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Abstract

In-lined Reference Monitors (IRMs) cure binary software of security violations by instrumenting them with runtime
security checks. Although over a decade of research has firmly established the power and versatility of the in-lining
approach to security, its widespread adoption by industry remains impeded by concerns that in-lining may corrupt or
otherwise harm intended, safe behaviors of the software it protects. Practitioners with such concerns are unwilling to
adopt the technology despite its security benefits for fear that some software may break in ways that are hard to diagnose.

This paper shows how recent approaches for machine-verifying the policy-compliance (soundness) of IRMs can
be extended to also formally verify IRM preservation of policy-compliant behaviors (transparency). Feasibility of
the approach is demonstrated through a transparency-checker implementation for Adobe ActionScript bytecode. The
framework is applied to enforce security policies for Adobe Flash web advertisements and automatically verify that their
policy-compliant behaviors are preserved.

Keywords: In-lined Reference Monitors, Transparency, Verification, Model-Checking, Symbolic Interpretation,
ActionScript

1. Introduction

Runtime software monitoring via binary instrumentation (a.k.a., in-lined reference monitoring) has gained much
attention in the literature as a powerful, flexible, and efficient approach to software security enforcement (e.g., [1–20]).
In-lined reference monitors (IRMs) dynamically enforce security policies by injecting security guards into untrusted
binary code. At runtime, the guards check impending program operations and take corrective action if the operations
constitute policy violations. The result is a new program that efficiently self-enforces a customized security policy.

For example, Fig. 1 shows the implementation of a simple IRM in ActionScript (AS) pseudo-code. The original
bytecode on the left has been instrumented (i.e., rewritten) with an IRM as shown on the right. The IRM prohibits more
than 100 calls to security-relevant API method NavigateToURL by counting its calls in program variable c and halting
the program when c exceeds bound 100. The AS VM is stack-based, so instruction get c pushes c’s value onto the stack,
and set c assigns c a value popped from the stack. (Real IRMs are typically much more complex, but we use this simple
example as a running illustration for clarity. The × marks are referenced in §4.6.)

Correct IRMs must satisfy two requirements: soundness and transparency [3, 21]. Soundness demands that
the instrumented code satisfy the security policy, whereas transparency demands that it preserve the behavior of
policy-compliant code. That is, adding the IRM to a program must not “break” its policy-compliant behaviors. To
formally define policy-compliance, IRM policies are specified using a policy specification language (e.g., [8, 11–
13, 17, 18, 22, 23]), which typically leverages concepts from aspect-oriented programming (AOP) [24] to abstractly
identify security-relevant program operations. For example, the SPoX IRM system [23] expresses safety policies
encoded as aspect-oriented security automata.

Numerous past works have developed powerful technologies for formally machine-verifying the soundness of
IRMs [7, 8, 25–30]. This is important for establishing high assurance, and for minimizing and stabilizing the trusted
computing base (TCB) of IRM systems. However, none have tackled the dual problem of machine-verifying transparency
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L1: push "http:// ..." L1: push "http:// ..."

× L2: get c
× L3: iflt 100, L5 // if c ≤ 100 goto L5

L4: call exit
L5: call NavigateToURL × L5: call NavigateToURL

× L6: get c
× L7: push 1
× L8: add
× L9: set c

L10: jmp L1 L10: jmp L1

Fig. 1. Original bytecode (left) that has been rewritten (right) with an IRM that prohibits more than 100 URL navigations

(cf., [28, 31]). Transparency is a major concern for organizations that stand to lose significant revenue or reputation from
temporary functionality losses. For example, despite high concerns about web advertisement security, advertisement
distribution networks are often unwilling to adopt any protection system that involves binary modification unless there
is overwhelming evidence that no safe advertisements are adversely affected by the process. Even a temporary loss
of functionality in a few advertisements could potentially result in millions of dollars in lost revenue [32]. Proof of
transparency is therefore a prerequisite for practical adoption of these security technologies.

The high difficulty of creating fully generalized, program-agnostic IRMs that correctly preserve all safe applications
justifies this call for strong evidence of transparency. It is quite common for a monitor that works flawlessly when
in-lined into most applications to suddenly malfunction when it is in-lined into an unusual application, such as one that
overrides system methods called by the IRM, modifies the class-loader in an unusual way, or adds event listeners that
disrupt monitor control-flows. Such conflicts are very difficult to identify manually at the binary level, motivating the
need for automated assistance.

While the general problem of verifying program-equivalence is well known to be undecidable, we observe that the
special case of verifying IRM transparency is more tractable due to the way IRMs are produced. IRMs are typically
generated by automated binary rewriters, which transform policy specifications into suitable code insertions. Since the
rewriter’s code analysis power is limited, it must limit itself to insertions that it can infer are sound and transparent with
respect to the target program. All rewriters therefore carry internal, implicit evidence that their code transformations are
not harmful. By making this evidence explicit, we show that a verifier can independently confirm that code produced by
the rewriter preserves all safe flows (without trusting the rewriter or the evidence it presents).

This paper therefore presents the design and implementation of the first automated transparency-verifier for IRMs.
Our main contributions include:

• We show how prior work on verifying IRM soundness via model-checking [26, 27] can be extended in a natural
way to verify IRM transparency.

• We introduce the design and implementation of an untrusted, external invariant-generator that can reduce the
verifier’s state-exploration burden and afford it greater generality than the more specialized rewriting systems it
checks.

• Prolog unification [33] and Constraint Logic Programming (CLP) [34] are leveraged to keep the verifier imple-
mentation simple and closely tied to the underlying verification algorithm.

• Proofs of correctness are formulated for the verification algorithm using the Cousots’ abstract interpretation
framework [35].

• The feasibility of our technique is demonstrated through a prototype implementation that targets the full AS
bytecode language.

The rest of the paper is organized as follows. We begin with a summary of prior work that influences our system
design in §2. Section 3 presents an overview of our transparency verifier, and §4 details the verification and symbolic
interpretation algorithms. Section 5 presents implementation and results. Finally, §6 concludes.
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2. Background and Related Work

In-lined Reference Monitors. IRMs were first formalized in the development of the PoET/PSLang/SASI systems [4, 6],
which instrument Java bytecode and Gnu assembly code. Subsequently, numerous IRM frameworks have been developed
for Java [2, 3, 8, 10–13, 23], JavaScript [17, 19], .NET [7], AS [9, 23], Android [20], and x86/64 native code [1, 14–16]
architectures. Our experiments target SPoX-IRMs [23], which rewrite Java and AS bytecode programs to satisfy
declarative, aspect-oriented security policies.

All of these systems rewrite untrusted binaries by statically identifying potentially policy-violating program oper-
ations, and injecting guard code that dynamically decides whether impending operations are safe. The exact imple-
mentation of the guard code varies widely depending on policy, architectural, and application details. For example, to
enforce stateful policies (i.e., those in which each event’s permissibility depends on the history of past events) the IRM
may introduce new program variables, methods, and classes that track the history of security-relevant events at runtime.
Guard code then consults these reified state variables in order to test for impending violations. In Fig. 1, c is an example
of a reified state variable.

