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Abstract. We show that complex visual tasks, such as
position- and size-invariant shape recognition and nav-
igation in the environment, can be tackled with simple
architectures generated by a coevolutionary process of
active vision and feature selection. Behavioral machines
equipped with primitive vision systems and direct
pathways between visual and motor neurons are evolved
while they freely interact with their environments. We
describe the application of this methodology in three sets
of experiments, namely, shape discrimination, car driv-
ing, and robot navigation. We show that these systems
develop sensitivity to a number of oriented, retinotopic,
visual-feature-oriented edges, corners, height, and a
behavioral repertoire to locate, bring, and keep these
features in sensitive regions of the vision system,
resembling strategies observed in simple insects.

1 Active vision and feature selection

In this paper we show that the computational complex-
ity of visual processing can be greatly simplified by the
codevelopment of active vision and feature selection.
Active vision is the sequential and interactive process of
selecting and analyzing parts of a visual scene (Bajcsy
1995, 1988; Ballard 1991). This process can simplify the
computation involved in vision processing by reducing
the information load on the system and by selecting only
characteristics of the visual scene that are relevant for
the task to be solved (Aloimonos 1993). Active vision is
largely inspired by ways in which both mammals
(Yarbus 1967) and insects (Srinivasan and Venkatesh
1997) gather information from their environments. For
example, a doctor examining an X-ray plate for the
presence of fractures sequentially directs its gaze to
several points in the image (Krupinski and Nishikawa
1997), as shown in Fig. 1. And Drosophila flies, trained
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to discriminate between two shapes, move their body to
bring selected parts of the image within matching
receptive fields (Dill et al. 1993).

Feature selection instead consists in filtering the image
to enhance features that are relevant for the task to be
solved and discard all the rest. In computer vision, fil-
tering can be accomplished by convolving images with a
set of operators such as the Difference of Gaussians
(Marr 1982) to detect edges and discard overall illumi-
nation. In biological vision, filtering is implemented by
means of matched receptive fields and lateral connec-
tions that respond maximally only to some properties of
the image. An example is the pattern of center-surround,
antagonist synapses found in the early stages of both
verterbrate and invertebrate vision systems. An intro-
duction to computer and biological feature selection can
be found in Mallot (2000).

However, the combination of active vision and fea-
ture selection has been investigated only to a limited
extent. The dominant approach in computer vision
consists in defining the set of features that an active vi-
sion system exploits to explore a visual scene. For
example, Rimey and Brown (1994) make use of Bayes
nets and decision theory to optimally position a vision
sensor in an image, taking advantage of prior knowledge
of environmental relations and geometrical structure.
Using a different technique, Terzopoulos and Rabie
(1997) describe pursuit behavior of an artificial fish that
exploits active vision to find and track red spots in the
visual scene. Interestingly, most models do not take into
account that the number and type of visual features that
an organism is sensitive to depend also on the
sensory-motor and behavioral characteristics of the
organism in its environment (Gibson 1979). The code-
velopment and interaction of feature sensitivity and ac-
tive vision behaviors are still largely unexplored. From a
design perspective, an interesting complication is that
behavior is determined by visual information and at the
same time affects what type of visual information is
gathered. This is probably the reason why either one
aspect or the other is predefined and fixed in most
engineered systems. A notable exception is the work by



Fig. 1. Patterns of eye movements of a doctor scanning an X-ray
image for the presence of bone fracture. Dots represent fixation points
(Krupinski and Nishikawa 1997)

Franceschini et al. (1992) on biomimetic, vision-based
robots that exploit sensory-motor loops to dynamically
interact with and move around environments. Their
approach capitalizes on a combination of insect study
and specially crafted machines that reproduce biological
circuitry and are free to interact with the environment.

Artificial evolution of neural architectures for
autonomous robots is another methodology to address
codevelopment and interaction of active vision and
feature selection because it does not separate perception
from behavior (Nolfi and Floreano 2000). This meth-
odology, also known as evolutionary robotics (CIliff
et al. 1993), consists in encoding the parameters of a
neural system (architecture, connection weights, time
constants, sensor position, etc.) of a robot into an arti-
ficial genome and evolve a population of such genomes
according to a fitness function. Each genome is decoded
into a correponding neural network that is interfaced to
a simulated or physical robot whose fitness is measured
while the robot freely interacts with its environment.
Genomes with higher fitness are reproduced by making a
number of copies with genetic crossover and random
mutations while the remaining genomes are discarded
(Holland 1975).

Within this context, Nolfi (1998) and Scheier et al.
(1998) described evolved robots that exploit active per-
ception to perform tasks that require perceptual dis-
crimination (the robots are equipped with proximity
sensors that indicate the distance to objects, not with
vision). Resorting to a problem classification theory
developed by Clark and Thornton (1997), these authors
showed that such evolved robots turn difficult sensory
classification problems into simpler ones by means of
active behavior. Harvey et al. (1994) described evolution
of sensory and neural morphology for a robot asked to
reach for a triangular shape while avoiding a rectangular
shape painted on a wall. Evolved robots solve the
problem exploiting only two visual neurons whose
receptive fields are aligned with a lateral edge of the
triangle. The sequential activation of these neurons,
caused by the sweeping of the image over the retina
while the robot rotates, is sufficient to trigger the correct
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approaching, or avoidance, behavior. Despite the rela-
tive simplicity of such evolved systems, it has been ar-
gued that they may provide a new perspective on
perceptual mechanisms with respect to conventional
knowledge-based models (Cliff and Noble 1997).

