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Abstract. The classical theory of deterministic automata is presented

in terms of the notions of homomorphism and bisimulation, which are the

cornerstones of the theory of (universal) coalgebra. This leads to a trans-

parent and uniform presentation of automata theory and yields some new

insights, amongst which coinduction proof methods for language equal-

ity and language inclusion. At the same time, the present treatment of

automata theory may serve as an introduction to coalgebra.

� � � � in this case, as in many others, the process gives the mini-
mal machine directly to anyone skilled in input di�erentiation.
The skill is worth acquiring � � � �

� J.H. Conway [Con71, chap. 5]

1 Introduction

The classical theory of deterministic automata is presented in terms of the no-
tions of homomorphism and bisimulation, which are the cornerstones of the
theory of (universal) coalgebra. This coalgebraic perspective leads to a transpar-
ent and uniform theory, in which the observation that the set L of all languages
is a �nal automaton, plays a central role. The automaton structure on L is de-
termined by the notion of (input) derivative, and gives rise to two new proof
principles: 1. a coinduction proof method in terms of bisimulations for demon-
strating the equality of languages, which is complete and, for regular languages,
e�ective; and 2. a coinduction proof method in terms of simulations for proving
language inclusion.

The paper is intended to be self-contained, and no prior knowledge of coal-
gebra is presupposed. Although the development of our theory has been entirely
dictated by a coalgebraic perspective, no explicit reference to coalgebraic notions
or results will be made (apart from Section 12). In this way, we hope that this
paper may also serve as an introduction to coalgebra.

Sections 2 through 11 deal with (complete) deterministic automata, regular
languages, minimization, and Kleene's theorem. Only after these sections, the
connection between automata theory and coalgebra is discussed in detail, in
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Section 12. (For readers that do have some background in category theory and
coalgebra, it may be instructive to read Section 12 immediately after having read
Section 2.) In the remaining Sections 13 through 15, the coalgebraic approach
is further illustrated by the treatment of so-called partial automata, which have
transition functions that may be partial. Of special interest is an automaton of
languages with in�nite words. References to the literature have been collected
in Section 16.

2 Deterministic automata

Let A be a (possibly in�nite) set of input symbols. A (deterministic) automaton

with input alphabet A is a triple S = hS; o; ti consisting of a set S of states ,
an output function o : S ! 2, and a transition function t : S ! SA. Here 2

denotes the set f0; 1g, and SA is the set of all functions from A to S. The output
function o indicates whether a state s in S is terminating1 (o(s) = 1) or not
(o(s) = 0). The transition function t assigns to a state s a function t(s) : A! S,
which speci�es the state t(s)(a) that is reached after an input symbol a has been

consumed. We shall sometimes write s# for o(s) = 1, s" for o(s) = 0, and s
a
�!s0

for t(s)(a) = s0.

Contrary to the standard de�nition, in the present setting both the state
space S of an automaton and the set A of input symbols may be in�nite. If both
S and A are �nite then we speak of a �nite automaton. Another di�erence with
the standard approach is that our automata do not have an initial state. (See
Section 12 for a detailed motivation of the present de�nition of automaton.)

A bisimulation between two automata S = hS; o; ti and S0 = hS0; o0; t0i is a
relation R � S � S0 with, for all s in S, s0 in S0, and a in A:

if s R s0 then

�
o(s) = o0(s0) and
t(s)(a) R t0(s0)(a):

A bisimulation between S and itself is called a bisimulation on S. Unions and
(relational) compositions of bisimulations are bisimulations again. We write s �
s0 whenever there exists a bisimulation R with s R s0. This relation � is the
union of all bisimulations and, therewith, the greatest bisimulation. The greatest
bisimulation on one and the same automaton, again denoted by �, is called the
bisimilarity relation. It is an equivalence relation.

The only thing one can `observe' about a state of an automaton is whether it
is terminating or not. One can also perform `experiments', by o�ering an input
symbol which then leads to a new state. Of this new state, we can of course
observe again whether it is terminating or not. Two states that are related by
a bisimulation relation are observationally indistinguishable in the sense that 1.
they give rise to the same observations, and 2. performing on both states the
same experiment will lead to two new states that are indistinguishable again.

1 Sometimes also called accepting or �nal .
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A homomorphism between S and S0 is any function f : S ! S0 with, for all
s in S, o(s) = o0(f(s)) and, for all a in A, f(t(s)(a)) = t0(f(s))(a).

An automaton S0 = hS0; o0; t0i is a subautomaton of S = hS; o; ti if S0 � S

and the inclusion function i : S0 ! S is a homomorphism. Given hS; o; ti and S0,
the functions o0 and t0 in that case are uniquely determined. For a state s in S,
hsi denotes the subautomaton generated by s: it is the smallest subautomaton
of S containing s, and can be obtained by including all states from S that are
reachable via a �nite number of transitions from s.

Homomorphisms map subautomata to subautomata: for a homomorphism
f : S ! T and subautomaton S0 � S, f(S0) is a subautomaton of T . For s in S,
moreover, f(hsi) = hf(s)i.

The notions of automaton, homomorphism and bisimulation are closely re-
lated: a function f : S ! S0 is a homomorphism if and only if its graph re-
lation fhs; f(s)i j s 2 Sg is a bisimulation. And bisimulations are themselves
automata: if R is a bisimulation between S and S0, then oR : R ! 2 and
tR : R! RA, given for hs; s0i in R and a in A by oR(hs; s

0i) = o(s) = o0(s0) and
tR(hs; s

0i)(a) = ht(s)(a); t0(s0)(a)i, de�ne an automaton hR; oR; tRi.
For an example, let A = fa; bg and consider the automata S = fs1; s2; s3g

and T = ft1; t2g, with transitions and termination as speci�ed by the following
tables:

a b

s1 s2 s3 "

s2 s2 s3 #

s3 s2 s3 #

a b

t1 t2 t2 "

t2 t2 t2 #

where, for instance, the second row of the �rst table denotes s2
a
�! s2, s2

b
�!

s3, and s2#. Then fhs1; s1i; hs2; s2i; hs3; s3ig and fhs2; s3i; hs2; s2i; hs3; s3ig are
bisimulations on S; fs2; s3g = hs2i = hs3i is a subautomaton of S; and f : S ! T

mapping s1 to t1, and s2 and s3 to t2 is a homomorphism.