IRMs also typically make some effort to optimize their code insertions for better performance, such as by hoisting
checks out of loops or reorganizing basic blocks. Thus, a mere syntactic comparison of original and rewritten code is
not sufficient in general to verify transparency of real IRMs. This influences the design of our verifier, since our goal is
to support a wide class of rewriting approaches.

ActionScript. AS is a binary virtual machine language by Adobe Systems similar to Java bytecode. It is an object-
oriented, single-threaded, stack-based language, with bytecode type-safety, managed memory, and exceptions. Compiled
bytecode runs on a VM [36], usually in a web browser. It is important as a general web scripting language, and is widely
used in portable web advertisements, online games, streaming media, and interactive web page animations. AS VM
security is based on object-level encapsulation, code-signing, and sandboxing.

AS’s pervasive use in web advertisements has made it an attractive vehicle for many malware attacks in recent
years. Though its bytecode language is type-safe, past malware has exploited VM buffer overflows [37], implemented
cross-site-scripting attacks, and performed click-jacking [38, 39] to damage browsers or disrupt victim host pages. The
difficulty of enforcing rich AS security policies that prevent such attacks in web environments that are aggressively
heterogeneous (e.g., composed of mash-ups that mix mobile code from many mutually distrusting sources) has led to
application of IRM technologies to this challenging problem domain [9, 25–28, 40].

IRM Soundness Certification. Several past works have successfully performed certification of IRM soundness. The
Mobile system [7] transforms Microsoft .NET bytecode binaries into safe binaries with typing annotations in an effect-
based type system. The annotations constitute a proof of safety that a type-checker can separately verify. ConSpec [8, 29]
adopts a security-by-contract approach to IRM certification. Its certifier performs a static analysis that verifies that
contract-specified guard code appears at each security-relevant code point. Our past work presents model-checking as an
efficient approach for verifying such IRMs without trusted guard code [26, 27].

An alternative to verifying IRMs is to prove the soundness of each rewriting implementation once and for all. For
example, the Coq proof assistant has been applied to implement provably sound monitor-generating algorithms for
OCaml [30]. However, extending this to production-level IRM systems requires proving the correctness of the entire
IRM-synthesis tool chain, which can be considerable. For example, Java-MOP, which includes AspectJ, consists of
almost a million lines of Java source code [2]. Moreover, proofs of rewriter soundness are inapplicable to architectures
where code-recipients must verify IRMs produced by an untrusted third party [41]. For these reasons, automated IRM
verification has become the dominant approach.

IRM Transparency. In contrast, transparency has been less studied. IRM transparency is defined in terms of a trace-
equivalence relation that demands that the original and IRM-instrumented code must exhibit equivalent behavior on
equal inputs whenever the original obeys the policy [3, 21]. Traces are equivalent if they are equal after erasure of
irrelevant events (e.g., stutter steps). Subsequent work has proposed that additionally the IRM should preserve violating
traces up to the point of violation [31].

Chudnov and Naumann provide the first formal IRM transparency proof [5]. Their IRMs enforce information flow
properties, so transparency is there defined in terms of program input-output pairs. In lieu of machine-certification, a
written proof establishes that all programs yielded by one particular rewriting algorithm are transparent. The proof is
therefore specific to one rewriting algorithm and does not necessarily generalize to other IRM systems or policies.
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Fig. 2. A certifying ActionScript IRM architecture

Compiler Verification. Program equivalence-checking has been studied in the context of translation validation, which
verifies behavior-preservation of compiler optimization phases [42–45]. Conceptually, translation validators explore
the cross-product space of an abstract bisimulation of original and rewritten code, attempting to prove a semantic
equivalence property of each abstract state [46]. By changing the property being checked, one can potentially verify
software security properties, such as information flow policies [47].

Our work applies cross-product exploration to the problem of IRM transparency verification. However, unlike
compiler translations, IRMs are not obligated to satisfy transparency for policy-violating flows—indeed, they must not.
This significantly changes the semantic equivalence properties that a transparency verifier must check. The new property
is an implication with policy-adherence as its antecedent and observable semantic equivalence as its consequent. In
addition, IRMs introduce non-trivial, permanent memory state changes (e.g., reified state variables that track security
state, modified arguments that flow to potentially unsafe operations, etc.) and interprocedural structural changes (e.g.,
new classes and methods associated with the monitor) that are atypical of compiler optimizations. These are not
supported by existing translation validators to our knowledge.

3. Overview

3.1. Rewriting and Soundness Verification

Figure 2 depicts our certifying IRM framework, consisting of a binary rewriter that automatically transforms
untrusted AS bytecode into self-monitoring bytecode, along with verifiers for soundness and transparency. Our main
contributions are the transparency-verifier and invariant generator; rewriting and soundness verification are based on
prior work [25, 27, 40].

The AS Bytecode (ABC) Extractor tool extracts untrusted code from ShockWave Flash (SWF) binary archives,
which package AS code with data, such as images and sound. A SPoX binary rewriter rewrites the bytecode according
to the security policy. It adopts the typical strategy of injecting guard code around potentially security-relevant bytecode
instructions. The guard code dynamically tracks security state and tests arguments of impending operations for security-
relevance. Impending violations solicit corrective action, which can include premature termination, raising an alarm,
interacting with the user, and/or rolling the application back to a consistent state.

To enforce stateful policies, the IRM introduces reified state variables that track the history at runtime. This is
achieved by expressing the policy as a deterministic security automaton [4, 48] that accepts the language of permissible
traces. By assigning integer labels to the automaton states, the IRM efficiently tracks the security state using integer-
valued fields. For example, the policy enforced in Fig. 1 is expressible as a security automaton with 100 states numbered
0 to 99. The start state is 0, and each state i ∈ [0, 98] has an outgoing edge to state i + 1 labeled NavigateToURL(*).
Thus, the automaton accepts the language of traces that include at most 100 calls to NavigateToURL. Prior work has
shown that all safety policies are expressible as security automata [4, 48].
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The ABC Injector tool re-packages the modified bytecode produced by the rewriter with the original data to produce
a new, safe SWF file. Policy adherence of the instrumented code is independently verified by the soundness verifier,
while behavioral preservation of safe programs is confirmed by the transparency verifier. Only code that passes both
tests is reassembled with its data and executed.

3.2. Defining IRM Transparency

Past work defines IRM transparency and policies in terms of traces [3, 21]:

Definition 1 (Events, Traces, and Policies). A trace τ is a (finite or infinite) sequence of observable events, where
observable events are a distinguished subset of all program operations—instructions parameterized by their arguments.
Policies P denote sets of permissible traces.

The distinction between observable and unobservable events distinguishes IRM operations that violate transparency
from those that do not. For example, the IRM in Fig. 1 safely introduces unobservable operation L9 to policy-compliant
runs, but must not introduce observable operation L4 to such runs. Observability can be defined in various ways. In our
implementation, observable events include most system API calls and their arguments, which are the only means in AS
to affect process-external resources like the display or file system. Policy specifications may identify certain API calls as
unobservable by assumption, such as those known to be effect-free.