In this paper, we proceed further on this line of
investigation and describe a series of experiments on
coevolution of active vision and feature selection for
behavioral systems equipped with primitive retinal sys-
tems and deliberately simple neural architectures. In a
first set of experiments, we show that sensitivity to very
simple features is coevolved with, and exploited by, ac-
tive vision to perform complex shape discrimination. We
also show that such a discrimination problem can be
very difficult for a similar vision system without active
behavior. In a second set of experiments, we apply the
same coevolutionary method and architecture for driv-
ing a simulated car over roads in the Swiss Alps and
show that active vision is exploited to locate and fixate
simple features while driving the car. In a third set of
experiments, we apply once again the same coevolu-
tionary method and architecture to an autonomous ro-
bot equipped with a pan/tilt camera that is asked to
navigate in an arena located in an office environment.
Evolved robots exploit active vision and simple features
to direct their gaze at invariant features of the environ-
ment and perform collision-free navigation. The exper-
iments on shape discrimination and robot navigation
were described in Kato and Floreano (2001) and
Marocco and Floreano (2002), respectively. In addition
to presenting the new experiments on car driving, in this
paper we show that evolved systems display similar
strategies for active vision and feature selection across
all experiments.

The next section describes the architecture of the
neural system and the evolutionary method used in the
three experiments. Minor modifications of the architec-
ture due to experimental constraints are described at the
beginning of each experimental section. The discussion
section compares the solutions discovered across various
experimental settings and provides a unified framework
for understanding the principles exploited by the
coevolutionary active vision and feature selection
system.

2 Architecture and evolutionary method

The system consists of a feedforward neural network of
artificial neurons with evolvable thresholds and discrete-
time, fully recurrent connections at the output layer
(Fig. 2). A set of visual neurons (a), arranged on a grid,
with nonoverlapping receptive fields receive information
about the gray level of the corresponding pixels in the
image (b). The size of the receptive fields (zooming
factor) can be dynamically changed by one output
neuron at each time step. Values of the zooming factor
depend on the constraints of the experiment, but the
total area covered by the visual neurons is always
smaller than the visual scene. We can think of the total
area spanned by receptive fields as an artificial retina.
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Fig. 2. The architecture is composed of a a grid of visual neurons with
nonoverlapping receptive fields whose activation is given by b the gray
level of the corresponding pixels in the image; ¢ a set of proprioceptive
neurons that provide information about the movement of the vision
system; d a set of output neurons that determine the behavior of the
system (pattern recognition, car driving, robot navigation); e a set of
output neurons that determine the behavior of the vision system; and
f a set of evolvable synaptic connections. The number of neurons in
each subsystem can vary according to the experimental settings

The activation of a visual neuron, scaled between 0 and
1, is given by the average gray level of all pixels spanned
by its own receptive field or by the gray level of a single
pixel within the receptive field (top left corner). The
choice between these two activation methods can be
dynamically changed by one output neuron at each time
step.

A set of proprioceptive neurons (panel ¢) provides
information about the movement of the vision system in
head-centered coordinates. This information can be as
simple as a binary value signaling end-of-range when the
vision system cannot move any further or more detailed
in the form of distance and angle from a straight, for-
ward-looking direction. The choice of proprioceptive
information can vary across experiments, depending on
constraints of the physical system.

Output neurons have sigmoid activation functions
f(x) = 1/(1 4+ exp(—x)) in the range [0, 1], where x is the
weighted sum of the inputs minus the threshold.
Thresholds are implemented as a weight from an input
neuron with an activation value set to —1. Output neu-
rons are logically organized in two blocks. One block (d)
is used to determine the behavior of the system at each
time step. For example, in the shape discrimination
experiments, their outputs will signal the type of shape
recognized by the system; in the car driving experiments,
they will encode acceleration, breaking, and steering
parameters of the car; in the robot navigation experi-
ment, they will encode the speeds of the wheels of the
robot. The other block (e) is used to determine the
behavior of the vision system at each time step. It in-
cludes two neurons to control the movement of the
camera, encoded as angle and distance relative to the
current position; one neuron to define the activation
method of visual neurons; and one neuron to define the
zooming factor (i.e., the size of receptive fields). Small
variations in the composition of this block are applied
depending on the physical constraints of the experi-
mental settings.

The system is updated at discrete time intervals. At
each time interval, the following steps are performed: (i)
the activation of the visual and proprioceptive neurons is
computed; (i) the activation of the output units is
computed using the current weighted input values and
the weighted output values computed at the previous
time step; (iii) the pattern recognition system, car, or
robot is updated, the vision system is shifted to its new
location, and its parameters (zooming and activation
method) are reset to the new values defined by the net-
work output.

