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Dynamic Compensation of HMM Variances Using
the Feature Enhancement Uncertainty Computed
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Abstract—This paper presents a new technique for dynamic,
frame-by-frame compensation of the Gaussian variances in the
hidden Markov model (HMM), exploiting the feature variance
or uncertainty estimated during the speech feature enhancement
process, to improve noise-robust speech recognition. The new
technique provides an alternative to the Bayesian predictive
classification decision rule by carrying out an integration over the
feature space instead of over the model-parameter space, offering
a much simpler system implementation, lower computational cost,
and dynamic compensation capabilities at the frame level. The
computation of the feature enhancement variances is carried out
using a probabilistic and parametric model of speech distortion,
free from the use of any stereo training data. Dynamic compensa-
tion of the Gaussian variances in the HMM recognizer is derived,
which is simply enlarging the HMM Gaussian variances by the
feature enhancement variances. Experimental evaluation using the
full Aurora2 test data sets demonstrates a significant digit error
rate reduction, averaged over all noisy and signal-to-noise-ratio
conditions, compared with the baseline that did not exploit the
enhancement variance information. When the true enhancement
variances are used, further dramatic error rate reduction is
observed, indicating the strong potential for the new technique
and the strong need for high accuracy in estimating the variances
associated with feature enhancement. All the results, using either
the true variances of the enhanced features or the estimated ones,
show that the greatest contribution to recognizer’s performance
improvement is due to the use of the uncertainty for the static
features, next due to the delta features, and the least due to the
delta—delta features.

Index Terms—Dynamic variance compensation, hidden Markov
model (HMM) variance, noise-robust automatic speech recog-
nition (ASR), parametric environment model, speech feature
enhancement, uncertainty in feature enhancement.

1. INTRODUCTION

FFECTIVE exploitation of variances or uncertainty is a

key essence in nearly all branches of statistical pattern
recognition. In the already successful applications of hidden
Markov model (HMM) based robust speech recognition, uncer-
tainty in the HMM parameter values has been represented by
their statistical distributions [9], [11]. The motivation of such
model-space Bayesian approaches has been the widely varied
speech properties due to many possible sources of differences,
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including speakers and acoustic environments, across and pos-
sibly within training and test data. In order to take advantage of
the model parameter uncertainty, the decision rule for recogni-
tion or decoding has been improved from the conventional MAP
rule to Bayesian predictive classification (BPC) rule [8]. The
former, MAP rule is described by

W = argn%%xp(xM,W)P(W) (1

where P(W) is the prior probability that the speaker ut-
ters a word sequence W, and P(x|A, W) is the probability
that the speaker produces the acoustic feature sequence,
X = [X1,X2,...,X¢,...X7], when W is the intended word
sequence. Computation of the probability P(x|A, W) uses
deterministic parameters, denoted by A, in the speech model.

When the parameters A of the speech model are made random
to take account their uncertainty, the improved BPC rule re-
quires integration over all possible parameter values [8]

A

W = argug | [ p(xl, Wop(Alg, W)dA| PW) @)

AEQ

where ¢ is the (deterministic) hyper-parameters characterizing
the distribution of the random model parameters, {2 denotes all
possible values that the feature vector sequence x can take, and
the integral becomes the desired acoustic score.

An alternative, which we will explore in depth in this paper,
to the model-space characterization of uncertainty (e.g., BPC
discussed above) is to represent the uncertainty by integrating
over the feature space instead of over the model parameters. In
addition to offering a much simpler system implementation and
lower computational cost, accounting for uncertainty in the fea-
ture space (versus in the model space) has the added advantage
of dynamic compensation at as fine a level as the individual
feature frame. The uncertainty in the feature space can be es-
tablished during a statistical feature enhancement or extraction
process. While most of the feature enhancement algorithms de-
veloped in the past discard the uncertainty information [3]-[5],
such side information available from most of these algorithms
can be effectively taken advantage of to improve the recognition
decision rule. More detailed motivations for making use of the
feature-space uncertainty, called “uncertainty decoding,” can be
found in our recent work [6], where positive results were re-
ported based on a specific, stereo-based feature enhancement al-
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gorithm (SPLICE [4], [5]) under a matched training and testing
condition.!

To relax the matched condition required of the SPLICE for
effective uncertainty decoding, we in this paper present a new
uncertainty decoding technique based on a statistical enhance-
ment algorithm developed using a probabilistic and parametric
model of speech distortion. This makes the development of the
system free from any stereo training data, as was required by
the uncertainty decoding approach described in [6]. In this new
technique, dynamic compensation for the Gaussian variances in
the HMM recognizer will be shown to be simply enlarging them
by the feature enhancement variances estimated based on the
parametric model. While the closest approach to our new tech-
nique for HMM-based uncertainty decoding appears to be that
of [1], key differences exist. The most important difference is
that in [1], the estimated uncertainty is used to modify the HMM
parameters that are intended to match the noisy, unprocessed
speech data. In contrast, our technique modifies the HMM pa-
rameters so that they match the enhanced speech data. In ad-
dition, the technique for estimating uncertainty in feature en-
hancement in [1] is very different from the estimation approach
presented in this paper.

