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Abstract 
This paper compares three techniques for coupling multiphase 
porous flow and geomechanics. Sample simulations are 
presented to highlight the similarities and differences in the 
techniques. One technique uses an explicit algorithm to couple 
porous flow and displacements where flow calculations are 
performed every time step and displacements are calculated 
only during selected time steps. A second technique uses an 
iteratively coupled algorithm where flow calculations and 
displacement calculations are performed sequentially for 
nonlinear iterations during time steps.  The third technique 
uses a fully coupled approach where the program’s linear 
solver must solve simultaneously for fluid flow variables and 
displacement variables. The techniques for coupling porous 
flow with displacements are described, and comparison 
problems are presented for single-phase and three-phase flow 
problems involving poroelastic deformations.  All problems in 
this paper are described in detail so the results presented here 
may be used for comparison with other geomechanical/porous 
flow simulators. 
 
Introduction 
Many applications in the petroleum industry require both an 
understanding of the porous flow of reservoir fluids and an 
understanding of reservoir stresses and displacements. 
Examples of such processes include subsidence, compaction 
drive, wellbore stability, sand production, cavity generation, 
high-pressure breakdown, well surging, thermal fracturing, 
fault activation, and reservoir failure involving pore collapse 
or solids disposal. It would be useful to compare porous 
flow/geomechanics techniques for all of these processes, since 
some of these processes involve a stronger coupling between 
porous flow and geomechanics than others. However, this 
paper looks at a subset of these processes and compares three 
coupling techniques for problems involving subsidence and 

compaction drive. All of the sample problems presented in this 
paper assume that the reservoir absolute permeabilities are 
constant during a run. Displacements influence fluid flow 
through calculation of pore volumes and fluid pressures enter 
the displacement calculations through the poroelastic 
constitutive equations. 

 
Several authors have presented formulations for modeling 
poroelastic, multiphase flow. Settari and Walters1 discuss the 
different methods that have been used to combine poroelastic 
calculations with porous flow calculations. They categorize 
these different methods of coupling poroelastic calculations 
with porous flow calculations as decoupled,1 explicitly 
coupled, iteratively coupled, and fully coupled. The 
techniques discussed in this paper are explicitly coupled, 
iteratively coupled, and fully coupled. 
 
For an explicitly coupled approach,2-4 a simulator performs 
computations for multiphase porous flow each time step and 
performs geomechanical calculations for displacements during 
selected time steps. The frequency of geomechanical updates 
is driven by the magnitude of the pore volume changes during 
the time steps. If the pore volumes change slowly during time 
steps then few geomechanical updates are required. The ability 
to perform geomechanical calculations for selected time steps 
is a very attractive feature of the explicitly coupled approach 
because a major portion of the computational time for a 
porous flow/geomechanics run is often spent in calculating 
displacements. Another attractive feature of the explicitly 
coupled approach is that it is very straightforward to use this 
technique to couple an existing porous flow simulator with an 
existing geomechanics simulator. One shortcoming of the 
explicitly coupled approach is that the explicit nature of the 
coupling can impose time step restrictions on runs because of 
concerns about stability and accuracy. However, for many 
subsidence problems the fluid flow calculations require time 
steps that are smaller than those imposed by the explicit 
coupling calculations.  
 
For the iteratively coupled approach, multiphase porous flow 
and displacements are coupled through the nonlinear iterations 
for each time step. During each nonlinear iteration, a simulator 
performs computations sequentially for multiphase porous 
flow and for displacements. The flow and displacement 
calculations are then coupled through calculations of pore 
volumes at the end of each nonlinear iteration. An iteratively 
coupled approach will produce the same results as a fully 
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 coupled approach if both techniques use sufficiently tight 
convergence tolerances for iterations. Settari and Mourits,5 
and Fung, et al.6 present examples of the iteratively coupled 
approach for multiphase flow. The primary attraction of the 
iteratively coupled approach is that it is very straightforward 
to couple an existing porous flow simulator with an existing 
geomechanics simulator. The primary drawback to the 
iteratively coupled approach is that the calculations may 
display a first order convergence rate in the nonlinear 
iterations and therefore may require a large number of 
iterations for difficult problems. 