The strengths of feedforward and recurrent connec-
tions (f) are encoded in a binary string along with the
threshold values of all output neurons. Connection
strengths and thresholds can take values in the range
[—4.0,4.0] and are each encoded on 5 bits. This binary
string represents the genotype of the system and is
evolved using a genetic algorithm (Holland 1975). A
population of n genomes is randomly initialized by the
computer. Each genome is decoded into the corre-
sponding neural network and tested for a number of
trials during which its fitness is computed. The best 20%
individuals (those with highest fitness values) are
reproduced, while the remaining 80% are discarded, by
making an equal number of copies so as to create a new
population of the same size. These new genomes are
randomly paired, crossed over with probability 0.1 per
pair, and mutated with probability 0.001 per bit.
Crossover consists in swapping genetic material between
two strings around a randomly chosen point. Mutation
consists in toggling the value of a bit. Finally, a copy of
the best genome of the previous generation is inserted in
the new population at the place of a randomly chosen
genome (elitism).

3 Shape discrimination

In this experiment we ask the system to discriminate
between triangles and squares that can appear at
random locations in the visual scene
(320 pixelswide x 240 pixelshigh) and can take a ran-
dom size between 20 and 100 pixels in height (Fig. 3).
Each image includes only one shape. Since triangles are
isosceles, the base is always set twice the height so that
the total area is equal to that of a square of equal height.
We do this to prevent the system from recognizing a
shape by its area. Shapes are black (pixel value = 0)
against a white background (pixel value = 255). In
addition, some noise is added to the entire image by
inverting the value of each pixel (black to white or vice
versa) with a probability of 0.005 per pixel.

There are nine visual neurons (arranged on a 3 x 3
grid) and one proprioceptive neuron whose activation
is switched from 0 to 1 when the system attempts to
move beyond a boundary of the visual scene (in that
case, the system is left at its current location). Two
output units of the behavior block (Fig. 2d) encode the
type of shape recognized by the system (triangle and
square), the most active unit being used as the network
response at each time step. Four output units in the
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Fig. 3. A triangle with superimposed snapshots of the visual system at
three different zooming factors. Numbers indicate the total area
spanned by the receptive fields of the visual neurons

vision block (Fig. 2e) select the activation method of
visual neurons, one of three zooming factors (the side
of a neuron receptive field can be 5, 10, or 20 pixels
long), and define the displacement of the vision system
as distance (in the range [0, 50] pixels) and angle from
the current location. The entire network consists of 96
connection weights and 6 threshold values that are
encoded in a binary genome and evolved as explained
in Sect. 2.

Each individual of the population is presented with 20
images, 10 containing a triangle and 10 containing a
square. The location and size of the shapes are randomly
computed anew for each image. Whenever a new image
is presented, the values of the output units are reset to
zero and the retina is positioned at the center of the
image, after which the active vision system is free to
move and change the zooming factor and sampling
strategy 50 times while its response is recorded at
each time step. The fitness function F of an individual
is proportional to the number of correct responses
recorded during the entire exploration of the visual scene
for all 20 images:

1 1 S )
T DR (M)

where R’ is 1 if the system gives a correct response at step
s for image i and 0 otherwise, S is the number of steps
per image (50 in these experiments), and / is the total
number of images (20 in these experiments). Notice that
since the system is asked to provide a discrimination
response at every time step and the probability of being
presented with a triangle (or a square) is 0.5, it is easy to
obtain a fitness values of 0.5 by always producing the
same response, irrespective of the shape presented in the
image.

A population of 100 individuals was evolved for 150
generations. Five evolutionary runs were performed,
each starting with a different random initialization
(Fig. 4). Notice that a fitness value of 1.0 cannot be
reached because the system is asked to provide a re-
sponse even before having a chance to find the shape in
the image. If one counts only the final response after 50
time steps for each image, best evolved individuals are

F =
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Fig. 4. Fitness data for the shape discrimination experiments. Fitness
values can be read as percentages of correct response computed along
the entire exploration phase. Thick line = best fitness of the
population. Thin line = average population fitness. Each data point
is an average of five evolutionary runs

capable of correctly discriminating all shapes at any
location and of any size.

Evolved strategies vary slightly across the five evo-
lutionary runs, but all share some basic features. The
vision system always starts with a fixed response (square
or triangle, depending on the evolutionary run) and then
moves toward the shape. Once over the shape, the retina
slides back and forth along one of its vertical edges. If
the edge is straight, it sets its response to square,
otherwise to triangle. Figure 5 shows the trajectories of
the retina in the case of two squares, and Fig. 6 shows
the trajectories in the case of two triangles. A variation
on this basic strategy consists in scanning the corners of
the shapes instead of the edges. Once the shape has been
recognized, the vision system may move away from the
shape but maintains the correct response (this is made
possible by recurrent connections among output units).

