ORGANIZATION, COMMUNICATION, AND CONTROL IN THE GALAXY-II
CONVERSATIONAL SYSTEM!

Stephanie Seneff, Raymond Lau, and Joseph Polifroni

Spoken Language Systems Group, Laboratory for Computer Science
Massachusetts Institute of Technology, Cambridge, MA 02139 USA
http://www.sls.lcs.mit.edu

ABSTRACT

GALAXY-II is the designated initial common architecture
for the DARPA Communicator project in the U.S. Its
key feature is the ability to control system integration
via a run-time executable scripting language. This paper
describes our experience in developing complex systems
based on the GALAXY-II framework. Our current system
consists of four domains and two languages (English and
Mandarin). Users can interface with the system in both
displayful and displayless modes. Users can switch freely
among the various domains in a single conversation, and
multiple users can access the system in simultaneous con-
versations. In addition to the hub script that controls
live interaction with users, we have also configured many
other hub scripts that permit various batchmode runs,
including the capability to reprocess log files through im-
proved versions of the system to measure progress. The
hub scripting capability has greatly accelerated our pace
of system development, and has allowed us to configure
considerably more complex systems than we would have
previously envisioned.

1. INTRODUCTION

Through our experience over the last decade in designing
conversational systems, we have come to realize that an
essential element in being able to rapidly configure new
systems is to allow as many aspects of the system design as
possible to be specifiable without modifying source code.
To this end, we recently redesigned our core architecture
to support complex system configurations controlled by a
run-time executable scripting language. Using this new
framework, we have been able to configure multi-modal,
multi-domain, multi-user, and multilingual systems with
much less effort than previously. We are discovering that
we can now configure systems whose capabilities are well
beyond what was previously considered feasible.

The resulting new architecture, GALAXY-II, introduced
in [1], has been designated as the initial common architec-
ture for the multi-site DARPA Communicator project in
the United States. It differs from its predecessors mainly
in two ways: (1) a central hub handles all communications
among the various servers, and (2) system control flow
is maintained through a specialized run-time executable
programming language interpreted by the hub.

Whereas [1] described GALAXY-II as an architecture, this
paper concerns our recent system development efforts,
which utilize GALAXY-II to carry out complex interactions
with users, with databases, and among a suite of spe-
cialized servers. We have implemented a system which

!This research was supported by DARPA under con-
tract N66001-96-C-8526, monitored through Naval Com-
mand, Control, and Ocean Surveillance Center.

can field questions, either typed or spoken, in the follow-
ing four domains: Jupiter (world-wide weather informa-
tion), Pegasus (flight departure/arrival/gate information
for major cities in the U.S). Mercury (flight browsing and
booking), and Voyager (navigation assistance and traffic
status in Boston).? The user can migrate freely among
the domains in typed mode, but must explicitly initiate
a domain switch in spoken mode. The user can also refer
verbally to items selected in the Web graphical interface
via simultaneous mouse clicks. Multiple users can interact
with the system simultaneously via GUI and/or telephone
interfaces. All domains have thus far been implemented
in English. Mandarin and Japanese versions are under
active development.

An interesting research issue addressed here is how the
complex tasks of mixed-initiative dialogue systems should
be partitioned into a set of semi-autonomous servers,
each of which has clearly assigned roles. A single
database server manages database needs for all of the do-
mains, whereas we have thus far partitioned the task of
“turn management” into separate specialized servers for
each domain. The turn managers routinely consult the
database multiple times in the course of resolving a single
user query. Discourse inheritance is managed separately
from turn management, and the context record is updated
after both the user turn and the system turn.

This paper is organized as follows. In the next section,
we will give an overall description of program control flow
through a typical dialogue turn. In Section 3, we will de-
scribe several examples of special capabilities which can
be implemented within the framework of the scripting lan-
guage. Section 4 will address the issue of evaluation, and
discusses how hub scripts can be configured to reprocess
log files obtained at the time of the original dialogue. We
conclude with a discussion of future plans.