The organization of this paper is as follows. In Section II, we
introduce the new decision rule that exploits the variances asso-
ciated with feature enhancement computed dynamically using
the parametric model of speech distortion. We show how dy-
namic compensation of the Gaussian variances in the HMM
can be easily accomplished once the feature enhancement vari-
ances are estimated. Detailed computation for the feature en-
hancement variances, as well as the expectations, is presented in
Section III. Main derivation steps are provided for such compu-
tation in the cases of using the prior clean-speech models for the
static features alone and for the joint static and dynamic features.
Comprehensive results obtained using the complete Aurora2
task is reported in Section IV. They demonstrate the effective-
ness of the feature-space uncertainty decoding for noise-robust
speech recognition under the full range of noisy and signal-to-
noise-ratio (SNR) conditions supplied by the Aurora2 database.
In particular, we show that when the true enhancement variances
are used, further dramatic error rate reduction can be achieved,
indicating the strong potential for the new technique and the
strong need for high accuracy in estimating the feature enhance-
ment variances. Finally, a summary, discussion, and conclusion
of the work are provided in Section V.

II. NEwW DECISION RULE EXPLOITING VARIANCE IN
FEATURE ENHANCEMENT

As discussed in the Introduction section, uncertainty de-
coding based on the feature-space variance information can
be made highly dynamic, and it provides greater simplicity
compared with the model-space uncertainty decoding strategy
exemplified by the BPC decision rule of (2). The counterpart of
the BPC rule in the feature space requires an integration over

1A similar motivation also appeared recently for HMM-based speaker recog-
nition in [14], [15], and for HMM-based speech recognition in [1], [10].
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the uncertainty in the feature domain x (rather than over that in
the model parameter A)

A

W = arg max / p(x|A, W)p(x|0)dx| P(W) (3)
e

where A is the fixed model parameters (no uncertainty), 6 is the
parameters characterizing the distribution, p(x|#), of the speech
features determined by a statistical feature extraction algorithm,
and Y represents all possible values that the feature vector se-
quence x may take. Note that, unlike the model-domain uncer-
tainty characterization by p(A|p, W) in (2), p(x]6) in (3) can
be reasonably assumed to be independent of the word identities
W (and hence independent of model parameters A). Later in
this section, we will show that the integral in (3) indeed corre-
sponds to the desirable acoustic score after taking into account
the feature-domain uncertainty.

The need for the use of the new decision rule (3) is based on
our acceptance that no noise reduction or feature enhancement
algorithm is perfect. Use of an estimated degree of the imperfec-
tion according to the distribution p(x|6) provides a mechanism
to effectively mask some undesirable distortion effects. For ex-
ample, the frames with a negative instantaneous SNR which are
difficult to enhance can be automatically discounted when the
variance in p(x|#) for these frames is sufficiently large. This
mechanism may also effectively extend the HMM uncertainty
to cover the gap between the true clean speech features and the
estimated clean speech features.

There are two key issues concerning the use of the new deci-
sion rule (3) that exploits variances in statistical feature extrac-
tion or enhancement for improving noise-robust speech recog-
nition. The first issue is: Given an estimate of the uncertainty
in a feature enhancement algorithm, how to incorporate it into
the recognizer’s decision rule? We now first address this issue
below.

Consider an HMM system with Gaussians as the state (s)-de-
pendent output distribution: p(x|As) = N (x; s, ), where x
denotes a clean speech feature vector. We now denote by X the
enhanced speech feature vector from x, and denote the estima-
tion error in the enhancement process as e, where

X=X-+te. 4

We further assume that the estimation error is a zero-mean
Gaussian random variable

e~ N(e;0,X;)

where X is the covariance matrix associated with feature en-
hancement, and is the key quantity studied in this paper.

Under these assumptions, we can easily compute the integral
in (3) as

/ p(x|A\)p(x[6)dx = / p(x|A)p(x[Sx)dx

x€T,

= /./\/(x; B, XN (x; %, 5 )dx

=N(x; g, Bs + Bg) &)
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where p(x|Xx) = N (x;%, Xx) according to (4), and we used
the well known equality

/N(fv;m,a%)/\/(x;uz,ﬂ%) dx = N (pa; pa, 07 + 03) .

In (5), T is used to represent all possible values that the feature
vector at each time frame may take.

On the other hand, the desirable acoustic score for each state
s when taking into account the feature-domain uncertainty ex-
pressed by variance ¥; can be determined by

p(x]s) = / p(x, els)de

e

- / p(xle, s)p(e)de

/./\/(e;p,S —%x,%,)N (e;0,X5)de
:./\/'()A(;[l,mzs -I—E,g) (6)

The second line in (6) was obtained by using the following
result:

p(xle, s) =p(% + els)

_ 1
x exp| 5 [(ke)— ] 57 (4 e)
_ 1
LY _
x exp |~ e, — )] 27" e~ (1, ~ %)
=N(e;p,—x,%;). (7

The identical result in (6) and (5) shows that the integral
fx€T1 p(x|A)p(x|€)dx in (3) is indeed the desirable acoustic
score p(x|s) after taking account the feature-domain uncer-
tainty. Most importantly, this identical result for the acoustic
score obtained by integrating over the feature-domain uncer-
tainty is Gaussian for the enhanced speech feature vector X. It
has the same mean vector g as in the Gaussian associated with
the clean speech HMM state s. However, it has its variance that
is increased by summing the variance ¥ of the Gaussian of
the clean speech HMM and the variance Xy associated with the
uncertainty in feature enhancement.