Most of the time (61% on average over five evolu-
tionary runs), the activation of visual neurons is given by
the value of a single pixel in the receptive field, instead of
pixel averaging. Given that evolved discrimination
strategies are based on the perimeter of shapes (edges
and corners), this activation method provides stronger
contrast between shape and background. Evolved indi-
viduals almost always use the smallest zooming factor,
i.e., the largest retinal size. On the one hand, a large
retinal size gives the vision system a better chance to
locate the shape in the image. On the other hand, shapes
are big enough (minimum height is 20 pixels, maximum
is 100) to be discrimated correctly with a small zooming
factor. To check the latter hypothesis, we performed five
new evolutionary runs using shapes that can be smaller
(height ranges from 5 to 100 pixels) and thus cannot be
resolved at the smallest zooming factor. In these new
conditions, best evolved individuals always change the
zooming factor while they explore the scene but still
display the exploration strategies described above
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Fig. 5. Examples of trajectories of an evolved individual. The retina
moves with respect to its top leftmost corner, here marked by a dot.
The dots drawn after every retina movement are connected by a /line.
For graphical clarity, the values of the cells are not shown, only the
retinal perimeter. Left: The retina starts with its initial size at the
center of the image, signaling “triangle”. It then shrinks to the top left
corner and moves down toward the square, where it slides along its
left-hand and lower edges and starts signaling “square”. Finally, it
ends up on the right-hand edge maintaining the correct response.
Right: The same individual begins signaling triangle and then moves
toward the square, where it moves to the right-hand edge, changing
the response into “square”
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Fig. 6. Examples of trajectories of an evolved individual, as in Fig. 5
above. Left: Recognition of a triangle is made by exploring its right
corner and then drifting away while maintaining the correct response.
Right: Recognition is performed by looking at the left edge of the
triangle

(searching for edges and corners). In these new evolu-
tionary runs the top performance shown in Fig. 4 is
reached much earlier (after about 100 generations,
instead of 150). These results suggest that the ability to
switch resolution more frequently helps also in the case
of larger shapes. Indeed, best evolved individuals change
resolution more often also when presented only with
large shapes. (For details of those experiments see Kato
and Floreano 2001).

3.1 Stationary discrimination

In another set of experiments, we attempted to train a
stationary neural network to perform the same dis-
crimination task by means of a supervised learning
algorithm (backpropagation of error between correct
response and network response; Rumelhart et al. 1986).
The network has only two output units that are used
for the discrimination response. Since the network
cannot move across the image, it is provided with a
larger number of visual neurons in order to cover the
entire image.

Fig. 7. Examples of image preprocessing before presentation to the
stationary neural network shown in Fig. 8. The image is divided into
192 cells of 20 x 20 pixels each, and the average value of the 400 pixels
in each cell is taken as the input value of the corresponding visual
neuron

The image is divided up into 192 cells (receptive fields
of corresponding visual neurons), each measuring
20 x 20 pixels (equal to the size of a receptive field of the
active vision system at the smallest zooming factor), as
shown in Fig. 7.

The average value of the 400 pixels in a cell represents
the input of a corresponding visual neuron (same results
were obtained using the single-pixel activation method).
The neural network has 192 visual neurons and two
sigmoid output units, each standing for one of the two
shapes, triangle and square (Fig. 8).

The network is trained on a balanced set of images
(half triangles and half squares) by randomly presenting
a shape drawn at a random location with a random size
(height range is between 20 and 100 pixels, as in the first
set of evolutionary experiments described above). The
same computer code used for generating the images in
the evolutionary experiments is used here too. The
connection strengths are initialized to random values in
the range +1/N, where N is the number of connections
in the network (including thresholds). The error between
the correct response and the network response is com-
puted and accumulated for each presentation of 10
squares and 10 triangles and is used to update the con-
nection strengths.

Each training session consists of 15,000 batches of
20 images (always created anew), corresponding to the
number of individuals evaluated during an evolutionary
run described above (150 generations with a population
size of 100 individuals). We have trained networks
without hidden units, with 5, 10, and 15 hidden units.
Each network architecture has been trained 5 times,
each time starting with new random weights. We have
also tried several combinations of learning rates (0.1,
0.5, and 1.0) and momentum constants (0.1, 0.5, and
1.0).

None of these networks has ever been capable of
learning to discriminate between squares and triangles,
their performances always oscillating around chance
level. Although we cannot exclude that different archi-
tectures and input formatting techniques can learn this
discrimination task, the results indicate that a straight-
forward generalization of the simple vision system
described in this paper cannot easily perform the task if
it is deprived of active vision.
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Fig. 8. Architecture of the stationary neural network trained with the
backpropagation algorithm. Several architectures with a different
number of hidden units (including one without) have been trained

4 Car driving

In this experiment we ask the system to drive a simulated
car over sweeping roads in the Swiss Alps. The visual
scene corresponds to the view through the windscreen of
the car, which spans an image of 600 x 400 pixels
(Fig. 9). The open source simulator CarWorld (http://
carworld.sourceforge.net), which is based on Newtonian
physics, has been modified and extended to include the
evolutionary active vision system, automatic circuit
loading, fitness computation, and imaging tools for
network analysis. The car has a mass of 1 ton, a width of
2.5 m, and soft suspensions that make it bounce easily.
The road has a width of 10m (corresponding to the
diameter of car steering) and is marked by white edges
and a yellow dashed line in the center. The road extends
over an alpine lansdcape. Color information is mapped
to grayscale levels before passing it to the visual neurons.
The output units of the neural network control steering
and forward/backward acceleration (backward acceler-
ation is equivalent to braking) as well as the position of
the retina on the windscreen and its zooming and
activation parameters.