Coupled Flow and Deformation 
For the problems in this paper, displacements enter the fluid 
flow equations through the calculation of reservoir pore 
volumes, and fluid pressures enter the displacement 
calculations through the stress/strain constitutive equations. A 
typical porous flow simulator expresses the pore volume for a 
grid block as  
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 where p is the fluid pressure and cr is a compressibility-like 

term that must be entered by the user as part of the input data. 
However, for linear poroelastic calculations the pore volume 
for infinitesimal displacements may be expressed as  

For the fully coupled approach, porous flow and displacement 
calculations are performed together, and the program’s linear 
solver must handle both fluid flow variables and displacement 
variables. Tortike and Farouq Ali,7 Li and Zienkiewicz,8 and 
Lewis and Sukirman9 have presented formulations of the fully 
coupled approach for poroelastic, multiphase flow. The 
primary attraction of the fully coupled approach is that it is the 
most stable approach of the three techniques and preserves 
second order convergence of nonlinear iterations. Drawbacks 
to the fully coupled approach are: it may be difficult to couple 
existing porous flow simulators and geomechanics simulators, 
it requires more code development than other techniques, and 
it can be slower than the explicit and iterative techniques on 
some problems. 
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where α and 1/M are Biot’s parameters and Eq. 2 assumes 
expansion is positive. For the comparisons in this paper, α and 
1/M are set equal to one and zero, respectively. For this choice 
of Biot’s parameters, Eq. 1, a typical equation for flow 
simulators, expresses the pore volume in terms of the fluid 
pressure while Eq. 2 expresses the pore volume in terms of 
bulk strains, εkk. Flow simulators that are coupled to 
geomechanics programs may use an equation similar to Eq. 1 
to approximate pore volume changes for the flow calculations 
and use an equation similar to Eq. 2 to calculate corrected pore 
volumes based upon reservoir deformations.   

 
The three techniques for coupling porous flow and 
geomechanics were incorporated into the same program so 
differences in the calculations could be attributed to the 
different techniques for coupling. If one were to compare three 
different programs each using a different technique for 
coupling, then it might be difficult to differentiate between 
differences due to coupling and differences due to basic 
algorithms in the separate programs. Comparison problems are 
presented for single-phase and three-phase flow problems 
involving poroelastic deformations. All techniques should 
produce the same results when using small time steps and tight 
convergence tolerances, so the choice between techniques is 
determined by ease of implementation, program availability, 
numerical stability, and computational efficiency. 

 
Logic that couples flow simulators to geomechanics programs 
must somehow account for the discrepancies between Eq. 1 
and Eq. 2. Many coupling techniques will normally use a cr 
term similar to that in Eq. 1 to enhance the coupling between 
flow calculations and displacement calculations. For explicitly 
coupled techniques, modified forms of Eq. 1 may be used to 
calculate pore volumes for those time steps where 
geomechanical updates are not performed. For iteratively 
coupled techniques, a cr term may be included in the Jacobian 
for the flow equations, but Eq. 2 is always used to calculate 
pore volumes.  For fully coupled techniques, a cr term may be 
used in a preconditioning matrix for the flow equations when 
solving the linear system for flow variables and displacement 
variables. 

 
A short review of the equations coupling porous flow and 
deformations is presented, followed by details of the algorithm 
for explicit coupling. Four problems are then presented and 
the results are compared using the three techniques. The first 
two problems are simple single-phase depletion problems that 
illustrate the role that stress and displacement boundary 
conditions play in porous flow calculations. The third problem 
is a single-phase depletion example where a soft reservoir is 
contained within a stiff nonpay region. The final problem is a 
three-phase, black-oil, five-spot pattern with a production well 
in one corner of the grid and a water injection well in the 
opposite corner. The coupling between geomechanics and 
fluid flow is fairly straightforward in problems 1, 2 and 4 and 
pressure histories for these runs can be reproduced by typical 
reservoir simulators with proper choices of compressibilities; 
however, problem 3 exhibits geomechanical effects that 
cannot be seen in reservoir simulations that do not include 
geomechanical calculations. 

 
The fluid pressure enters the deformation calculations through 
the linear poroelastic constitutive equation 
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where tensile stresses are positive in Eq. 3. For the three-phase 
simulation included in this paper, the oil-phase pressure is 
used in Eqs. 1-3. For explicitly coupled and iteratively coupled 
techniques, the fluid pressure in Eq. 3 may be included in the 
equilibrium equation as a forcing function similar to the 
effects of a gravity head term. For a fully coupled technique, 
the fluid pressure in Eq. 3 generates a coefficient that must be 
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included in the Jacobian for the system of flow variables and 
displacement variables. 
 
