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ABSTRACT  

Direct Metal Laser Sintering (DMLS) and Electron Beam Melting (EBM) 3D printing technologies were utilized to 
create lightweight, optical grade mirrors out of AlSi10Mg aluminum and Ti6Al4V titanium alloys at the University of 
Arizona in Tucson.  The mirror prototypes were polished to meet the λ/20 RMS and λ/4 P-V surface figure requirements. 

The intent of this project was to design topologically optimized mirrors that had a high specific stiffness and low surface 
displacement.  Two models were designed using Altair Inspire software, and the mirrors had to endure the polishing 
process with the necessary stiffness to eliminate print-through.  Mitigating porosity of the 3D printed mirror blanks was 
a challenge in the face of reconciling new printing technologies with traditional optical polishing methods.  The 
prototypes underwent Hot Isostatic Press (HIP) and heat treatment to improve density, eliminate porosity, and relieve 
internal stresses. 

Metal 3D printing allows for nearly unlimited topological constraints on design and virtually eliminates the need for a 
machine shop when creating an optical quality mirror.  This research can lead to an increase in mirror mounting support 
complexity in the manufacturing of lightweight mirrors and improve overall process efficiency.  The project aspired to 
have many future applications of lightweighted 3D printed mirrors, such as spaceflight. 

This paper covers the design/fab/polish/test of 3D printed mirrors, thermal/structural finite element analysis, and results. 

Keywords: additive manufacturing, DMLS, EBM, topological optimization, lightweight, mirror, polish 

1. INTRODUCTION  

The project aimed to deliver fully functional, 3D printed mirrors to meet the λ/20 RMS and λ/4 P-V surface figure 
requirements.  Models were optimized using Altair Inspire software and preprocessed in SolidWorks and MeshLab, then 
analyzed with ANSYS.  This study project aimed to (1) explore the design space of 3D printed mirrors, and (2) 
demonstrate the feasibility of polishing 3D printed substrates.  The scope of the project included researching the optimal 
3D printing processes, optimizing the mirrors for the correct boundary conditions, sending solid models of the chosen 
designs to 3D printing facilities, polishing the mirrors to refine the reflective surfaces, testing the prototypes, and 
presenting final designs. 
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Table 1.  Ti6Al4V and AlSi10Mg material properties used for finite element analysis 

Material Properties Ti-6-AL-4-V Al-Si-10-Mg 

Density 4.43 g/cm3 2.67 g/cm3 

Ultimate Tensile 
Strength 1020 MPa 320 MPa 

Yield Strength 950 MPa 165 MPa 

Modulus of Elasticity 120 GPa 70 GPa 

Poisson Ratio 0.342 0.33 

Coefficient of Thermal 
Expansion (CTE) at 

20oC 
8.6 x 10-6 /oC 21x10-6 /oC 

3.1 Steps followed to create the titanium (Ti-6Al-4V) mirrors: 

1. Generate STL file from CAD. 

2. Used MAGICS by Materialise to setup, orient, and/or add any necessary support structures.  In this case, support 
structures were not needed.  The mirrors were printed generating the reflective face as the first layer. 

3. Used the ARCAM Build Assembler to convert the oriented file into a readable file for the system. 

4. Selected the appropriate processing parameters and conditions which in this case were 50µm layers using powder 
sized at ~60μm in diameter. 

5. Layers of this powder were spread using the machine’s raking mechanism. 

6. All parts in EBM were fabricated under a high vacuum environment (~10-3 torr).  A pre-heat step took place after the 
material was layered, which involves heating the powder to ~50% of the material’s melting point (~760°C). 

7. A preheating step lightly sintered the powder using the beam at low current (8.8 mA) and high scan speed (14,600 
mm/s) to reduce residual stresses and maintain a low thermal gradient during fabrication. 

8. Powder was selectively melted according to the geometry of the CAD file using the beam at increased beam power 
(17mA) and reduced scan speed (500mm/s) to reach the material’s melting point. 

