.

D.3 Other Secure Hardware/Java Card

Java Card technology is being developed by Sun as a stripped down version

of Java designed to run on cell phones, pay-tv boxes, or any type of smart

card. [Mic04d] This Maxim/Dallas Semiconductor Corporation is currently

producing a product called iButton. This is similar to a cryptographic token,
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but it includes the ability to run Java applets using Java Card technology.

The iButton includes up to 134Kbytes of RAM for its Java applets and even

runs a garbage collector. [Cor03] However, like the Java Micro Edition, Java

Card does not support XML.

D.4 Compiling the Java Code

Since I could not run the PDP system in Java on the 4758, I shifted my

efforts to compiling the Java code to native machine language. If successful,

this would allow the code to run on the Linux kernel inside the 4758. Java is

designed to compile to byte-code which can be run on any platform by the

Java Virtual Machine. However, it is a programming language like any other

and as such can theoretically be compiled to machine code. The only viable

Java compiler is GCJ, developed by the same people who make the GCC

compiler for C and C++. This compiler provides the capability to compile

either Java source code or Java class files into native machine code. [GNU02]

I had some limited success with gcj, but was not able to compile my en-

tire project to native machine code. I was able to successfully compile and

run a ”Hello World” program as well as the PolicySet class I wrote and in-

cluded in the PDPNode package. However, any classes that used another

class (such as the PDPSet class which has a set of PDP elements) produced

errors during gcj compilation. This is because the libraries they referenced

were not compiled or not linked in properly. Like regular command line C

or C++ compilers, libraries used in a program must be compiled separately
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and before compiling the main program. I was able to successfully compile

a test class that involved an external class, but could not do this for any of

the major parts of my project. To successfully compile the entire PDPNode

package, I would need to compile the 9 libraries it uses.

Let’s look at compiling the Sun XACML library as one example. The dis-

tribution includes a make file to build the code using javac. So, I changed

the line that sets the default compiler from javac to gcj. When I made this,

however, it produced hundreds of errors due to missing classes. So this one

library would require tracking down hundreds of external references and com-

piling them all in the proper order before I could compile the entire library.

I next checked the internet to see if other people had experienced, and pos-

sibly overcome, similar problems. It appears problems involving gcj are

somewhat common judging from internet message board postings. But gcj

seems to especially have problems with XML parsers, some of which have

not been resolved. 9 I found one reference to successfully compiling an XML

parser called XP [Bor99], and one person who compiled JAXP, a Java XML

parser developed by GNU. [Bor99] However, XP does not appear to sup-

port DOM which is required for SAML. [Cla98] JAXP also does not support

DOM. [Fou01]

It appears Xerces has been successfully compiled [Gre01] which is encourag-

ing because it is a major feature required by openSAML. However, it appears

9See for example [Per01]
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Xalan has never been compiled,10 and without it there is no hope of compil-

ing openSAML.

I knew that even if I compiled everything, I still might have run into capacity

problems when trying to run this on the 4758. XACML.jar is 175k, open-

saml.jar is almost 100k, Xalan is over 1MB, log4j is almost 400k, xmlsec is

another 350k, and Xerces.jar is another 1MB. This is over 3MB just for the

libraries. This size may be feasible on the newer versions of IBM’s crypto-

cards, but not on the original 4758.

This concluded my attempts at getting my PDP system to run on a secure

platform. It is my hope that the next generation of secure hardware will be

capable of running the Java Virtual Machine. Since more and more devices

that humans interact with are running Java, its security and privacy will

become increasingly important in daily life.

10See for example [Gre01]
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