
Digital Filters with Adaptive Length for Real-Time Applications

Nicolas Perrin
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA 30332

Bonnie Heck Ferri

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332-0250

Abstract
This paper explores the use of imprecise computing to develop
digital filters with adaptive length in order to meet real-time
constraints. A large-order filter typically provides better
filtering but takes longer to compute than a low order filter.
An adaptive length filter can provide a resource manager with
alternatives that can be used if resources become scarce. This
paper discusses the use of standard IIR filters used in controls
applications and how these filters can be implemented in
prioritized stages. Examples are given to show how to
implement a 60 hertz notch filter using imprecise computing.

I Introduction
Real-time digital filtering is used in many applications such as
control systems, signal conditioning in real-time measurement
systems, and target tracking [Stergiopoulos, 2001]. An
example of a common digital filter is a 60 hertz notch filter,
which is often used in measurements of electromechanical
systems to eliminate standard line voltage prior to feeding
back the measurement (or 50 hertz notch filters in parts of the
world) [Heck, 2001]. Typically, the larger the order of the
filter, the better its performance, but the longer it takes to
compute.

The use of resource management schemes in order to meet
real-time constraints or to improve processor utilization has
become a topic of research in the last few years [Murthy and
Manimaran, 2001]. However, it is not typically employed in
control systems. This paper proposes a method of doing
imprecise computing [Natarajan, 1995; Liu et al, 1994] for
digital filters to facilitate resource management. The algorithm
for the filter is formulated as an anytime algorithm, thus, we
call the filters anytime filters.

II General Procedure
Consider an IIR filter:

N
N

M
M

zazaa

zbzbb
zH

−−

−−

+++

+++
=

...

...
)(

1
10

1
10

This can be implemented in direct form using the
corresponding difference equation:

][...]1[
][...]1[][][

1

10
Nnyanya

Mnxbnxbnxbny

N

M
−−−−

−−++−+=

To improve numerical accuracy. this filter can be factored into
cascaded first (or second) order filters.

∏ ++

∏ ++
= −−

−−

i
iii

i
iii

zazaa

zbzbb
zH 2

2
1

10

2
2

1
10

)(

and implemented such that the output of the first filter
becomes the input to the second and so on. Thus, you can
consider the whole filter to be broken into stages made up of
first (or second) order filters. The difference equation for the
ith stage (assuming second-order) would be:

]2[]1[
]2[]1[][][

21

210
−−−

−−+−+=
nyanya

nxbnxbnxbny

ii

iii

For the first stage, x is the actual measured signal. For the
subsequent stages, x is the output of the previous filter stage.

Using imprecise computing to reduce computation time is
accomplished by prioritizing the stages so that the latter stages
can be skipped if resources become scarce. Each stage will
filter the signal a given amount, and the more stages that you
use the better the filtering. Setting up the filter stages for this
type of computation is done by prioritizing the stages in terms
of their desired frequency responses and by putting all the gain
in the first stage(s). The latter stages should have
approximately unity gain. Different types of filters have
different characteristics and their adaptive length counterparts
behave differently as well.

Butterworth filters have a magnitude frequency response that
is monotonic in the pass band and in the stop band. To match
given constraints, this kind of filter usually requires higher
order than other approximations such as Chebyshev or Elliptic
filters. However, what is helpful in the considered application
is that the Butterworth filter can be broken easily into second-
order stages that have very similar frequency characteristics.
Chebyshev filters have a magnitude frequency response that
either has ripple in the pass band and is monotonic in the stop
band for Type 1 Chebyshev filters, or has ripple in the stop
band and is monotonic in the pass band for Type 2 Chebyshev
filters. For this application, we considered a Type 1
Chebyshev filter. Elliptic filters have a magnitude frequency
response that has ripples in the stop band and in the pass band,
and the order of such a filter is then lower than a Chebyshev
filter for the same constraints. However, the example will
demonstrate a disadvantage of this kind of filter for our
application.

The advantage of imprecise computing lies in the ability to
skip some of the stages to give more flexibility to the resource
manager. A potential problem arises when going from a low
order filter to a larger one since the filters are recursive. If a
stage is skipped, the output of the corresponding filter will not
be computed and we have to reinitialize it for the next use of
the filter. Poor initialization could induce large transients the
next time that the filter is used.

To mitigate transients when a filter stage is added back into
the operation, a simple initialization is to set the previous
values of that stage equal to the previous values of the last
stage that was actually computed. Suppose the computation is
stopped after the ith stage in one iteration (at time index n-1),
then at the next iteration (at time index n) the resource
manager allows the filter to complete all the stages. Let yi
denote the output of the ith stage. (Note, yi is also the input of
the i+1th stage.) Initialize the i+1th stage with values

2,1][][1 =−=−+ mformnymny ii

This provides an almost “bumpless transfer” for the output
signal. The same initialization could be done for subsequent
stages that are added in the same iteration.