The neural network is composed of 25 visual neurons
(arranged on a 5 x 5 grid) and two proprioceptive neu-
rons. The side of each receptive field can vary continu-
ously between 10 pixels (highest zooming factor) and 50
pixels (lowest zooming factor). Two proprioceptive
neurons encode the vertical and horizontal position of
the retina with respect to the center of the windscreen
(we assume that the head of the driver does not move
from this position). Two output units of the behavioral
block (Fig. 2d) determine the steering direction (values
above and below 0.5 correspond to right and left steer-
ing, respectively) and forward/backward acceleration
(values above and below 0.5 correspond to acceleration
and breaking, respectively). Two output units of the
vision block (Fig. 2e) encode the speeds (max speed =
200 pixels/s) of horizontal and vertical displacements of
the retina with respect to the current position. If the
retina has reached a border of the windscreen, further
movements in that direction have no effect. The third
output unit of the vision block encodes the sampling
strategy for the visual neurons, and the fourth output
unit encodes the zooming factor. The neural network,
driving parameters, and vision parameters are updated
every 20ms. The entire network consists of 198 con-
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Fig. 9. Car driving. View from the windscreen with a sequence of
retinal movements of an evolved individual at the beginning of a race

nection weights and 6 threshold values that are encoded
in a binary genome and evolved as explained in Sect. 2.

The system is asked to drive the car on three different
circuits with variable lengths, bends, and slopes
(Fig. 10). An individual is tested twice on each circuit for
a maximum of 60 s per trial (real time) starting the car at
a random location, orientation, and position on the
road. If the car goes off the road, the current trial is
terminated. The total testing time for a car that never
goes off the road is 60 s x 2 trials x 3 circuits = 360 s.
Initially, the retina is positioned at a random location in
the windscreen at the lowest zooming factor (see top
right snapshot in Fig. 9).

The fitness function F is designed to select individuals
that cover the longest distance across all circuits:

1 T C
F:T*C;;dt,c , (2)

where T is the number of trials per circuit, C is the
number of circuits, and d,. is the normalized distance
covered by the car on c circuit during ¢ trial. Notice that
if the car goes off the road, the current trial is truncated.

A population of 100 individuals was evolved for 150
generations. Three evolutionary runs were performed,
each starting with a different random initialization
(Fig. 11).

The performances of best evolved individuals are
equal to or better than those of well-trained human
drivers tested on the same circuits. Evolved drivers go
as fast as possible and steer abruptly when close to the
edge of the road (Fig. 12). Often the rear wheels skid
sideways, and when the car reaches the bottom of a
long and fast descent, it bounces up and down so
markedly that the road goes temporarily out of sight.
(Video clips of these conditions are available at http://
asl.epfl.ch under the research section, active vision
project.)

Evolved systems exploit two computationally similar
strategies, depending on the evolutionary run and gen-
eration number. The first strategy consists of zooming in
toward the far edge of the road and keeping it on the
same retinal position (Fig. 13). Consequently, when the
car approaches the edge of the road, the retina gradually
shifts toward the bottom of the visual field. The resulting
displacement of the retina from the horizontal position,
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Fig. 10. Three circuits used during evolution. Circuits have different
bends, slopes (arrows), and length. Traces are obtained by plotting the
trajectory of a human driver who follows the dashed line in the middle
of the road
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Fig. 11. Fitness data for the car driving experiment. Continuous line
= average population fitness. Dashed line = best fitness of the
population. Each data point is the average of three evolutionary runs

Fig. 12. Trajectory of an evolved individual tested on the rightmost
circuit of Fig. 10

Fig. 13. The retina tracks the far edge of the road. As a consequence,
when the car gets closer to the edge of the road, the retina moves
toward the lower area of the visual field

which is given as proprioceptive input to the network, is
used to steer the vehicle to the right. When the car turns
too much to the right or the road bends to the left, the
edge shrinks to the top leftmost corner of the retina,
causing a left steering. The second strategy consists in
zooming out toward one side of the visual field so that
the edge of the road shifts over the retina as the car
moves. The vertical displacement of the edge over the
retina is then correlated to the steering angle and
direction of the car.

5 Robot navigation

In these experiments we investigate the ability of the
system to steer a real mobile robot equipped with a pan/
tilt camera in an office environment. A Koala robot
(Fig. 14, left) is positioned in a small square arena and
asked to navigate as far as possible for 60s while its
fitness is computed as a function of forward motion over
time. Individuals that hit a wall are killed and thus their
total fitness is smaller than those that can move around
longer. Notice that the pan/tilt camera allows the robot
to watch any area of the office (almost up to the ceiling)
and visitors are free to come to the office during
evolution. The square arena measures 200cm on each
side and is surrounded by white walls 30cm high
(Fig. 14, right).