Note that when the feature-enhancement variance can be
computed on a frame-by-frame basis (giving rise to Xy, ), then
the result of (6) permits highly desirable dynamic compensation
of HMM Gaussian variances on a frame-by-frame basis. This
also is significantly simpler to implement than the model-space
integration in (2).

The second issue concerning the use of the new decision rule
(3) is: How to estimate the uncertainty in statistical feature en-
hancement? We address this issue in the next section in the con-
text of a specific feature enhancement algorithm based on a spe-
cific parametric model of speech distortion.

III. COMPUTING UNCERTAINTY BASED ON A PARAMETRIC
MODEL OF SPEECH DISTORTION

A. Overview of a Parametric Model of Speech Distortion

The parametric model of speech distortion, similar to the ones
described earlier in [3] and [7], is briefly reviewed here. This
serves as the basis for robust feature extraction, from which the
uncertainty [i.e., the Gaussian variance X3 in (6)] is computed.
Lety, x, and n be single-frame vectors of log Mel-filter energies
for the noisy speech, clean speech, and additive noise, respec-
tively. These quantities can be shown to be governed by the fol-
lowing relationship (see the Appendix for a detailed derivation):

14 2Xe T
(14 en—%)
A

cosh ( %)

y=x+log [(14+ ")

~x+log(l+4+ e ™)+ ®8)

where A is the inner product between the clean speech and noise
vectors of Mel-filter energies in the linear domain, and the last
step of approximation uses the assumption that A < cosh(n —
x/2).

In order to avoid complicated evaluation of the small predic-
tion residual (8) of

A
" cosh(2) ®

we represent it by an “ignorance” model as a zero-mean,
Gaussian random vector. This, thus, gives a probabilistic para-
metric model of
y=x+gh-x)+r (10)
where g(z) = log(1 + e?), andr ~ N (r;0,¥).
The Gaussian assumption for the residual r in (9) allows
straightforward computation of the conditional likelihood for
the noisy speech vector according to

p(ylx,n) = N[y;x + g(n —x), ¥]. (11

B. Computing Expectations of Enhanced Speech Features

We now discuss the computation of the expectations of
enhanced speech features as the minimum mean square error
(MMSE) estimates of clean speech given the speech distortion
model of (11).

1) Prior Clean-Speech Model for Static Features: We first
present a technique for computing the expectation of enhanced
speech features using a prior clean-speech model for the static
feature x; alone. The following Gaussian-mixture distribution
is assumed as the prior PDF:

M M
p(xt> = Z cmp(xt|m> = Z CmN (Xt;p'me;Tﬁ)'
m=1 m=1

In the experiments reported in this paper, we used M = 256,
and the standard EM algorithm was used to train all model
parameters.
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For simplicity purposes, the prior model for noise is assumed
to be a time-varying Dirac delta function

where n; is computed by a noise tracking algorithm described
in [2] and is assumed to be known in the following description
of the iterative MMSE estimation for the clean speech vectors.

Some derivation steps for the MMSE estimate described in
this subsection have been given in [3], which will be briefly
outlined here. Given the noisy speech observation vector y, the
MMSE estimate % for the random vector x is one that minimizes
the MSE distortion measure of M SE = E[(x — %x)T (x — %x)],
or

X =argmin MSE = argmin E [(x — x)" (x — %)] .

It is well known that the MMSE estimate is the expected value
of the posterior probability p(x|y)

% = E[xly) = / xp(x]y)dx

Using Bayes rule and using the prior speech and noise models
just described, this MMSE estimate becomes

+« = J xp(y[x)p(x)dx

(13)

p(y)
hrﬁmffXPnW@Mﬁ(ﬂngmm
p(y)
_ EM cm [ xp(xim)p(y|x,n)d X 14
p(y)

Substituting the parametric acoustic distortion model of (11)
into (14) and carrying out the needed integration in an analyt-
ical form via the use of iterative Taylor series approximation
(truncation to the first order), we have approximated the eval-
uation of the MMSE estimate in (14) using the following iter-
ative procedure. First, train and fix all parameters in the clean
speech model: c,,,, py,, and Efn Then, compute the noise esti-
mate, i, which has been described elsewhere [2], and compute
the weighting matrices

Wi(m) = (55, +9) ' ¥,

Wg(m) =1- Wl(m) (15)

Next, fix the total number, .J, of intra-frame iterations. (Iter-
ations are used to approximate, in an increasingly accurate
manner, the nonlinear function g(n — x) in (10) using truncated
Taylor series expansion.2) For each frame ¢t = 2,3,....,T in a
noisy utterance y, set iteration number j = 1, and initialize
the clean speech estimate by

(1)

X, = argn;%x/\/'[yt;uﬁl +g(n —py,), 9.

Then, execute the following steps for each time frame (and then
sequentially over time frames).

(16)

e Step 1: Compute
e (yi; 17, + 89,55, + ¥)
Zﬁ{:l Cm-/v (Yt§ p, + g(j)7 2; + ‘I’)

2In the experiments reported in this paper, we used J = 3 based on empirical
convergence properties and computation considerations.