3 Languages

Let A� be the set of all �nite words over A. Pre�xing a word w in A� with
an input symbol a in A is denoted by aw. Concatenation of words w and w0

is denoted by ww0. Let " denote the empty word. A language is any subset of
A�. The language accepted by a state s of an automaton S = hS; o; ti is lS(s) =

fa1 � � �an j s
a1
�! s1

a2
�! � � �

an
�! sn#g, where s1 = t(s)(a1) and si+1 = t(si)(ai),

for 1< i < n.
Let L = fL j L � A�g be the set of all languages. For a word w in A�, the

w-derivative of a language L is Lw = fv 2 A� j wv 2 Lg. A special case is the
a-derivative La = fv 2 A� j av 2 Lg, for a in A, which can be used to turn the
set L of languages into an automaton hL; oL; tLi, de�ned, for L 2 L and a 2 A,
by

oL(L) =

�
1 if " 2 L

0 if " 62 L
and: tL(L)(a) = La:
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That is,
L # i� " 2 L; and: L

a
�! L0 i� L0 = La:

This automaton has the pleasing property that the language accepted by a state
L in L is precisely L itself. This will be proved in Section 7, but is already
illustrated by the following example. For L = fa; ab; acg, there are the following
transitions:

fa; ab; acg
a
�! f"; b; cg#

b;c
�! f"g#;

where
b;c
�! means that there is both a b and a c transition, and where we have

omitted transitions leading to the empty set, such as fa; ab; acg
b
�! ;. It follows

that lL(L) = L.
If the behaviour of a state is the language it accepts, then states in L could

be said to `do as they are'. For them, in other words, `being is doing'.

4 Coinduction

The automaton L = hL; oL; tLi of languages satis�es, for all languages K and
L,

if K � L then K = L:

(The converse trivially holds.) This gives rise to the following coinduction proof

principle: in order to prove the equality of languages K and L, it is su�cient
to establish the existence of a bisimulation relation on L that includes the pair
hK;Li.

The above implication follows from the fact that for all words w in A� of
length n and for all languages K and L with K � L: if w 2 K then w 2 L,
which we show next by induction on n. First note that a bisimulation on L is
any relation R such that for all K and L with K R L, K# i� L#, and for any a
in A, KaRLa. Now consider K and L with K � L. Because � is a bisimulation,
" 2 K implies " 2 L. Next consider a word w = aw0, of length n + 1, in K.
Because K � L also Ka � La. Because w

0 2 Ka and the length of w0 is n, it
follows from the inductive hypothesis that w0 2 La. Thus w 2 L. This shows
that K � L implies K � L. Since K � L implies L � K, also L � K.

5 Regular expressions

Let the set R of regular expressions be given by the following syntax:

E ::= 0 j 1 j a 2 A j E + F j EF j E�

Let the funcion � : R ! L, which assigns to an expression E the language �(E)

it represents, be de�ned by induction on the structure of E:

�(0) = ;

�(1) = f"g
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�(a) = fag

�(E + F ) = �(E) + �(F )

�(EF ) = �(E)�(F )

�(E�) = �(E)�;

where on the right hand side of these equations the following so-called regular

operators are used: for languages K and L,

K + L = K [ L

KL = fvw j v 2 K and w 2 Lg

K�
=
[
n�0

Kn;

with K0 = f"g and Kn+1 = KKn. Languages L = �(E) are called regular

languages . Whenever convenient and harmless, we shall simply write E for �(E).
Notably, 0, 1, and a will then denote the singleton sets mentioned above.

The following rules for calculating the a-derivative La of a language L are
easily veri�ed:

0a = 0

1a = 0

ba =

�
1 if b = a

0 if b 6= a

(K + L)a = Ka + La

(KL)a =

�
Ka L if K"
Ka L+ La if K#

(K�)a = KaK
�

There are also the following rules for termination: 0", 1#, a", K + L# i� K# or
L#, KL# i� K# and L#, K�#. All these rules will be of great help when proving
the equality of languages by means of coinduction, as we shall see in Section 6.

6 Proofs by coinduction

The use of coinduction is illustrated by �rst proving some of the familiar laws
for the regular operators, and next some equalities of concrete expressions. We
emphasize that the algebraic completeness of these laws in not the issue here.
They merely serve as examples, and some of them will be used as lemma's in
subsequent proofs.

The strength of the coinduction proof principle is that it works for any valid
equality, and that it works in a uniform way: �rst de�ne a relation consisting
of the pair(s) of languages that you want to prove equal; then look at all pos-
sible transitions and continue to add pairs of resulting languages if they were
not present yet. The original equality holds if and only if this process yields a
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bisimulation. For regular languages, the coinduction proof principle is e�ective:
If the languages with which one starts are regular, then the construction of a
bisimulation relation terminates in �nitely many steps. This will be proved in
Section 8.

Some laws

All the familiar laws for the regular operators can be proved by coinduction.
Some of them are easily proved directly on the basis of the de�nitions of the
regular operators, others are less straightforward. Below some of the following
will be proved by coinduction:

K + 0 = K (1)

K +K = K (2)

K + L = L+K (3)

(K + L) +M = K + (L+M) (4)

1K = K (5)

K1 = K (6)

K0 = 0 (7)

0K = 0 (8)

(KL)M = K(LM) (9)

1 + LL� = L� (10)

K(L+M) = KL+KM (11)

(L+M)K = LK +MK (12)

L " ^ (K = LK +M)) K = L�M (13)

(K + L)� = K�
(LK�

)
� (14)

(K + L)� = (K�L)�K� (15)

As a consequence of (4) and (9), brackets can often be omitted.

Although all of (1)�(9) are immediate from the de�nitions, we prove as an
example equation (1) by coinduction. We show that

R = fhK + 0; Ki j K 2 Lg

is a bisimulation; then (1) follows by coinduction. First note that (K + 0)# if
and only if K#. And for any a in A,

(K + 0)a

= Ka + 0a

= Ka + 0

R Ka:
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Laws (2)-(9) can be proved similarly. Equality (10) follows by coinduction from
the fact that

fh1 + LL�; L�i j L 2 Lg [ fhL;Li j L 2 Lg

is a bisimulation. For (11), one could try to prove that the relation fhK(L +

M); KL+KMi j K;L;M 2 Lg is a bisimulation. It turns out to be convenient
to consider the (by (1)) larger set

R = fhK(L+M) +N; KL+KM +Ni j K;L;M;N 2 Lg

instead. (Cf. the strengthening of the inductive hypothesis in an inductive argu-
ment.) We show that R is a bisimulation. Consider a in A and a pair hK(L +

M)+N; KL+KM+Ni in R. First note that K(L+M)+N terminates if and
only if KL+KM +N does. Suppose that K# (the case that K" is similar and
a little easier). Then

(K(L+M) +N)a

= Ka (L+M) + La +Ma +Na

R KaL+KaM + La +Ma +Na

= KaL+ La +KaM +Ma +Na [by (3) and (4)]

= (KL)a + (KM)a +Na

= (KL+KM +N)a;

which concludes the proof that R is a bisimulation. Now (11) follows by coin-
duction. Similarly for (12). For (13), let K, L, and M be expressions with L"

and K = LK +M . Then K = L�M follows by coinduction from the fact that
fhUK + V; UL�M + V i j U; V 2 Lg is a bisimulation on L. Equations (14) and
(15) follow from the fact that fhM(K + L)�; MK�(LK�)�i j K;L;M 2 Lg and
fhM(K + L)�; M(K�L)�K�i j K;L;M 2 Lg are bisimulations.