Transparency can then be defined as equivalence of traces exhibited by a parallel simulation of the original
program and its IRM-instrumented counterpart. Intuitively, the simulation runs both programs on equal inputs, non-
deterministically stepping one or the other on each computational step.

A state of such a simulation consists of a pair of VM states (one for the original program and one for the rewritten
one) and a pair of traces recording the observable events that led to each state. We conceptually consider these traces
to be fields of their respective VM states, for which interpreted programs have only one operation: append. Adequate
formal definitions of parallel simulations and their transparency must support non-terminating computations (i.e., infinite
traces), they must not demand that programs are lock-step behaviorally equivalent (since IRMs introduce new code
and reorder existing code), and they must not permit IRMs to infinitely delay original, safe computations (since that
effectively discards the original computation, violating transparency). This leads to the following definitions:

Definition 2 (Progressive). A flow w (i.e., sequence of consecutive states) in a parallel simulation is progressive if both
simulated programs step infinitely often (i.o.) in w. (To support terminating computations, we model termination as an
infinite stutter state.)

Definition 3 (Shuffle). Two flows w1 and w2 are shuffles of one another if πiw1 = πiw2 for all i ∈ {1, 2}, where projection
πiw denotes the sequence of program i’s steps and states in flow w of the parallel simulation.

Definition 4 (Transparency). A state of a parallel simulation is transparent if its constituent program states have
observationally equivalent traces. The full simulation is transparent if for every progressive flow w, there exists a shuffle
of w whose states are i.o. transparent.

This definition of transparency permits IRMs to augment untrusted code with unobservable stutter-steps (e.g., runtime
security checks) and observable interventions (e.g., code that takes corrective action when an impending violation is
detected), but not new operations that are observably different even when the original code does not violate the policy.
The IRM must also not insert potentially non-terminating loops to policy-adherent flows, since these could suppress
desired program behaviors.

As an illustration, the programs in Fig. 1 exhibit traces consisting of navigateToURL calls (the only observable
event in that example). A simulation of that program-pair is transparent because even though some of its possible flows
are not observationally equivalent (e.g., simulations that run the original program twice as fast as the rewritten one yield
persistently inequivalent pairs of traces), every such flow can nevertheless be reshuffled (e.g., to run both programs at
roughly the same rate) so that the traces are infinitely often equivalent.
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3.3. Verifying Transparency

Our transparency verifier is a symbolic interpreter and model-checker that non-deterministically explores the cross-
product of the state spaces of the original and rewritten programs. To accommodate IRMs that introduce new methods,
symbolic interpretation is fully interprocedural; calls flow into the bodies of callees. (Recursive and mutually recursive
callees require a loop invariant, discussed in §3.4, in order for this process to converge.)

Each abstract state includes a store that maps fields and local variables to symbolic expressions, various other
structures that model AS VM states (e.g., stacks), and an abstract trace that describes the language of possible traces
exhibited prior to the current state. They additionally include linear constraints introduced by conditional instructions.
For example, the abstract states of control-flow nodes dominated by the positive branch of a conditional instruction that
tests (x<=y) typically contain the constraint x ≤ y.

Our approach to transparency verification is based on the observation that in order to prove transparency of a
particular program pair, it suffices to prove that there exists a set S of transparent, abstract, states that are visited
infinitely often in every policy-compliant parallel simulation of the two programs. (Recall that policy-violating runs are
intentionally modified by the IRM, and therefore exempt from this obligation.) Such a set inductively establishes that
every safe computation is preserved, since it proves that the history of observable events after rewriting is infinitely often
equivalent to that of the original program. This observation is formalized as follows:

Theorem 1 (Transparency). A parallel simulation is transparent if there exists a set S of abstract states of the parallel
simulation such that

(1) S includes the abstract start state Γ̂0 of the parallel simulation;

(2) every state in S is transparent; and

(3) for every policy-compliant, progressive flow Γ̂0 · · · Γ̂ w where Γ̂ ∈ S , there exists a shuffle of suffix w that includes
a member of S .

Proof 1. Assume there exists such a set S , and let w be a policy-compliant, progressive flow of the parallel simulation.
Flow w begins with start state Γ̂0, and Γ̂0 ∈ S by (1). Applying (3) inductively proves that w has a shuffle in which states
of S appear i.o. States of S are transparent by (2), so w is transparent. Thus, all such flows are transparent, so the
parallel simulation is transparent.

By exhibiting such a set S , a rewriter can prove to an independent verifier that IRMs it produces are transparent. The
verifier confirms that S satisfies properties 1–3 of Theorem 1. To confirm property 3, it abstract-interprets all flows from
each state in S , confirming that each has a shuffle that revisits S .

For example, one suitable set S for Fig. 1 consists of all abstract states in which both programs are at L1 and their
traces are equal. Every policy-satisfying simulation that starts in such a state eventually revisits it (with an appropriately
progressive interleaving of the two programs’ steps). This S therefore constitutes a loop invariant that proves the IRM’s
transparency.

3.4. Invariant Generation

It is feasible for IRM systems to infer and expose set S because it intuitively corresponds to the code points
where the in-lined IRM code ends and the application’s original programming resumes. Thus, while general-purpose
invariant-generation is not tractable for arbitrary software, our approach benefits from the fact that IRM systems leave
large portions of the untrusted programs they modify unchanged for practical reasons. Their modifications tend to be
limited to small, isolated blocks of guard code scattered throughout the modified binary. Past work has observed that the
unmodified sections of code tend to obey relatively simple invariants (conjunctions of inequality relations over integers,
and prefix relations over traces) that facilitate tractable proofs of soundness for the resulting IRM [26, 27].

We observe that a similar strategy suffices to generate invariants that prove transparency for these IRMs. Specifically,
an invariant-generator for a typical IRM system can assert that if the two programs are observably equivalent on entry to
each block of guard code, and the original program does not violate the policy during the guarded block, then the traces
are equivalent on exit from the block. Moreover, the abstract states remain step-wise equivalent outside these blocks.
When the blocks occur within a loop, the generated invariant is an invariant for the loop. This strategy reduces the vast
majority of the search space that is unaffected by the IRM to a simple, linear scan that confirms that the IRM remains
dormant outside these blocks (i.e., its state does not leak into the observable events exhibited by the rewritten code).
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Our framework lazily reveals S via an untrusted invariant-generator that gives the verifier hints that help it more
quickly confirm that S satisfies properties (1–3) of Theorem 1. For each abstract code point Γ̂ in the cross-product state
space, the invariant-generator suggests (1) a state from S that abstracts Γ̂, and (2) a subset of S that post-dominates [49] Γ̂

(i.e., where flows that pass through Γ̂ later exhibit equivalent shuffles). The former abstracts away extraneous information
inferred by the abstract interpreter that is irrelevant for proving transparency. The latter is a witness that proves property 3
of Theorem 1.

3.5. Invariant Verification

Hints provided by the invariant-generator remain strictly untrusted by the verifier. They are only accepted if they are
implied by information already inferred by the verifier’s symbolic interpreter. Over-abstractions can cause the verifier to
discard information needed to prove transparency, resulting in conservative rejection of the code; but they never result in
acceptance of non-transparent code. This allows invariant-generation to potentially rely on untrusted information, such
as the binary rewriting algorithm, without including that information in the TCB of the system.