2. PROGRAM CONTROL

The GALAXY system consists of a central hub that con-
trols the flow of information among a suite of servers,
which may be running on the same machine or at re-
mote locations. The hub interaction with the servers is
controlled via a scripting language. A script includes a
list of the active servers, specifying the host, port, and
set of operations each server supports, as well as a set of
one or more programs. Each program consists of a set
of rules, where each rule specifies an operation, a set of
conditions under which that rule should “fire,” a list of
INPUT and OUTPUT wvariables for the rule, as well as op-
tional STORE/RETRIEVE variables into/from the discourse
history. When a rule fires, the input variables are pack-

2Flight and traffic information are obtained through
direct feeds updated every few minutes. Other infor-
mation is obtained from the Web either in real time or
through frequent Web harvesting.



(A) AUDIO — RECOGNITION — CONTEXT_TRACKING_IN — TURN_MANAGEMENT — CONTEXT_TRACKING_OUT — REPLY

(B) RULE: :request_frame & :eform & :domain Jupiter --> jupiter.turn_management

RETRIEVE: :turn_management_state

IN: :request_frame :eform :parse_frame :session_id :filter_list :nbest_list
OUT: :reply_frame :discourse_update :system_initiative :filter_list :map :list :image :html
STORE: :turn_management_state :list :html :filter_list :map :image

Figure 1: A sequence of operations in a dialogue turn with an example of a rule for the operation “TURN_MANAGEMENT”.

aged into a token and sent to the server that handles the
operation. The hub expects the server to return a to-
ken containing the output variables at a later time. The
variables are all recorded in a hub-internal master token.
The conditions consist of simple logical and/or arithmetic
tests on the values of the typed variables in the master
token. The hub communicates with the various servers
via a standardized frame-based protocol.

While most of the communication among the servers in-
volves an indirect path through the hub, it is possible to
have the hub broker the relationship between two servers,
for example, when the bit rate is very high (e.g., wave-
forms, images). Thus, an audio server in our system trans-
mits its waveforms directly to a designated recognizer.

Each individual user is associated with a unique session;
user state information, such as the current language, do-
main, etc., is recorded via session variables. Each session
is usually associated with a particular GUI and/or au-
dio server. Discourse context is organized utterance-by-
utterance within a session. Tokens associated with dif-
ferent sessions compete for available resources, and are
queued up by the hub when requested servers are busy.

Figure 1 schematizes a typical path through a dialogue
turn. Part (A) shows a sequence of operations, each of
which is associated with a rule. Part (B) expands the
rule for the italicized operation, TURN_.MANAGEMENT.

2.1. Interfaces between Recognizer and Parser
Our recognizer (SUMMIT, [2]) can produce both an N-best
list and a word graph as output. N-best theories are
sent one at a time, and they can be pipelined in the hub
script for additional efficiency. In this case, the natural
language (NL) component parses the hypotheses as they
arrive, and a separate server, called the “gatherer” ac-
cumulates the parsed theories and makes a final decision
considering parse status (full parse, robust parse, word
spot) and linguistic and acoustic scores. If a decision can
be made before the full set is analyzed, a message can
be communicated to the NL system to stop parsing the
remaining hypotheses.

A word graph can generally represent a large N-best list
in a much more compact space. Since our NL system is
able to parse word graphs efficiently, we are exploring this
type of interface. It has the additional advantage that it
requires a much simpler hub script, eliminating the need
for the gatherer and the abort signal.

The NL system (TINA, [3]) sends a parse frame to the hub,
which is then passed to the discourse component for inter-
pretation in the context of the preceding dialogue. The
resulting request frame is then passed to the generation
system (GENESIS, [4]) to produce two paraphrase strings,
a “linguistic” one representing the contents of the frame in
English (or some other designated paraphrase language)
and the [key: value] pair format, representing a flattened
E-form (electronic form) structure that is convenient for
interpretation for database retrieval and other domain-
specific activities in the turn manager.

The parser decides which domain a new query belongs in.
For our English-based systems, we are developing sepa-
rate recognizers and grammars for each of our domains,
such that the parser only needs to decide between the
target domain and a “local” domain, specializing in meta
queries (see Section 2.4). However, we have configured
our Mandarin system such that a single recognizer and a
single grammar cover all of the domains, with the parser
deciding the target domain query by query.

2.2, Turn Management

Our systems are generally configured with a suite of turn
managers, each one handling a particular restricted do-
main. Our current configuration runs with four unique
turn managers: Jupiter, for weather, Pegasus for flight
status, Mercury for flight browsing and reservations, and
Voyager for urban navigation and traffic updates.