Explicit Coupling 
The coupling algorithm for the explicit technique is described 
in more detail here because the algorithm uses both Eq. 2 and 
a modified form of Eq. 1 to calculate pore volumes for grid 
blocks during simulations. The iteratively coupled and fully 
coupled techniques may use a cr term for the Jacobian or in a 
preconditioner to accelerate iterative calculations, but never 
actually use Eq. 1 to calculate pore volumes.  

 
The explicit coupling algorithm allows a program to perform 
geomechanical calculations on a time scale that is different 
from the time scale for the flow calculations. This is very 
useful for subsidence problems because a large portion of the 
computational time in a simulation can be spent in performing 
geomechanical calculations. For many problems, fluid fronts 
may propagate or well changes may occur over very short 
time frames while subsidence may progress very slowly 
throughout the course of a simulation.  

 
One can use Eqs. 1 and 2 to develop an algorithm for 
determining how often geomechanical calculations must be 
performed during a simulation.  Let V  be the pore volume 
for a grid block at time step m that was calculated using the 
geomechanical expression in Eq. 2. If the last geomechanical 
calculation was done for time step m, then for time step n > m, 
the pore volume in a grid block may be approximated by  
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where pn and pm are the pressures for the grid block at time 
steps n and m, respectively. One may replace the V  term in 

Eq. 4 by V ; however, this does not change the accuracy of 
the approximation since terms at step m are constant in Eq. 4. 
Using  in place of V  merely modifies the formula that 
one would develop for estimating values for the 
compressibility, c , at step m. Several techniques may be 
used to estimate compressibilities during a simulation. One 
approach derives analytical estimates of compressibilities 
using simple assumptions concerning stress and strain 
variations for a problem while a second approach uses 
pressure and pore volume changes between previous 
geomechanical updates during a simulation to estimate 
compressibilities. A third approach might calculate numerical 
estimates from the geomechanical equilibrium equations by 
calculating how variations in fluid pressures affect 
displacements. When estimating compressibilities, one may 
need to establish bounds for these estimates because values 
that are too large generate significant numerical errors and 
values that are too small give rise to oscillations or 
instabilities.   
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The explicitly coupled simulations in this paper use 
compressibilities in Eq. 4 that are derived from simple 

assumptions concerning stress and strain variations. For 
example, when a reservoir is deforming in the vertical 
direction and horizontal displacements are zero, uniaxial 
strain, then Eqs. 2 and 3 become approximately 
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But Eq. 4 may be written as ∆V~ , which 

produces an estimate for  that is [ . This may 
also be written in terms of the elastic modulus and Poisson’s 
ratio as 
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If one uses the geomechanical expression in Eq. 2 to calculate 
the pore volume V  at step n, then one can compare V  with 

 to determine errors in using Eq. 4 in place of Eq. 2. The 
relative error in pore volume for step n may be written as 
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During an explicitly coupled simulation, one does not have a 
value of Erel for every time step, but only has values for those 
steps where geomechanical calculations are performed. It is 
natural to assume that the error in Eq. 5 is related to the 
relative change in pore volume since the last geomechanical 
update at step m, where the relative change in pore volume 
between steps m and n is approximated by 
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If one assumes that Erel is proportional to ( )

relpV∆ for those 

time steps where geomechanical calculations are not 
performed, then one can implement an algorithm that 
determines when displacements must be updated. One may 
estimate the parameter β in ( )

relprel VE ∆≈ β as 
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where values of Erel and ( )

relpV∆ are determined from the two 

most recent time steps that included geomechanical updates. 
Prescribing a tolerance for Erel, one may then use ( )

relpV∆β  to 

determine when geomechanical updates need to be performed 
during subsequent time steps. The algorithm above is 
concerned with errors in pore volumes; however, similar logic 
may be applied to permeabilities if permeabilities change 
during a simulation. For the problems in this paper, the 
tolerance for Erel is set to 0.001. The program also has options 
to specify updates for displacements after a prescribed number 
of time steps or after a presecribed pressure change since the 
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last update, but neither option was used for the problems in 
this paper. 
 
Program Description 
The three techniques for coupling flow and geomechanics are 
available in the program ACRES10 (ARCO’s Comprehensive 
REservoir Simulator). The program uses masses and a fluid 
pressure as primary variables for the flow equations and 
displacements as primary variables for deformations. The 
program contains IMPEM (IMplicit Pressure Explicit Mass) 
and implicit time stepping algorithms; however, all coupled 
runs are currently restricted to using the IMPEM technique for 
the flow calculations. The program uses finite differences 
(mixed finite elements with piecewise constant pressures) for 
the flow variables and finite elements for deformation 
variables. The program is capable of performing poroelastic 
and poroplastic calculations for black-oil and fully 
compositional applications. The displacement calculations use 
trilinear basis functions with eight Gaussian integration nodes 
for forming the stiffness matrix and a single integration node 
for integrating the fluid pressure in the equilibrium equation.  
 