To verify abstract parallel simulation states suggested by the untrusted invariant-generator, prune policy-violating
flows, and check trace-equality, the heart of the transparency verifier employs a model-checking algorithm that proves
implications of the form A⇒ B, where A is an abstract parallel simulation state inferred by the symbolic interpreter, and
B is an untrusted abstraction suggested by the invariant-generator. Model-checking consists of two stages:

1. Unification. Program states include data structures, such as AS bytecode operand stacks, objects, and traces.
These are first mined for equality constraints through unification. For example, if state A includes constraints
ρ̂1 = v1::ŝ1, ρ̂2 = v2::ŝ2, and ρ̂1 = ρ̂2, then unification infers additional equalities v1 = v2 and ŝ1 = ŝ2.

2. Linear constraint solving. The equality constraints inferred by step 1 are then combined with any inequality
constraints in each state to form a pure linear constraint satisfaction problem without structures. A linear constraint
solver verifies that sentence A′ ∧ ¬B′ is unsatisfiable, where A′ and B′ are the linear constraints from A and B,
respectively.

Both unification and linear constraint solving can be elegantly realized in Prolog with Constraint Logic Programming
(CLP) [34], making this an ideal language for our verifier implementation.

Verification assumes bytecode type-safety of both original and rewritten code as a prerequisite. This assumption is
checked by the AS VM type-checker. Assuming type-safety allows the IRM and verifier to leverage properties such as
object encapsulation, memory safety, and control-flow safety to reduce the space of executions that must be anticipated.

3.6. Limitations

We demonstrate experimentally (see §5) that generation of adequate invariants is tractable for typical IRMs that
enforce safety properties [4]; however, the power of our approach remains limited by the power of the model-checker’s
constraint language. For example, an IRM that stores object security states in a hash table cannot be verified by our
system because our constraint language is not sufficiently powerful to express collision properties of hash functions
that are necessary for proving that such an IRM only undertakes observable, corrective actions when a policy violation
would otherwise result.

Our verifier cannot verify IRMs that insert non-trivial loops into policy-adherent flows. The verifier conservatively
rejects such loops because they lead to potentially infinite flows with no finite prefix where the traces are equal. IRMs
may, however, safely introduce loops as part of interventions, since they are under no obligation to maintain transparency
for policy-violating flows. Loops in the original, unmodified code are also supported because the verifier does not need
to prove that they terminate; it simply proves that their termination conditions are unchanged by the IRM.

AS does not presently support concurrency or threading; therefore, our verification algorithm restricts its attention to
purely serial flows.

Introspective (e.g., reflective) code has some interesting implications for transparency, because code that self-
inspects could discover the IRM and behave differently (without violating the policy). Such behavioral changes are
often desirable; for example, a program that reports its own memory consumption should be permitted to report its
new memory consumption after rewriting. Our transparency verifier permits such behavioral changes by modeling
introspection results as program inputs. That is, it verifies that the IRM preserves the program logic that processes
introspective inputs (e.g., printing them) even if the inputs (e.g., the size) may change due to rewriting.
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apimn system API calls
apptracemn append to trace

assertmn assert policy-adherence of event

Fig. 3. Non-standard core language instructions

In the Original Code In the Rewritten Code
obseventmn ≡ assertmn obseventmn ≡

apptracemn apptracemn
apimn apimn

Fig. 4. Semantics of the obsevent pseudo-instruction

4. Formal Approach

4.1. ActionScript Bytecode Core Subset

For expository simplicity, we express the verification algorithm and proof of correctness in terms of a small
(but Turing-complete), stack-based toy subset of AS that includes standard arithmetic operations, conditional and
unconditional jumps, integer-valued local registers, and the special instructions listed in Fig. 3. The implementation
described in §5 supports the full AS bytecode language (subject to the limitations in §3.6).

Instruction apimn models a system API call, where m is a method identifier and n is the method’s arity. Most API
calls are assumed to be observable; these are modeled by an additional apptrace instruction that explicitly appends
the API call event to the trace. Observable events can therefore be modeled as a macro obseventmn whose expansion
is given in Fig. 4. In the rewritten code, the expansion appends the event to the trace and performs the event. In the
original code, it additionally asserts that the flow is unreachable if the event violates the policy. This models our premise
that transparency obligations are waived when the IRM must intervene to prevent a violation, and prunes such flows
from the verifier’s search space.

The toy language models objects and their instance fields by reducing them to integer encodings, and exceptions are
modeled as conditional branches in the typical way. A formal treatment of these is here omitted; their implementation in
the transparency verifier is that of a standard symbolic interpreter. For example, object references are modeled as integer
Skolem constants, and references to identically-named fields of compatibly-typed objects may-alias. Field-writes assign
fresh Skolem constants to all possible aliases.

The trace accumulated by apptrace instructions is conceptual; it is not actually implemented and therefore not
directly readable by programs. To track it, IRMs typically introduce reified state variables as described in §3.1.

4.2. Concrete and Abstract Machines

Concrete and symbolic interpretation of programs are expressed as the small-step operational semantics of a concrete
and an abstract machine, respectively. Figure 5 defines a concrete machine (program) state χ as a tuple consisting of
a labeled bytecode instruction L:i, a concrete operand stack ρ, a concrete store σ, and a concrete trace of observable
events τ. The store σ maps reified security state variables r and local variables ` to their integer values [27]. Abstract
machine (program) states χ̂ are defined similarly, except that abstract stacks, stores, and traces are defined over symbolic
expressions instead of values. Expressions include integer-valued Skolem constants v̂ and return values rvalm(e1:: · · · ::en)
of API calls. Skolem constants ŝ and t̂ denote entire abstract stacks and traces, respectively.

A program P = (L, p, s) consists of a program entry point label L, a mapping p from code labels to program
instructions, and a label successor function s that defines the destinations of non-branching instructions.

Since transparency verification involves simulating the original and instrumented programs, Fig. 6 extends the
concrete and abstract program states described above to states of a parallel simulation. Each such state includes both an
original and a rewritten program state. The abstract parallel-simulation state additionally includes a constraint list ζ
consisting of a conjunction of linear inequalities over expressions.