The turn manager is responsible for deciding how to an-
swer the user’s query. It generally makes use of three
distinct meaning representations derived from the user’s
query: the original parse frame, the discourse-interpreted
request frame, and the E-form. Turn managers of-
ten make multiple requests to the database server for
pieces of information necessary to properly respond to the
query. These requests are implemented through module-
to-module subdialogues invoking a db_query program.

Turn managers are controlled at the highest level by a
scripting language that is a simplified version of the hub
scripting language®. It uses an identical protocol for tests
on variables, but the separate specifications for IN, OUT,
STORE, RETRIEVE, etc., are replaced by a single argument,
which is a structure containing all the information of use
to the turn manager. This includes critically a dialogue
state frame which is initialized from the E-form request,
and augmented, in the course of processing a turn, by the
operations defined in the turn manager’s dialogue control
tables. Each operation, upon completion, returns one of
three possible move states: CONTINUE onto the next rule,
STOP processing, and RESTART at the first rule.

In our current configurations, a single database server
handles all database needs. Typically, our GENESIS sys-
tem is invoked to transform an E-form into an SQL query,
and the query is then sent to the database server for eval-
uation. The database server connects to our Oracle re-
lational database to retrieve database tuples, which are
then returned to the domain server via a frame represen-
tation. The database server may also retrieve information
directly from the Web.

Once the turn manager receives a reply from the database,
it must prepare a semantic frame representing its reply to
the user. If the database fails to retrieve a suitable answer,
the turn manager may decide to relax constraints and try
again. Alternatively, it may need to make several calls
to the database to retrieve different parts of a response,

3In fact, this dialogue control mechanism was a pre-
cursor to the hub scripting language development.



formulating a coherent reply describing the multiple con-
tents retrieved. For example, the Pegasus server must
associate flights in the schedule database with their coun-
terparts in the status database representing the status of
today’s flights, accounting for airline code-sharing rules.
The turn manager may also need to prepare a discourse
update and/or to take the initiative to request some miss-
ing piece of information from the user. In the latter case
it may need to output a special system-initiative frame to
aid in interpretation of fragments in the subsequent turn.

2.3. The Meta-level Turn Manager

In addition to its routing responsibilities, the hub also
has an embedded turn manager which handles meta-level
queries. These include “scratch that,” which decrements
the history pointer to the preceding utterance, “clear
history,” which eliminates all history, “no parse,” called
when the parser fails to interpret a recognizer query, “call
me,” to handle requests from the GUI interface for a
telephone interaction, and “domain switch,” a request to
change the high-level topic of the dialogue. For example, a
domain-switch routine in the built-in turn manager alters
the session domain according to the request, which will
then direct the next query to the new domain for recog-
nition and parsing. All of the recognizers and grammars
support meta-level queries, which are directed to the local
domain upon parse analysis.

3. SPECIAL INTERACTIONS

There are a number of unusual circumstances which trig-
ger special events in the hub script. These include com-
munications between the GUI server and the audio server,
requests that invoke a switch to a different domain, abort
requests that demand termination of any pending com-
putations, and activities that involve retrieval and/or re-
tention of information from previous utterances. Some of
these are discussed in more detail in this section.

3.1. Multimodal interactions

One of the challenges that is well addressed by the
GALAXY-II architecture is that of managing multimodal
interactions. In a multimodal interaction separate control
threads need to manage the various input/output modal-
ities. These threads need to be coordinated and synchro-
nized. In our architecture, the execution model of having
a set of active tokens for which rules are fired as their
conditions are matched has proven effective in support-
ing the multiple threads. Different tokens correspond to
activity in different threads. Tying all the threads for a
given user session together is a session identifier in every
token. We next describe the specifics on how we have ar-
chitected support for two multimodal aspects within our
systems: handling a user request for a callback via tele-
phone and association of a user mouse-click event with a
spoken utterance.

Our typical system supports (1) an audio-only interaction
via telephone, (2) a GUI-only interaction via a client em-
bedded in a Web browser, or (3) a combined audio and
GUI interaction. In the combined interaction, the user
first interfaces to the system via GUI and then instructs
the system to “call me at [phone number].” Upon re-
ceiving such a request, the program file directs the audio
server to initiate a callback and provides a session ID with
the request. When the audio server completes the call-
back, it sends a new token to the hub. The program file
then modifies the session state to indicate that an audio
channel is associated with this session. The audio server
also requests a session lock, indicating to the hub that any

audio requests for this session must be sent to this par-
ticular instantiation of the audio server. (The same hub
may be connected to multiple audio server instantiations
to support multiple users.)