7

m) =
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where g(']) = 10g(1 + ent —:Egj))'

e Step 2: Update the MMSE estimate
LU+ Z ) (m [ _ gu))] .
a7

e Step 3: If 7 < J, increment 5 by one, and continue the
iteration by returning to Step 1. If j = .J, then increment ¢
by one and start the algorithm again by re-setting j = 1 to
process the next time frame until the end of the utterance
t="1T.

The expectation of the enhanced speech feature vector is ob-

tained as the final iteration of the estimate above for each time
frame

m), + Wa(m) (v

By, = %7, (18)

2) Prior Clean-Speech Model for Joint Static and Dynamic
Features: 'We now discuss the computation of the MMSE esti-
mate using a prior clean-speech model for the joint static feature
x; and delta feature Ax; = x;—x;_1 according to the following
Gaussian-mixture distribution:

Xt AXt

Z emN (x¢; iy, B0 )./\/'(Axt [Thee 72AX)

19)
where independence between the static and delta features is as-
sumed.

For the joint prior case here, we have similar steps to the
static-prior case above. First, train and fix all parameters in the
clean speech model: c,,,, pZ,, p2*, £ and £5*. The noise
estimate, ny, is the same as before. More complex weighting
matrices are computed now due to the new delta-feature com-
ponent in the prior speech model

= 550w (5 ) (52
Vao(m) = (Z5, +¥) ' ¥ (2; n gﬁx)*l .

m?
Va(m) = (£5, +¥)7' 5,

Next, similar iterative steps to the static-prior case above are
taken, using the same initialization of the clean-speech estimate
of (16). Due to the introduction of the new delta-feature compo-
nent in the prior speech model, Step 2 for updating the MMSE
estimate is changed from (17) to the following one that incor-
porates the contribution from the new delta-feature component:

Z ,Y(J)

)A(gj-i—l )p‘m + V2 x]

(T
+ Z’yt(J) m)] XE )1

Zv )] (ve-g(n-x)). @0

Again, the expectation of the enhanced speech feature vector
is obtained as the final iteration of the estimate for each time
frame according to (18).
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C. Computing Variances of Enhanced Speech Features

We now describe the techniques for computing variances of
enhanced speech features separately, as with the computation
of the expectations just presented, in the cases of using prior
clean-speech models for the static features alone and for the
joint static and dynamic features.

1) Prior Clean-Speech Model for Static Features: Given the
expectation for the enhanced speech feature computed as de-
scribed in Section III-B-1, the variance of the enhanced speech
feature can now be computed according to

Yo =F [XtXtT|Yt] - ll';(,,ll'zt (21
where the second-order moment is
E [xtx;f|yt]
= /thfp(Xthﬁt)dXt
_ fxtxfp(xt)p(Yt|xt7ﬁt)dxt
p(yt)
I (y+)
Sy em [Tyl )i,
= . (22)
p(yt)

After using the zeroth order Taylor series to approximate? the
nonlinear function g(fi; — x;) (contained in p(y;|x¢, nig); 1f.
(11)) by go(1s — xg) (denoted below by gq for short), the inte-
gral in (22) becomes

L(ye) ~ / X XTN (%03 2, 2) N (ye: Xe + g0, B)dxe
_ / xxXTN (30 2, B5) N (x5 ye — 20, ©)dx,

_ / xxf N [ B,(0), (55, + ©)7 53,9] dx,

X Nin(yt)
= [E + 97 B 040,00 | x Ny (23)

where

0. (t) = (25, +©) 7 [Wul, + 25 (ve — 80)]
Nin(ye) =N [ye — 8oi ti . iy + ¥
=N [y t, + 8o, By, + ]
The third line in (23) above was obtained using the well es-

tablished result in Gaussian computation (setting a = b = 1,
= M, iz =yt — 8o, 07 = X, 05 = )

N (az;pa, 07) N (ba; pia, 073)
= N (5 p,0°)N (apg; buy, a’os + b2o7)

where

2 2
0103

2 2
_api05 + busoy 9
- = 2,2 1 12,2

a?05 + b%c
2 1

2.2 722 °
a’05 + b0

3In this approximation, x, is the Taylor series’ expansion point, which is
iteratively updated.

Substituting the result of (23) into (22), we obtain

M
Blxexfly] = 3 o (ye)| (S5, +9) 7 £5,040,,(1)07, (1]
m=l (24)
where
mNm
nm(yt) = ]\5 (yt)

Em:l CmNm (Yt)

and where we used the result that p(y;) = 2%21 Cm N (¥1)
for the denominator.

Equation (21) then gives the estimate of the variance for
the (static) enhanced feature. In our implementation, an iter-
ative procedure similar to the computation of the expectation
described in Section III-B is used to estimate the variance
also, for the same purpose of reducing errors caused due to the
approximation of g(fi — x) by go(fi — X¢). For each iteration,
the variance estimate takes the final form of

M

= D mye) [(Zh +9) 7 S 4 6,00, (1)]
- [Z Yo(m) (W (m)paf, + Wa(m)(ye - go»]

S ulm) (Wa(m)ps, + Wa(m) (3 — go>>]
" (25)

after combining (21), (24), and (17). Note that the weights
v:(m) above in the form of posterior probability are computed
for each of the iterations.

2) Prior Clean-Speech Model for Joint Static and Dynamic
Features: We now use the expectation for the enhanced speech
feature as described in Section III-B2 to compute the variance
estimate with the use of the prior clean-speech model for joint
static and dynamic features.