9. After the first layer was welded, the build platform was lowered (50µm) to allow for a new layer to be raked, with the 
process repeated until part fabrication was complete. 

10. The operator removed the build platform after its temperature was below 100°C (to prevent oxidation of the parts 
when the machine was opened and exposed to the atmosphere). 

11. A powder recovery system was used on the removed platform to blast the lightly sintered powder around the part(s) 
until the final part(s) were revealed. 

12. The sintered powder that was removed from the build platform was re-used for subsequent builds. 

13. The parts on the titanium build plate were “popped” off the plate upon cooling due to a thermal expansion difference. 

14. Parts were then sent to the University of Arizona student team, which found porosity on the surface and back of the 
blanks. 

15. Titanium parts were sent for the HIP process to BodyCote in Seattle, Washington. 

16. Titanium parts were placed into a high pressure/temperature furnace.  The furnace was flooded with argon to remove 
the oxygen.  Operational parameters: 
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a.  1650 +/- 25 Fahrenheit  

b.  120 minutes (minimum) 

c.   14.75 +/- 0.25 ksi  

3.2 Steps followed to create the aluminum (AlSi10Mg) mirror: 

1. Generate STL file from CAD. 

2. Used MAGICS by Materialise to setup, orient, and/or add any necessary support structures.  In this case, support 
structures were not needed.  However, we did need to reorient the side-mount legs to fix on the mirror. This mirror was 
built with the face as the first layer of the part. 

3. Used PSW to convert and orient the STL drawings into a file suitable for the EOS printer. 

4. Selected the appropriate processing parameters and conditions.  In this case, 30µm layers and powder sized at ~50μm 
in diameter were used. 

5. The aluminum plate was inserted into the EOS machine by the operator and manually leveled using a dial indicator in 
conjunction with the motors on the machine to move each corner/side of the plate up or down. 

6. Powder was tamped down to remove air pockets, ensuring an even spread of powder each layer. 

7. Layers of powder were spread using the machine’s steel/ceramic wiper blade (right to left). 

8. All parts in DMLS were fabricated under a high vacuum environment pre-flooded by argon.  A preheat step took 
place after the aluminum build plate was heated to 80oC.  Once the chamber was below 1000ppm O2, the machine 
started. 

9. An aluminum powder layer from the powder bed was raised 30µm and swept tightly across onto the plate (an 
extremely light layer of powder, evenly distributed across the plate).  

10. The first layer of metal powder was sintered according to the design from MAGICS/PSW, programmed on the 
machine.  The laser sintered each layer with a laser power of 80W for contour and 370W for bulk, using a scan speed of 
1,300mm/s.  After each layer, the build plate moved down 30µm, while the powder bed moved up 30µm. 

11. Once the build was completed, the operator allowed the machine to cool down while dressing in a hazmat suit for 
protection from any possible fire or explosion caused by the highly flammable aluminum dust particles. 

12. Once the part was cooled, it was placed into the wire EDM, which used electric diodes in the water to cut the part off 
the plate. 

13. The parts were sent to BodyCote for the HIP process. 

14. The aluminum parts (AlSi10Mg) were placed into a high pressure/temperature furnace.  The furnace was flooded 
with argon to remove the oxygen.  Operational parameters: 

a.     950 +/- 25 Fahrenheit  

b.     120 minutes (minimum) 

c.      14.75 +/- 0.25 ksi  

3.3. Post-processing 

The HIP process helped to minimize the thermal stresses in the lightweight mirrors, as well as increasing the yield 
strength and fatigue life.  The back-mounted titanium prototype in the second batch had visible porosity on the surface, 
which was unable to be eliminated in HIP.  HIP will only densify the inside of the part, which made it necessary to 
machine the surface of the mirror. 
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The initial P-V of the surface was 858.6µm with an RMS of 269.4µm.  However, despite these initially large values, the 
most important discovery was that there was some off axis power in the mirror surface, as well.  Post-processing the data 
determined a radius of curvature of 9007mm.  The initial surface qualities of two mirrors are shown in Figure 4.  