The concrete machine semantics are modeled after the AS VM 2 (AVM2) semantics [36]; Fig. 7 shows the semantics
of the special instructions of Fig. 3. Relation χ 7→n

P χ
′ denotes n steps of concrete interpretation of program P. Subscript

P is omitted when the program is unambiguous, and n defaults to 1 step when omitted.
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L (Code Labels)

i (Instructions)

P ::= (L, p, s) (Programs)

p : L→ i (Instruction Labels)

s : L ⇀ L (Label Successors)

m ∈ N (Method Identifiers)

n ∈ N (Method Arities)

σ : (r ] `) ⇀ Z (Concrete Stores)

ρ ::= · | x::ρ (Concrete Stacks)

x ∈ Z (Values)

τ ::= ε | τapim(x1:: · · · ::xn) (Concrete Traces)

sys : N × Z∗ → Z (API Return Values)

a : τ ⇀ N (Security Automaton State)

χ ::= 〈L : i, ρ, σ, τ〉 (Concrete Configurations)

e ::= n | v̂ | e1+e2 | . . . | (Symbolic Expressions)

rvalm(e1:: · · · ::en) | â(τ̂)

v̂, ŝ, t̂ (Value, Stack, & Trace Variables)

ρ̂ ::= · | ŝ | e::ρ̂ (Abstract Stacks)

σ̂ : (r ] `)→ e (Abstract Stores)

τ̂ := ε | t̂ | τ̂apim(e1:: · · · ::en) (Abstract Traces)

χ̂ ::= 〈L : i, ρ̂, σ̂, τ̂〉 (Abstract Configurations)

χ̂0 = 〈L0 : p(L0), ·, σ̂0, ε〉 (Initial Abstract Configurations)

Fig. 5. Concrete and abstract program states

ζ ::=
∧

i=1..n

ti (n ≥ 1) (Constraints)

t ::= T | F | e1 ≤ e2 | τ̂1 = τ̂2 (Clauses)

Γ = 〈χO, χR〉 (Concrete Interpreter States)

Γ̂ = 〈χ̂O, χ̂R, ζ〉 (Symbolic Interpreter States)

〈C, 〈χO0 , χR0 〉, 7→
n
P〉 (Concrete Interpreter)

〈A, 〈χ̂O0 , χ̂R0 , ζ0〉, 
n
P〉 (Symbolic Interpreter)

Fig. 6. Concrete and abstract parallel-simulation machines

x′ = sys(m, x1::x2:: · · · ::xn)
〈L : apimn, x1::x2:: · · · ::xn::ρ, σ, τ〉 7→ 〈s(L) : p(s(L)), x′::ρ, σ, τ〉

(CAPI)

ρ = x1::x2:: · · · ::xn::ρ′

〈L : apptracemn, ρ, σ, τ〉 7→
〈s(L) : p(s(L)), ρ, σ, τapim(x1::x2:: · · · ::xn)〉

(CAppTrace)

ρ = x1:: · · · ::xn::ρ′ τapim(x1:: · · · ::xn) ∈ P
〈L : assertmn, ρ, σ, τ〉 7→ 〈s(L) : p(s(L)), ρ, σ, τ〉

(CAssert)

χi 7→1 χ
′
i χ j = χ′j i , j

〈χO, χR〉 7→ 〈χ
′
O
, χ′
R
〉

(CBisim)

Fig. 7. Concrete small-step operational semantics
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e′ = rvalm(e1::e2:: · · · ::en)
〈L : apimn, e1::e2:: · · · ::en::ρ̂, σ̂, τ̂〉 〈s(L) : p(s(L)), e′::ρ̂, σ̂, τ̂〉,T

(AAPI)

ρ̂ = e1:: · · · ::en::ρ̂′

〈L : apptracemn, ρ̂, σ̂, τ̂〉 
〈s(L) : p(s(L)), ρ̂, σ̂, τ̂apim(e1:: · · · ::en)〉,T

(AAppTrace)

ζ =
(
0 ≤ â(τ̂apim(e1:: · · · ::en))

)
〈L : assertmn, ρ̂, σ̂, τ̂〉 〈s(L) : p(s(L)), ρ̂, σ̂, τ̂〉, ζ

(AAssert)

χ̂O ⊆ χ̂
′
O

χ̂R ⊆ χ̂
′
R

ζ ⇒ ζ′

〈χ̂O, χ̂R, ζ〉 〈χ̂′O, χ̂
′
R
, ζ′〉

(Abstraction)

χ̂i  χ̂′i , ζ
′ χ̂ j = χ̂′j i , j

〈χ̂O, χ̂R, ζ〉 〈χ̂′O, χ̂
′
R
, ζ ∧ ζ′〉

(ABisim)

Fig. 8. Abstract small-step operational semantics

Algorithm 1 Verification

Input: Cache = {}, Horizon = {Γ̂0} // explored and unexplored states, respectively
Output: Accept or Reject

1: while Horizon , ∅ do // while reachable, unverified states remain
2: Γ̂← choose(Horizon) // choose unexplored abstract state
3: SΓ̂ ← VerificationSingleCodePoint(Γ̂) // reduce state to subgoals
4: if SΓ̂ = Reject then return Reject
5: Cache← Cache ∪ {Γ̂} // mark state as explored
6: Horizon← (Horizon ∪ SΓ̂)\Cache // mark subgoals as unexplored
7: end while
8: return Accept

Rule CAPI models calls to the system API using an opaque function sys that maps method identifiers and arguments
to return values. Any non-determinism in the system API is modeled by extending the prototypes of system API
functions with additional arguments. Rule CBisim lifts the single-machine semantics to a parallel-simulation machine
that non-deterministically chooses which machine to step next.

Figure 8 gives the corresponding semantics for symbolic interpretation. Each step χ̂ χ̂′, ζ of symbolic interpre-
tation yields both a new program state χ̂′ and a list ζ of new constraints. These are conjoined into the master list of
constraints by rule ABisim.

Rule AAPI uses expression rvalm(· · ·) to abstractly denote the return value of API call m. Rule AAssert introduces
a new constraint that asserts that appending API call m to the current trace yields a policy-adherent trace. The constraint
uses the symbolic expression â(τ̂′) to denote the security automaton state. Rule Abstraction allows the symbolic
interpreter to discard information at any point by abstracting the current state. This facilitates pruning the search space
in response to hints from the invariant-generator. Discarding too much information can result in conservative rejection,
but it never results in incorrect acceptance of non-transparent code.

4.3. Verification Algorithm

Algorithms 1–2 present our transparency verification algorithm in terms of the symbolic interpretation semantics.
Algorithm 2 verifies an individual abstract parallel simulation state, and Algorithm 1 calls it as a subroutine to verify
transparency of all reachable control-flows. We discuss each algorithm below.

Algorithm 1 takes as input a cache of previously explored abstract states and a horizon of unexplored abstract states.
Upon successful verification of all control flows, it returns Accept; otherwise it returns Reject. It begins by drawing an
arbitrary unexplored state Γ̂ from the Horizon (line 2) and passing it to Algorithm 2. Algorithm 2 returns a set S Γ̂ of
abstract states where simulation must continue in order to verify all control-flows proceeding from Γ̂ (line 3). Every
state of S Γ̂ that is not already in the Cache is added to the Horizon (line 6). Verification concludes when all states in the
Horizon have been explored.