Some regular languages

Below the language �(E) of a regular expression E will be simply denoted by E
itself. Similarly, Ea denotes �(E)a. Let A = fa; bg. As an example, we want to
show

[(b�a)�ab�]� = 1 + a(a+ b)� + (a+ b)�aa(a+ b)�: (16)

Let E1 = [(b�a)�ab�]� and F1 = 1 + a(a + b)� + (a + b)�aa(a + b)�. Using the
calculation rules for a-derivatives of Section 5, the following tables are easily
computed:

a b

E1 E2 E4 #

E2 E2 E3 #

E3 E2 E3 #

E4 E5 E4 "

E5 E2 E4 "

a b

F1 F2 F4 #

F2 F2 F3 #

F3 F2 F3 #

F4 F5 F4 "

F5 F2 F4 "
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where

E2 = [(b�a)�ab� + b�]E1;

E3 = [(b�a)(b�a)�ab� + b�]E1;

E4 = [(b�a)(b�a)�ab�]E1;

E5 = [(b�a)�ab�]E1;

F2 = (a+ b)� + (a+ b)�aa(a+ b)� + a(a+ b)�;

F3 = (a+ b)� + (a+ b)�aa(a+ b)�;

F4 = (a+ b)�aa(a+ b)�;

F5 = (a+ b)�aa(a+ b)� + a(a+ b)�:

As a consequence, T = fhEi; Fii j 1 � i � 5g is a bisimulation. Hence Ei = Fi,
by coinduction, for 1 � i � 5. This proves (16).

It follows from the tables above that fhE2; E3i; hE2; E2i; hE3; E3ig is a bisim-
ulation as well. Thus E2 = E3, by coinduction, and similarly F2 = F3. There is,
therefore, some redundancy in the representation of the bisimulation T , which
turns out to consist of only 4 di�erent pairs. The interesting point of this obser-
vation is that this knowledge was not needed for the conclusion above that T is
a bisimulation.

Because ((a+b)�)a = (a+b)� and ((a+b)�)b = (a+b)� imply that fhF2; (a+

b)�i; hF3; (a + b)�ig is a bisimulation, we also have, as another example, the
following equalities:

E2 = E3 = F2 = F3 = (a+ b)�:

Inequalities

The coinduction proof method is clearly also of help in proving that two lan-
guages are di�erent. In order to prove E1 6= E2 in the example above, it is suf-
�cient to show that there is no bisimulation relation containing hE1; E2i. Now
the assumption that hE1; E2i is in some bisimulation leads to a contradiction,
since (E1)b = E4 and (E2)b = E3, but (E4)" and (E3)#.

7 Finality and minimization

We can use coinduction to prove that the automaton L is �nal among all au-
tomata, i.e., for any automaton S = hS; o; ti there exists a unique homomor-
phism from S to L: the existence follows from the observation that the function
lS : S ! L (which assigns to a state the language it accepts) is a homomorphism.
For uniqueness , suppose f and g are homomorphisms from S to L. The equality
of f and g follows by coinduction from the fact that R = fhf(s); g(s)i j s 2 Sg is a
bisimulation on L, which is proved next. Because f and g are homomorphisms, we
have, for any s in S, f(s)# i� s# i� g(s)#. For any a in A, f(s)

a
�! L i� L = f(s0),
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where s0 = tS(s)(a), and similarly g(s)
a
�! g(s0). Because hf(s0); g(s0)i is in R,

this shows that R is a bisimulation.
The unique homomorphism lS : S ! L has the property that it identi�es

two states in S precisely when they are bisimilar: for all s and s0 in S, s � s0

if and only if lS(s) = lS(s
0): From left to right, this follows by coinduction from

the general property of homomorphisms that for any bisimulation R on S the
set fhlS(s); lS(s

0)i j s R s0g is a bisimulation on L. For the converse, note that
fhs; s0i j lS(s) = lS(s

0)g is a bisimulation on S.
By the �nality of L, the identity function is the only homomorphism from L

to itself. It follows that the language accepted by a state L in L is L itself, as
was announced in Section 3.

The subautomaton hLi � L generated by L, which is given by

hLi = fLw j w 2 A�g;

is moreover a minimal automaton for L in the following sense. Let S be any
automaton and s a state in S such that the language accepted by s is L. That
is, lS(s) = L, where lS : S ! L is the (unique) homomorphism from S to L that
assigns to each state the language it accepts. Because lS is a homomorphism,
lS(hsi) = hlS(s)i, whence lS(hsi) = hLi. Therefore the size of hLi is at most that
of S. Since S and s were arbitrary, hLi is of minimal size.

It follows that for any automaton S and state s in S, the minimization of
the automaton hsi is hlS(s)i. Another consequence is that

L is accepted by a �nite automaton i�

hLi is a �nite subautomaton of L. (17)

This is in fact equivalent to the following classical theorem by Nerode and Myhill.
Let RL be an equivalence relation on A� de�ned, for v and w in A�, by

v RL w i� 8u 2 A�; vu 2 L () wu 2 L:

The index of RL is de�ned as the number of its equivalence classes. The theorem
of Nerode and Myhill now says that

L is accepted by a �nite automaton i�

RL is of �nite index. (18)

The equivalence of (17) and (18) follows from the observation that the corre-
spondence between equivalence classes of RL and elements of hLi, given for w
in A� by [w]RL 7! Lw, is bijective: for v and w in A�,

[v]RL = [w]RL

i� v RL w

i� 8u 2 A�; vu 2 L () wu 2 L

i� 8u 2 A�; u 2 Lv () u 2 Lw

i� Lv = Lw:
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8 Kleene's theorem

Kleene's celebrated theorem states that a language is regular if and only if it
is accepted by a �nite automaton. In view of (17), Kleene's theorem can be
expressed in terms of subautomata of the automaton L of languages, as follows.
Let A be �nite. For any language L � A�,

L is regular i� hLi is a �nite subautomaton of L. (19)

As a corollary of (19), it will be shown below that the coinduction proof principle
is e�ective for regular languages (as was announced in Section 6).

In order to prove (19) from left to right, consider �(E), for some regular
expression E. One can show by induction on the syntactic structure of E that
h�(E)i is �nite. Consider, for instance, EF and assume that h�(E)i and h�(F )i

are �nite. It follows from the rules for a-derivatives that the general format of
a state reachable from �(EF ) is K 0M +M 0 + � � � +M 00, for K 0 in h�(E)i and
M 0; : : : ;M 00 in h�(F )i. Using (some of) the laws (1)�(8), it follows from the
inductive hypothesis that h�(EF )i � fK 0M +M 0 + � � �+M 00 j K 0 2 h�(E)ig is
�nite. The other cases are dealt with similarly.