The robot has six soft rubber wheels but is driven by
only two motors, one on each side. The video camera is
equipped with two motors that allow both horizontal
movement (pan) in the range [—100°,100°] and vertical
movement (zf) in the range [—25°,25°]. The zooming
option is not used in these experiments to reduce the
number of evolvable parameters and thus shorten evo-
lutionary time on the physical robot. The camera returns
rectangular video frames to the onboard computer,
where they are cropped to a square matrix of 240 x 240
pixels and RGB values are converted to grayscale levels.
The onboard computer performs image preprocessing,
activation of the neural network, control of the motors

Fig. 14. Left: The Koala robot (produced by K-Team S.A.) equipped
with a Sony EVI-D31 mobile camera and onboard PC-104 processor.
The robot base is 30cm w, 32cm 1, and 20cm h; its total weight is
6kg. Right: Evolutionary environment. The robot has visual access to
the whole environment, but it can move only within the square arena.
Lights were on day and night, and researchers and visitors were free to
come to the office during the evolutionary process. The pole on the
back of the robot prevents the aerial power supply cable from being
trapped in the mobile camera. The other cable visible in this picture is
used only after the evolutionary process to download data from the
onboard computer to a desktop computer for analysis



of the robot and of the camera, and the evolutionary
algorithm, as well as fitness computation and data
storage for offline analysis. The robot was connected to
a power supply through an aerial serial cable attached to
the rear side of the robot and rotating contacts that
allow free movement of the robot in the arena.

The system is composed of 25 visual neurons (ar-
ranged on a 5 x 5 grid) and two proprioceptive neurons.
The size of each receptive field is 48 x 48. Two propri-
oceptive neurons encode horizontal (pan) and vertical
(tilt) angles of the camera. Each value is scaled in the
interval [0, 1] so that an activation of 0.5 corresponds to
0° (camera pointing forward parallel to the floor). Two
output units of the behavioral block (Fig. 2d) determine
the speeds of the two motors of the robot in the range
[—8,8] cm/s. Activation values above 0.5 stand for for-
ward rotational speed, whereas activation values below
0.5 stand for backward rotational speed. Two output
units of the vision block (Fig. 2e) encode the motor
speeds of the camera on the horizontal (pan) and vertical
(tilt) planes. In this case, the maximum speed in the
horizontal plane is 80°/s and in the vertical plane 50°/s.
If the camera has reached a maximum allowed position
(—100,100 and —25,25° for pan and tilt, respectively),
output speeds in the same direction have no effect. The
third output unit of the vision block encodes the acti-
vation method of visual neurons. There is no zooming
output unit in this experiment. The entire network
consists of 160 connection weights and five threshold
values that are encoded in a binary genome and evolved
as explained in Sect. 2.

The individuals of the population are tested, one at a
time, on the same robot for two trials of at maximum
60s each (200 sensory-motor cycles). A sensory-motor
cycle lasts 300 ms (during which the wheels move at
constant speed). A trial is truncated if the robot hits a
wall. This condition is detected by means of infrared
distance sensors located around the body of the robot,
but this information is not given to the neural network.
At the beginning of a trial, the robot is relocated in the
environment at a random position and orientation by
means of a motor procedure during which the robot
moves forward and turns in a random direction for 20 s.
Pan and tilt angles of the camera are set to 0°.

The fitness function is conceived to select individuals
capable of moving forward as fast as possible during the
time allocated for each trial. It is computed and accu-
mulated after every sensory-motor cycle (300ms), so
that robots whose trials are truncated earlier obtain
lower fitness values (Fig. 15).

The fitness 7 (Sight,Sefi,2) is a function of the
measured speeds of the right wheel Sion: and left wheel

Siert, and of time ¢

y(Sright 5 Sleft ) t)

| LT
s TZ Z((Siigh[ + Siee) = 1Stigne — Sierl)) > (3)
e=1 t=1

where  Sright, Siert are in the range [—8,8] cm/s and

F (Sright> Siefi, 1) = 0 if Sﬁight, or Sl is less than 0
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Fig. 15. Fitness data for the robot navigation experiment. Continuous
line = best fitness of the population. Dashed line = average
population fitness

(backward motion), £ is the number of trials (two in
these experiments), 7 is the maximum number of
sensory-motor cycles per trial (200 in these experiments),
and 7’ is the number of sensory-motor cycles that the
robot can achieve (for example T’ = 34 for a robot
whose trial is truncated after 34 sensory-motor cycles).

A population of 40 individuals was evolved for 15
generations on the real robot, each generation taking
approximately 1.5 h. Notice that a fitness value of 1.0
cannot be attained in this environment because the robot
must turn to avoid walls, thus increasing the penalizing
effect of the component [Sf, — Sier|-

After eight generations, we noticed an alternation of
two behavioral strategies across generations, one where
the camera is continuously moving during navigation
and one where the camera is situated and maintained at
a stationary position with respect to the body of the
robot. The former behavioral strategy disappears after
12 generations, although its fitness performance is equal
to the latter behavioral strategy. We will start describing
the strategy that exploits continuous movement of the
camera because the other strategy represents a particular
subset.