2,1][][=−=−+ mformnymny iki

where . To be conservative, the resource manager might
add stages one at a time. Thus, to go from a 1 stage filter to a 3
stage filter, it may first add the second stage in one iteration
and the third stage in the next iteration. However, we have
found from simulations that going from a 1 stage directly to a
3 stage filter has negligible difference in the transient when
compared to the transition from a 2 stage to a 3 stage filter.

1>k

III Application to a Notch Filter
For illustration sake, we choose to consider a 6th order filter to
remove the 60 Hz frequency component of a signal. We want
to implement this filter in the framework of imprecise
computing. Factor the sixth-order filter into three second-
order filters to be implemented sequentially in three stages.
The resource manager can choose to skip either the last two
filter stages or only the last one if there is not enough time
available for processing.

We will present different implementations with different types
of filters. In each case, the filter will be designed according to
specifications shown in the characteristic frequency response
of a notch filter given on Figure 1.

Figure 1: Stop band or notch filter frequency characteristics.

The test signal used to evaluate the filters is:

)902cos()602cos()302cos(][n
F

n
F

n
F

nx
sss

πππ ++=

where Fs is the sampling frequency (chosen here to be 600
Hz). Note that this signal contains one component at 60 Hz in
the stop band, one component at 30 Hz in the low frequency
part of the pass band and one component at 90 Hz in the high
frequency part of the pass band.

The anytime filter is implemented by always computing the
first stage of the filter, and then having the choice to disgard
the second or third stage, corresponding to having a 2nd , 4th or
6th order filter. The initialization needed when going from a
smaller-order filter to a larger one mentioned in the last
section is used here.

Elliptic Filter: A 6th order Elliptic filter was synthesised
that satisfies the following constraints:

• Loss in the stop band: As = 30
• Loss in the pass band: Ap = 1
• Frequencies of the stop band: fs-= 50 , fs+= 70
• Frequencies of the pass band: fc-= 40, fc+= 80

The 6th order filter is then divided into three stages, each
consisting of a second-order filter with corresponding
frequency responses plotted on Figure 2.

Figure 2: Frequency response of the second-order filters
comprising the filter stages (Elliptic design).

Observe that the three second-order filters are all band stop
filters with different stop bands. Therefore, if one filter stage
is skipped, one band of frequency in the stop band may be
filtered very little. This kind of behavior is not desirable in
imprecise computing; we would rather filter the entire stop
band with every filter stage so that skipping one or more filter
stages will result in approximately the same frequency
characteristic.

dB)j(H ω

 -Ap

 0

Now consider the Fourier transforms of the input and output
signals of two filters, one being the full 6th order filter (shown
in Figure 3) and the other being the anytime (shown in Figure
4). Figure 3 shows clearly how the full-order filter is able to

 -As

 fc- fs- fs+ fc+

filter out the 60Hz signal with small attenuation of the 30Hz
and 90Hz components.

Figure 3: Input (x) and output (y) of the 6th order
Elliptic filter.

The results for Figure 4 were generated by running the
anytime filter and changing the filter length using the
following schedule:

• 0 - 0.25 seconds: 6th order filter
• 0.25 – 0.5 seconds: 4th order filter
• 0.5 – 0.75 seconds: 2nd order filter
• 0.75 -1.0 seconds: 4th order filter
• 1.0 - 1.25 seconds: 6th order filter

The results in Figure 4 show that the anytime filter
implemented with imprecise computing gives very similar
results when compared to the full-order filter.

Figure 4: Input (x) and output (y) of the Elliptic filter
implemented using imprecise computing.

The Fourier transform of the output is noisy compared to the
one obtained by using the full-order filter. Furthermore, the
30 Hz frequency is smaller than it should be and the 90 Hz
component is larger.

This behaviour is explained by examining the frequency
responses of the three second-order filters in Figure 2. Since
each second-order filter is a band stop filter with different stop
bands, the ordering of the filters influences the responses of
the filter implemented with variable length. In this example,
the third filter stage (filter 3 in Figure 2) is the one that has the
highest gain at the 30Hz frequency (normalized to 0.1). It is
also the filter that is the most likely to be skipped; hence, the
30Hz component is filtered more with this ordering. Filter 1
as defined in Figure 2 should be the first stage since it does the
best job on its own of filtering 60 Hz (at 0.2 normalized
frequency). Thus, the Elliptic filter is not well-suited to
imprecise computing since the second-order filters have very
different frequency responses.