Algorithm 2 takes an abstract state Γ̂ as input. It begins by asking the invariant-generator for a hint (line 1), consisting
of: (1) a new (possibly more abstract) state Γ̂H for Γ̂, (2) a finite, generalized post-dominating set DΓ̂ for Γ̂ whose
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Algorithm 2 VerificationSingleCodePoint

Input: Γ̂ = 〈χ̂1, χ̂2, ζ〉 // abstract simulation state
Output: S Γ̂ or Reject // set of proof subgoals

1: (Γ̂H ,DΓ̂, n)← InvariantGen(Γ̂) // query untrusted invariant-generator

2: SatValue← ModelCheck(Γ̂, Γ̂H) // verify that Γ̂H abstracts Γ̂

3: if SatValue = Reject then return Reject
4: SΓ̂ ← AbsInn({Γ̂H},DΓ̂) // interpret from Γ̂H to get subgoals S Γ̂

5: if labels(SΓ̂) * DΓ̂ then return Reject // verify that DΓ̂ post-dominates Γ̂H

6: for each Γ̂′ = 〈χ̂′1, χ̂
′
2, ζ
′〉 ∈ S Γ̂ do // for each subgoal

7: 〈 , , , τ̂′1〉 = χ̂′1
8: 〈 , , , τ̂′2〉 = χ̂′2
9: SatValue← ModelCheck(Γ̂′, 〈χ̂′1, χ̂

′
2, ζ
′ ∧ (τ̂′1 = τ̂′2)〉)

10: if SatValue = Reject then return Reject // verify goal Γ̂′ is transparent
11: end for
12: return S Γ̂ // return subgoals

Algorithm 3 ModelCheck

Input: Γ̂ = 〈χ̂1, χ̂2, ζ〉, Γ̂′ = 〈χ̂′1, χ̂
′
2, ζ
′〉 // trusted abstract state, and untrusted abstraction of it

Output: Accept or Reject
1: ζU ← Unify(Γ̂, Γ̂′) // check structural compatibility
2: if ζU = Fail then return Reject
3: SatValue← CLP(ζ ∧ ¬ζ′ ∧ ζU ) // verify unsatisfiability of implication negation
4: if SatValue = False then
5: return Accept
6: else
7: return Reject
8: end if

members are all transparent code points, and (3) a stepping-bound n. A set S of abstract states is said to be generalized
post-dominating for Γ̂ if every complete control-flow that includes Γ̂ later includes at least one member of S [49]. In our
case, the complete flows are the infinite ones (since termination is modeled as an infinite stutter state). The stepping
bound n is an upper bound on the number of steps required to reach any state in DΓ̂ from Γ̂H . Note that we express the
stepping-bound here as a single integer for simplicity. For efficient implementation, the bound can be replaced with a
pair of integers (n1, n2) with n1 + n2 = n, where ni represents the exact number of steps machine i should step to reach
any state in DΓ̂ from Γ̂H .

The hint obtained in line 1 is not trusted; it must therefore be verified. To do so, model-checking first confirms that
Γ̂H is a sound abstraction of Γ̂ according to the Abstraction rule of the operational semantics (see Fig. 8). Next, it
performs symbolic interpretation for n steps from Γ̂ to confirm post-dominance of DΓ̂. Function AbsInn(S , E) in line 4
performs symbolic interpretation from S for n steps or until reaching a code label in E. Finally, the model-checker
confirms transparency of all members of S Γ̂ (line 10). If successful, set S Γ̂ is returned.

4.4. Model-Checking

Verification of abstract parallel-simulation states suggested by the invariant-generator, pruning of policy-violating
flows, and verification of transparency are all reduced by Algorithm 2 to proving implications of the form A⇒ B. These
are proved by the two-stage model-checking procedure in Algorithm 3, consisting of unification followed by linear
constraint solving.

Unification. Each abstract state χ̂ can be viewed as a set of equalities that relate state components to their values. Many
of these equalities relate structures; for example, each operand stack is an ordered list of expressions. Given two abstract
parallel-simulation states Γ̂ = 〈χ̂1, χ̂2, ζ〉 and Γ̂′ = 〈χ̂′1, χ̂

′
2, ζ
′〉, the model-checker first uses Prolog unification to mine

all structural equalities for equalities over their contents. If unification fails, the model-checker rejects. Successful
unification yields a collection ζU of purely integer equalities.
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Algorithm 4 GenericInvariant
Input: χ̂1 = 〈L1 : i1, ρ̂1, σ̂1, τ̂1〉, χ̂2 = 〈L2 : i2, ρ̂2, σ̂2, τ̂2〉, ζ // abstract state
Output: 〈χ̂, χ̂′, ζ〉 // (more abstract) state

1: choose fresh Skolem constants v̂`, v̂′
`
, ŝ, ŝ′, t̂, and t̂′

2: σ̂← {(`, v̂`) | σ̂1(`) = e1} // abstract all local and reified state variables to fresh vars
3: σ̂′ ← {(`, v̂′

`
) | σ̂2(`) = e2} ∪ {(r, σ̂2(r))}

4: χ̂← 〈L1 : i1, ŝ, σ̂, t̂〉 // abstract traces to trace vars
5: χ̂′ ← 〈L2 : i2, ŝ′, σ̂′, t̂′〉
6: ζ′ ← (ŝ=ŝ′) ∧

(∧
`∈σ̂←∩σ̂′← v̂`=v̂′

`

)
∧ (r=â(t̂′)) ∧ (t̂=t̂′) // assert SYNC and transparency

7: return I = 〈χ̂, χ̂′, ζ′〉

Algorithm 5 InvariantGen
Input: χ̂1 = 〈L1 : i1, ρ̂1, σ̂1, τ̂1〉, χ̂2 = 〈L2 : i2, ρ̂2, σ̂2, τ̂2〉, ζ // abstract state
Output: Γ̂H ,DΓ̂,n // more abstract state, post-dominating set, and step bound

1: if L2 < Marked then // outside marked region
2: return (GenericInvariant(χ̂1, χ̂2), {(L1, L2)}, 1) // use Algorithm 4
3: else
4: Γ̂← 〈χ̂1, χ̂2, ζ〉 // don’t abstract the state
5: n← min{n | AbsInn({Γ̂},Marked) = AbsInn+1({Γ̂},Marked)} // find step bound
6: return (Γ̂, labels(AbsInn({Γ̂},Marked)), n)
7: end if

Linear Constraint Solving. The model-checker then verifies implication ζ ⇒ ζ′ by applying constraint logic program-
ming (CLP) to verify the unsatisfiability of sentence ζU ∧ ζ ∧ ¬ζ

′. That is, it confirms that under the hypothesis ζU that
Γ̂ and Γ̂′ abstract the same concrete state, there is no instantiation of the free variables that falsifies ζ ⇒ ζ′.

4.5. Invariant Generation

Recall from §4.3 that for every reachable code point (L1, L2) in the parallel simulation’s state space, the verifier
requires an (untrusted) hint consisting of: (1) an invariant for (L1, L2) in the form of an abstract state, (2) a finite,
generalized post-dominating set for (L1, L2) whose members are all transparent code points, and (3) a stepping-bound n.

In this section we outline a strategy for generating these invariants that allows our verifier to prove transparency for
IRMs produced by the SPoX rewriting system [23], and that can be used as a basis for transparency verification of many
other similar IRM systems.

SPoX implements IRMs as collections of small code blocks that guard security-relevant operations. It also introduces
new classes and methods that maintain and track reified security state variables implemented as private class fields. The
relationship between the reified state variable and the state of the security automaton that encodes the policy constitutes
an invariant, termed synchronization (SYNC), that has been used to verify its soundness [26]. We observe that extending
this invariant with an obligation to restore trace-equivalence at a certain subset of synchronized points suffices to also
verify transparency.