A mouse-click event is associated with a spoken sentence
via a simple mechanism. The hub program sets the
clicked item specification within the session’s state. As
long as the mouse-click was received before the spoken
utterance proceeds to the context-tracking input stage,
the mouse-click will be handled correctly. The context-
tracking server reads the clicked item session state as one
of its inputs. Note that presently we do not support time
alignment of multiple mouse-clicks to a single utterance.
The GALAXY-II hub does not preclude this, but additional
timing information will need to be passed from the recog-
nizer to the context-tracking stage.

All of these multimodal interactions are handled in a
straightforward manner within the GALAXY-II architec-
ture. The parallel execution, multiple token programming
model supports these interactions in a simpler manner
than would be possible in a traditional programming lan-
guage such as C.

3.2. Dialogue Context Filtering

Whenever the system displays and/or speaks to the user
a list of items it has just retrieved, these items become
available for discourse reference. It is highly likely that
the user will refer to one of them in a subsequent query.
Hence it is advantageous to preferentially select a hypoth-
esis that mentions one of these items. This capability is
implemented in the hub script by having the turn man-
ager store the list in the history, with the parser retrieving
it in the next turn.

This idea can be extended to include not only prior con-
text but also current and even future context. For in-
stance, if a user asks “What is the status of United flight
one oh nine from Dallas to Boston?,” prior knowledge of
the full set of available United flights between the two
specified cities can help in selection among competing
recognition hypotheses for the flight number. This is cur-
rently implemented by repeating the main program’s un-
derstanding cycle augmented with the list of candidates
retrieved from the database, in the case where the origi-
nally selected flight number is inconsistent with the source
and destination.

In the event that a user asks for the status of a specific
flight without mentioning the source and destination, and
that flight is not found in the database, the turn manager
engages the user in a subdialogue to obtain the missing
information. It retains the recognizer hypothesis until
the additional information has been obtained. It then
dispatches the hypothesis back through the understanding
stage along with the newly retrieved context information.

4. EVALUATION

We have long been concerned with developing and main-
taining a way of continually evaluating our systems, both
holistically and at the component level [5]. The new hub
architecture has enabled us to streamline the evaluation
process by making it subject to the same hub scripts that
control all other system functions. It has also allowed us
to augment our suite of evaluation metrics, since an eval-
uation server can take input from any of the other compo-
nent servers within the system that we wish to evaluate.

4.1. Batchmode Server
We have developed a separate server, named “batch-
mode,” whose purpose is to process user queries through



the system off-line. It operate from a variety of differ-
ent inputs, including orthographic transcriptions, N-best
lists, word graphs, parse frames, waveform files, and even
system log files created from previous live interactions.
A hub script can be configured to produce a log file us-
ing any of the above inputs, alone or in combination. A
batchmode run often includes calls to a special evaluation
server, as described below.

Every conversation with our live systems is recorded in a
logfile, at a level of detail that is controlled by the hub
script. The script supports the specification of any in-
put or output variables to be written to the log, associ-
ated with each rule as it fires. A subsequent evaluation
script informs the batchmode server which elements from
the logfile are of interest in a particular run. For exam-
ple, in assessing run-time performance, the batchmode
server must extract both the selected hypothesis and the
transcription of the user’s speech from the logfile. The
GALAXY-II architecture, combined with the hub scripting
language, made control straightforward for this type of
logfile evaluation.

We can also use the batchmode server to reprocess stored
waveform files. In this case, the batchmode server be-
haves like an audio server, invoking the module-to-module
communication protocol to connect to a recognizer. The
recognizer processes the stored waveform file as it would
any other utterance, i.e., producing either an N-best hy-
pothesis or a word graph. This representation is sent back
to the hub where it follows the path determined by a hub
script for processing.