With the use of the new speech prior PDF in (19), the second-
order moment in (22) is changed to

E [x:x{ |ye, x¢-1]
I (yt)

A
e ~N

Z%:l Cm /thzp(xt|m7)A(tfl)p(}’t|xt7ﬁt)dxt

~
~

26
p(yt) (20)

where the conditional PDF can be written as shown in (27) at
the bottom of the next page. After completing the squares for
the exponent of (27), we have

p(xt|m7§(t71> :N(Xtall'nwzm) (28)
where

-1
o = (5 +0°) Eo%u,

~

~~
w

-1
+ (S +20%) B (Remr ) 29)

/

~
1—w
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is a weighted sum of the contribution of “static-prior” g, and
that of the “dynamic-prior” %;_; + p5X, and

S, = (2; ¥ 2,%;‘)_1 n° BAx, (30)

Substituting (28) into (26) and using the same zeroth order
Taylor series to approximate the nonlinear function g(n; — x;)
by go(f; —Xg) as in the static-prior case, we obtain the integral
in (26) as

In(y0) = [ X A iy Eon N (3 + 0, W)

_ / X XEN [0 0, (1), (s + 0) I8, 0] dx,
X Nm(yt)
- [(zm IR AR Y emeﬂ X

Nin(ye)  (31)

where
0,.(t) = (B + )7 [Tps,,, + (v
Nin(ye) =N [yi; ty, + 80, B + 9]
Substituting the result of (31) into (26), we obtain

- 8o)l,

M
E[xolly] =S cm(yt)[(zm +\Il)*12m\ll+@m(t)6£(t)}
m=1 (32)

where

_ Con Non (y1)
) =S N

The estimation is again carried out iteratively in order to im-
prove Taylor-series approximation. For each iteration, the final
form of the variance estimation as has been implemented is

ZCm Yt

x [(zm +0)7ISN 4 em(t)eﬂ(t)] — g, py, (33)

xf‘xf 1

where

=2 (m)
S u(m)Va(m)

is based on (20).

(m)ps, + Va(m)psX]

S u(m)Vi(m

] X1+ )] (vt — 8o)

D. Computing Variances of Temporal Differences of the
Enhanced Features

In our implementation, the temporal differences of the en-
hanced features, also referred to as the delta or dynamic fea-
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tures, are computed in the same manner as those for the clean
speech features

L

Z Ur A)A(t+7-

T=—L

Axy = Z wq-Xt+7-7 23Ait =
T=—K

where K =3, L = 2, and the weights w, and v, are fixed. (The
second-order delta feature in (34) is also called the acceleration
feature.*) Under the assumptions of temporal independence and
that the variances do not change over the time window from
—K to + K and from — L and + L, we can easily determine the
variances for these delta features according to

2

UT) p)] A%,

K L
Yax, = < > wf) Yk Back, = ( >
35)

T=—K T=—L
where X, is already computed as described in Section III-C.

(34)

IV. SPEECH RECOGNITION EXPERIMENTS
ON THE AURORA?2 TASK

We have described in Section III-B and Section III-C the ex-
pectation and variance estimates, which fully characterize the
statistical distribution, assumed to be Gaussian, of the enhanced
speech features. Given this distribution, the feature-space uncer-
tainty decoding rule (3) can be used to perform speech recog-
nition. We have evaluated this new decoding strategy on the
Aurora2 database. The task is to recognize strings of connected
English digits embedded in several types of artificially created
distortion environments with a range of SNR’s from 0 to 20 dB.
Three sets of digit utterances (sets A, B, and C) are prepared as
the test material. Set A is used for evaluating the system with
matched training and testing additive noises, Set B with mis-
matched training and testing additive noises, and Set C with both
channel and additive distortions.

In our current work, the decoding rule (3) is implemented in
the digit HMM recognizer by adding X5, or Xy, %, , to the
variances of all Gaussians in the HMM at each frame ¢, as de-
scribed and justified in Section II, while using u;  as the obser-
vation vector. The HMM used as the backend of the recognizer
is defined by the ETSI Aurora group [13]. Each digit HMM has
16 states with three Gaussians per state. The silence model has
three states with six Gaussians per state. A one-state short-pause
model is used and tied with the middle state of the silence model.
Therefore, the additional computation due to the use of uncer-
tainty decoding is 546 sums of diagonal covariance matrices,
one for each of the HMM’s Gaussians.

The original HMM’s used for decoding (before adding the
variance estimate X3, or ¥, %, ) are trained using all clean
speech files in the training set of the Aurora2 database. The

4L =2 gives a window of (—2, 2) for delta features, which is equivalent to
a window of (=35, 5) for the original static features.

pOxalm, %e 1) SN (x5 i, B ) N (A3 iy
-5 [(xt

o e HlGeemmr) (@) i

EA")