Conversely, we have to show that for a language L for which hLi is �nite,
there exists a regular expression E with �(E) = L. Rather than proving this
part of the theorem for arbitrary languages, we consider an example that can be
easily generalized to the general case. The following law, which can be readily
proved by coinduction, will be helpful: If A = fa; : : : ; bg then for all languages
L,

L =

�
aLa + � � �+ bLb + 1 if L#
aLa + � � �+ bLb if L".

(20)

For an example, let A = fa; bg and K in L with hKi = fK;L;M;Ng, for
languages L, M , and N , with transitions and termination as speci�ed by the
following table:

a b

K L M "

L L M #

M M N #

N N N "

By (20), there are the following equations:

K = aL+ bM

L = aL+ bM + 1

M = aM + bN + 1

N = aN + bN
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Because N = aN + bN = (a + b)N + 0, law (13) implies N = (a + b)�0 = 0.
Thus M = aM + 1 which, again by (13) gives M = a�. Similarly it follows that
L = a�(ba� + 1) and K = aa�(ba� + 1) + ba�, which proves that K is regular,
indeed. This completes the proof of (19).

A consequence of (19) is that the coinduction proof principle is e�ective for
regular languages �(E) and �(F ): In order to construct a bisimulation relation
that includes the pair h�(E); �(F )i, one has to add all pairs of states that are
(pair-wise) reachable from �(E) and �(F ). Since both h�(E)i and h�(F )i are
�nite, by (19), it follows that in �nitely many steps, either such a bisimula-
tion is constructed (whence �(E) = �(F )) or the conclusion is reached that no
bisimulation for �(E) and �(F ) exists (whence �(E) 6= �(F )).

Note that the use of the simpli�cation laws (1)�(8) is crucial for termination;
for instance, they are needed to conclude that all languages occurring in the
sequence

�(a�)
a
�! 1�(a�)

a
�! 0�(a�) + 1�(a�)

a
�! 0�(a�) + 0�(a�) + 1�(a�)

a
�! � � �

are equal, and hence that h�(a�)i consists of only one state.

9 Nonregular languages

An immediate consequence of Kleene's theorem in the formulation of (19) above
is that in order to show that a language L is nonregular, it is su�cient to prove
that hLi is not �nite. This method is equivalent, by the equivalence of (17) and
(18), to the traditional approach of showing that RL is of in�nite index. Here
are three classical examples, in which the following shorthand will be used. For a
languageK and k � 0, let the languageKk be the resulting state after k a-steps:
Kk = Kak .

Let L = fanbn j n � 0g, where as usual a0 = 1 and an+1 = aan. Clearly,
Lk = fan�kbn j n � kg and thus Lk and Lk0 are di�erent whenever k and k0

are. This shows that hLi is in�nite, hence L is nonregular.
For a second example, consider M = fw 2 A� j ]a(w) = ]b(w)g consisting

of all words with an equal number of a's and b's. All languages Mk are di�erent
because for any n and k, the word bn is in Mk i� k = n. Thus hMi is in�nite
and M is nonregular.

Finally, let N = fan
2

j n � 0g. Note that for any n the length of the shortest

word in Nn2+1 is ja(n+1)2�n2�1j = ja2nj = 2n. Therefore Nn2 and Nm2 are
di�erent whenever n and m are. Thus hNi is in�nite and N is nonregular.

10 De�nitions by coinduction

The fact that L is �nal gives rise to the following coinductive de�nition principle:
in order to de�ne a function from a given set S to L, we can turn S into an
automaton by de�ning an output function o and a transition function t on S.
A function lS : S ! L is then obtained by the �nality of L as the unique
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homomorphism between the automata S and L, which assigns to each element,
that is, state s in S the language it accepts.

As an example, we shall apply the above principle to obtain a coinductive
de�nition of the shu�e of two languages. To this end, let the set E of expressions
be given by the following syntax:

E ::= L (for L 2 L) j E + F j E k F

Note that E contains a symbol L for any language L in L. The set E can be
turned into an automaton hE ; oE ; tEi, de�ned by the following axioms and rules
(using the arrow notation introduced in Section 2):

L# , " 2 L; (E + F )# , E # or F#; (E k F )# , E # and F#

L
a
�! La

E
a
�! E0 F

a
�! F 0

E + F
a
�! E0 + F 0

E
a
�! E0 F

a
�! F 0

E k F
a
�! E0 k F + E k F 0

Note that the above axioms and rules uniquely determine two functions oE : E !

2 and tE : E ! EA. By the coinduction de�nition principle, there exists a unique
homomorphism l : E ! L, giving for each expression E, that is, state of the
automaton E , the language l(E) it accepts. One readily proves (by coinduction)
that l(L) = L and l(E + F ) = l(E) + l(F ).

The shu�e of two languagesK and L can now be de�ned asKkL = l(K k L).
Its a-derivative, for a in A, can be computed as follows:

(KkL)a

= (l(K k L))a

= tL(l(K k L))(a)

= l(tE(K k L)(a)) [l is a homomorphism]

= l(Ka k L+ K k La) [de�nition tE ]

= l(Ka k L) + l(K k La)

= KakL+ KkLa: (21)

This characterization is useful for proving properties by coinduction, such as
KkL = LkK, Kk(L +M) = KkL + KkM , and (KkL)kM = Kk(LkM). For
instance, the latter equality follows by coinduction from the fact that

fh (KkL)kM + � � �+ (K 0kL0)kM 0; Kk(LkM) + � � �+K 0k(L0kM 0) i j

K;L;M;K 0; L0;M 0 2 Lg

is readily shown to be a bisimulation.
Let us, once more, make a case for the importance of coinduction by inviting

the reader to prove the associativity of the shu�e operator by induction, using
the following inductive de�nition:

KkL =
[
fvkw j v 2 K; w 2 Lg; with

vkw = v k
�
w + w k

�
v; " k

�
v = fvg; (av) k

�
w = a(vkw);

and to compare the inductive proof to the coinductive one above.
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11 Simulation

The notion of bisimulation is a special case of the more general notion of simu-

lation, which will be introduced below. Simulation is used in the formulation of
yet another coinduction principle on L which generalizes that of Section 4.

A simulation between two automata S = hS; o; ti and S0 = hS0; o0; t0i is any
relation R � S � S0 with, for all s in S, s0 in S0, and a in A:

if s R s0 then

�
o(s) � o0(s0) and
t(s)(a) R t0(s0)(a):

Thus if s R s0 then s# implies s0#. A simulation between S and itself is called a
simulation on S. Unions and (relational) compositions of simulations are simu-
lations again. We write s � s0 whenever there exists a simulation R with s R s0.
This relation � is the union of all simulations and, therewith, the greatest sim-
ulation. The greatest simulation on one and the same automaton S, denoted
by � (or �S, if the name of the automaton is relevant), is called the similarity

relation. It is a preorder: s � s and if s � t and t � u then s � u.