4.2. Evaluation Server

Assessments of system components are inherently three-
way comparisons among the transcription of the spoken
utterance and the outputs of old and new versions of the
components being evaluated. Our original evaluation pro-
tocol functioned at two levels: (1) as a means of bench-
marking system performance at the time of data collec-
tion and (2) for evaluating performance of new versions of
various system components. The first of these is run from
a logfile created during data collection. Under the old
evaluation paradigm, the second one was also run from a
logfile. However, the creation of the logfile involved mul-
tiple steps to gather the new data from various system
components (e.g., new N-best hypotheses from the recog-
nizer, new parse frames from the parser) and reformatting
the data for the evaluation routine.

Within the new framework, we have developed a separate
evaluation server for performing comparisons and accu-
mulating performance statistics. This server can assess
both recognition performance (i.e., word accuracy) and
understanding, based on the E-form representation. We
can easily configure hub scripts that run multiple versions
of the same server, to compare new versions of the rec-
ognizer against old ones, for example, or to compare two
versions of a particular grammar. Furthermore, the rules
of a hub script provide a clear tabulation of the parame-
ters being evaluated.

For assessing overall system understanding, we have writ-
ten a hub script that first uses the batchmode server to
process a logfile utterance-by-utterance, sending both a
hypothesis and a transcription to the hub, with subse-
quent routing to TINA and GENESIS. Once the appropri-
ate inputs are created, the hub script sends them to the
evaluation server, where they are used to assign scores.
The results are returned to the hub script along with all
other relevant data for a particular utterance for logging
purposes. The evaluation server also outputs cumulative

statistics at the end of each batch run.

Among the evaluation experiments we have run are:
(1) logfile recognition/understanding performance at run-
time, (2) word graphs compared with N-best lists, and
(3) comparisons of old and new versions of a grammar.
We have been able to use the same hub script for evaluat-
ing many different types of output, because the hub rules
enable us to specify that certain functions be called only
when certain variables are present.

5. FUTURE WORK

Over the past year, we invested significant resources to-
wards the development of the GALAXY-II architecture, but
we feel that the result was well worthwhile. We have gen-
erally found that the flexibility inherent in hub scripting
empowers us to conceive of systems that we formerly con-
sidered to be impossibly complex. We have recently en-
visioned two extensions to our GALAXY-II system that we
feel will be relatively straightforward to implement.

The first would be a wizard-mode system that makes use
of two telephone interfaces, one of which records input
from the user and speaks system responses to the same
user, the other of which plays these same user queries
to a wizard who then speaks a “translation” of the user
query, either in a simplified form in the same language,
or into a different language that the system understand.
The wizard’s query gets processed through usual chan-
nels, except that the audio output is directed to the user,
and the GUI output is displayed on the wizard’s screen.
We believe that such a set-up, which will be a powerful
mode for collecting user data for maturing systems, can
be configured completely within the hub script.

A second mode that we would like to explore is a sys-
tem that behaves as an agent, calling back a user when a
predesignated condition is met. We envision an “agent”
server, which might be monitoring a number of events,
such as a particular flight or the traffic on a given high-
way. As soon as the specified condition has occurred (the
flight has arrived, the traffic is at a standstill, etc.) the
agent server issues a “call me” request, providing both
the appropriate phone number and the appropriate “wel-
come” message, detailing the outcome of the event.

6. REFERENCES

[1] Seneff, S., E. Hurley, R. Lau, C. Pao, P. Schmid,
and V. Zue, “GALAXY-II: A Reference Architecture
for Conversational System Development,” In Proc.
ICSLP 98, pp- 931-934. Sydney, Australia, 1998.

[2] J. Glass, J. Chang, and M. McCandless, “A proba-
bilistic framework for feature-based speech recogni-
tion,” Proc. ICSLP ’96, Philadelphia, PA, pp. 2277—
2280, October, 1996.

[3] Seneff, S. “TINA: a natural language system for spo-
ken language applications,” In Computational Lin-
guistics, 18(1), pp. 61-86, 1992.

[4] Glass, J., J. Polifroni, and S. Seneff, “Multilingual
language generation across multiple domains,” In
Proc. ICSLP 94, pp- 983-986, Yokohama, Japan,
1994.

[5] Polifroni, J., S. Seneff, J. Glass, and T.J. Hazen.
1998. “Evaluation methodology for a telephone-
based conversational system.” In Proc. LREC 98,
pp- 43-50, Granada, Spain, 1998.



