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Noise-Enhanced Detection of Subthreshold Signals
With Carbon Nanotubes

Ian Lee, Xiaolei Liu, Chongwu Zhou, and Bart Kosko, Member, IEEE

Abstract—Electrical noise can help pulse-train signal detection
at the nanolevel. Experiments on a single-walled carbon nanotube
transistor confirmed that a threshold exhibited stochastic reso-
nance (SR) for finite-variance and infinite-variance noise: small
amounts of noise enhanced the nanotube detector’s performance.
The experiments used a carbon nanotube field-effect transistor to
detect noisy subthreshold electrical signals. Two new SR hypothesis
tests in the Appendix also confirmed the SR effect in the nanotube
transistor. Three measures of detector performance showed the
SR effect: Shannon’s mutual information, the normalized cor-
relation measure, and an inverted bit error rate compared the
input and output discrete-time random sequences. The nanotube
detector had a threshold-like input-output characteristic in its
gate effect. It produced little current for subthreshold digital input
voltages that fed the transistor’s gate. Three types of synchronized
white noise corrupted the subthreshold Bernoulli sequences that
fed the detector. The Gaussian, the uniform, and the impulsive
Cauchy noise combined with the random input voltage sequences
to help the detector produce random output current sequences.
The experiments observed the SR effect by measuring how well an
output sequence matched its input sequence. Shannon’s mutual
information used histograms to estimate the probability densities
and computed the entropies. The correlation measure was a scalar
inner product of the input and output sequences. The inverted
bit error rate computed how often the bits matched between the
input and output sequences. The observed nanotube SR effect
was robust: it persisted even when infinite-variance Cauchy noise
corrupted the signal stream. Such noise-enhanced signal pro-
cessing at the nanolevel promises applications to signal detection
in wideband communication systems and biological and artificial
neural networks.

Index Terms—Antenna arrays, carbon nanotube field-effect
transistors (FETs), communication systems, correlation, detectors,
infinite-variance noise, Kolmogorov—Smirnov statistics, nanotech-
nology, noise processing, signal processing, stochastic resonance
(SR) hypothesis tests, stochastic processes, stochastic resonance
(SR), threshold detection.

1. INTRODUCTION

OISE CAN sometimes help neurons and other nonlinear
Nsystems detect signals. Several researchers have demon-
strated the stochastic resonance (SR) effect for various types of
threshold units or neurons [1]-[11]. Fig. 1 shows how additive
white uniform pixel noise can improve the quality of the de-
graded image of a carbon nanotube. We produced these noisy
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images by applying a pixel-level threshold to an artistic ren-
dering of a carbon nanotube. The threshold gives a white pixel
y = 1 as output if the input grayscale pixel = € [0, 1] equals or
exceeds a threshold 6: y = g(x+n—6) = 1 for (x+n—0) >0
andy = O for (z +n —0) < 0.

The new SR theorems in [1] give broad sufficient conditions
for SR to occur in any threshold system for all possible finite-
variance noise types and for most infinite-variance noise types.
We restate these SR theorems below. Simulations show that
these SR theorems apply to a threshold-like ramp function that
often models a transistor’s current—voltage (/-V( ) characteris-
tics: Y = G(S — Vr) where Y is the output current, V7 is the
threshold voltage, and G is a nonzero gain for suprathreshold
inputs S > Vr and zero otherwise.

Fig. 1(e) shows the signature SR curves for a simulated tran-
sistor that had parameters G = —1 nA/V and Vp = —2 'V based
on a nanotube transistor and for Shannon’s mutual information
I(S,Y), a normalized correlation measure C'(S,Y"), and an in-
verted bit error rate 1 —BER. The SR curves have similar optimal
noise standard deviations o, in the interval (0.3,0.5). The ver-
tical dashed lines show the maximal and minimal ranges of 100
trials. Each trial produced 10000 input—output pairs (s;,y;).
The input s; = b; + n; was a sum of Gaussian noise n; and bi-
nary input (Bernoulli) symbols b; for the equally likely ON/OFF
symbol pair —1.6 V and —1.4 V. These simulations led to the
natural prediction that an actual nanotube transistor would ex-
hibit the SR effect.

Experiments observed that three types of noise helped a
carbon nanotube transistor detect subthreshold signals and
confirmed the SR prediction using three performance measures
and two statistical tests. Section II summarizes the noisy nan-
otube experimental findings that demonstrated the SR effect
at the nanoscale. Section III reviews nanotube transistors and
stochastic-resonance theory. Section IV provides a detailed
description of the experimental setup and results.

II. NOISE-ENHANCED NANO SIGNAL DETECTION

Experiments confirmed the SR prediction: noise helped a
pristine (undoped) single-walled carbon nanotube transistor
[12]-[17] detect subthreshold signals. The experiments applied
different Bernoulli input sequences that used different combi-
nations of subthreshold gate voltages as their ON/OFF symbols.
Synchronized Gaussian, uniform, and infinite-variance Cauchy
noise added to the input sequences and helped the nanotube
transistor detect the subthreshold input. The performance
measures were Shannon’s mutual information I(S,Y), an
input—output correlation measure C(S,Y’), and an inverted bit
error rate 1 — BER.