        
Figure 4.  Original DMLS aluminum mirror (a, left), EBM titanium mirror post HIP with visible porosity (b, right) 

5.  MIRROR GRINDING 

After preliminary machining, mirror blanks were subjected to two stages of optical fabrication: grinding and polishing.  
The grinding stage began by mixing silicon carbide (SiC) grit in water, continually applying the solution to the face of 
the mirror.  The mirror was attached to a spindle that was set to rotate anywhere from 30 to 120 RPM, while a motor arm 
containing beveled ceramic tiles rotated from 5 to 20 degrees to help grind the material from the flat mirror face, as seen 
in Figure 5(a).  Depending on the stage of the grinding process, different weights were used to apply added pressure to 
the pitch tool to grind the surface [Figure 5(b)].  Larger weights, up to 14.25 lb., were applied in the beginning for the 
heavier grind (simultaneously using a 3:1 ratio of water to 80-grit SiC solution), while lighter weights were used for the 
finer grind (220-grit SiC solution).  The device was used to promote an even, random grind so there was as true and level 
a surface as possible [Figure 6(a)]. 

           
Figure 5.  Grinding spindle and SiC grit (a, left), completed pitch grinding tool (b, right), 

The ceramic tiles were beveled to 45-degree angles by grinding the edges using the 120-grit SiC-water solution, as seen 
in Figure 6(b). The 13 ceramic tiles were bonded to the front face of a flat circular piece of steel using cyanoacrylate 
adhesive (superglue) and was allowed to cool at room temperature overnight [Figure 6(c)].  Similarly, each mirror was 
bonded to a circular steel fixture using heated pitch and placed into the freezer to adhere properly.  After 15 to 20 hours 
of grinding, the ceramic tiles wore down past the beveled edge and become a scratching hazard to the mirror.  A new 
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6.2 Aluminum Polishing 

For the aluminum mirror, the method found to be most effective was using diamond compound on a felt pad with olive 
oil as lubricant.  This method used several step increments starting at 15µm and ending at 0.25µm sizes, as shown by 
Figure 8(a).  This allowed for a gradual increase in quality of the mirror over several sessions of work.  Many different 
water and oil based solutions were tested but all resulted in the aluminum mirror oxidizing.  Olive oil is a commonly 
used lubricant to prevent oxidation of the aluminum as well as lubricating the surface preventing scratches.  This tip 
significantly sped up the polishing process and helped prevent scratches and defects in the mirror.  

            
Figure 8.  1µm diamond compound (a, left), scratches from diamond pads significantly affected surface quality (b, right) 

Using the aforementioned techniques, optimal micro-roughness was achieved as shown by the polishing progression in 
Figure 9.  Initially, the same types of diamond embedded pads used on the titanium were used to try to polish the 
aluminum.  However, as shown in Figure 8(b), the diamond embedded pads caused scratching in the surface creating 
much more work for the team.  After the diamond pads were deemed to be unfit for the job of polishing the aluminum, 
the surface was reground using the 220-grit SiC solution and the best procedure was then applied.   

Further research into aluminum polishing yielded that India ink [2], made from soot and water, is able to achieve surface 
micro-roughness values of <8 Å on optical-quality aluminum.  In the future, the team will apply the polishing techniques 
learned from this project, and use India ink to achieve an ultra-fine polish. 

         
Figure 9.  Aluminum polishing progression: 3µm compound (a, left), polishing 0.25 µm (b, center), best finish (c, right) 

7.  STATIC MIRROR ANALYSIS 

Three main components were involved in the analysis of each of the 3D printed mirror designs.  The first part consisted 
of a computer finite element method (FEM) model to assess the structural aspects of the mirror design.  Second, physical 
testing determined the quality of the 3D printing material used in the mirror.  Finally, analysis of the optical surface was 
performed on the polished mirror.  
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10-15Å.  However, looking at the surface in Figure 12(b), the surface gave off a good specular reflection, but there was 
still some halo around the overhead lights, which signifies a drop in the optic’s Strehl ratio and overall surface errors.  

