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Abstract

In this paper we describe the use of Rademacher pe-
nalization for model selection. As in Vapnik’s Guaran-
teed Risk Minimization (GRM), Rademacher penaliza-
tion attemps to balance the complexity of the model
with its fit to the data by minimizing the sum of the
training error and a penalty term, which is an upper
bound on the absolute difference between the train-
ing error and the generalization error. However, while
the GRM penalty is universal, the computation of the
Rademacher penalty is data driven which means that
it depends on the distribution of the data and hence
one can expect better performance for particular in-
stances of learning problems. We present experimental
evidence that shows that Rademacher penalization can
be used as an effective method of model selection in
learning problems. In particular we have shown that for
the intervals model selection problem, Rademacher pe-
nalization outperforms GRM and cross validation (CV)
over a wide range of sample sizes. Our experiments
also show that the Rademacher penalty resembles more
closely the behavior of the absolute difference between
generalization error and training error.

Keywords: model selection, Rademacher penaliza-
tion, generalization error, complexity regularization,
VC dimension.

1 Introduction

In the setting of learning from examples one wishes to
infer an unknown functional relation between input and
output variables from a finite set of examples. Usually,
we want to find the function within a function set, that
best approximates a target function. The selection of
an appropriate set of functions is crucial: a set con-
sisting of very simple functions will not contain a good
approximation to a complex target function, while a
set that is too complex may fit the training data well,
but perform poorly outside of the training set. This

is especially critical when the number of data samples
available is not very large and/or is corrupted by noise.

Model selection algorithms attempt to solve this
problem by selecting candidate functions from differ-
ent function sets with varying (increasing) complexity,
and using some criteria to select from that pool of can-
didates the function that will likely have the smallest
generalization error. A general class of model selec-
tion algorithms is that of penalty-based methods, in
which the fit of the model to the training data and the
complexity of the model are balanced by minimizing
the (possibly weighted) sum of the training error, and
a penalty term that grows with the complexity of the
function set. This is the case in Vapnik’s Guaranteed
Risk Minimization (GRM) [11] in which the penalty
term is a bound on the difference between the general-
ization error and the empirical error. This bound is a
function of \/d/m where d is the V.C dimension of the
function set [11] and m is the size of the training set.

A different philosophy is adopted in the method of
Cross Validation (CV)[8, 9] in which the sample set is
split into a training set and a testing set. The training
set is used to select a hypothesis from each function set,
and the function with the smallest error on the testing
set is selected. It is argued in [3] that cross validation
must be the preferred method when no additional infor-
mation on the particular learning problem is available.
One of the reasons for this preference is the fact that
the penalty added to the empirical risk in methods such
as GRM is universal, in the sense that it does not de-
pend on the particular distribution of the data or the
target function. On the other hand, CV is sensitive
to the distribution and the target function, and has a
better tracking ability of the generalization error over
different learning problems.

In this paper we present some experimental compar-
isons of the method of Rademacher penalization for
model selection with GRM and CV. Rademacher penal-
ties were introduced by Koltchinskii [5] and share some
of the desirable properties of the two algorithms men-
tioned above. As in GRM, Rademacher penalization



computes a bound on the absolute difference between
the generalization error and the training error. How-
ever, the computation of this bound is data driven,
which means that it depends on the input distribution,
and hence one can expect better performance for par-
ticular instances of learning problems.

2 Definitions

In this section we introduce some definitions and nota-
tion that will be used throughout the paper. Most of
them follow the notation in [3].

We consider the problem of approximating a boolean
function f(z) = Ic(x) : X — {0,1} where (X, A, P) is
a probability space (i.e. A is a o-algebra of sets in X
and P a probability measure on X),and C' € A. !

Assume that we are given a nested sequence of hy-
pothesis classes: F; C Fo C ---F3 C ---. We are
interested in finding a function h(x) within one of the
classes F; that best approximates our target function
f(z), in the sense that it minimizes the generalization
error

e(h) = P{h(x) # f(2)} = /X Linoreren@dP (1)

Most of the times the distribution of the input space
is unknown and we are given only a finite set of la-
beled examples S = {z;,y;}1,. We assume that the
input values z; € X are independent and identically
distributed (i.i.d) according to P, the labels y; are as-
signed by our target function f(z;) and are possibly
corrupted by noise (the label is flipped with some prob-
ability 1 € [0,1/2)).