1536-125X/$20.00 © 2006 IEEE
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Fig. 1. Uniform pixel noise can improve the quality of an image through a stochastic-resonance effect. (a) The faint image results when we apply the threshold
6 = 0.001 to the original image. Figures (b) through (d) show the effect of increasing additive noise uniformly distributed over (— A, A). (¢) The simulation clipped
the noisy input s; to fit the range [—3, 5] V to match an experimental limit. Both the mutual information and the inverted bit error rate applied a minimum-distance
two-class discriminant function to classify the output data into a binary sequence of zeros and ones.
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Fig. 2(a) shows the nonmonotonic signature of SR for white
Gaussian noise. The three SR curves had similar modes that
occurred for nonzero noise strength with a standard deviation
of at least 0.01. Each vertical dashed bar occurs at one of the
25 sampled noise values and shows the maximal and minimal
range of 32 averaged experimental trials. Each trial applied 1000
subthreshold symbols to the detector. The solid polygonal line
connects the means of those 25 sets of experiments to form the
SR curves.

Both the simulated and experimental nanotube detector had
correlated SR curves. The correlation coefficient 2 measured
the strength of the correlation. The simulated SR curves had cor-
relation coefficients of R = 0.9367 for 1(S,Y) and C(S,Y),

(b)

Fig. 2. Nanotube threshold detector exhibits SR. (a) Detection performance gave the nonmonotonic SR signature with similar modes for a nanotube transistor and
for additive white Gaussian noise. The three performance measures were the bottom red mutual-information curve (S, Y"), the middle green correlation-measure
curve C'(S,Y"), and the top blue inverted bit-error-rate curve 1 — BER that varied with the standard deviation ¢ of the Gaussian noise. (b) The stochastic I-V
curve shows a threshold-like gate effect of the p-type nanotube detector. Linear regression of the random input—output pair (s;, ;) estimated the threshold gate
voltage Vi = —2.3 V.

R = 0.8265 for I(S,Y) and 1 — BER, and R = 0.9541 for
C(S,Y) and 1 — BER. The experimental SR curves had cor-
relation coefficients of R = 0.9830 for 1(S,Y) and C(S,Y),
R = 0.9774 for I(S,Y) and 1 — BER, and R = 0.9877 for
C(S,Y) and 1 — BER. The correlations were statistically sig-
nificant for p-value < 0.001.

The SR curves were nonmonotonic: a y>2-test and a Kol-
mogorov—Smirnov test both rejected the similarity between a
monotonically decreasing [-probability density function and
each of the three SR curves with p-value < 0.001. Nonlinear sto-
chastic experiments can have extreme variations (vertical bars).
Both the simulated and experimental SR curves have similar
variations that can be as much as half the height of the SR modes.
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We observed the nanotube SR effect in Fig. 2(a) as one of
four such successful combinations of input binary values with
the parameter choices ON= —1.6 V and OFF= —1.4 V. This
SR effect occurred despite the nanotube instabilities that caused
fluctuations in the stochastic I-V¢ curve in Fig. 2(b). The plot
shows the threshold-like nonlinearity of the nanotube transistor
that differed from the hysteretic loops in Fig. 4 that the nanotube
detector exhibited and differed from the hysteretic loops in [18].
Fig. 2(b) plots the experimental input—output pairs (s;, y;) and
shows the transistor’s current—voltage I-V; characteristics in
response to noisy input signals. Linear regression fit the data
to the transistor equation, extrapolated the nonlinearity in Fig.
2(b), and estimated the threshold voltage VT ~ —2.3V.

The nanotube experiments produced the SR effect for
Shannon’s mutual information [19], an input—output cor-
relation measure [20], [21], and an inverted bit error rate
that measured how well the output sequences matched the
input Bernoulli sequences. The mutual information 1(S,Y")
subtracts the noisy channel’s (the transistor’s) output condi-
tional entropy H(Y'|S) from its unconditional entropy H(Y'):
I(S,Y) = H(Y) — H(Y|S) [22]. The input signal S was a
sequence of random binary voltages that produced a random
output sequence Y in the form of a transistor current. Histograms
of the sequences estimated the probability density functions
that computed the entropies. The correlation measure C(S,Y")
normalized the zero-lag value of the cross-correlation sequence

N

rey(l) = s(k)y(k—1) (1)

k=1

of the two sequences with subtracted means. These two mea-
sures did not assume that the nanotube detector had a special
structure and did not impose a threshold scheme on the exper-
iment. But the inverted bit error rate (1 — BER) decided whether
each output y; was a’0’ or ’1” by applying a threshold scheme:
a Bayes discriminant function in a two-class minimum-distance
classifier [23] that used complete knowledge of the input. The
1 — BER measured how often the input and output bits agreed:
1—BER=1—(Neyror/N) = Neorrect /N where N0, counted
the number of bits that differed between the length- N input and
output sequences and N orrect counted the number of bits that
agreed.

III. BACKGROUND

A. Carbon Nanotube Field Effect Transistors

A semiconductor single-walled carbon nanotube (SWNT)
can change its conductivity in response to an external electric
field in a gate effect [12], [14]. The SR experiments used a
chemical-vapor-deposition (CVD) grown SWNT [24]-[27].
The semiconductor SWNT forms a Schottky diode at the inter-
face with metal so that a metal-nanotube-metal contact forms
a field-effect transistor (FET) with an adjacent gate electrode

[28]. The typical current—voltage (I-V) characteristics
I {G(V— V) for Vg < Vi
0 else

(@)

indicate that the pristine semiconductor nanotubes act as
hole-doped semiconductors at room temperatures and that

the nanotube devices are p-type FETs [12]-[14], [29]. The
transconductance G is negative and the gate voltage Vz < Vi
is suprathreshold for p-type FETs.

The SR theoretical result does not specify the material or the
dimensions of the threshold device. So the theory could apply
to non—carbon nanotube transistors. Non—carbon nanotube ma-
terials such as inorganic nanotubes, nanowires, and nanofibers
can act as the conduction channel in nanoscale transistors [33],
[42]. Such non—carbon nanotube devices have the threshold-like
characteristics that satisfy the SR theory.