Clearly every bisimulation is a simulation. The converse does not hold but
s � t and t � s imply s � t: if s R t and t T s for two simulations R and T then
R \ T�1 is a bisimulation with s(R \ T�1)t. It follows that �=� \ ��1.

The automaton L = hL; oL; tLi satis�es the following proof principle, which
is again called coinduction: for all languages K and L,

if K � L then K � L:

(The converse trivially holds.) The proof principle says that in order to prove
the inclusion of a language K in a language L, it is su�cient to establish the
existence of a simulation relation R on L with K R L. Inspecting the proof of
the previous coinduction principle in Section 4, we see that it contains a proof
of the statement above.

The regular operations on languages can be easily shown to be monotonic
with respect to �. For instance, if K � K 0 and L � L0 then KL � K 0L0. Also
K � L implies Ka � La.

The above coinduction principle is often best applied in combination with the
following weakening of the notion of simulation. A simulation up-to-similarity

on automata S = hS; o; ti and S0 = hS0; o0; t0i is any relation R � S � S0 with,
for all s in S, s0 in S0, and a in A:

if sRs0 then

�
o(s) � o0(s0) and
t(s)(a) R� t0(s0)(a);

where R� =�S � R � �S0 (� denotes composition of relations). Interestingly, if
sRt for a simulation up-to-similarity R then s � t, since in that case R� is a
simulation and R � R�. Thus in order to prove K � L it su�ces to point to a
simulation up-to-similarity R with K R L.
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We treat a few examples. The following inclusions and equational implications
can all be proved by coinduction:

KL � KkL (22)

KL � L) K�L � L (23)

LK +M � K ) L�M � K (24)

KL � LM ) K�L � LM� (25)

For (22), we show that

R = fhKL+ � � �+K 0L0; KkL+ � � �+K 0kL0 i j K;L;K 0; L0 2 Lg

is a simulation up-to-similarity. Consider hKL; KkLi in R (the other cases of
pairs of longer sums are similar). Suppose K# (the case of K" being simpler). If
(KL)# then (KkL)#. And for a in A,

(KL)a

= KaL+ La

= KaL+ 1La

� KaL+KLa [1 � K since K#]

R KakL+KkLa

= (KkL)a [by (21)];

which shows that R is a simulation up-to-similarity. Now (22) follows by coin-
duction. For (23) consider K and L with KL � L. Then

S = fhMK�L+N; ML+N i jM;N 2 Lg

is a simulation up-to-similarity: if (MK�L +N)# then (ML +N)#. And for a
in A,

(MK�L+N)a

= MaK
�L+KaK

�L+ La +Na [supposing that M#]

= (Ma +Ka)K
�L+ La +Na

S (Ma +Ka)L+ La +Na

= MaL+KaL+ La +Na

�MaL+ La +Na [KL � L implies (KL)a � La whence KaL+ La � La]

= (ML+N)a:

Thus (23) follows by coinduction. Law (24), which re�nes equation (13) in Section
6, and law (25) are proved similarly.

As another example, we prove the inclusion of the following regular languages:

[(b�a)�ab�]� � [(b�a)�ab� + b�][(b�a)�ab�]�;

which we recognize as E1 and E2 from Section 6. The inclusion follows by coin-
duction from the fact that we have a simulation

fhE1; E2i; hE2; E2i; hE3; E3i; hE4; E3i; hE5; E2ig:
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12 Automata are coalgebras

Classically, an automaton over a (�nite) �xed input alphabet A is de�ned as a
4-tuple

hS; s0 2 S; F � S; � : S �A! S i;

consisting of a �nite set S of states, an initial state s0, a set F of terminating (or
accepting) states, and a transition function �. Below our de�nition of automa-
ton, as given in Section 2, is compared to the one above. It is explained that
our de�nition in essence is coalgebraic, and that the notions of homomorphism,
bisimulation, and coinduction as introduced in the preceding sections, are special
instances of general coalgebraic de�nitions.

First of all, there is no reason to restrict oneself to �nite sets A and S. On
the contrary, allowing an in�nite set of states makes it possible to consider, for
instance, the set L of languages as an automaton. Secondly, we have not included
an initial state in our de�nition, simply because there is no reason to focus
attention to one particular state. In the classical theory of automata, initial states
play a role, for instance, in the de�nition of the sequential composition of two
automata, where all the terminating states of the �rst automaton are connected
to the initial state of the second automaton (usually by an �-transition). As we
have seen, there is no need for such a construction in the present theory.

Allowing in�nite sets and forgetting about the initial state, the classical de�-
nition of course becomes equivalent to the de�nition of Section 2, because of the
existence of bijections

P(S) �= (S ! 2) and (S �A! S) �= (S ! SA):

Thus there is a one-to-one correspondence between triples hS; F; �i and triples
hS; o; ti. The choice of working with the latter representation is motivated by
the observation that in this way, automata can be viewed as coalgebras: Let
F : Set ! Set be a functor on the category of sets and functions. An F -coalgebra

is a pair (S; �S) consisting of a set S and a function �S : S ! F (S). Automata
are coalgebras of the following functor D : Set ! Set , which is de�ned on sets
S by D(S) = 2� SA (below we shall de�ne how D acts on functions). Now for
an automaton hS; o; ti, the functions o : S ! 2 and t : S ! SA can be combined
into one function ho; ti : S ! 2� SA, which sends s in S to the pair ho(s); t(s)i.
In this way, the automaton hS; o; ti has been represented as a D-coalgebra

ho; ti : S ! D(S):

The reason to be interested in this coalgebraic representation of automata is
that there exists a number of notions and results on coalgebras in general, which
can now be applied to automata.

Notably there is the following de�nition. Consider again an arbitrary functor
F : Set ! Set and let (S; �) and (S0; �0) be two F -coalgebras. A function
f : S ! S0 is a homomorphism of F -coalgebras , or F -homomorphism, if F (f) �

� = �0 � f . In order to apply this de�nition to the case of automata, we still
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have to give the de�nition of the functor D on functions, which is as follows.
For a function f : S ! S0, the function D(f) : (2� SA)! (2� S0

A
) is de�ned,

for any x in 2 and h in SA by D(f)(hx; hi) = hx; f � hi. Now consider two
automata, i.e., D-coalgebras, (S; ho; ti) and (S0; ho0; t0i), where ho; ti : S ! D(S)

and ho0; t0i : S0 ! D(S0). According to the de�nition, a function f : S ! S0 is a
homomorphism of D-coalgebras if D(f) � ho; ti = ho0; t0i � f , which is equivalent
to o(s) = o0(f(s)) and f(t(s)(a)) = t0(f(s))(a), for all s and a. Note that this is
precisely the de�nition of homomorphism given in Section 2. Indeed, even if we
did not mention this before, the general coalgebraic de�nition of homomorphism
has been our starting point.