The usual strategy used to find a function that min-
imizes (1) is to find the hypothesis within each class
that minimizes the training error:

. 1 «
éh) = — Y Lngeozun (@) (2)
i=1

and use some criteria (provided by a model selection
algorithm) to select from this pool of functions the one
that is more likely to have a smaller generalization er-
ror. We denote the selected function by h; where Fj is
the hypothesis class to which this function belongs.

3 Rademacher penalization

The idea behind Rademacher penalization (as well as
behind GRM) is to find the complexity d that mini-
mizes the quantity €(hq) + |e(hq) — €(hq)| (where hq

LI (x) denotes the indicator function of C: it is equal to one
if z € C, and equal to zero otherwise.

is the hypothesis returned by the training error mini-
mization algorithm for the class Fy). In this way, we
would know that the generalization error achieved with
the hypothesis hg is close to the minimum training er-
ror within that class, and if in addition, the training
error is small, this would guarantee a small generaliza-
tion error. However, we can not compute €(hg) because
we do not know the target function f(z) nor the input
distribution P. Thus, we settle for a bound on the
quantity |e(hq) —€(hq)|. It has been shown [11] that for
a function class F; with VC' dimension d, the following
inequality holds with high probability:

sup |e(h) — €(h))| < /dlogm/m (3)

heFqy

This inequality gives us a bound that holds uniformly
over the whole function class Fy, in particular it holds
for the function hg. This provides the basis for the
GRM model selection algorithm, where the optimal
complexity is chosen according to the rule:

d=
d(mem g é(dym
gmi { (d) —~ ( ( (B gy

Notice that inequality (3) is universal in the sense
that it holds for any input distribution, thus we can ex-
pect that a bound on the left hand side of (3) that does
depend on the input distribution should give us a bet-
ter approximation to |e(hq) — é(hq)|. Such data-driven
penalty is provided by Rademacher penalization.

Let o01,02,...,0,m be a sequence of ii.d.
Rademacher random variables independent of the
data? (z1,...,2,). The Rademacher penalty of the

hypothesis class Fy is defined as:

1 m
Ry (F)=sup |— > oilin(a;)2£y 2 (Ti )
m(F) = sup m; ilin@ozyy (@) ()

Our model selection algorithm chooses the hypothe-
sis hj, according to the rule:

d = argmin{é(d) + Ry (Fa)} (6)

We argue next that the Rademacher penalty has a
number of desirable properties as a complexity penal-
ization term in a model selection algorithm which uses

2 A Rademacher random variable takes values +1 and —1 with
probability 1/2 each.



training error minimization as the underlying method
to select a hypothesis.

The first tool we need is the following lemma, which
is drawn from the theory of empirical processes. Let

Am(Fa) = supyer, |€(h) — €(h))|, then
Lemma 1 (Symmetrization inequality)?®
E(Anm (Fa)) < 2E(Rp (Fa)) (7)

Notice that the two expectations in inequality (7) are
taken over random variables in different spaces, that
is, the expectation on the left-hand side is taken over
the input sample set (z1,...,z,,) while the expecta-
tion on the right-hand side is taken over the input sam-
ples as well as over the Rademacher random variables
(0’1, - ,O'm).

Thus, if we are able to estimate the expectation of
the Rademacher Penalty, we would have a bound on
the expectation of the left hand side of inequality (3).
Furthermore, if we prove that the values of the ran-
dom variables A,,(Fy) and R,,(F;) are concentrated
around their expectations, we would have that a partic-
ular value of the Rademacher penalty will upper bound
the absolute difference between the training error and
the generalization error, with high probability. The fol-
lowing two lemmas due to Koltchinskii [5] give bounds
on the probability of the values of these random vari-
ables being away from their expectations.