B. Stochastic Resonance

SR occurs when noise enhances the performance of a non-
linear system [9]. The SR effect occurs in nature, in electrical
systems, in neuron models, and in climate [7], [43]-[92] but no
report of SR in carbon nanotubes. The SR effect can also exhibit
more than one mode [93]-[95]. Examples of neuronal models
that exhibit the SR effect include dynamical models [10], [20],
[21], [96]-[105] and threshold units or neurons [19]-[21], [48],
[106]-[108] for finite-variance noise types and using mutual in-
formation or cross-correlation to measure the performance.

[1] shows that a simple threshold is a sufficient condition
for the SR effect and for all finite-variance noise and for all
major infinite-variance noise. We review two theorems from
[1]; they show that small amounts of independent additive noise
can increase the mutual information of threshold neurons if the
neurons detect subthreshold noisy Bernoulli input signals. The
first theorem shows that the SR effect occurs for all finite-vari-
ance noise probability density functions (pdf) that obey a simple
mean constraint. The second theorem shows that the SR effect
holds for all infinite-variance noise types in the broad family of
stable distributions.

The theorems use the standard discrete-time threshold neuron
model [1] (and references therein).

1 ifs+n>40

0 ifs+n<é )

y =sgn(s+mn—10) :{
where § > 0 is the neuron’s threshold, s is the bipolar input
Bernoulli signal with arbitrary success probability p such that
0 < p < 1 and with amplitude A > 0, and » is the additive
white noise with probability density p(n).

The threshold neuron study uses binary signals that have
subthreshold symbols. The symbol *0’ denotes the input signal
s = —A and output signal y = 0. The symbol *1” denotes input
signal s = A and output signal y = 1. We assume subthreshold
input signals: A < 6. Then the conditional probabilities

Py s(yls) are

Py(5(0]0) = Pr{s +n < 6}[s= 4 = Pr{n < 0 + A}

+A
= / p(n)dn 4)
Py 5(110) =1 = Py5(0[0) (5)

Pys(0]1) = Pr{s +n < f}|s=a = Pr{n <0 — A}

6—A
= [ stwyn ©)

— 00

Pys(1] 1) =1 = Pys(0[1) @)
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Fig. 3. Nanotube transistor changes its conductance in a gate effect. (a) I-Vp curves plot the transistor current I as a function of drain-source voltage Vps.
(b) The nanotube transistor’s current—voltage curves show a nonlinear gate effect. The figure plots current I as a function of gate voltage V. The upper dash-dot

line is the log-scale I-V¢ curve. The drain—source voltage Vs was 200 mV.

and the marginal density is

Py(y) = Pyis(yls)Ps(s).

S

®)

The performance measure is Shannon’s mutual information.
The discrete mutual information of the input .S and output Y is
the difference between the output unconditional entropy H(Y")
and the output conditional entropy H(Y'|S) conditioned on the
mput

I(S,Y)=H(Y)—- H(Y|S)
Psy (s, y)
= Psy (s,y) log =————.
2.2 Pov(sn)los pTp 0
So the mutual information is the expectation of the random vari-
able log[Psy (s,v)/Ps(s) Py (y)]:

I(SY)=E [log

€))
(10)

Psy (s,y) } . an

Ps(s) Py (y)

Here Ps(s) is the probability density of the input .S, Py (y) is the
probability density of the output Y, Py-5(y|s) is the conditional
density of the output Y given the input S, and Psy (s, y) is the
joint density of the input S and the output Y. Simple bipolar his-
tograms of samples can estimate these densities in practice. The
mutual information is the relative entropy between the joint den-
sity Psy (s,y) and the product density Ps(s)Py (y). We note
that the mutual information is zero if S and Y are independent
and give log(1) = 0 in (11): the joint density is the product
of the marginal densities Psy (s,y) = Ps(s)Py(y). Jensen’s
inequality [22] implies that the mutual information is nonnega-
tive: I(S,Y) > 0.

Theorem 1: Suppose that the threshold neuron (3) has noise
probability density function p(n) and that the input signal S is
subthreshold (A < #). Suppose that there is some statistical
dependence between the input random variable S and output
random variable Y (so that 7(S;Y) > 0). Suppose that the
noise mean E[n]| does not lie in the signal-threshold interval

(§ — A, 0+ A) if p(n) has finite variance. Then the threshold
neuron (3) exhibits the nonmonotone SR effect in the sense that
I(S,Y) - 0aso — 0.

Theorem 2: Suppose 1(S,Y) > 0 and the threshold neuron
(3) uses a-stable noise with location parameter a ¢ (6 — A, 6+
A). Then the neuron (3) exhibits the nonmonotone SR effect if
the input signal is subthreshold.

IV. EXPERIMENTAL OBSERVATION OF NANOTUBE SR

The nanotube experiments confirmed the SR prediction [1] for
a nanometer-wide transistor detecting noisy Bernoulli signals
and for both finite-variance and infinite-variance noise. The nan-
otube detector exhibited the SR effect by comparing the random
Bernoulli input signal to the random output and computing
Shannon’s mutual information, the normalized correlation
measure, and the inverted bit error rate. Each of the nanotube
experiments applied 25 sampled noise levels that ranged from
0.001 to 1 standard deviation o (dispersion -y for infinite-variance
Cauchy) linearly in logarithmic scale. The noisy input S was a
synchronized Bernoulli sequence s; = b; + n; of the sum of
random subthreshold binary values b; and additive white noise
n; of three types. So there was no timing noise in the pulse train
as in the FHN neuron model [10], [11]. Synchronization allows
the nanotube systems to implement a variety of algorithms
from signal processing and communications. The experiments
updated the noisy input symbols s; about once every 10 ms.
A 200-mV drain—source voltage biased the nanotube at room
temperature in vacuum. The experiments measured and averaged
ten samples of the detector output at 100 kilosamples/s near the
end of each symbol interval to estimate the output symbols v;.