Comparing the two models, the HIP process was very effective for the aluminum mirror and removed all porosity from 
the prototype allowing for a fine polish, as displayed in Figure 13(a).  However, the HIP process was not as effective on 
the titanium mirror because there was subsurface porosity in the mirror substrate that was discovered as the polishing 
process progressed, as seen in Figure 13(b).  

      
Figure 13.  Final aluminum mirror surface finish (a, left), final titanium mirror surface finish (b, right) 

10.  MODAL AND THERMAL MIRROR ANALYSIS 

One of the main test requirements provided by the Lockheed Martin Advanced Technology Center was to measure the 
modal and thermal properties of each prototype.  Since this project was created with intentions of applications in space, 
it was extremely important that the mirrors survive the vibrations and extreme changes in temperature within a launch 
vehicle.  The goal was to first apply FEA to each mirror at room temperature using ANSYS, and later analyze the 
prototype under the conditions in space.  To begin, FEM analysis was under the assumption that the mirror was an 
isotropic material, which was later found to be highly anisotropic.  This in itself was an important discovery. 

The main priority for the team was to polish each model to its best possible RMS value and then analyze the model using 
the FEA analysis.  Unfortunately, there was insufficient time and the model could not be imported into ANSYS.  The 
difficulty in importing the models into ANSYS and SolidWorks was caused by the way the STL files were created for 
Altair Inspire optimized models.  The sheer number of faces on a single model was a major hurdle because programs can 
only handle a limited number of faces.  MeshLab, as seen in Figure 14, was able to reduce the number of faces by nearly 
40,000.  However, attempting to reduce these face numbers caused errors in the surfaces that could not be fixed 
automatically by the programs and thus the model would not import into ANSYS.  Although the analysis could not be 
performed in ANSYS it was still noted how critical it was to determine how the mirror reacts to different modal and 
thermal effects in room temperature to make definite conclusions. 
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APPENDIX I: ALSI10MG EOS M280 MACHINE PARAMETERS 

Powder CofC: see attachment “AlSi10Mg_powder_cert” 

Powder supplier: see attachment “AlSi10Mg_powder_cert” 

Powder D10, D50, D90: see attachment “AlSi10Mg_powder_cert” 

Number of times the powder was recycled: three times 

Percentage fresh and recycled powder in the mix (if applicable): 100% recycled powder 

Built file/ program#: machine model and s/n: EOS M280 and 1243 

Layer thickness: 30µm 

Type of laser: class 1 

Laser OEM: iPG Photonics 

Laser power (contour and bulk): contour = 80W; bulk = 370W 

Laser fiber diameter: 100-500 µm 

Laser wavelength: 1060-1110 nm 

Scanning speed: 1300mm/sec 

Laser scanning pattern: X and rotated 

Scan spacing: 0.020mm 

Percentage overlaps (between adjacent laser scan tracks): 0.02mm 

Hatch distance: 7.00mm 

Controlled atmosphere: argon 

Stops during build: none 

Filter changes during build: none   
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APPENDIX II: ALSI10MG MATERIAL DATA SHEET 

 Alloy Name: AlSi10Mg 

Description: gas atom, AlSi10Mg powder, 20-63 µm rev01 

Table 3. Incodema3D AlSi10Mg material test data sheet 

Chemical Analysis (Wt%) Size Analysis 

Specific Range Actual Actual Range 

Element Min. Max   Size Unit % 

Al   Balance Balance 63 µm 0.5 

Cu   0.05 0.0001 Test = Sieve     

Fe   0.25 0.174       

Mg 0.25 0.45 0.321       

Mn   0.1 0.003       

N   0.2 0.002       

Ni   0.05 0.004       

Pb   0.02 <0.001       

O   0.2 0.084       

Si 9.00 11 9.692       

Sn   0.02 <0.001       

Ti   0.15 0.009       

Zn   0.1 0.002       

Others Ind   0.05 <0.05       

Others All   0.05 <0.05       
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