Comparison Problems 
Four problems are used to compare the three techniques for 
coupling porous flow and geomechanics. The first two 
problems are simple single-phase depletion problems that 
illustrate the role that stress and displacement boundary 
conditions play in porous flow calculations. The third problem 
is a single-phase depletion example where a soft reservoir is 
contained within a stiff nonpay region. The final problem is a 
three-phase, black-oil, five-spot pattern with a production well 
in one corner of the grid and a water injection well in the 
opposite corner. Biot’s parameters α and 1/M are set equal to 
one and zero, respectively, for all problems. All stresses 
described below are compressive and represent total stresses 
for the systems (include forces for fluid and solid).  
 
All problems in this paper use a nonlinear convergence 
tolerance of 0.01 for volume errors, and a relative residual 
reduction tolerance of 0.01 for linear iterations, unless stated 
otherwise. The volume error is expressed as (Vf-Vp)/Vp and 
the maximum is calculated for all grid blocks, where Vf and 
Vp are the fluid and pore volumes for a cell, respectively. All 
computing times presented in this paper are for a 700 Mhz 
Intel Mobile Pentium III.  
 
Problems 1 and 2. Problems 1 and 2 are identical in 
description except problem 1 enforces zero displacement 
boundary conditions at the vertical faces of the grid and 
problem 2 applies constant horizontal stresses at the vertical 
faces of the grid. Figs. 1a and 1b show the stress and 
displacement boundary conditions for the two problems.  

 
The grid is 11 x 11 x 10 with ∆x=∆y=200 ft in the horizontal 
directions and ∆z=20 ft in the vertical direction. The top of the 
grid is at a depth of 6000 ft, the initial in situ reservoir 
porosity is 20%, and the reservoir permeabilities are 50 md 
and 5 md in the horizontal and vertical directions, 
respectively. The fluid is single phase with a formation 
volume factor of 1.0, a viscosity of 1 cp, a fluid density of 

62.4 lbm/ft3, and zero fluid compressibility. The initial fluid 
pressure is 3000 psi at a depth of 6000 ft. 

6 0 0 0  ps i 
 

u  =  0  
 

u  =  0  
 

 
Fig. 1a – Constrained displacements for problem 1             
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6 0 0 0  p s i 
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Fig. 1b – Unconstrained displacements for problem 2 

 
The elastic modulus is 1 x 104 psi, Poisson’s ratio is 0.3, and 
the initial in situ solid density (solid material without pores) is 
2.7 gm/cm3. Initial horizontal stresses are 4000 psi over the 
entire reservoir depth while the initial vertical stress is 6000 
psi at 6000 ft with a vertical stress gradient of 1.0231 psi/ft 
throughout the reservoir. The bottom of the grid has a zero 
vertical displacement constraint and all faces of the grid have 
zero tangential stresses. Both problems apply a normal stress 
of 6000 psi at the top of the grid while problem 1 enforces 
zero normal displacements at the four vertical faces of the grid 
and problem 2 applies a normal stress of 4000 psi at these 
same faces. Assuming uniaxial strain behavior for problem 1 
and constant total stresses for problem 2, the explicitly 
coupled simulations in this paper use constant values of 3.71 x 
10-4 psi-1 and 6.00 x 10-4 psi-1 for the compressibility in Eq. 4. 
  
A vertical well with a wellbore radius of 0.25 ft is completed 
in the center of the pattern in all ten layers of the grid, cells 
(6,6,1-10). The well is produced at a rate of 15,000 b/d for 500 
days with a time step size of 10 days. No flow boundary 
conditions are assumed for the fluid at all faces of the grid. 
 
Fig. 2 shows average pore-volume-weighted reservoir 
pressures for problems 1 and 2 using the three different 
techniques. All techniques produced nearly identical results 
for each problem. Fig. 2 shows how geomechanical stress or 
displacement boundary conditions influence the pressure 
response in the reservoir. Problem 2 shows much less pressure 
drop than problem 1 because of the support provided by the 
constant stress boundary conditions on the sides of the 
reservoir. 