A. Materials and Methods

The experiments tested a carbon nanotube FET as a threshold
detector with subthreshold signal plus noise. The detector con-
sisted of a single-walled semiconductor carbon nanotube
bridging two electrodes. [26] contains details of the fabrication.
A voltage is subthreshold if it is more positive than a p-type
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Fig. 4. Transistor -V curves show two hysteretic loops. The hysteresis changes after exposure to vacuum. The upper pair shows the atmospheric hysteretic
loop. The arrows in the plot show the directions of the voltage sweeps. Thin dash-dot lines are for sweeps to the left and the thicker lines (dash on top and solid

on bottom) are for sweeps to the right.

FET’s threshold voltage and produces picoamp current in an
OFF state. The experiment tested whether noise could enhance
subthreshold signals to produce measurable currents.

The CVD technique combined with e-beam lithography to
grow a single-walled nanotube that was 3—5 pm long and less
than 2 nm in diameter between two electrodes. The gap between
the electrodes was approximately 3 um wide but the single-
walled nanotube was not straight as it spanned the gap. Atomic
force microscopy examined the detector and showed that the
nanotube had a diameter d < 2 nm that was consistent with a
single-walled nanotube.

Four steps prepared the nanotube detector: screening, wafer
cutting, wire bonding, and vacuum pumping. The pumping step
held a detector and its carrier in a cryostat while a vacuum pump
evacuated air and contaminants such as water. The experiments
tested the nanotube at room temperature and used the cryostat
to control the detector’s environment.

A Hewlett-Packard 4156B Semiconductor Parameter
Analyzer characterized the transistor behavior in the cur-
rent—voltage plots in Fig. 3. The analyzer used dc voltages
in gradual steps: it varied the drain—source voltage Vp from
—2 to 2 V while keeping the gate voltage Vi constant to
produce I-Vp curves. Each curve corresponds to a different
Ve € {-5,-4,-3,...,4,5} V in Fig. 3(a). The analyzer
stepped the gate voltage Vi from —7.5 to 7.5 V in a single
sweep and kept Vp was constant at 200 mV to produce I-Vg
curves in Fig. 3(b).

Fig. 2(b) plotted the detector’s output current Y against the
input voltage S and showed the p-type transistor behavior of
the detector with little hysteresis. Linear regression estimated
the transconductance and the threshold voltage. The estimated
threshold voltage is where the regression line intersects the
bottom axis. These estimated parameters differed from those
of the I-Vg curve that the semiconductor analyzer produced
in Fig. 3(b). The hysteretic effect could account for the dif-
ferences: different parts of the hysteretic loop gave different

parameters for the gate effect. The experiments used input
voltages that changed magnitudes at random and produced data
in Fig. 2(b) that averaged the hysteretic effect.

A PC-based National Instruments PCI-MIO-16XE-10 data
acquisition (DAQ) board converted the noise-corrupted signal
S from digital to analog (DA) and converted the conditioned
noisy output Y from analog to digital (AD). The AD-DA
conversion has a 16-bit resolution and a 10-(us) rise time. The
DAQ board has a selected input voltage range in the interval
[—5,5] V for AD conversion and a fixed output voltage range in
the interval [—10, 10] V for DA conversion. A voltage divider
divided the output voltage by two and improved the resolution
of the DAQ’s analog output voltage.

A DL 1211 current—voltage preamplifier conditioned the de-
tector output current Y before data acquisition sampled it as a
voltage. The amplifier converts a small current (10 nA) into a
large voltage (1 V) with the 1078 AV gain setting. The analog
voltage has a maximal time delay of 0.1 ms with the 0.1-ms
rise-time setting. A software driver in LabView produced the
random signal S and the additive noise. The program also timed
the update of the noisy signal sequence and supervised the DA
and AD conversions.

B. Nanotube SR Experimental Results

The experiments found the SR effect for mutual information,
normalized correlation, and inverted bit error rate for Gaussian
(Fig. 5) and uniform (Fig. 6) noise and for four combinations
of binary symbols (a) (—2.0,—1.8) V, (b) (—1.8,—-1.6) V, (¢)
(—=1.6,—1.4) V,and (d) (—1.4, —1.2) V. Each pair had a 0.2-V
separation because sensitivity analysis showed that the separa-
tion gave complete SR modes within the range of noise levels.
A linear regression of the transistor’s gate effect estimated the
threshold voltage and aided the selection of the subthreshold
ON/OFF symbols.

Fig. 5 shows that the SR mode or optimal noise level o,,,; was
the same standard deviation value between 0.01 and 0.1 for (a)
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Fig. 5. Nanotube SR confirmed the threshold SR predictions for additive white Gaussian noise. The detector performance exhibited SR for four combinations of
gate voltages and for three measures: the inverted bit error rate 1 — BER (top blue), correlation measure C'(S,Y") (middle green), and mutual information J(.S,Y")

(bottom red).

and (b) and about 0.01 for (c) and (d). Fig. 2(a) enlarges Fig. 5(c)
and shows the SR effect for additive white Gaussian noise and
for the subthreshold signal pairON=—1.6 Vand OFF=—-1.4 V.
The SR mode of the mutual-information curve is six times the
value at minimal noise. The SR mode of the correlation-measure
curve is three times the value at minimal noise. The SR mode
of the inverted bit-error-rate curve shows a 40% improvement
over the value at minimal noise.