Algorithms 4–5 generate such invariants by consulting a set of Marked code labels that the IRM claims it has
semantically modified. Marked regions include IRM guard code and the security-relevant instructions they guard, but
not IRM intervention code that responds to impending violations. (Interventions remain unmarked since the verifier
proves them unreachable when the original code satisfies the policy.) The invariant-generator chooses which invariant to
return depending on whether the parallel-simulation state is marked.

Outside marked regions, it uses Algorithm 4 to generate a hint that asserts that the original and rewritten machines
are step-wise equivalent. That is, all original and rewritten state components are equal except for state introduced by the
IRM. It additionally asserts that reified state variables introduced by the IRM accurately encode the current security
state; this is captured by clause r = â(t̂R) in line 6. This property is necessary to prove that interventions are unreachable
and therefore exempt from transparency.

Within marked regions, the invariant-generator uses the last half of Algorithm 5, which asserts that transparency is
restored once parallel simulation exits the marked region. To prove that execution does eventually exit the marked region,
line 5 uses symbolic interpretation to find each control-flow’s exit point. As mentioned in §3.6, IRMs implementing
non-trivial loops outside of interventions may cause this step to conservatively fail.

12



While the invariant-generation algorithm presented here is specific to SPoX, it can be adapted to suit other similar
instrumentation algorithms by replacing constraint r = â(t̂R) in Algorithm 4 with a different constraint that models the
way in which the IRM reifies the security state. Similarly, appeals to the Marked set can be replaced with alternative logic
that identifies code points where the transparency invariant is restored after the IRM has completed any maintenance
associated with security-relevant operations.

4.6. A Verification Example

To illustrate transparency verification, we revisit the pseudo-bytecode listing in Fig. 1. Recall that the figure depicts
an IRM that prohibits more than 100 calls to security-relevant method NavigateToURL. Lines with an × are those in
the Marked set described in §4.5.

The verifier (Algorithm 1) begins exploring the cross-product space from point (L1, L1), where both original and
rewritten programs are at L1. Line 1 of Algorithm 2 consults the (untrusted) invariant-generator, which suggests a hint
that abstracts this to a clause asserting c = â(t̂) (Algorithm 4, line 6), where Skolem constant t̂ denotes the current trace
and â(t̂) is the current security automaton state. This invariant recommends that the only information necessary at L1
to infer transparency is that c correctly reflects the security automaton state, and that all other state components are
unchanged by the IRM. Since initially t̂ = τ̂ = ε in both machines, the verifier confirms that c = 0 and â(τ̂) = 0 using
Algorithm 3, and therefore tentatively accepts c = â(τ̂) as a possible invariant for point (L1, L1). The invariant-generator
next supplies a post-dominating set {(L1, L2)} and stepping bound 1 (see Algorithm 5, line 2) to assert that all realizable
flows from (L1, L1) have a shuffle containing (L1, L2), and that (L1, L2) is reachable in 1 step. The verifier confirms this
(line 2 of Algorithm 2) and continues verification at (L1, L2).

When this process repeats at (L1, L2), we find that L2 is marked (×) so lines 4–6 of Algorithm 5 generate the
invariant of Algorithm 4. This returns post-dominating set {(L10, L10)} and stepping bound 9, which advise the verifier to
continue symbolic interpreting without further abstracting the state until exiting the marked region. When interpretation
reaches the conditional at line 3, clause c = â(t̂) (see above) is critical for inferring that L4 is unreachable when the
original code satisfies the policy. Specifically, the policy-adherence assumption yields constraint â(τ̂) < 100 after L5,
which contradicts negative branch condition c ≥ 100 introduced by L4 when c = â(τ̂), causing line 3 of Algorithm 3 to
return False.

Once the interpreter reaches (L10, L10), the invariant-generator supplies the same abstract state as it did for L1. That
is, it asserts that all shared state components (including traces) are equal, and reified state variable c equals security
automaton state â(t̂). The linear constraint solver confirms that the incremented c (see L8) matches the incremented state
â(t̂ apiNavigateToURL), and therefore accepts the new invariant. Symbolic interpreting for an additional step, it confirms that
this matches the earlier invariant for L1, and accepts the program-pair as transparent.

4.7. Proof of Verifier Correctness

Theorem 1 reduces correctness of the transparency verification algorithm to soundness of the symbolic interpreter
and model-checker. That is, if the verifier’s abstract simulation of the two programs (including the interpretation rules
that perform model-checking) is a bisimulation—i.e., it soundly abstracts the programs’ actual, concrete executions—
and if the verifier accepts, then the set S described in Theorem 1 exists, and we conclude (from Theorem 1) that the
IRM is transparent. We have proved soundness of our symbolic interpreter using the Cousots’ abstract interpretation
framework [35]. Due to space limitations, the full proof is deferred to the companion technical report [50], but we
summarize the high-level approach below.

Following the approach of [51], soundness of the abstract interpreter is proved via two lemmas that establish
preservation and progress (respectively) for a parallel simulation of the abstract and concrete machines. The preservation
lemma proves that the simulation preserves the soundness relation, while the progress lemma proves that as long as
the soundness relation is preserved, the symbolic interpreter covers all realizable flows. Together, these two lemmas
dovetail to form an induction over arbitrary length execution sequences. Both lemmas are proved by induction over the
respective operational semantics (Figs. 7 and 8). Soundness of the model-checker follows from soundness of the Prolog
CLP engine [52].
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5. Implementation and Results

Our implementation of the transparency verification algorithm detailed in §4 targets the full AS bytecode language.
It consists of 2500 lines of Prolog for 32-bit Yap 6.2 that parses and verifies pairs of Shockwave Flash File (SWF) binary
archives. YAP CLP(R) [53] is used for constraint solving and Yap’s tabling for memoization. We have made our tool,
called FlashTrack (Flash TRAnsparency ChecKer), available for download online [54].

IRM instrumentation is accomplished via a collection of small binary-to-binary rewriters. They each augment
untrusted AS code with security guards according to a security policy, specified as a SPoX security automaton. For ease
of implementation, each rewriter is specialized to a particular policy class. For example, one rewriter enforces resource
bound policies that limit the number of accesses to policy-specified system API functions per run. It augments untrusted
code with counters that track accesses, and halts the applet when an impending operation would exceed the bound. The
rewriters are each about 200 lines of Prolog (not including parsing) and the invariant-generators are about 100 lines each.

Each rewriter is accompanied by an invariant-generator that follows the algorithm described in §4.5. The generated
invariants match the details of each rewriter’s code-transformation strategy, exhibiting no conservative rejection that
we know of for any code that the rewriters produce. We expect that adapting invariant generation to other similar IRM
systems will only require small modifications.

To demonstrate the versatility of FlashTrack, rewriters in our framework perform localized binary optimizations
during rewriting when convenient. For example, when original code followed by IRM code forms a sequence of
consecutive conditional branches, the entire sequence (including the original code) is replaced with an AS multi-way
jump instruction (lookupswitch). Certifying transparency of the instrumented code therefore requires the verifier to
infer semantic equivalence of these transformations.