2 (ki =) T (287) 7 (x-S 27
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TABLE I
AURORA2 PERFORMANCE (PERCENT ACCURATE) EXPLOITING THE VARIANCES IN DIFFERENT SETS OF FEATURE STREAMS. UNCERTAINTY OR VARIANCES ARE
COMPUTED USING THE ESTIMATION FORMULAS DESCRIBED IN SECTION III-B-1 AND SECTION III-C-1 BASED ON THE PRIOR CLEAN-SPEECH MODEL FOR STATIC
FEATURES ALONE. AURORA2 REFERENCE RECOGNITION ACCURACY UNDER THE CONDITION OF CLEAN TRAINING IS LISTED IN THE LAST Row

setA | setB | setC | Ave.
I: MAP-rule (variances=0) 84.20 | 84.72 | 77.17 | 83.00
II: Static variance only 85.40 | 85.50 | 79.60 | 84.28
III: Static/A variances 86.11 | 85.90 | 80.20 | 84.84
IV: Static/A /A% variances 86.10 | 85.95 | 80.18 | 84.86
Aurora2 reference accuracy (clean training) 58.74 | 53.40 | 66.00 | 58.06

noise estimate used for computing both the expectations and
variances of the enhanced features in the experiments below is
based on the iterative stochastic approximation algorithm de-
scribed in [2].

A. Results of Using Estimated Uncertainty in Different Sets of
Feature Streams

The results of robust speech recognition using dynamic com-
pensation of HMM variances, based on the feature enhancement
uncertainty computed as described in Section III, are presented
in this subsection. As with the description of computing fea-
ture enhancement uncertainty in Section III, we also present the
results separately for the cases of using the prior clean-speech
model for static features alone and for joint static and dynamic
features.

1) Prior Clean-Speech Model for Static Features Alone:
Table I presents the percent-accurate performance results
on all three sets of the Aurora2 test data, averaged over all
SNRs from 0 to 20 dB and over four (sets A/B) or two (set
C) distortion conditions (each condition and SNR contains
1101 digit strings). Row I gives the baseline results using the
conventional (plug-in) MAP rule (1) (i.e., “point” decoding),
where the expectations of the enhanced speech feature vectors
Mg, s computed according to (18) described in Section II-B1
[jointly with A%; and A%%, computed by (34)] are used as the
observational feature vector sequence x in (1). The variances
for all feature streams (static and dynamic) are set to zero:
25& = EA;Q = 2A2)‘(i = 0.

Row II in Table I shows the recognizer’s performance using
the feature-space uncertainty decoding rule (3), where the vari-
ance of the static feature stream is computed according to (26)
(using the prior clean-speech model for static features alone),
while the variances of the dynamic feature streams are set to
zero: Yax, = Xa2g, = 0. The overall improvement in the
recognition accuracy from 83.00% to 84.28% corresponds to
7.5% digit error rate reduction. The error rate is further reduced,
up to 10.9% reduction, when the variances (Xax, and X a2x,)
of the dynamic feature streams are estimated by (35) rather than
being set to zero (Rows III and IV). However, we observed
that exploiting the variance of the acceleration feature stream
(X A2%,) has contributed to virtually no performance improve-
ment once the variance of the delta feature stream has been ex-
ploited. One possible reason for this is the assumption made in
computing variances for the dynamic feature streams (35) that
these variances do not change over the time window. Since the

time window (—5, +5) for the acceleration feature stream is
wider than that for the delta feature stream (—3, +3), the as-
sumption becomes less valid. Hence, the incorporation of the
uncertainty for the acceleration feature stream is expected to be-
come less effective.

The results in Table I (and in other tables) were obtained
using the fixed iteration number .J = 3. We found that an in-
creased number of iterations has little influence on the perfor-
mance but a reduced number (J = 1 or J = 2) degrades the per-
formance appreciably. Also, all the results were obtained with
the Gaussian mixture number fixed at M = 256. Decreasing M
leads to slowly degraded recognition accuracy.

2) Prior Clean-Speech Model for Joint Static and Dynamic
Features: In parallel with the results presented in Table I where
the variances of feature enhancement are computed using the
prior clean-speech model for static features alone, we now
present the parallel results where the prior clean-speech model
for joint static and dynamic features is used. Table II lists the
percent-accurate performance results on the same three sets of
the Aurora2 test data, where Row I is the baseline results using
the MAP rule with the expectations of the enhanced speech
feature vectors g, ’s computed according to (20) described in
Section III-B-2 (also appended by Ax; and A2%; computed
from (34)). Row II shows the results using the feature-space
uncertainty decoding rule when the variance of the static fea-
ture stream is used while the variances of the dynamic feature
streams are set to zero. The overall performance in recognition
accuracy is greater than the counterpart in Table I due to the
use of the better prior model for computing the expectations.’
The relative improvement via the use of feature-enhancement
variances from 84.80% to 86.13% gives 8.8% digit error rate
reduction, higher than the counterpart 7.5% in Table I. This may
reflect the greater effectiveness when using the joint static and
dynamic prior model for computing the feature enhancement
variance also. Similar to the results in Table I, the error rate
is also further reduced, totaling to 11.4% reduction, when the
variances (Xa%, and ¥ a24,) of the dynamic feature streams
are estimated by (35) rather than being set to zero (Rows III
and IV). Again, we observed that exploiting the variance of
the acceleration feature stream (¥ az2%,) has not contributed
to performance improvement once the variance of the delta
feature stream has been exploited.