We also passed impulsive or infinite-variance white noise
through the nanotube detector to test whether it was robust to
occasional large noise spikes. We chose the highly impulsive
Cauchy noise [1], [9] for this task. This infinite-variance noise
had the probability density function

=2 (1)

for zero location and finite dispersion 7. Not all Cauchy exper-
iments produced a measurable SR effect: Fig. 7(a) shows that

(12)

a diminished SR effect still persists for Cauchy noise with sub-
threshold signal pair ON=—2.0 V and OFF = —1.8 V. The plot
in 7(a) shows the SR effect with more than one mode. The large
SR mode lies at dispersion v = 0.003. A second SR mode lies
at dispersion v € (0.3,0.4). The plots in 7(b) and 7(c) show an
approximate SR effect for the SR mode at dispersion v = 0.05
in 7(b) and v = 0.02 in 7(c).

Some of the SR plots show more than one mode. Several
researchers reported multimodal SR [93]-[95] in the plot of
system performance against noise. The apparent multiple SR
modes in the uniform experiments may be due to fluctuations.
But the clear second mode for the Cauchy experiments may in-
volve clipping: the limited dynamic range [—5, 5] V of the data
acquisition equipment may have produced the second peak in
the graph as a truncation artifact because it clipped large spikes
when it converted the infinite-variance Cauchy noise to voltage.

Plotting the input—output sequences S and Y also shows the
SR effect. Fig. 8 shows three pairs of sample input and output se-
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Fig. 6. Nanotube SR confirmed the threshold SR predictions for additive white uniform noise. The SR effect occurred for four combinations of gate voltages and
for three performance measures: top blue for the inverted bit error rate, middle green for the input—output correlation, and bottom red for the mutual information.

Two of the four plots appear to have multimodal SR curves.

quences. The top row shows the random binary (Bernoulli) input
where the symbol +1 stands for ON and —1 for OFF. The bottom
row shows the detector output for three different Gaussian noise
standard deviations. A segment of the output sequence matches
the input sequence better for near-optimal noise levels in Fig.
8(b) than for too little noise in 8(a) or too much in 8(c).

The experiments measured the detector’s performance with
the mutual information, the normalized correlation measure,
and the inverted bit error rate. They measured how well the
output sequence matched the input. The performance measures
were discrete-time functions. Shannon’s mutual information
used probability densities of the input and the output sequences.
A histogram of the output sequence Y gave the discrete proba-
bility density function

P(Y =Y) =p; (13)

that computed the unconditional Shannon entropy H(Y) =
N . . . .
— >:_1 pi Inp; for mutual information without converting the

detector output into a binary sequence with a threshold scheme.
The histogram applied 120 equal-sized bins to the output se-
quence. Sorting the output sequence based on the binary input
symbols and then applying the histogram gave the conditional
output discrete probability density function

Pji

Pyis(Y =Y|S = 5;) = ==

J

conditioned on the input symbols that computed the conditional

entropy H(Y|S) = — Zi\;l Zjvzl pjiln(pji/pj). The mutual
information measure was the difference between the uncondi-
tional and the conditional output entropies (9).

The correlation measure was the scalar inner product of the
input and output sequences. A cross-correlation sequence com-
pared the input and output symbol sequences and gave a mea-
sure of their match for different lag values [

(14)

N

s(k)y(k 1) (15)
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Fig. 7. Robust SR confirmed the threshold SR predictions for impulsive additive white Cauchy noise. The Cauchy-noise experiments produced a measurable SR
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and the top blue inverted bit error rate. The plot in (a) shows a clear SR effect with more than one mode.
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Fig. 8. Bernoulli input (top row) and detector output (bottom row) show the stochastic-resonance effect for additive white Gaussian noise. Three column-wise
pairs of input and output sequences are: (a) dissimilar for small noise standard deviation & = 0.001; (b) similar for optimal noise o, = 0.01; and (c) dissimilar
for large noise ¢ = 1.0. The output exceeds the scale in plot (c).

where the capital letters S and Y denoted the length-N random  values at some index k. The zero-lag (I = 0) value of the
sequences and the lowercase letters s(k) and y(k) denoted cross-correlation sequence (15) gave the scalar performance
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measure that compared the input and output random sequences.
Subtracting the sample mean from the output sequence im-
proved the match between similar input and output sequences.
The input Bernoulli sequence was approximately zero mean.
The computation used +1 for the equally likely ON symbol and
—1 for OFF so equal numbers of +1’s and —1’s gave exactly
zero mean. A normalization scheme divided the zero-lag cross
correlation rsy (0) in (1) by the square root of the energy of the
input and output sequences and gave the normalized correlation
measure [19], [109]:

C(S,Y) = rsv(0)

~VISIVIYI

M=

s(k)y(k)
_ k=1 (16)

3 s(k)s(b)y| & uB(k)

where the energy of a sequence is the same as the zero-lag value
of its autocorrelation

N
o= 300 = 3"
k=1 k=1

The bit error rate measures how often a received bit or de-
tector output y; differs from the transmitted bit or input s;.
The experiments used complete information of the transmitted
signal s; and computed a threshold or discriminant function to
classify the received bit ¥;. Sorting by the input bit divided the
output sequence into two clusters, one for each input binary
symbol. Optimal two-class discrimination [23] used the mid-
point between the cluster means for each sampled noise stan-
dard deviation o (dispersion y for Cauchy noise)

—l |l O—T\X(())- (17)

11 ™
= - Z‘Si:ON
9(o) Q[NON;(M )
Norr
+ ils; = OFF)|. 18
Vo 2 Wil )| (8

i=1

The threshold scheme converted an output Y to a binary se-
quence

1 fory; >g

0 fory; <y (19

Ybinary(yi'/g) = {
to compute the frequency of mismatch between the input and
output binary sequences: BER = Ney,or /N where Neyo is the
number of mismatching bits in a length-N sequence.