 
The runtime information for problems 1 and 2 are displayed in 
Tables 1 and 2. The column for iterations is the number of 
nonlinear iterations during a simulation. The explicitly 
coupled technique is faster than the other two techniques for 
this problem because it performs a small number of updates 
for the displacements when using an Erel tolerance of 0.001. 
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The explicitly coupled technique performs 18 and 15 updates 
for the displacements for problems 1 and 2, respectively. 

 
Fig. 2 – Average pressures for problems 1 and 2 

 
Technique CPU Time Time Steps Iterations 
Explicit 8.0 seconds 50 53 
Iterative 10.7 50 51 
Full 13.3 50 51 

 
Table 1 – Runtime information for problem 1 

 
Technique CPU Time Time Steps Iterations 
Explicit 7.8 seconds 50 53 
Iterative 10.7 50 52 
Full 12.4 50 51 

 
Table 2 – Runtime information for problem 2 

 
Fig. 3 shows the subsidence at the top of the reservoir at the 
well for problems 1 and 2. The two problems produce similar 
displacements at early times, but the problems deviate 
substantially at later times. The change in subsidence in Fig. 3 
is not a linear function of the average pressure drop in Fig. 2 
until later in the run when a pseudo-steady state is reached for 
the pressure behavior. 

 
Fig.  3 – Subsidence for problems 1 and 2 

 
The total subsidence for problem 1 is 12.2 ft after 500 days. 
This corresponds to an average vertical strain of 6.1%, which 
is very large considering that the calculations are based upon 
infinitesimal strain assumptions. Even though the pressures in 
Fig. 2 are based upon calculations using infinitesimal strains; 
it is expected that the results should not change substantially if 

the calculations are repeated using a finite strain formulation. 
Based upon a simple uniaxial strain analysis, a finite strain 
simulation should predict a final average pressure for the 
constrained case that is about 10 psi larger than the result 
shown in Fig. 2.  
 
Problem 3. Problem 3 is modeled after a problem presented 
by M. Gutierrez and R.W. Lewis.11 Problem 3 includes a soft 
productive reservoir that is contained within a stiff nonpay 
region as shown in Fig. 4. Problem 3 displays a 
geomechanical effect at the boundary of the reservoir that 
cannot be seen in reservoir simulations that do not include 
geomechanical calculations. For this problem, geomechanical 
effects cause the fluid pressures to increase at the boundary of 
the reservoir during the initial stages of depletion. 
 

 
 

Fig. 4 – Reservoir and nonpay regions for problem 3 
 
The grid is 21 x 21 x 12 and includes both the reservoir and 
nonpay regions. Grid block lengths in the x-direction are 4000 
ft each for the first 5 grid blocks, 2000 ft each for the next 11 
grid blocks, and 4000 ft each for the last 5 grid blocks. Grid 
block lengths for the y-direction are half the corresponding 
values in the x-direction.  The top of the grid is at a depth of 0 
ft and the thicknesses in the vertical direction are 4000, 3000, 
2000, 800, and 200 ft for the first 5 layers that represent the 
overburden. The next five layers have thicknesses of 50 ft  
each and represent the reservoir. The last two layers have 
thicknesses of 100 ft each and represent the underburden. The 
horizontal and vertical permeabilities are 100 and 10 md, 
respectively, in the reservoir, cells (6-16,6-16,6-10). 
Permeabilities are zero in the nonpay region. The initial in situ 
porosity is 25% in both the reservoir and nonpay regions. 
 
The fluid is single phase with a formation volume factor of 1.0 
at 14.7 psi, a viscosity of 1 cp, a fluid density of 62.4 lbm/ft3 
at 14.7 psi, and fluid compressibility of 3 x 10-6 psi-1. A 
nonzero fluid compressibility is used for this problem because 
a zero fluid compressibility makes the porous solid 
incompressible in the nonpay region. The initial fluid pressure 
is 14.7 psi at the surface. 
 
The elastic moduli are 1 x 104 psi in the reservoir and 1 x 106 
psi in the nonpay region, Poisson’s ratio is 0.25 everywhere, 
and the initial in situ solid density (solid material without 
pores) is 2.7 gm/cm3. The initial vertical stress is 0 psi at the 
surface with a vertical stress gradient of 0.9869 psi/ft 
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throughout the grid, and initial horizontal stresses are equal to 
half of the vertical stress. The bottom and sides of the grid 
have zero normal displacement constraints and all faces of the 
grid have zero tangential stresses. Assuming uniaxial strain 
behavior for this problem, the explicitly coupled simulation 
uses values of 3.33 x 10-4 psi-1 and 3.33 x 10-6 psi-1 for the 
compressibility in Eq. 4 in the reservoir and nonpay regions, 
respectively. 
 