Lemma 2 For all e > 0,
P{E(R,, (F1)) > Rin(Fa) +e} <e ™2 (8)

and,

P{R,.(Fa) > E(R,, (Fa)) + €} < o m/2 )

Lemma 3 For all € > 0,

P{E(Ap (Fa)) > A (Fa) +€} <e 2™ (10)

and,

P{An(Fd) > E(An (Fa)) +e} <e 2™ (11)

Therefore, with probability at least 1 — 24, for m >
2/e%1n(1/6), A, (F) and R,,(F) are within € of their
expectations. The idea is then to use one computation
of the Rademacher penalty rather than an estimate of
its expectation, as the penalty term in our model selec-
tion algorithm.

3A proof of this lemma can be found in [10].

Notice that (5) can be computed, at least in principle.
Furthermore, it is shown in [5] that the computation is
equivalent to the minimization of the training error on
the relabeled data.

Assume that the supremum in (5) can be achieved in
the set F. Then, we need to compute:

max
heF

m
D oiliygn(eny (@)
=1

m m
max(%leag ; oil{y. ey (@), }{g}; - ; 0il iy 2h(z)} (@1))
(12)

Define a new set of labels z; as the flipping of each
original label with probability 1/2. Then it is easy to
show that:

m m
arg Iglea}( ; O—ZI{yz?éh(l‘z)}(wl) = arg Elnel}; I{_erféh(Zz)}(:L'l)
and,
arg ggg;aﬂ{y#h(xi)}(ﬂ?i) = arg ;lrgjrggf{méh(zi)}(fﬂi)

Therefore, the computation of the Rademacher
penalty involves the following steps:

e Flip the label of each sample with probability 1/2
to get a new set of labels z;.

e Find the function h; € F that minimizes the em-
pirical error with respect to the set of labels z;.

e Find the function hs € F that minimizes the em-
pirical error with respect to the set of labels —z;.

o Compute |+ 5" 3 I1y. sp(zi)y(2i)| for b = hy, hy
and select the maximum of these two values as the
Rademacher penalty.

Note that the computational complexity of comput-
ing Rademacher penalties is at worse the same as that
of the training error minimization algorithm that is
used to select the hypothesis from each complexity
class.

In summary, the bound on |e(hg) — é(hq)| provided
by Rademacher penalization is sensitive to the input
distribution. We can think of it also as a measure of
the complexity of the hypothesis class: a hypothesis
class that is too complex will contain a function that
labels correctly most of the relabeled samples resulting
in a large value of the Rademacher penalty.
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Figure 1: Target function with 6 alternations

4 The intervals model selection
problem

In this section we introduce the learning problem used
for our experiments. In this problem (referred to as
the intervals model selection problem [3]) the input set
is the interval [0,1] and the hypothesis class Fy is the
class of binary valued functions over [0, 1] with at most
d alternations in label. Figure 1 shows an example of a
function with 6 alternations.

This is a rare case in which it is possible to find a
global minimum of the training error in a reasonable
amount of time, as opposed to many learning problems
in which finding such minimum is an intractable prob-
lem [7, 4, 2, 1]. This makes this problem ideal for an-
alyzing the behavior of our model selection algorithm,
since the computation of the Rademacher penalization
term requires finding a minimum of the training error
with respect to relabeled data and we do not want our
results to be obscured by the presence of local mini-
mums . In addition, since we select the target function,
it is very easy to compute the generalization error for
a given hypothesis, without resorting to other meth-
ods such as Monte Carlo integration which can be very
time consuming. In fact, the generalization error can
be computed exactly for this problem.

We use for our experiments the algorithm described
in [3] that yields a running time that is O(mlog(m)).
This allows us to perform several experiments for dif-
ferent sample sizes, noise rates, and input distributions
in a reasonable amount of time*. Also, we can compare
our results with the results reported previously in [3].

5 Experimental results

In this section we present an experimental comparison
of the performance of our model selection algorithm
with GRM and cross validation on the intervals model
selection problem.

4Thanks to Andrew Ng for providing me with a copy of the
paper that contains a description of this algorithm

In our experiments we use the target function with
100 intervals corresponding to 99 equally spaced alter-
nations in [0,1]. The sample sets were generated from
the uniform distribution in [0, 1], and corrupted with
noise rate of n = 0.2.