An increase in the bit-error-rate measure (BER) denotes a de-
crease in performance. So we inverted the BER by subtracting
it from unity: 1 — BER = N¢oprect /N by counting the number
of matching bits N oect and created a convex (cup down) SR
curve. We note that the BER measure has values in the range
[0,0.5] and that the 1 — BER measure has values in the range
[0.5,1]. The apparent offset is due to the threshold detection of
binary signals with two equally likely and subthreshold sym-
bols. Both subthreshold symbols appear as OFF or O to the nan-
otube detector. So the maximal value of the BER measure (or

1—BER) denotes that half of the subthreshold symbols is wrong
(or correct).

The experiments applied discrete-time white noise of three
types: Gaussian, uniform, and infinite-variance Cauchy noise.
Fig. 9 shows samples of the three noise types in the left column
(a), (d), and (g), their histograms in the center column (b), (e),
and (h), and their power spectra in the right column (c), (f),
and (1). The histogram estimates the discrete probability density
function (pdf) of the noise. The bell-shaped curve in Fig. 9(e)
and the flat line in Fig. 9(b) reflect the Gaussian and the uni-
form probability densities. Cauchy bell curves have fatter tails
than do Gaussian bell curves: the impulsive Cauchy noise pro-
duces outliers more frequently. Clipping large values to £5 re-
moved the occasional large spikes and produced the two peaks
on either side of the Cauchy bell curve in Fig. 9(h). The power
spectral density of the discrete-time zero-mean noise n(k) is
the discrete-time Fourier transformation of its autocorrelation
sequence R, (e/*) = Y72 r, () e=7*! where the autocor-
relation sequence is r,, (1) = Zkz_oo n(k)n(k—1) [110].

The noise was white because the noise samples were uncor-
related in time. So the noise power spectrum was 2mw-periodic
and flat over the interval [0, 27| or equivalently [—, 7]. The lab
equipment converted the Gaussian, the uniform, and the Cauchy
noise samples to electrical voltages but clipped some Cauchy
noise samples. The data acquisition equipment produced volt-
ages in the interval [—10, 10] V that a voltage divider reduced to
the interval [—5, 5] V. The voltage divider improved the voltage
resolution for small noise values. The clipping had no effect for
small dispersion values of up to 0.01.

Two new hypothesis tests verified that the SR curves were
nonmonotonic and confirmed the nanotube SR effect. A y2-test
and a Kolmogorov—Smirnov test both rejected the similarity be-
tween a monotonically decreasing 3-probability density func-
tion and each of the three SR curves with p-value < 0.001. The
statistical tests were goodness-of-fit tests that treated the SR
curves as candidate pdfs and compared them against the bench-
mark 3 pdf (see Appendix).

Nanotube FET technology produced detectors that could ex-
hibit hysteresis [18], [111], [112] or react to adsorbed molecules
[113]-[115]. The detector was not ideal because its conduc-
tance, gate effect, and hysteresis changed over time. The de-
tector exhibited some hysteresis but not enough to prevent the
SR effect. A current—voltage I-V curve showed the hysteretic
loop in Fig. 4. The HP 4156B stepped up the gate voltage Vg
from —7.5 to 7.5 V and then stepped down to —7.5 V in a double
sweep. The threshold voltage and the transconductance changed
with a direction change of the gate voltage sweep. Charge trap-
ping by water molecules on the silicon dioxide surface could
cause hysteresis [18]. Researchers have reduced hysteresis by
coating the nanotube devices with a layer of PMMA polymer
and heating the coated devices [18].

The experimental design prevented the nonideal detector
properties from confounding the results. The experiments
treated the hysteretic nanotube detector as a memoryless dis-
crete-time threshold instead of a bistable dynamical device such
as the optical bistable system in [116]. The vacuum reduced the
nanotube hysteretic effect but some effect persisted even after
72 h in vacuum. The subthreshold symbols were at least two
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Fig. 9. Additive white (a) Gaussian, (d) uniform, and (g) clipped Cauchy noise samples. The noise samples had unit standard deviation o = 1.0 (v = 1.0 for
Cauchy). (b), (e), and (h) show the histograms of the noise samples and estimate the discrete probability density function of the noise. (c), (f), and (i) show the

discrete noise power spectral density.

standard deviations away from the far left leg of the hysteretic
loop. Plotting the detector’s random output Y as a function
of its noisy input S gave a stochastic I-V¢ curve that showed
the nonideal but threshold-like gate effect of a transistor in
Fig. 2(b). The input signals had shorter hold times, smaller
voltage ranges, and faster voltage transitions than the deter-
ministic voltage sweeps that gave the I-Vg curve in Fig. 3(b)
and the hysteretic curves in Fig. 4. Again the hysteresis did not
prevent the observation of the SR effect.

Control experiments verified that the SR effect occurred for
the nanotube. They had no nanotube bridging the source and
drain electrodes and applied only additive Gaussian noise. The
nanotube-free devices had no gate effect: they gave subnano
amp current for any gate voltage. These devices did not exhibit
SR.