A vertical well with a wellbore radius of 0.25 ft is completed 
in the center of the reservoir in all five layers, cells (11,11,6-
10). The well is produced at a rate of 50,000 stb/d for 4000 
days with a time step size of 20 days for the first 400 days, 
followed by time steps of 200 days stopping at 4000 days. 
Smaller time steps are taken at the beginning of the run to 
produce an accurate solution for the pressure increase at the 
reservoir boundary. Iteratively coupled and fully coupled 
techniques should be able to produce accurate results using the 
time steps specified for this problem, but explicitly coupled 
techniques may require time steps that are smaller than 20 
days because of time discretization errors that arise due to the 
explicit coupling.  
 
Fig. 5 shows average pore-volume-weighted pressures in the 
reservoir (excluding nonpay region) using the three different 
techniques. The three techniques produce significantly 
different results in Fig. 5 after the time step size increases 
from 20 days to 200 days.  

 

 
Fig. 5 – Average reservoir pressures for problem 3 

 
The three techniques also predict large differences in pressures 
at the boundary of the reservoir at early times. The iteratively 
coupled technique requires a tighter tolerance on the nonlinear 
iterations and the explicitly coupled technique requires smaller 
time steps to reproduce the fully coupled results. For this 
problem, the iteratively coupled technique requires a nonlinear 
volume error tolerance of 0.0001 and the explicitly coupled 
technique requires a time step size of about one day. One can 
improve the explicitly coupled results by using a smaller value 
of estimated compressibility for this problem; however, values 
that are too small will produce oscillations in well pressures.  
 
Fig. 6 shows the subsidence at the top of the reservoir and at 
the surface for all three techniques. The explicitly coupled 
results included in Fig. 6 use a time step size of one day for 
the simulation. The original explicitly coupled results using 

time step sizes of 20 days and 200 days did not agree well 
with the results in Fig. 6 predicting a final subsidence of 6.47 
ft at the top of the reservoir. The final subsidence in Fig. 6 at 
the top of the reservoir is 7.76 ft. 

 
Fig. 6 – Subsidence for problem 3 

 
Fig. 7 shows the pressure behavior at the boundary of the 
reservoir in cell (6,11,6). Initially the reservoir pressure 
increases as the reservoir is depleted because some of the 
vertical load that was supported at the center of the reservoir is 
transferred to the edges of the reservoir. This pressure increase 
cannot be observed in a reservoir depletion problem that does 
not include geomechanical calculations. The iteratively 
coupled results in Fig. 7 use a volume error tolerance of 
0.0001, and the explicitly coupled results use a time step size 
of one day updating displacements every time step. 

 
Fig. 7 – Pressure at boundary of reservoir for problem 3 

 
The runtime results for problem 3 are shown in Table 3. The 
explicitly coupled technique is much slower than the other two 
techniques for this problem because it requires much smaller 
time step sizes. The fully coupled and iteratively coupled 
techniques also exhibit time discretization errors, but time 
discretization errors play a much larger role for the explicitly 
coupled technique. The iteratively coupled technique is slower 
than the fully coupled technique because the iteratively 
coupled technique requires a large number of nonlinear 
iterations for convergence. Also, the iteratively coupled 
technique exhibits only a first order rate of convergence for 
the nonlinear iterations because of the sequential nature of 
updating the flow and displacement equations. 
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Technique CPU Time Time Steps Iterations 
Explicit 51.8 minutes 4000 4000 
Iterative 6.9 38 449 
Full 4.3 38 38 

 
Table 3 – Runtime information for problem 3 

 
Problem 4. Problem 4 is a three-phase, five-spot with a water 
injection well in one corner of the grid and a production well 
in the diagonally opposite corner of the grid. The production 
rate is larger than the injection rate so the reservoir pressure 
decreases throughout the simulation. 
 