Also the notion of bisimulation introduced in Section 2 is an instance of a
general coalgebraic de�nition: A relation R � S�S0 is called an F -bisimulation

between F -coalgebras (S; �) and (S0; �0) if there exists an F -coalgebra structure
�R : R! F (R) on R such that the projections �1 : R! S and �2 : R! S0 are
F -homomorphisms. It is left to the reader to verify that applying this de�nition
to the functor D yields our original de�nition of bisimulation of automata.

For a functor F : Set ! Set , the family of F -coalgebras together with the F -
homomorphisms between them, forms a category (indentity functions are homo-
morphisms, and the composition of homomorphisms is again a homomorphism).
In this category, �nal coalgebras are of special interest (if they exist at all): a
coalgebra (P; �) is �nal if there exists from any coalgebra precisely one homo-
morphism into (P; �). The interest of �nal coalgebras lies in the fact that they
satisfy the following coinduction proof principle: if there exists an F -bisimulation
between p and p0 in P then p and p0 are equal. This is immediate by the �nality
of (P; �).

Many functors have a �nal coalgebra (�nal coalgebras are unique up to iso-
morphism), and for many functors it can be constructed in a canonical way. For
our functor D, this construction yields the set A� ! 2, which is isomorphic to
the set L of all languages. Indeed, we have seen in Sections 7 and 4 that L is a
�nal automaton and satis�es the coinduction proof principle2.

Summarizing the above, we hope to have explained the subtitle of the present
paper. The treatment of automata in the preceding sections has been coalgebraic:
the de�nitions of automaton, homomorphism, and bisimulation, as well as the
focus on �nality and coinduction, all have been derived from or motivated by
very general de�nitions and observations from coalgebra.

As such, this coalgebraic story of automata is just one out of many, in prin-
ciple as many as there are functors (on Set but also on other categories). Many
other examples have been studied in considerable detail already, including tran-
sition systems, data types (such as streams and trees), dynamical systems, prob-
abilistic systems, object-based systems, and many more. And many more are still
to follow. It is to be expected that the theory of several other kinds of automata
may bene�t from a coalgebraic treatment.

2 We have proved that L satis�es the coinduction proof principle before proving its

�nality for didactical reasons.
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In the remaining sections of the present paper, the coalgebraic approach is
further illustrated by the treatment of automata with partial transition func-
tions. These partial automata are coalgebras of a functor D0 : Set ! Set , which
is de�ned as a minor variation of the functor D: for a set S, D0(S) = 2�(1+S)A.
As before, our presentation will make no explicit reference to coalgebra.

13 Partial automata

A partial automaton with input alphabet A is a triple S = hS; o; ti consisting,
as before, of a set S of states and an output function o : S ! 2, but now with
a transition function t that assigns to each state a partial function. That is,
t : S ! (1 + S)A, where 1 = f*g, and where for a function f in (1 + S)A and
input symbol a in A, f(a) = * means that f is unde�ned in a, sometimes simply
denoted by f(a)*. Dually, f(a)+ denotes that f(a) is de�ned. (These conventions
will more generally be used for functions from X to 1 + Y , for arbitrary sets X
and Y .)

As before, we shall sometimes write s# for o(s) = 1, s" for o(s) = 0, and
s

a�!s0 for t(s)(a) = s0. In addition, s a�6! denotes t(s)(a)*.
A bisimulation between partial automata S = hS; o; ti and S0 = hS0; o0; t0i is

now a relation R � S � S0 with, for all s in S, s0 in S0, and a in A:

if s R s0 then

�
o(s) = o0(s0) and
t(s)(a) (1 +R) t0(s0)(a);

where t(s)(a) (1 +R) t0(s0)(a) holds i� either both sides are unde�ned or both
sides are de�ned and related by R. Note that as a consequence, s R s0 implies
s

a�6! i� s0
a�6!.

The notions of bisimilarity, homomorphism and subautomaton are de�ned
as before, and the various properties given in Section 2 again apply.

Due to the possibility of refusing certain input symbols, the language lS(s)
accepted by a state s of a partial automaton S = hS; o; ti may now consist of
three di�erent kind of words:

1. If s
a1
�! s1

a2
�! � � �

an
�! sn# then a1 � � � an 2 lS(s), as before.

2. If s
a1
�! s1

a2
�! � � �

an
�! sn" and for all a in A, sn

a�6!, then a1 � � � an �� 2 lS(s).
Here the post�x � (which is supposed not to be an element of A) is used to
register the fact that after the last input symbol (an), a so-called deadlock

occurs: the automaton has reached a state (sn) which is not terminating,
and from which no further steps are possible.

3. If s
a1
�! s1

a2
�! s2

a3
�! � � � then the in�nite word a1a2a3 � � � 2 lS(s).

In order to de�ne the collection of all acceptable languages, let

A1� = A� [ A! [ A� � �;

where A� is as before, A! is the set of all in�nite words overA, and A� �� = fw�� j

w 2 A�g. Sometimes A1 is used as a shorthand for A� [ A!. For an in�nite
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word w = a1a2a3 � � � in A! and natural number n � 1, the n-th truncation of w
is given by w[n] = a1 � � �an.

We shall again need the notion of derivative. For a word w in A� and a subset
L � A1� , let the w-derivative of L be de�ned by

Lw = fv 2 A1� j wv 2 Lg;

where concatenation of words is extended to A1� in the obvious way.
A set L � A1� is closed3 if for all in�nite words w in A!,

w 2 L () 8n � 1; Lw[n] 6= ;:

Typically, a1 is closed, whereas a� is not. A set L � A1� is consistent if for all
words w in A1� ,

� 2 Lw () Lw = f�g:

For instance, fab; ac; b�g is consistent whereas fab; a�g is not.
A language (of partial automata) is next de�ned as a non-empty, closed,

and consistent subset of A1� . Let Lp denote the set of all languages (of partial
automata):

Lp = fL j L � A1� ; L is non-empty, closed, and consistentg:

It is not di�cult to verify that the set lS(s) above indeed belongs to Lp. We shall
see that, conversely, any language in Lp is accepted by some partial automaton.

The set Lp can be turned into a partial automaton Lp = hLp; oLp ; tLpi by
de�ning, for L in Lp and a in A,

oLp(L) =

�
1 if " 2 L

0 if " 62 L
and: tLp(L)(a) =

�
La if La 6= ;

* if La = ;.

That is,

L # i� " 2 L; L
a
�! La i� La 6= ;, L

a�6! i� La = ;.