It is worth pointing out that the use of the dynamic feature
prior (in addition to the static feature prior) is proved to be im-

5This has been demonstrated in [3] and will not be elaborated here.
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TABLE 11
AURORA2 PERFORMANCE (PERCENT ACCURATE) EXPLOITING THE VARIANCES
IN DIFFERENT SETS OF FEATURE STREAMS. UNCERTAINTY OR VARIANCES
ARE COMPUTED USING THE ESTIMATION FORMULAS DESCRIBED IN
SECTION III-B-2 AND SECTION III-C-2 BASED ON THE PRIOR CLEAN-SPEECH
MODEL FOR JOINT STATIC AND DYNAMIC FEATURES

setA | setB | setC | Ave.
I: MAP-rule (variances=0) || 85.66 | 86.15 | 80.40 | 84.80
II: Static variance only 86.95 | 87.56 | 81.62 | 86.13
II1: Static/A variances 87.38 | 87.74 | 82.44 | 86.54
IV: Static/A /A% variances 87.34 | 87.79 | 82.45 | 86.54

portant for improving the uncertainty decoding technique pro-
posed in this paper. This can be seen from the improvement of
recognition accuracy from Table I to Table II across the board.

B. Results on the Performance Limit of Uncertainty Decoding

To investigate the upper limit of possible performance im-
provement by exploiting variances for feature-space uncertainty
decoding, we desire to eliminate biases in the variance estima-
tion based on (33) and (35). To achieve this, we conducted diag-
nostic experiments where the “true” variances are computed by
squaring the differences between the estimated and true clean
speech features. The true clean speech features are computed
from the clean speech waveforms available from the Aurora2
database, and the estimated clean speech features (expectations)
are computed as described in Section III-B2. The performance
results of Table III are significantly better than those in Tables I
and II. In particular, we observe that the exploitation of the vari-
ances of both the static and the dynamic feature streams cuts the
error rate by about half compared with using the variance for the
static feature stream only (see the accuracy difference 89.51%
vs. 94.29% in Table III). In contrast, the corresponding perfor-
mance difference is much smaller when the estimated variances
(as opposed to the true ones) are used. These results suggest that
the biases of the variance estimates that produced the results of
Tables I and II are undesirably large, and that better variance
estimates developed in future research will have the potential
to drastically improve the recognition performance from those
shown in Tables I and II toward those in Table III.

V. CONCLUSION

The research described in this paper extends our earlier work
in speech feature enhancement and noise-robust recognition
on two fronts. First, it extends the Bayesian technique for the
point-estimate-based speech feature enhancement [3] by ex-
ploiting the distribution of the enhanced feature via integration
over the feature space, leading to the new recognition decision
rule which capitalizes on the uncertainty information in the
enhancement process discarded by the previous enhancement
technique. Second, it extends the uncertainty decoding tech-
nique [6] by using a new approach based on a parametric model
of speech distortion to statistical feature enhancement free from
the use of any stereo training data.

The new recognition decision rule developed in this work pro-
vides an alternative to the BPC decision rule by carrying out an
integration over the feature space instead of over the model-pa-
rameter space. This offers a much simpler system implementa-
tion and lower computational cost. Most importantly, it allows
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TABLE III
AURORA2 PERFORMANCE (PERCENT ACCURATE) USING THE VARIANCES
DETERMINED BY SQUARING THE DIFFERENCES BETWEEN THE ESTIMATED
AND TRUE CLEAN SPEECH FEATURES. THIS ELIMINATES BIASES
IN THE VARIANCE ESTIMATION

setA | setB | setC | Ave.
Static variance only 90.31 | 91.12 | 84.70 | 89.51
Static/Avariances 93.80 | 94.00 | 89.50 | 93.02
Static/A /A2 variances || 94.87 | 95.49 | 90.75 | 94.29

for dynamic (at the frame level) compensation of the Gaussian
variance parameters in the HMM, which has been impossible to
accomplish by the BPC technique.

In this paper, we provide detailed computational steps and
their derivation for the variances associated with speech feature
enhancement as required by dynamic HMM variance compen-
sation. Two novel algorithms for estimating the variance of
enhanced speech features, with the use of the clean-speech prior
models for static features only and for joint static and dynamic
features, respectively, are presented in detail. The essence of the
algorithms is to make use of a parametric model of speech distor-
tion for computing the second-order moment of the clean speech
under its posterior PDF, and analytical solutions have been suc-
cessfully developed. This novelty differentiates our algorithms
from all other techniques in the literature [1], [6], [10], [12], [14],
[15] which also exploited feature uncertainty in robust speech
recognition or speaker recognition. In [1], in order to determine
feature uncertainty, a training database had to be created in which
noise was artificially added to clean speech and a third-order
polynomial was used to approximate the mapping function.
This kind of “stereo” training data was also needed in our earlier
work [6], which uses the SPLICE technique [4], [S] to compute
the variance associated with speech feature enhancement. In
[10], while using no stereo training data, a special technique
(i.e., Algonquin [7]) motivated from machine learning was used
to determine the entire distribution of the enhanced features.®
This distribution was then integrated into a rather sophisticated
decoding rule. In [15] where the feature uncertainty was applied
to speaker verification, an empirical noise model was established
to enable the computation of the feature variances. Numerical
integration was required for the computation, and approximated
expressions were also provided under high SNR conditions with
some empirical rules. Finally, in [14], the feature variances were
determined empirically by first using trend fitting to the features
and then taking sample variances. In contrast, the variance es-
timation technique presented in this paper is free from either
stereo data or from any special conditions and empirical rules,
and it is very simple to integrate into the decoding rule. The only
approximation used in our computation of the feature variances
is Taylor series truncation, and the approximation accuracy has
been increasingly improved via iterations.