V. CONCLUSION

Nanotube experiments confirmed the specific prediction in
[9] that threshold systems could exhibit the SR effect for fi-

nite-variance noise and infinite-variance noise: noise helped a
carbon nanotube transistor detect subthreshold digital voltage
signals. Two finite-variance noise types and one infinite-vari-
ance noise type enhanced the detection. Control experiments
ensured that the SR effect depended on the nanotube detector.
The nanotube experiments used multiple trials that varied the
choices of parameters and used long sequences of random sig-
nals to test the nanotube detection. Three different measures
showed the noise-enhanced detection and correlated well with
one another. The statistical tests in the Appendix confirmed
that the nanotube produced the signature SR humps in all three
measures.

The experiments confirmed the SR prediction by testing
a carbon nanotube transistor instead of a general class of
nanoscale devices due to many limitations. Multiple experi-
ments that used different nanotube devices should confirm our
SR results but for the limited supply. The carbon nanotubes
were fragile devices and many samples broke down during
preparation. We designed the experiments to prevent unstable
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device properties such as hysteresis from confounding the
SR results and so treated the nanotubes as threshold devices.
The nanotubes could have been bistable devices that detected
continuous-time periodic signals in noise if they had stable
hysteretic properties. Experiments on such nanotubes should
exhibit a different type of SR such as in [116] because the
detectors would be bistable. The transistor’s backgate [26] pro-
duced parasitic capacitance that limited how fast the test signals
could change. This prevented treating the nanotubes as high
speed transistors [117] for communications or for high-speed
integrated circuits [118]. Such applications should exhibit SR
if the detectors have little parasitic capacitance. Arrays of
nanotube threshold detectors [119] should also exhibit array
SR effects [19]. Experiments on CMOS-like [120] nanotube
inverters should also exhibit the SR effect and suggest nanotube
applications in digital logic [121]. Experiments on transistors
based on inorganic nanotubes [32] or semiconductor nanowires
[33] should yield the same SR effects for nanotubes because
they would satisfy the same threshold condition as did our
carbon nanotube transistors.

The SR results in detection suggest that nanotubes can exploit
noise in other signal processing tasks. The nanotube detectors
should apply to broadband [106] or optical communications
[122], [123] that use the submicroamp currents and the atten-
uated digital signals similar to our experiments. Nanotube tran-
sistors should apply to optical communications because they
can change their conductivity in the presence of light [124] and
can generate light [125]. Conducting nanotubes should apply
to wireless communications because they can act as antennas
[126] and use their lengths to code for specific frequencies by
matching their impedances [127]. Researchers can grow nan-
otubes up to 2 mm [24] and design the lengths for a wide range
of gigahertz frequencies. The nanotube SR effect should en-
hance receiver sensitivity because noise helped the nanotubes
detect subthreshold digital signals that are similar to faint direct-
sequence signals in spread spectrum communications [128].

Cell phone base stations sometimes implement frequency
hopping spread spectrum with a bank of transmitters and
receivers to cover a wide range of frequencies [129]. A very
wide band receiver can use an array of nanotube detectors as
the antenna array where each detector codes for a different
narrowband frequency channel. A control signal can synchro-
nize the search for data signals to a known frequency-hop
sequence by turning on part of the detector array for a specific
frequency at a specific time. Nanotubes should be able to detect
a frequency-hop sequence by processing the signals in the
bank of frequency-matched detectors much as a matched filter
maximizes the signal to noise power ratio by setting its filter
coefficients to a scaled replica of the known signal [110].

Nanotubes should also assist parallel processing [16] for a
large number of elements in a small space because the nanotube
transistors can be very small [130]. Researchers predict that the
smallest nanotube transistor can have a conduction channel of
length [ = 5 nm and diameter d € [0.4, 2] nm. Chemical inter-
actions could field-program arrays of nanotube electrical signal
detectors to match a given signal level or to use existing noise
to approximate the SR-optimal noise. Chemical additives can
tune a nanotube array’s sensitivity to electrical signals because

adsorbed molecules change nanotube conductivity [113]-[115]
and tune detector parameters such as their threshold voltages.
Sensitivity analysis showed that the SR-optimal noise changed
with the difference between the threshold voltage and the sub-
threshold signal level.

The nanotube detectors can implement pulse-train neural net-
works or interface with biological systems [131]. The detec-
tors can implement pulse-train neural networks because they
are threshold-like and similar to threshold and spiking neurons
[132]. The nanotubes should detect model neural spike trains if
the spike trains are Bernoulli sequences as in our experiments.
The nanotube detectors should also detect biological neural im-
pulses because nanotubes can operate in a biological environ-
ment such as a saline solution [133] and use the electrolyte as
their gate [133], [134]. Field-reprogrammed nanotube detectors
might also help exploit noise in model or biological [46], [55],
[83], [135] systems if they can use the existing noise as the
SR-optimal noise.