Again the coinduction principle holds: for all languages K and L in Lp,

if K � L then K = L:

It is identical in shape to the principle of Section 4, but note that the languages
under consideration are now living in Lp instead of L, and that a di�erent notion
of bisimilarity is involved. A new proof of the principle is therefore required but
nevertheless omitted. It is not very di�cult, and one needs to use the fact that

the languages in Lp are both closed and consistent.
As before, it follows by coinduction that the automaton Lp is �nal among

the collection of all partial automata: the unique homomorphism from a partial
automaton S to the automaton Lp is given by the function lS : S ! Lp described
above. Because Lp is �nal, the coinduction de�nition principle (Section 10) holds
again. It will be used in the next section.

3 The terminology is explained by the fact that this de�nition is equivalent to being

closed with respect to the metric topology on A1� induced by the Baire metric.
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14 Regular expressions for partial automata

In order to formulate a Kleene theorem for partial automata, which will be
proved in the next section, a notion of regular expression for partial automata
is introduced, as a minor variation on the classical de�nition (given in Section
5). Next regular languages and regular operators are de�ned by coinduction, in
the same style as the de�nitions given in Section 10.

The set Rp of regular expressions (for partial automata) is de�ned by the
following syntax:

E ::= 0 j 1 j a 2 A j E + F j EF j E1

The only di�erence with the previous de�nition is the absence of E�, which has
been replaced by E1.

Both the language l(E) of a regular expression E in Rp and the regular
operators will be de�ned by coinduction. To this end, a class Ep of expressions
(for partial automata) is introduced, given by the following syntax:

E ::= L (for L 2 Lp) j E + F j EF j E1

where an underscore is used to distinguish between the syntactic symbol L and
the language L. However, the underscore will be omitted whenever possible with-
out creating confusion.

The set Rp of regular expressions can be viewed as a subset of Ep by making
the following identi�cations: 0 = f�g, 1 = f�g, and a = fag.

In order to apply the coinduction de�nition principle, the set Ep is turned
into a partial automaton Ep = hEp; oEp ; tEpi, where the functions oEp and tEp are
de�ned by the following axioms and rules:

L # i� " 2 L; (E1)#; (E + F )# , E # or F#; (EF )# , E # and F#

L
a�!La i� La 6= ;

E
a
�! E0 F

a
�! F 0

E + F
a
�! E0 + F 0

E
a
�! E0 F

a�6!

E + F
a
�! E0

E
a�6! F

a
�! F 0

E + F
a
�! F 0

E
a
�! E0 E"

EF
a
�! E0F

E
a
�! E0 F

a�6! E#

EF
a
�! E0F

E
a
�! E0 F

a
�! F 0 E#

EF
a
�! E0F + F 0

E
a�6! F

a
�! F 0 E#

EF
a
�! F 0

E
a
�! E0

E1
a
�! E0E1

These axioms and rules uniquely de�ne two functions oEp and tEp , essentially by
induction on the syntactic structure of expressions. For instance, oEp(E

1) = 1,
and tEp(E

1)(a) = (tEp(E)(a))E1.
By the �nality of the partial automaton of languages Lp, there exists a unique

homomorphism l : Ep ! Lp, which gives for any expression in Ep, notably for
each regular expression E in Rp, the language l(E) it represents. As before, a
language L is called regular if it equals l(E), for some E in Rp.
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The homomorphism l : Ep ! Lp can also be used to de�ne the regular
operators: for languages K and L in Lp, let

K + L = l(K + L)

KL = l(KL)

K1
= l((K)

1
):

The bisimilarity relation � on Ep can, with a little bit of patience, be shown to
be a congruence with respect to the regular operators: if E � G and F � H

then E + F � G + H , EF � GH , and E1 � G1. Combining this with the
observations that E � l(E), and that l(E) = l(F ) i� E � F , the following
equalities can be readily proved:

l(0) = f�g

l(1) = f"g

l(a) = fag

l(E + F ) = l(E) + l(F )

l(EF ) = l(E)l(F )

l(E1) = l(E)1:

For instance, l(E+F ) = l(l(E)+ l(F )) = l(E)+ l(F ). Whenever convenient and
harmless, we shall simply write E for l(E). Notably, 0, 1, and a will then denote
the three singleton sets mentioned above. Note that the language represented
by 0 is no longer the empty set, as it is in Section 5, but the singleton set f�g,
representing deadlock.

The regular operators could again have been de�ned `elementwise', but things
would have been slightly more complicated than before. The sum of two lan-
guages can no longer be de�ned as their union, nor does their concatenation
consist of the pairwise concatenation of their respective elements. This is illus-
trated by the following equalities, which are an immediate consequence of the
coinductive de�nitions above:

f�g+ fag = fag

fa�g+ faag = faag

fa�; �gfabg = fabg:

The intuition here is that (a possibly nested occurrence of) the deadlock symbol
� should disappear in the presence of an alternative transition step. Also the
de�nition of K1 is essentially more complicated than that of K�, since the
latter could be de�ned as the union of an inductively de�ned sequence (Kn)n

of �nite powers of K. This is not possible for K1, which should include also
in�nite words composed of in�nitely many �nite words from K. Although K1

can be de�ned using, for instance, least upperbounds of chains in K� with the
familiar pre�x ordering, the above coinductive de�nition of K1 is simpler in the
sense that it is purely set-theoretic.
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Equalities of expressions can again be proved by coinduction, by establishing
the existence of bisimulation relations. Note that a bisimulation on Lp is any
relation R such that for K and L with K R L, K# i� L#, and for any a in
A, tLp(K)(a) (1 +R) tLp(L)(a). It follows from the de�nitions that the latter
formula means that either both Ka and La are empty, or both are non-empty
and related by R.

The following calculation rules for a-derivatives will again be helpful when
proving the existence of bisimulation relations. They follow from the coinductive
de�nition above by exploiting the fact that l : Ep ! Lp is a homomorphism:

0a*; 1a*; ba =

�
f�g if b = a

* otherwise

(K + L)a = Ka + La

(KL)a =

�
Ka L if K"
Ka L+ La if K#

(K1
)a = KaK

1;

where the latter three equalities are as before (Section 5) but now have to be read
with the following conventions in mind: for all languages K and input symbols
a,

Ka + ; = ;+Ka = Ka; ;K = ;:

All the laws (1)�(15) listed in Section 6 are valid for Lp (replacing, of course,
occurrences of (�)� by (�)1, everywhere), but for law (7). The proofs are only
slightly more involved due to a greater number of case distinctions. For instance,
K(L+M) = KL+KM (11) will now follow from the fact that

fhK(L+M) +N; KL+KM +Ni j K;L;M;N 2 Lpg [ fhK; Ki j K 2 Lpg

is a bisimulation. Interestingly, the following equation

L " ^ (K = LK +M)) K = L1M (26)

is proved in essentially the same way as law (13). Law number (7) is no longer
valid: with the present interpretation of 0, K0 is generally di�erent from 0.
For instance, a 0 = fagf�g = fa�g. More interestingly, there is the following
equation:

K10 = K! (27)

which can be taken either as a de�nition of K!, or as a theorem once K! has
been de�ned �rst. A coinductive de�nition of K! could be given by extending
the set Ep of expressions with E!, and by specifying the following transitions
and termination condition:

E
a
�! E0

E! a
�! E0E!