For CV, a the fraction of samples reserved for testing
is 10%.

For GRM, the complexity selecting rule is not (4)
but rather the following rule which was reported to be
more competitive for this problem in [3]:

d= argmdin{é(d) + (d/m)(1+ 1+ é(d)m/d)} (13)

We start by showing that at least for this problem,
the Rademacher penalty tracks more closely than GRM
the behavior of the difference |e(d) — é(d)|. In figures 2
and 3 we plot the value of the penalty term used by each
method as a function of complexity for sample sizes of
1000 and 2000 respectively.

We can observe that in general the Rademacher
penalty term resembles more closely |e(d) — é(d)|, ex-
cept for a range of complexities from 0 to approximately
200 in which the GRM curve is closer to the ideal curve.
For a smaller sample size both GRM and Rademacher
penalization have a very similar behavior in that range.
In figures 4 and 5 we plot the penalized errors (training
error plus penalty term) for both methods for sample
sizes 1000 and 2000. Here again, the Rademacher curve
shows a shape much more similar to the generalization
error than the GRM curve does. For the larger sample
size, the minimum (and hence the complexity selected
by the algorithms) is around 100 for both methods.
However, for a sample size of 1000, the minimum of the
GRM curve has shifted to a smaller value of complex-
ity, while the minimum of the Rademacher curve is still
around 100.

Next, we compare the performance of our model se-
lection algorithm to GRM and CV as a function of the
sample size. In figure 6 we plot the generalization error
of the hypothesis selected by the three methods as a
function of the sample size for a range from 50 samples
to 2000 samples in steps of 50 samples, averaged over 10
trials of the experiment. We can see that Rademacher
penalization outperforms GRM for an initial regime be-
tween 50 and 1300, and for larger values of sample size
both methods give almost the same generalization er-
ror. On the other hand, Rademacher penalization and
CV have very similar behavior for sample sizes smaller
than 900, and after this value Rademacher penaliza-
tion outperforms CV. Hence, at least for this problem,
Rademacher penalization tracks the other two algo-
rithms in their region of strength, resulting in a better
performance over the whole range of sample sizes.
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Figure 2: Penalty terms as a function of the complexity
d for sample size of 1000. The dotted line shows the
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Figure 4: Penalized error as a function of complexity for
sample size of 1000. The dotted line shows the actual
generalization error of the hypothesis selected from the
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Figure 6: Generalization errors vs. sample size aver-
aged over 10 independent trials.

It is shown experimentally in [3] that the perfor-
mance of GRM can not be improved by simple tinkering
with the model selection rule. For example by multi-
plying the penalty term in (13) by a constant less than
one, the generalization error in the regime of small to
moderate sample sizes goes down, but a prize is paid for
larger sample sizes where the generalization error be-
comes larger. Since Rademacher penalization tracks al-
most exactly GRM in the regime of larger sample sizes,
we can conclude that for this problem Rademacher pe-
nalization is preferable to GRM. In [3] the authors
show that the poorer performance (with respect to the
other algorithms considered there) of GRM is due to
the fact that the complexity selected by this method
approaches very slowly (as the sample size increases)
the ”correct” value of d. They wonder if there exists
a penalty based algorithm that approaches such value
more rapidly than GRM without suffering subsequent
overcoding. This is the case of Rademacher penaliza-
tion, as shown in figure 7 where the value of d selected
by both methods is plotted against the sample size.

6 Conclusion

We have presented experimental evidence that demon-
strates that Rademacher penalization can be used as
an effective method of model selection in learning prob-
lems. In particular we have shown that for the intervals
model selection problem, Rademacher penalization out-
performs GRM over a wide range of sample sizes, and
would be preferred to both GRM and CV.

Our experiments also show that the Rademacher
penalty resembles more closely the behavior of the ab-
solute difference between generalization error and train-
ing error. This fact is important when computing the

120 T T
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Figure 7: Complexity selected versus sample size, av-
erage over 10 trials

sample complexity in learning problems. Experiments
in applications of learning to control problems have
shown that sample complexities based on Rademacher
penalization are much smaller than those computed
from standard inequalities [6]
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