One principal advantage of the feature-domain uncertainty
decoding technique presented in this paper over the model-do-
main BPC technique is the significantly lower computation cost.
With our technique, there is no change in the HMM decoding,
and the main computational load is in the estimation of the
feature enhancement uncertainty as presented in Section III-C.

6The enhanced features were also computed by the same Algonquin tech-
nique.
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These computations are expressed by (26) and (33), where the
estimation formula for one of a few iterations (typically three)
are given explicitly. Compared with the extra decoding require-
ment for BPC, our feature-domain variance estimation is much
less intensive in computation, even with the matrix operations
and iterations. In practice, in our implementation of (26) and
(33), all the matrices have been assumed to be diagonal. This
further substantially cuts down the computational load.

The effectiveness of our new estimation algorithms for the
variances of speech feature enhancement and their use in dy-
namic HMM variance compensation (uncertainty decoding) has
been experimentally evaluated using the full Aurora2 test data
sets. We have obtained consistent results with the use of the
variance estimates computed with either the prior clean-speech
model for static features alone or the model for joint static and
delta features. For the former, dynamic HMM variance com-
pensation reduces the digit recognition error rate by 7.5% and
10.9%, respectively, when the static feature stream and both
static/dynamic feature streams are subject to the variance com-
pensation. For the latter, the error rate reduction is 8.8% and
11.4%, respectively. All such performance improvement is com-
pared with the baseline system of the decoding MAP rule, which
was the best result reported in [3] that did not exploit the vari-
ance information. Finally, all the results obtained show consis-
tently that the greatest contribution to recognizer’s performance
improvement is derived from the use of the uncertainty in fea-
ture enhancement for the static features, next from the delta fea-
tures, and the least from the delta-delta acceleration features.

We also reported the results from a set of diagnostic experi-
ments where the “true” variance of the enhanced speech features
is provided to the uncertainty decoding rule for dynamic HMM
variance compensation so that the gap between the true and the
estimated clean speech features is fully covered. More than 50%
of the digit errors, committed when the estimated variance is
used, have been corrected. This provides a clear direction of
our future research on improving the quality of uncertainty es-
timation within the uncertainty decoding framework presented
in this paper. Also, we recognize that one potential drawback
of increasing the model variances, as in the feature-space un-
certainty decoding presented in this paper and in the BPC rule,
is the possibility to increase model overlap and hence to de-
crease model discrimination. For the small vocabulary task of
Aurora2 that we have worked on, such increased model overlap
due to the HMM variance enlargement may not be a problem
since the phonetic space of the recognized objects (digits) is
relatively sparse. It remains our future research to examine the
effectiveness of the proposed dynamic HMM variance compen-
sation strategy for large vocabulary tasks and to improve such a
strategy when the phonetic space becomes more crowded.

APPENDIX
DERIVATION OF (8)

We start with the additive noise model in the discrete-time (¢)
domain

ylt] = aft] + nlt]

where y, x, and n are (scalar) noisy speech, clean speech, and
noise samples, respectively. Taking DFT on both sides, we have

Y[k] = X[k] + N[k] (36)

where k£ is the frequency-bin index in DFT for a fixed-length
time window. We then obtain the power spectra of the noisy
speech from the DFT in (36)

Y[K][® = [X[K]|” + [N K] + 2 | X [K]| |N[£]| cos 61

where 6, denotes the (random) angle between the two complex
variables N[k] and X[k].

A set of Mel-scale filters (L in total) are now applied to the
power spectra |Y[k]|? in the frequency domain, where the [**
filter is characterized by the transfer function W,gl) > 0. This
will produce L channel (Mel-filter bank) energies of

SoW IR = SO X+ Y W Nk
k k k
+2 3" W |X[K)| [N k]| cos by, (37)
k

withl = 1,2,..., L.
After denoting the various channel energies in (37) by

- 2 !
PO =S Wl vmp,
k

- 2
KO =X wl Xk
k

2
VO = 2w INTH?
k
(37) can be simplified to
7O = |50 4|50 +220|50] (50| @8)
where we define

> W ’f([k]‘ ‘N[k]‘ cos By

2O =
x| |vo]
We now define the log-channel energy vectors
— N 24 - . 2 - - 29
log ‘Y(l)’ log ‘X(l)‘ log ‘NO)‘
T 2 L2
log ‘Y@)’ log ‘X@)‘ log ‘N@)‘
y=" ol x=|- |, n=|
log ‘Y(l)’ log ‘X(l)‘ log ‘N(”‘
e, . R,
_log’Y(L)’ ] _log‘X(L)‘ | _log‘N(L)‘ |
(39
and define the vector
A
A
A= |3
AD)
After this, we rewrite (38) as
¥ = X 4™ 4+ 2eFed = X 4™ 4 20T, (40)
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Finally, we apply the log operation on both sides of (40) to
obtain

y = log [ex (1 +e* + 2A6HTH7X):|
=x+ log [1 +e" T+ 2/\en2;x}
which directly leads to (8).

(41)
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