The grid for problem 4 is displayed in Fig. 8 showing water 
saturations at the end of 25 years. The grid is 21 x 21 x 11 
with ∆x=∆y=60 ft in the horizontal directions and ∆z=20 ft in 
the vertical direction. The top of the grid is at a depth of 4000 
ft, and the initial in situ reservoir porosity is 30%. Reservoir 
permeabilities vary by layer with horizontal permeabilities 
equal to 5, 100, 20, 20, 20, 100, 20, 20, 100, 20, and 20 md,  
respectively. Vertical permeabilities are 0.01 times horizontal 
permeabilities. Two–phase relative permeabilities and 
capillary pressures are listed in Tables 4 and 5, and Stone 2 is 
used for three-phase relative permeabilities.12 

 
Water has a formation volume factor of 1.0 at 14.7 psi, a 
viscosity of 1 cp, a fluid density of 62.4 lbm/ft3 at 14.7 psi, 
and fluid compressibility of 3 x 10-6 psi-1. The oil and gas 
densities at the surface are 56.0 lbm/ft3 and 57.0 lbm/mcf, 
respectively. Pressure-dependent oil and gas properties are 
listed in Table 6. 

 

 
 

Fig. 8 –Water saturations after 25 years for problem 4 
 
The initial reservoir pressure is 3010 psi at 4010 ft and initial 
fluid saturations are 20%, 80% and 0% for water, oil and gas, 
respectively. The oil is initially undersaturated with a bubble-
point pressure of 3000 psi and an oil compressibility of 10-5 
psi-1 in all layers. 
 
The elastic modulus is 5 x 104 psi, Poisson’s ratio is 0.35, and 
the initial in situ solid density (solid material without pores) is 
2.7 gm/cm3. The initial vertical stress is 4000 psi at the top of 
the reservoir with a vertical stress gradient of 0.9256 psi/ft 
throughout the grid and initial horizontal stresses are equal to 
half of the vertical stress. The bottom and sides of the grid 
have zero normal displacement constraints and all faces of the 
grid have zero tangential stresses. Assuming uniaxial strain 

behavior for this problem, the explicitly coupled simulation 
uses a value of 4.15 x 10-5 psi-1 for compressibility in Eq. 4.  

 
Vertical wells are completed in diagonally opposite corners of 
the grid in all 11 layers. The water injector has a prescribed 
rate of 500 stb/d (¼ of the well’s total rate), and the 
production well has a prescribed liquid rate of 750 stb/d (¼ of 
the well’s total rate) with a limiting bottomhole pressure of 
500 psi. Wellbore radii of 0.069 ft (instead of 0.25 ft) are used  
to represent wells of radii 0.25 ft that are at the corners of the 
grid blocks,13 and a multiplying factor of 0.25 is used for the 
wellbore constants since only ¼ of a well’s production is 
being simulated in the pattern.  Simulations are performed for 
25 years using time step sizes that are controlled by stability 
considerations for the IMPEM technique.    
 
The three techniques produce nearly identical results for 
problem 4. Fig. 9 shows average pore-volume-weighted, oil-
phase pressures and subsidence in the center of the pattern at 
the top of the reservoir. Fig. 10 shows the wellbore pressure, 
gas/oil ratio, and water/oil ratio at the production well. 

 

 
Fig. 9 – Average pressure and subsidence for problem 4 

 

Fig. 10 – Production history for problem 4 
 
The runtime information for problem 4 is displayed in Table 7. 
The explicitly coupled technique is much faster than the other 
two techniques for this problem because it performs a small 
number of geomechanical updates during the simulation. The 
explicitly coupled technique requires only 33 updates for 
displacements throughout the simulation. A minimum of 25 
updates are required because displacements are printed each 
year during the simulation. The iteratively coupled and fully 
coupled techniques would perform better for this problem if 
they were combined with the implicit time stepping option in 
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p = fluid pressure, m/Lt2, psi the program, rather than with the IMPEM option, but it is 
expected that the explicitly coupled option would still be the 
best option because few geomechanical updates are required. 

po = initial fluid pressure, m/Lt2, psi 
o

bV  = initial grid block volume, L3, ft3 

 
pV  = pore volume, L3, ft3 

~
Technique CPU Time Time Steps Iterations 
Explicit 9.0 minutes 3324 3325 
Iterative 40.6 3326 3326 
Full 47.5 3326 3326 pV  = pore volume estimate from pressure equation, L3, ft3 

o
pV  = initial pore volume, L3, ft3  

Table 7 – Runtime information for problem 4 
α = Biot’s poroelastic parameter, dimensionless  
δij = Kronecker delta, dimensionless A run was performed without geomechanical calculations 

using a value of 4.15 x 10-5 psi-1 for cr in Eq. 1 and the results 
reproduced the pressure and fluid histories in Figs. 9 and 10. 
The simulation without geomechanical calculations took 7.2 
minutes; so for this problem, geomechanical calculations add 
only 25% to the overall computational time for the model 
when using the explicitly coupled technique. 