APPENDIX
SR HYPOTHESIS TESTS

Two statistical tests confirmed that the SR curves were non-
monotonic. A goodness-of-fit test measures how well a candi-
date probability density function (pdf) matches a benchmark pdf
given a set of data from the candidate pdf. The null hypothesis
H states that the two pdfs are the same. The test rejects the null
hypothesis if a test statistic exceeds a critical value for a given
significance level «.. The significance level o denotes the prob-
ability of a Type-I error—the probability of rejecting the null
hypothesis when it is true. The p-value measures the credibility
of the null hypothesis H( given the data. A statistical test rejects
the null hypothesis Hy at the significance level « if the p-value
is less than the significance level: reject H if p-value < . The
popular B-pdf family has two shape parameters (« and 6) that
give continuous pdfs over a finite-length interval such as the
unit interval [1]. Some of these 3-pdf decrease monotonically.
These include the 3-pdf in Fig. 10(a) with parameters o = 0.5
and § = 5 among many others that we tested. Two types of
goodness-of-fit tests rejected the match between the candidate
(normalized) SR curves and the monotonically decreasing 3-pdf
~ (3(0.5,5). A B-pdf has the form

ZEa_l(l _ 117)9_1

foz,G(‘T) = B(Oé 9)

(20)

for x € [0,1] and positive parameters « > 0 and § > 0. The
denominator term B(«, 6) is

v _ T'(a)T'(8)
_ a—1 _ 6—1 _
B(a,0) —/0 2T (1 —2)"" Hde = T(at0) 21
with I' function
M(n+1)= /°° u"e “du = nl'(n) (22)
0

forn > 0(I'(1) = landI'(n+1) = n!ifn is a positive integer).
The [-pdf contrasts with the SR curves because it is nonzero
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Fig. 10. Tests of SR nonmonotonicity. Statistical tests compared the normalized stochastic-resonance (SR) curves and a monotonically decreasing 3-probability
density function (pdf). (a) The 3-pdf (black curve) and the SR-pdfs (red for information, green for correlation, and blue for 1 — BER). The reference-pdf curve
had a 3 distribution (~ 3(0.5,5)). (b) The beta-cumulative distribution function (CDF) and the SR-CDFs. Integrating the pdfs gave the CDFs.

only for z € [0,1] and because it decreases monotonically to
zero as x increases to 1 for the parameters « = 0.5 and 6 = 5.

The goodness-of-fit tests converted each averaged SR curve
to its equivalent pdf fsg (k). The conversion interpolated 25 av-
eraged values so that the SR curves had a uniform increment of
Az = 0.001 and were nonzero only in the interval [1]. The con-
version integrated (via discrete approximation) and normalized
the SR curves so that they integrated to one

oo 1 N
/ for(x)dz = /0 for(z)dz =Y fsr(k)Az =1 (23)
- k=1

where fsg is the normalized SR curve.

The x2-test compared the SR-pdfs (mutual information,
correlation measure, and inverted bit error rate) to the [-pdf
in Fig. 10(a). We converted the pdf f(k) to the cumulative
distribution function (CDF) F'(k) by integration (via discrete
approximation)

) = [ " fu)du = / Jdun Y ()M = F(R).

(24
The CDF appeared in both a y?-test and a Kol-
mogorov—Smirnov (KS) test. The tests compared the
SR-generated CDFs to the 3-CDF in Fig. 10(b).

The goodness-of-fit test applied the x2-test with the null hy-
pothesis Hy: SR-pdfs ~ (3(0.5,5) and the alternate hypothesis
H,: SR-pdfs » ((0.5,5) at the smallest level of significance
0.001. The test rejected the null hypothesis if the test
statistic exceeded the critical value. The test statistic had the
form

o =

0, — ;)
X‘?cst = Z g

5 (25)

where O; was an observed value in the SR-pdfs and F; was
an expected value in the reference (-pdf. The critical value
was X2 = 48.2679 for the smallest level of significance

a = 0.001 and for degree of freedom v = (k — 1 —m) =
(25 — 1 — 2) = 22 where k was the number of data and
m was the number of parameters in the test. The test statistic
was X}z)dftcst = 2.632 x 10! for the mutual-information pdf,
X afiest = 1.648 x 101! for the correlation-measure pdf, and
Xpdftest = 0.797 X 10" for the inverted bit-error-rate pdf.
So the x2-test showed that the monotonically decreasing 3-pdf
differed substantially from any of the SR-pdfs with p-value <
0.001.

A second y2-test based on the CDF removed a potential con-
founding factor in the pdf-based test: the small values in the
tail of the pdf might skew the test statistic if it gave near-zero
values in its denominator. The CDF-based goodness-of-fit test
applied the null hypothesis Hy: SR-CDFs ~ g (0.5, 5) and
the alternate hypothesis H,: SR-CDFs « (3 (0.5, 5). The test
statistic was X&ppreee = 89.2559 for the mutual information
CDF, X&priest = 129.1207 for the correlation measure CDF,
and XZppiess = 212.8394 for the inverted bit-error-rate CDF.
The test statistics greatly exceeded the critical value X2 ;;:..; =
48.2679. The x2-test showed that the 3-CDF differed substan-
tially from the SR-CDFs with p-value < 0.001.

The Kolmogorov—Smirnov (KS) test for goodness-of-fit also
tested how well the SR-CDFs matched a 3-CDF for the null hy-
pothesis Hy: SR-CDFs ~ (0.5, 5) and the alternate hypothesis
H,: SR-CDFs » ((0.5,5) by comparing the CDF-based test
statistic to the critical value KS . itica1 = 0.32 for the smallest
significance level « = 0.01 and for n = 25 (number of data).
The test statistic equaled the largest difference between the ob-
served and the expected CDF values

KStest = max(|0; — E;|) (26)
where O; was an observed value in the SR-CDF and F; was
an expected value in the reference $-CDF. All three test statis-
tics exceeded the critical value: KSiest = 0.3955 for the mu-
tual-information CDF, KS;.s; = 0.4997 for the correlation-
measure CDF, and KS;.s; = 0.6138 for the bit-error-rate CDF.
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So the KS test rejected the null hypothesis and showed that the
monotonic decreasing $-CDF differed from the SR-CDFs with
p-value < 0.001.
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