When implementing our IRMs we found the transparency verifier to be a significant aid to debugging. Bugs that we
encountered included IRMs that fail transparency when in-lined into unusual code that overrides IRM-called methods
(e.g., toString), IRMs that throw uncaught exceptions (e.g., null pointer) in rare cases, IRMs that inadvertently trigger
class initializer code that contains an observable operation, and broken IRM instructions that corrupt a register or stack
slot that flows to an observable operation. All of these were immediately detected by the transparency verifier.

We applied our prototype framework to rewrite and verify numerous real-world Flash advertisements drawn from
public web sites. The results are summarized in Table 1. For each advertisement, the table columns report the policy type,
bytecode size before and after rewriting, the number of methods in the original code, and the rewriting and verification
times. All tests were performed on a Lenovo Z560 notebook computer running Windows 7 64-bit with an Intel Core I5
M480 dual core processor, 2.67 GHz processor speed, and 4GB of memory.

Except for HeapSprayAttack (a synthetic attack discussed below) all tested advertisements were being served
by public web sites when we collected them. Some came from popular business and e-commerce websites, but the
more obtrusive ones with potentially undesirable actions tended to be hosted by less reputable sites, such as adult
entertainment and torrent download pages. Potentially undesirable actions include unsolicited URL redirections, large
pop-up expansions, tracking cookies, and excessive memory usage. Advertisement complexity was not necessarily
indicative of maliciousness; some of the most complex advertisements were benign. For example, wine implements
complex interactive menus showcasing wines and ultimately offering navigation to the seller’s site.

All programs are classified into one of four case study classes:

Bounding URL Navigations. We enforced a resource bound policy that restricts the number of times an advertisement
may navigate away from the hosting site. This helps to prevent unwanted chains of pop-up windows. The IRM enforces
the policy by counting calls to the NavigateToURL system API function. When an impending call would exceed the
bound, the call is suppressed at runtime by a conditional branch. To verify transparency of the resulting IRM, the verifier
proves that such branches are only reachable in the event of a policy violation by the original code.

Bounding Cookie Storage. For another resource bounds policy, we limited the number of cookie creations per advertise-
ment. This was achieved by guarding calls to the SetCookie API function. Impending violations cause the IRM to
prematurely halt the applet.

Preventing Pop-up Expansions. Some Flash advertisements expand to fill a large part of the web page whenever the user
clicks or mouses over the advertisement space. This is frequently abused for click-jacking. Even when advertisement
clicks solicit non-malicious behavior, many web publishers and users regard excessive expansion as a denial-of-service
attack upon the embedding page. There is therefore high demand for a means of disabling it. Our expansion-disabling
policy does so by denying access to the GoToAndPlay system API function.
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Table 1. Experimental Results

File Size (KB) Number of Rewriting Verification
Program Policy old new Methods Time (ms) Time (ms)

adult1 ResBnds 1 2 4 < 1 < 1
adult2 ResBnds 18 18 102 127 1201
atmos ResBnds 1 1 6 < 1 < 1
att ResBnds 22 22 147 156 1434
ecls ResBnds 2 3 6 16 < 1
eco ResBnds 2 3 6 < 1 16
flash ResBnds 3 4 12 < 1 62
fxcm ResBnds 2 2 12 16 16
gm ResBnds 21 22 142 157 1245
gucci ResBnds 2 2 6 15 16
iphone ResBnds 2 2 6 < 1 < 1
IPLad ResBnds 2 2 15 31 15
jlopez ResBnds 17 17 151 95 560
lowes ResBnds 34 34 181 218 16549
men1 ResBnds 33 34 237 203 3757
men2 ResBnds 40 40 270 297 4964
prius ResBnds 71 71 554 516 10359
priusm ResBnds 70 71 542 468 9951
sprite ResBnds 34 34 324 234 3075
utv ResBnds 21 21 155 151 1171
verizon1 ResBnds 3 4 25 < 1 37
verizon2 ResBnds 3 3 12 31 15
weightwatch ResBnds 4 4 34 47 47
wines ResBnds 185 185 926 904 35926
expandall NoExpands 3 4 17 47 79
cookie NoCookieSet 3 3 8 31 16
CookieSet NoCookieSet 1 1 4 < 1 < 1
HeapSprAttk NoHeapSpray 1 1 4 15 15

Heap Spray Attacks. Heap spraying is a technique for planting malicious payloads by allocating large blocks of memory
containing sleds to dangerous code. Cooperating malware (often written in an alternative, less safe language) can then
access the payload to do damage, for example by exploiting a buffer overrun to jump to the sled. By separating the
payload injector and exploit code in different applications, the attack becomes harder to detect.

AS has been used as a heap spraying vehicle in several past attacks [55]. The spray typically allocates a large byte
array and inserts the payload into it one byte at a time, making it more difficult to reliably detect the payload’s signature
via purely static inspection of the AS binary.

To inhibit heap sprays, we enforced a policy that bounds the number of byte-write operations that an advertisement
may perform on any given run. We then implemented a heap spray (HeapSprAttk) and verified that the IRM successfully
prevented the attack. Applying the policy to all other advertisements in Table 1 resulted in no behavioral changes, as
confirmed by the verifier.

6. Conclusions

Concerns about program behavior-preservation (transparency) have impeded the practical adoption of IRM systems
for enforcing mobile code security. Code producers and consumers both desire the powerful and flexible policy-
enforcement offered by IRMs, but are unwilling to accept unintended corruption of non-malicious program behaviors.

To address these concerns, we presented the design and implementation of the first automated transparency-verifier for
IRMs, and demonstrated how safety-verifiers based on model-checking can be extended in a natural way to additionally
verify IRM transparency. To minimize the TCB and keep verification tractable, an untrusted, external invariant-generator
safely leverages rewriter-specific instrumentation information during verification. Hints from the invariant-generator
reduce the state-exploration burden and afford the verifier greater generality than the more specialized rewriting systems
it checks. Prolog unification and Constraint Logic Programming (CLP) keeps the verifier implementation simple
and closely tied to the underlying verification algorithm, which is supported by proofs of correctness and abstract
interpretation soundness. Practical feasibility is demonstrated through experiments on a variety of real-world AS
bytecode applets.
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In future work, we would like to extend our approach to support user-written IRM implementations (e.g., those
implemented in AspectJ [2]) in addition to IRMs synthesized purely automatically. This requires an IRM development
environment that includes program-proof co-development, such as Coq [30]. Such research will facilitate easier, more
reliable development of customized IRMs with machine-checkable proofs of soundness and transparency.

Acknowledgments

The research reported herein was supported in part by the National Science Foundation (NSF) under grants #1065216
and #1054629, and by the Office of Naval Research (ONR) under grant N00014-14-1-0030. All opinions and conclusions
expressed are those of the authors and not necessarily of the NSF or ONR.

References

[1] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula, N. Fullagar, Native Client: A Sandbox
for Portable, Untrusted x86 Native Code, in: Proc. 30th IEEE Sym. Security & Privacy (S&P), 79–93, 2009.
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