∆ = change in a variable, dimensionless 
εij = strain, expansion is positive, dimensionless 
εkk = volumetric strain, dimensionless 
λ = Lame constant, m/Lt2, psi 
µ = Lame constant, m/Lt2, psi 
ν = Poisson’s ratio, dimensionless 

 σ ij = total stress, tension is positive, m/Lt2, psi Conclusions o
ijσ  = initial total stress, m/Lt2, psi Explicitly coupled, iteratively coupled, and fully coupled 

techniques have been applied to four sample problems. The 
three techniques produce nearly identical results on problems 
1, 2, and 4 using the same time step sizes and the same 
convergence tolerances. Problem 3 involves geomechanical 
effects that are not present in the other three problems and the 
three techniques initially produced different results for this 
problem; however, all three techniques produced similar 
results when a tight tolerance was used for the nonlinear 
iterations for the iteratively coupled technique, and when 
small time steps were used for the explicitly coupled 
technique.  All problems in this paper are described in detail 
so the results presented here may be used for comparison with 
other geomechanical/porous flow simulators.  

oϕ  = initial porosity, dimensionless  
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Metric Conversion Factors 
bbl x 1.589 874  E-01 =  m3  
cp x 1.0*  E-03 =  Pa s 
ft x 3.048*  E-01 =  m  
lbm x 4.535924 E-01 = kg 
mcf x 2.831 685  E+01 =  m3  
md x 9.869 233  E-04 =  µm2  
psi x 6.894 757  E+00 =  kPa   
psi-1 x 1.450 377  E-01 =  kPa-1  
*Conversion factor is exact. 
 
 
 
 
 
 

Sw    Krw    Krow  Pwc 
 0.2   0.0    0.5102 6.4  
 0.25  0.0039 0.4133 5.6  
 0.3   0.0156 0.3266 4.9  
 0.35  0.0352 0.2500 4.2  
 0.4   0.0625 0.1837 3.6  

 0.45  0.0977 0.1276 3.0  
 0.5   0.1406 0.0816 2.5  
 0.55  0.1914 0.0459 2.0  
 0.6   0.2500 0.0204 1.6  
 0.65  0.3164 0.0051 1.2  
 0.7   0.3906 0.0    0.9  

 0.8   0.5625 0.0    0.4  
 0.9   0.7656 0.0    0.1  
 1.0   1.0    0.0    0.0  

 
   Table 4 – Water/oil data for problem 4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Sw+So   Krog Krg Pgc 
0.2  0.0    0.6303 3.2 
0.25 0.0    0.5511 2.8 
0.3  0.0    0.4772 2.5 
0.35 0.0026 0.4086 2.1 
0.4  0.0104 0.3454 1.8 
0.45 0.0234 0.2874 1.5 
0.5  0.0416 0.2348 1.3 
0.55 0.0651 0.1875 1.0 
0.6  0.0937 0.1455 0.8 
0.65 0.1275 0.1089 0.6 
0.7  0.1666 0.0775 0.5 
0.75 0.2108 0.0514 0.3 
0.8  0.2709 0.0307 0.2 
0.85 0.3149 0.0153 0.1 
0.9  0.3748 0.0052 0.0 
0.95 0.4398 0.0004 0.0 
0.97 0.4673 0.0    0.0 
1.0  0.5102 0.0    0.0 

 
Table 5 – Gas/oil data for problem 4 

 
 
 
 
 
 
 
Pressure 
psi 

   Bo 
rvb/stb 

   Bg 
rvb/mcf 

  Rs 
mcf/stb 

µo 
cp 

µg 
cp 

 300.00 1.0663 10.2582 .0610 1.5 .02 

 600.00 1.0931  4.9878 .1161 1.5 .02 

 900.00 1.1173  3.2461 .1681 1.5 .02 
1200.00 1.1408  2.3855 .2197 1.5 .02 

1600.00 1.1718  1.7522 .2894 1.5 .02 

2000.00 1.2030  1.3838 .3608 1.5 .02 

2400.00 1.2346  1.1479 .4342 1.5 .02 
2800.00 1.2667   .9876 .5102 1.5 .02 

3000.00 1.2843   .9221 .5521 1.5 .02 

3200.00 1.2996   .8743 .5889 1.5 .02 
3600.00 1.3334   .7921 .6708 1.5 .02 

4000.00 1.3683   .7312 .7561 1.5 .02 

4500.00 1.4137   .6763 .8685 1.5 .02 

 
Table 6 – Pressure dependent oil and gas data for problem 4 

 
 