Figure 16 shows the trajectory, camera displacement,
and visual input of the best individual at generation 12.
The robot starts in the position marked by the star. The
horizontal direction (pan) of the camera is shown by long
arrows plotted at each sensory-motor cycle. The gray-
scale matrices show the activations of the visual neurons
and, for the sake of clarity, are plotted only before,
during, and after avoidance of a wall and/or rotation of
the camera in the opposite direction. The strategy con-
sists in pointing and maintaining the camera downwards
so that the visual system can detect the edge between the
dark floor and the white walls of the arena. The acti-
vation strategy of visual neurons always uses the value
of a single pixel in the receptive field (instead of pixel
averaging) so as to enhance the edge between the floor
and the wall. This edge is clearly visible in the plots of
visual activation shown in Fig. 16. The robot always
follows a clockwise trajectory. The camera is moved to
the left when the robot is approaching a wall on its left
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Fig. 16. Robot trajectory (short arrows) and horizontal camera
displacement (long arrows) of the best individual of generation 12
tested for one trial. Grayscale matrices represent the activations of the
visual neurons (black = 0, white = 1) plotted before, during, and
after wall avoidance and camera movement. The numbers indicate the
corresponding sensory-motor cycle

and then moved to the right once it has avoided it. While
the camera is pointing to the right, it slowly scans back
and forth, and if a wall is detected at a certain distance,
it moves back to the left while the avoidance behavior is
started.

The values of output units encoding pan motor and
right wheel motor are strongly correlated and are
determined by the amount of white on the top half of the
visual field. The closer the robot gets to a wall, the larger
the white area becomes in the visual field. This infor-
mation is used to steer the camera toward the wall and
slow down the rotation of the right wheel while the
speed of the left wheel is maintained constant (which
corresponds to a right turn). These data are presented in
detail in Marocco and Floreano (2002).

The alternative behavioral strategy (which becomes
dominant after generation 12) is similar to that described
above, but the camera is not actively used throughout
the whole trial. At the beginning of the trial the robot
points the camera downwards and to its left, and it keeps
it there for the duration of the whole trial. The move-
ment of the body is then sufficient to maintain the edge
between the floor and the walls in sight and slow down
the right wheel when it gets closer to a wall (signaled by
the visual expansion of the white area on the top portion
of the retinal image).

6 Discussion

In the three experiments described above, the active
vision system develops a sensitivity to position-specific,

oriented edges. In the shape discrimination experiment,
evolved individuals are sensitive to a vertical edge on the
left (or right, depending on the evolutionary run) area of
the retinal image while other individuals are sensitive to
an inclined (approximately 60°) edge on the right area of
the retinal image. In the car driving experiment, evolved
individuals are sensitive to an inclined (approximately
60°) edge on the right, or to an inclined (approximately
60°) edge on the left, area of the retinal image. In the
robot navigation experiment, evolved individuals are
sensitive to a horizontal edge in the middle of the retinal
image. All these features are linearly separable catego-
ries of input vectors, which is hardly surprising because
visual neurons project directly to output neurons.
Therefore, the visual system cannot rely on more
complex transformations of the image that could be
provided by intermediate layers of neurons. The features
of these evolved systems resemble features detected by
orientation-sensitive receptive fields of neurons in the
mammalian visual cortex that receive direct projection
from the lateral geniculate nucleus (Hubel and Wiesel
1968, 1977).

It is worth noting that sensitivity to inclined edges has
been discovered also in evolutionary experiments on
robot discrimination of triangles and squares by Harvey
et al. (1994), whose results are summarized in the
introduction of this article. Harvey’s experiments differ
from our experiments on shape discrimination in a
number of aspects. For example, in his settings, the
relative positions of the square and of the triangle are
always the same and at the same height with respect to
the robot surface of motion. Also, in those experiments
the authors coevolve the number and shape of receptive
fields of the visual neurons as well as the architecture
and parameters of larger neural networks with time-
dependent activation functions. In addition, considering
the size of the arena where the robot was evolved, the
variation in size of the retinal projections of the images
was much smaller than that used in our experiments.
Despite these differences, evolved neural controllers
discriminated the two shapes by gauging the activation
level of a visual neuron sensitive to an inclined edge
during a rotational movement of the robot. The rota-
tional movement caused the sequential sweeping of the
two images across the area of that receptive field,
resulting in higher activation for the inclined lateral edge
of the triangle.

The sensitivity to corners found in some of the indi-
viduals evolved in our experiments for shape discrimi-
nation is a linear combination of two inclined edges.
This feature is found in only half of the best evolved
individuals, meaning that this strategy is equivalent to
one that checks for a single inclined edge. In another set
of experiments where the system was evolved to dis-
criminate between convex and concave rectangular
shapes, all best evolved individuals developed receptive
fields tuned to corners. (Video clips of these experiments
are available at http://asl.epfl.ch.)

The behavior of evolved active vision subsystems
(Fig. 2e) provides a similar functionality across the three
experiments. It moves the retina across the image to



locate, bring, and maintain selected features over the
receptive fields of matching visual neurons. The combi-
nation of feature selection and active vision allows
evolved individuals to solve position- and size-invariant
tasks using position- and size-variant mechanisms.