; (E!) " :

(Note that this de�nition is the same as for E1, but for the fact that (E1)#.)
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15 Kleene's theorem for partial automata

Kleene's theorem, as formulated in Section 8, also holds for partial automata:
For all languages L in Lp,

L is regular i� hLi is a �nite subautomaton of Lp. (28)

It can be proved in almost exactly the same way as before, now using law (26)
and the following variant of law (20). Let A be a �nite alphabet and consider L
in Lp. If B = fa; : : : ; bg is de�ned as the subset of A containing all input symbols
c in A for which Lc 6= ;, then:

L =

�
aLa + � � �+ bLb + 1 if L#
aLa + � � �+ bLb + 0 if L".

(29)

(Note that if the set B is empty then the second expression is equal to 0.)

16 Notes and discussion

As we have seen in Section 12, most notions and observations of the present paper
are instances of far more general ones, belonging to a theory called (universal)

coalgebra. See [Rut96,JR97] and the references therein for more information on
coalgebra. In [JMRR98], many recent developments in coalgebra are described.

The coalgebraic de�nition of bisimulation is a categorical generalization, due
to Aczel and Mendler [AM89], of Park's [Par81] and Milner's [Mil80] notion of
bisimulation for concurrent branching processes. This general categorical de�-
nition applies to many di�erent examples, including nondeterministic (possibly
probabilistic) transition systems, object-based systems, in�nite data structures,
various other types of automata, and dynamical systems. See [Rut96,JR97] for
many examples and pointers to the literature.

The notions of homomorphism and (generated) subautomaton occur at var-
ious places in the literature (usually inspired by universal algebra), for instance
in [Géc86].

The coinduction principle of Section 4 for the �nal automaton L, together
with the corresponding `being is doing' characterization, applies more generally
to any �nal coalgebra. Coinduction as a proof principle for greatest �xed points
of monotone operators is already around for some time. For �nal coalgebras of
the powerset functor, it has been introduced in [Acz88]. In [RT93], the principle
is stated in its generality for arbitrary functors.

The word coinduction suggests a duality between induction and coinduction.
This is explained by the observation that induction principles apply to initial

algebras . Somewhat more concretely, the duality can be understood as follows. It
is not di�cult to prove that coinduction on L is equivalent to the statement that
L has no proper quotients , that is, if f : L ! S is a surjective homomorphism
then L �= S. This property is dual to the principle of mathematical induction
on the algebra of natural numbers, which essentially states that the algebra
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of natural numbers has no proper subalgebras . See [Rut96, Sec.13] for a more
detailed explanation.

The use of coinduction, both as a proof and as a de�nition method, is by
now widespread (see for instance [BM96], which is a recent textbook on nonwell-
founded set theory, and [JR97], for an introductory overview). Its application
to languages and regular expressions, in Sections 6 and 10, is to the best of our
knowledge new.

The calculation rules for a-derivatives (Section 5) of regular combinations of
languages are well-known, have been reinvented several times, and are originally
due to Brzozowski [Brz64] (see also [Con71] and [BS86]). Both Brzozowski's
paper [Brz64] and Conway's book [Con71] contain, more generally, many of the
ingredients that have been used in the present paper.

A well-known way of proving equality of regular expressions is to use a com-
plete axiom system (of which the laws in Section 6 form a subset), such as given
by Salomaa in [Sal66], and apply purely algebraic reasoning. The reader is in-
vited to consult [Gin68, pp.68-69], from which the example E1 = F1 in Section
6 was taken, and convince himself of the greater complexity of that approach.

The most common and practical way of proving equality of two expressions is
�rstly, to construct for each expression an automaton that accepts the language
it represents, and secondly, to minimize both automata. The two expressions are
then equal i� the two resulting automata are isomorphic. For both the construc-
tion and the minimization step, many di�erent and e�cient algorithms exist (see
[Wat95] for an extensive overview and comparison).

This classical approach is related to the coinduction proof method by the
observation, in Section 2, that bisimulations are automata themselves. Thus also
a proof by coinduction consists of the construction of an automaton. Our way of
constructing this `bisimulation automaton' is essentially based on Brzozowski's
algorithm, using a-derivatives, but note that only one automaton is constructed
for both expressions at the same time. Another di�erence is that this automaton
need not be minimized in order to conclude that the two expressions are equal
(this was illustrated by the bisimulation T used for the proof of E1 = F1 at
the end of Section 6). The question whether this can lead to (more) e�cient
algorithms is yet to be addressed.

The connection between �nality and minimality in Section 7 can already be
found in [Gog73]. Our formulation of Kleene's theorem in Section 8 and its use as
a criterion for nonregularity in Section 9 may be new, though the proofs involved
are of course built from well-known ingredients.

Classically, the minimization of an automaton is obtained by identifying all
states that are observationally equivalent. Referring to the notation of Section
12, two states s and s0 are equivalent i� for all words w in A�,

�̂(s; w) 2 F () �̂(s0; w) 2 F;

where �̂(s; �) = s and �̂(s; wa) = �(�̂(s; w); a). This notion of equivalence corre-
sponds to our notion of greatest bisimulation relation (bisimilarity). Note that
in the present theory, bisimulation relations are considered that generally are
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not maximal. This is yet another and maybe the most important di�erence with
the classical approach.

Simulation relations have been studied in several forms and ways. We believe
the present de�nition in Section 11, as well as the coinduction principle based on
it, to be new. The de�nition of simulation up-to-similarity is a straightforward
variation of Milner's notion of bisimulation up-to-bisimilarity [Mil80]. Some of
the laws of Section 11 have been taken from [Koz94], where a complete axiom
system for equality of regular expressions is presented in terms of equational
implications.

The treatment of partial automata, which are coalgebras of the set functor
D0(S) = 2 � (1 + S)A, has been inspired by a recent paper [vB98] of Franck
van Breugel, in which a related functor (on metric spaces) is studied. It comes
somewhat as a surprise that the set Lp, which is a �nal coalgebra of the set

functor D0, consists of metrically closed subsets. Such sets have been used at
various places in the work of the French and Dutch schools of Nivat and De
Bakker on metric semantics (cf. the recent textbook [BV96]). The notion of
consistent language corresponds to the notion of reduced set in [dB91].

Automata theory has been and still is commonly understood as essentially
algebraic. Cf. Ginzburg's Algebraic theory of automata [Gin68], Conway's Regu-
lar algebra and �nite machines [Con71], and Kozen's recent textbook Automata

and computability , from which the following quotation is taken [Koz97, p. 112]:
�It should be pretty apparent by now that much of automata theory is just alge-
bra.� We hope to have shown that the coalgebraic treatment of automata theory
o�ers, at least, an interesting alternative.
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