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Abstract 
This paper explores the use of imprecise computing to develop 
digital filters with adaptive length in order to meet real-time  
constraints.  A large-order filter typically provides better 
filtering but takes longer to compute than a low order filter.  
An adaptive length filter can provide a resource manager with 
alternatives that can be used if resources become scarce.  This 
paper discusses the use of standard IIR filters used in controls 
applications and how these filters can be implemented in 
prioritized stages. Examples are given to show how to 
implement a 60 hertz notch filter using imprecise computing. 
 
I Introduction 
Real-time digital filtering is used in many applications such as 
control systems, signal conditioning in real-time measurement 
systems, and target tracking [Stergiopoulos, 2001].  An 
example of a common digital filter is a 60 hertz notch filter, 
which is often used in measurements of electromechanical 
systems to eliminate standard line voltage prior to feeding 
back the measurement (or 50 hertz notch filters in parts of the 
world)  [Heck, 2001].  Typically, the larger the order of the 
filter, the better its performance, but the longer it takes to 
compute. 
 
The use of resource management schemes in order to meet 
real-time constraints or to improve processor utilization has 
become a topic of research in the last few years [Murthy and 
Manimaran, 2001].  However, it is not typically employed in 
control systems.   This paper proposes a method of doing 
imprecise computing [Natarajan, 1995; Liu et al, 1994] for 
digital filters to facilitate resource management. The algorithm 
for the filter is formulated as an anytime algorithm, thus, we 
call the filters anytime filters.   
 
II General Procedure  
Consider an IIR filter: 
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This can be implemented in direct form using the 
corresponding difference equation: 
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To improve numerical accuracy. this filter can be factored into 
cascaded first (or second) order filters. 
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and implemented such that the output of the first filter 
becomes the input to the second and so on.  Thus, you can 
consider the whole filter to be broken into stages made up of 
first (or second) order filters.  The difference equation for the 
ith stage (assuming second-order) would be: 
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For the first stage, x is the actual measured signal. For the 
subsequent stages, x is the output of the previous filter stage. 
 
Using imprecise computing to reduce computation time is 
accomplished by prioritizing the stages so that the latter stages 
can be skipped if resources become scarce.   Each stage will 
filter the signal a given amount, and the more stages that you 
use the better the filtering. Setting up the filter stages for this 
type of computation is done by prioritizing the stages in terms 
of their desired frequency responses and by putting all the gain 
in the first stage(s).  The latter stages should have 
approximately unity gain.  Different types of filters have 
different characteristics and their adaptive length counterparts 
behave differently as well.   
  
Butterworth filters have a magnitude frequency response that 
is monotonic in the pass band and in the stop band. To match 
given constraints, this kind of filter usually requires higher 
order than other approximations such as Chebyshev or Elliptic 
filters. However, what is helpful in the considered application 
is that the Butterworth filter can be broken easily into second-
order stages that have very similar frequency characteristics. 
Chebyshev filters have a magnitude frequency response that 
either has ripple in the pass band and is monotonic in the stop 
band for Type 1 Chebyshev filters, or has ripple in the stop 
band and is monotonic in the pass band for Type 2 Chebyshev 
filters. For this application, we considered a Type 1 
Chebyshev filter.  Elliptic filters have a magnitude frequency 
response that has ripples in the stop band and in the pass band, 
and the order of such a filter is then lower than a Chebyshev 
filter for the same constraints. However, the example will 
demonstrate a disadvantage of this kind of filter for our 
application.  
 



The advantage of imprecise computing lies in the ability to 
skip some of the stages to give more flexibility to the resource 
manager. A potential problem arises when going from a low 
order filter to a larger one since the filters are recursive.  If a 
stage is skipped, the output of the corresponding filter will not 
be computed and we have to reinitialize it for the next use of 
the filter.  Poor initialization could induce large transients the 
next time that the filter is used.   
 