Butterworth Filter: Consider, now, the design of a
Butterworth filter. The constraints of the filter are now the
following:

• Loss in the stop band: As = 20
• Loss in the pass band: Ap = 2
• Frequencies of the stop band: fs-= 50 , fs+= 70
• Frequencies of the pass band: fc-= 30, fc+= 90

Observe that to keep sixth-order for the filter we have to
choose weaker constraints than used for the Elliptic filter.

The sixth-order filter is decomposed into three second-order
filters with the magnitudes of the frequency responses plotted
in Figure 5.

Figure 5: Frequency responses of the second-order filters
comprising the filter stages (Butterworth design)

Observe that the magnitude frequency responses of the three
filters are quite similar. In particular, they all have the same
stop band frequency, unlike the Elliptic filter. So these filters
appear to be an iterative refinement of the filtering of the
signal, and thus better suited for an imprecise computing
application.

Furthermore, notice that we have chosen the filter with the
flattest magnitude to be the third stage of the full-order filter.
This ordering minimizes the impact of skipping the third filter,
which is the stage skipped the most often. In addition, to
further minimize the relative importance of the last filter, we
have also set the gain of the last filter to be 0 dB in the pass
band, and put the main gain on the first filter.

Examine the Fourier transform of the input and output signals
when we use either the full-order filter (Figure 6) or the
anytime filter implemented with imprecise computing (Figure
7). As in the last example, the size of the anytime filter is
determined according to a timed schedule. The 60 Hz
component is filtered in both cases. Observe in Figure 7 that
the 90 Hz component is now a little amplified, and the 30 Hz
component is more attenuated when compared to Figure 6.
This result could be predicted from examination of the
frequency responses of the second-order filters in Figure 5.
Note that reversing the order of Filter 1 and Filter 2 would
make the 90 Hz component more attenuated and the 30 Hz
component less attenuated. We still observe some noise
appearing in the Fourier transform of the output signal of the
anytime filter, as we saw for the elliptic filter. However, notice
that the overall result of the anytime appears to be very similar
to the signal obtained when the full-order filter is used.

Figure 6: Input and output of the full-order Butterworth filter.

Figure 7: Input (x) and output (y) of the anytime Butterworth

filter when imprecise computing is used

It is interesting to examine the effect of the initialization
method described in Section II for the case when going from a
small-order filter to a larger order one. The time trace of the
anytime Butterworth filter following the present schedule
(transitions occurring every 0.25 seconds) is shown in Figure
8. Note that the 4th order filter responds similarly to the 6th
order filter (some difference in phase accounts for the
difference in signal appearance). There is some degradation in

the response of the 2nd order filter (between 0.5 to 0.75
seconds). Note also that the transient induced by changing
filter size is very small, about 0.02 seconds, when going from
a smaller order filter to a larger one. There is negligible
difference in the transient response for a transition directly
from a 2nd order filter to a 6th order filter.

Figure 8: Time trace of signal showing transients.

IV Conclusions
It is shown in this paper that Butterworth filters are better
suited for use with imprecise computing than the Elliptic filter
(the observation holds with Chebyshev filters as well).
Moreover, the ordering of the filters also affects the
performance of the anytime filter. An alternative design is to
design a second-order filter and replicate it for the other
stages. In this way, each filter stage is exactly an iteration of
the previous stages. The resulting full-order filter will likely
not perform as well as the full-order filter designed using one
of the standard methods, but this would likely have better
performance if a significant amount of time is spent using the
reduced-order filters.

Acknowledgement
This work was funded by NSF grant number CCR-0209179.

References
Advanced Signal Processing Handbook, ed. by S.
Stergiopoulos, CRC Press, 2001.

“Digital Signal Processing for Mechatronic Applications,” B.
Heck and T. Kurfess, in The Mechatronics Handbook, ed. by
R.H. Bishop, CRC Press, 2002.

C.S.R. Murthy and G. Manimaran, Resource Management in
Real-Time Systems and Networks, MIT Press, Cambridge,
MA, 2001.

Imprecise and Approximate Computation, ed. by S. Natarajan,
Kluwer Academic Publishers, 1995.

J. Liu, W-K Shih, K-J Lin, R. Bettati, and J-Y Chung,
“Imprecise Computations,” Proceedings of the IEEE, vol. 82,
no. 1, January 1994, pp. 83-93.

	Abstract
	I Introduction
	II General Procedure
	III Application to a Notch Filter
	Acknowledgement
	References