Once the relevant features have been brought over the
receptive fields of matching neurons, the response of the
system behavior neurons (Fig. 2d) varies across the three
experiments. In the shape discrimination experiment, the
response is a function of the type of feature detected. In
the car driving experiment, steering and acceleration are
a function of the relative position of the retina or of the
position of the inclined edge in the retinal image,
depending on the species of evolved individuals. Simi-
larly, in the robot navigation experiment, steering is a
function of camera position with respect to forward-
looking position or of the amount of white wall in the
upper area of the retinal image, depending on the species
of evolved individuals.

In all experiments, evolved individuals display a
preference for single pixel intensity vs. average pixel
intensity for the activation of visual neurons. This choice
provides higher contrast for perceived edges and there-
fore higher dynamic range for output neurons that
control the behavior of the system and of the retina. An
alternative solution could be to develop synaptic weights
from visual neurons with more marked differential val-
ues. However, this solution is harder to find in our
simple model because it requires precise settings of a
higher number of parameters and because the weights
are constrained to values in the range [—4,4] (corre-
sponding to the asymptotes of the sigmoid activation
function used for output neurons).

The preferred choice of zooming factor, used only in
the first two experiments, corresponds to the lowest
resolution sufficient for the visual neurons to detect
relevant features. In most cases, this factor is the lowest
available resolution (smallest zooming factor). When the
size of the smallest shapes in the pattern discrimination
experiment is reduced, evolved individuals dynamically
change the zooming factor to allow resolution of the
edges by adjacent visual neurons. In the car driving
experiments, two strategies are possible. One strategy
consists in locating one edge of the road and zooming in
to precisely maintain it at the same location on the retina
by means of active vision. In this case, the relative ver-
tical position of the retina with respect to the straight-
ahead direction is the only information used for steering
and acceleration. The other strategy consists in posi-
tioning the retina on one corner of the visual scene and
using the lowest available resolution to detect vertical
displacement of the road edge on the retina, which is
then used for steering and acceleration.

The system investigated in these experiments has been
kept deliberately simple to investigate selection and
exploitation of simple features of the visual scene by
coevolving active vision behaviors. Therefore, we have
not included lateral connections and time-dependent
dynamics at the level of visual neurons. The recurrent
connections at the output level can provide time-
dependent dynamics and lateral interactions only at the
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behavioral level. Also, we have not included intermedi-
ate layers of neurons between visual and output neurons
to exclude the possibility that the system may develop
sensitivity to more complex features, which may reduce
the role of active vision behaviors. Consequently, the
feature sensitivity and behavioral strategies coevolved in
these experiments are very simple, but the interesting
point is that they have been selected out of a huge range
of potential visual cues in accordance with the limited
computational and architectural abilities of the evolu-
tionary system.

Although this system is not modeled on biological
neuronal architectures, the results described above may
help to understand the relatively complex visual per-
formance of insects equipped with simple nervous sys-
tems. For example, it has been experimentally shown
that some insects rely on simple receptive fields tuned to
oriented edges in order to discriminate between oriented
textures during goal-oriented flight (Srinivasan et al.
1994). There is also experimental evidence that free-fly-
ing Drosophila insects can discriminate relatively com-
plex shapes (triangles and T-shapes) by moving in such a
way as to bring the shape over the receptive fields of
neurons sensitive to the retinotopic height of a hori-
zontal edge (Dill et al. 1993).

One should notice that active alignment of parts of
the shape with appropriate receptive fields does not
necessarily require movement of the animal. On a more
speculative note, this matching mechanism may also
take place within more complex brain by means of
attentional mechanisms that sweep across the retinal
projection. For example, Crick (1984) suggested that
such a mechanism could be implemented by the inter-
play of thalamic-cortical forward and feedback con-
nection coupled with local lateral inhibition within the
reticular structure of the thalamus. This mechanism
could be used by mammalian visual systems under some
circumstances of retinotopic perceptual learning (Karni
and Sagi 1991).

7 Conclusion

The experiments described in this paper indicate that
coevolution of visual features and of behavior can
address a variety of visual tasks that range from complex
shape discrimination to navigation in complex environ-
ments by means of very simple architectures and
computational abilities. Evolved individuals can solve
position- and size-invariant tasks exploiting position-
and size-variant receptive fields by actively searching
and maintaining simple features of the visual scene over
sensitive areas of the retina.

Active behavior affects, interacts with, and supports
vision processing by selecting sensory experiences that
can be dealt with by the system in a coherent manner.
Gibson suggested that what we perceive is what the
environment affords us to do (Gibson 1979). These
experiments indicate that behavior is not only a variable
to be considered in an ecological study of visual per-
ception but is also intimately related to the way in which
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vision mechanisms develop and are exploited by the
system.

Although in the experiments described in this paper
we have used a genetic algorithm to shape the synaptic
connections of the system, we do not intend to stress the
parallelism with evolution of vision in nature. We used
an evolutionary algorithm only because it allows indi-
viduals to autonomously interact with the environment
instead of being guided by principles imposed by a hu-
man designer. Any other adaptive algorithm that satis-
fies that criterion would be suitable for the purpose of
these experiments. What really matters is the relation-
ship between developmental time scales of mechanisms
responsible for action and of mechanisms responsible
for visual processing. In the experiments reported here,
both systems develop on the same time scale, but it
would be interesting to investigate how differential time
scales affect the strategies exploited by the system.
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