To mitigate transients when a filter stage is added back into 
the operation, a simple initialization is to set the previous 
values of that stage equal to the previous values of the last 
stage that was actually computed.  Suppose the computation is 
stopped after the ith stage in one iteration (at time index n-1), 
then at the next iteration (at time index n) the resource 
manager allows the filter to complete all the stages. Let yi 
denote the output of the ith stage. (Note, yi  is also the input of 
the i+1th stage.)  Initialize the i+1th stage with values  
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This provides an almost “bumpless transfer” for the output 
signal.  The same initialization could be done for subsequent 
stages that are added in the same iteration. 
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where .  To be conservative, the resource manager might 
add stages one at a time. Thus, to go from a 1 stage filter to a 3 
stage filter, it may first add the second stage in one iteration 
and the third stage in the next iteration. However, we have 
found from simulations that going from a 1 stage directly to a 
3 stage filter has negligible difference in the transient when 
compared to the transition from a 2 stage to a 3 stage filter.   

1>k

 
III Application to a Notch Filter 
For illustration sake, we choose to consider a 6th order filter to 
remove the 60 Hz frequency component of a signal. We want 
to implement this filter in the framework of imprecise 
computing.  Factor the sixth-order filter into three second-
order filters to be implemented sequentially in three stages. 
The resource manager can choose to skip either the last two 
filter stages or only the last one if there is not enough time 
available for processing. 
 
We will present different implementations with different types 
of filters.  In each case, the filter will be designed according to 
specifications shown in the characteristic frequency response 
of a notch filter given on Figure 1. 
 
 
 
 
 
 

 
 

 
Figure 1: Stop band or notch filter frequency characteristics. 

 

The test signal used to evaluate the filters is: 
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where Fs is the sampling frequency (chosen here to be 600 
Hz).  Note that this signal contains one component at 60 Hz in 
the stop band, one component at 30 Hz in the low frequency 
part of the pass band and one component at 90 Hz in the high 
frequency part of the pass band. 
 
The anytime filter is implemented by always computing the 
first stage of the filter, and then having the choice to disgard 
the second or third stage, corresponding to having a 2nd , 4th or 
6th order filter.  The initialization needed when going from a 
smaller-order filter to a larger one mentioned in the last 
section is used here. 
 

Elliptic Filter: A 6th order Elliptic filter was synthesised 
that satisfies the following constraints: 

• Loss in the stop band: As  = 30 
• Loss in the pass band: Ap = 1 
• Frequencies of the stop band: fs-= 50 , fs+= 70 
• Frequencies of the pass band:  fc-= 40, fc+= 80 

The 6th order filter is then divided into three stages, each 
consisting of a second-order filter with corresponding 
frequency responses plotted on Figure 2. 
 

 
 

Figure 2: Frequency response of the second-order filters 
comprising the filter stages (Elliptic design). 

 
Observe that the three second-order filters are all band stop 
filters with different stop bands.  Therefore, if one filter stage 
is skipped, one band of frequency in the stop band may be 
filtered very little. This kind of behavior is not desirable in 
imprecise computing; we would rather filter the entire stop 
band with every filter stage so that skipping one or more filter 
stages will result in approximately the same frequency 
characteristic. 
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Now consider the Fourier transforms of the input and output 
signals of two filters, one being the full 6th order filter (shown 
in Figure 3) and the other being the anytime (shown in Figure 
4). Figure 3 shows clearly how the full-order filter is able to 
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filter out the 60Hz signal with small attenuation of the 30Hz 
and 90Hz components.   
 

 
 

Figure 3: Input (x) and output (y) of the  6th order  
Elliptic filter. 

 
The results for Figure 4 were generated by running the 
anytime filter and changing the filter length using the 
following schedule: 

• 0 - 0.25 seconds: 6th order filter  
• 0.25 – 0.5 seconds: 4th order filter 
• 0.5 – 0.75 seconds: 2nd order filter 
• 0.75 -1.0 seconds: 4th order filter 
• 1.0 - 1.25 seconds: 6th order filter 
 

The results in Figure 4 show that the anytime filter 
implemented with imprecise computing gives very similar 
results when compared to the full-order filter.  
 

 
 

Figure 4: Input (x) and output (y) of the Elliptic filter 
implemented using imprecise computing. 

 
The Fourier transform of the output is noisy compared to the 
one obtained by using the full-order filter. Furthermore,  the 
30 Hz frequency is smaller than it should be and the 90 Hz 
component is larger.  

This behaviour is explained by examining the frequency 
responses of the three second-order filters in Figure 2. Since 
each second-order filter is a band stop filter with different stop 
bands, the ordering of the filters influences the responses of 
the filter implemented with variable length. In this example, 
the third filter stage (filter 3 in Figure 2) is the one that has the 
highest gain at the 30Hz frequency (normalized to 0.1).  It is 
also the filter that is the most likely to be skipped; hence, the 
30Hz component is filtered more with this ordering.  Filter 1 
as defined in Figure 2 should be the first stage since it does the 
best job on its own of filtering 60 Hz (at 0.2 normalized 
frequency).  Thus, the Elliptic filter is not well-suited to 
imprecise computing since the second-order filters have very 
different frequency responses. 
 
Butterworth Filter: Consider, now, the design of a 
Butterworth filter.  The constraints of the filter are now the 
following: 

• Loss in the stop band: As = 20 
• Loss in the pass band: Ap = 2 
• Frequencies of the stop band: fs-= 50 , fs+= 70 
• Frequencies of the pass band:  fc-= 30, fc+= 90 

Observe that to keep sixth-order for the filter we have to 
choose weaker constraints than used for the Elliptic filter. 
 
The sixth-order filter is decomposed into three second-order 
filters with the magnitudes of the frequency responses plotted 
in Figure 5.  
 

 
 

Figure 5: Frequency responses of the second-order filters 
comprising the filter stages (Butterworth design) 

 
Observe that the magnitude frequency responses of the three 
filters are quite similar. In particular, they all have the same 
stop band frequency, unlike the Elliptic filter. So these filters 
appear to be an iterative refinement of the filtering of the 
signal, and thus better suited for an imprecise computing 
application. 
 
Furthermore, notice that we have chosen the filter with the 
flattest magnitude to be the third stage of the full-order filter. 
This ordering minimizes the impact of skipping the third filter, 
which is the stage skipped the most often. In addition, to 
further minimize the relative importance of the last filter, we 
have also set the gain of the last filter to be 0 dB in the pass 
band, and put the main gain on the first filter. 



 
Examine the Fourier transform of the input and output signals 
when we use either the full-order filter (Figure 6) or the 
anytime filter implemented with imprecise computing (Figure 
7).  As in the last example, the size of the anytime filter is 
determined according to a timed schedule.  The 60 Hz 
component is filtered in both cases.  Observe in Figure 7 that 
the 90 Hz component is now a little amplified, and the 30 Hz 
component is more attenuated when compared to Figure 6.  
This result could be predicted from examination of the 
frequency responses of the second-order filters in Figure 5.  
Note that reversing the order of Filter 1 and Filter 2 would 
make the 90 Hz component more attenuated and the 30 Hz 
component less attenuated.  We still observe some noise 
appearing in the Fourier transform of the output signal of the 
anytime filter, as we saw for the elliptic filter. However, notice 
that the overall result of the anytime appears to be very similar 
to the signal obtained when the full-order  filter is used. 
 

 
 

Figure 6: Input and output of the full-order Butterworth filter. 
  

 
 
Figure 7: Input (x) and output (y) of the anytime Butterworth 

filter when imprecise computing is used 
 
It is interesting to examine the effect of the initialization 
method described in Section II for the case when going from a 
small-order filter to a larger order one.  The time trace of the 
anytime Butterworth filter following the present schedule 
(transitions occurring every 0.25 seconds) is shown in Figure 
8.  Note that the 4th order filter responds similarly to the 6th 
order filter (some difference in phase accounts for the 
difference in signal appearance).  There is some degradation in 

the response of the 2nd order filter (between 0.5 to 0.75 
seconds).  Note also that the transient induced by changing 
filter size is very small, about 0.02 seconds, when going from 
a smaller order filter to a larger one.  There is negligible 
difference in the transient response for a transition directly 
from a 2nd order filter to a 6th order filter. 
 

 
 

Figure 8: Time trace of signal showing transients. 
 
IV Conclusions 
It is shown in this paper that Butterworth filters are better 
suited for use with imprecise computing than the Elliptic filter 
(the observation holds with Chebyshev filters as well). 
Moreover, the ordering of the filters also affects the 
performance of the anytime filter.  An alternative design is to 
design a second-order filter and replicate it for the other 
stages.  In this way, each filter stage is exactly an iteration of 
the previous stages.  The resulting full-order filter will likely 
not perform as well as the full-order filter designed using one 
of the standard methods, but this would likely have better 
performance if a significant amount of time is spent using the 
reduced-order filters. 
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