
Master of Science Thesis
Stockholm, Sweden 2009

TRITA-ICT-EX-2009:8

M I K A E L O L S S O N

A Comparison of C++, C#, Java, and PHP
in the context of e-learning

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

A Comparison of C++,
C#, Java, and PHP in the
context of e‐learning

Mikael Olsson
April 30, 2009

Master’s Thesis in Computer Science

Royal Institute of Technology

Examiner: Prof. Gerald Q. Maguire Jr.

‐ i ‐

Abstract
The first part of this master thesis presents an effective method for producing video
tutorials. This method was used during this thesis project to create tutorials on the e-
learning site PVT (http://www.programmingvideotutorials.com). Part one also
discloses how the production method was developed and how tutorials produced
using this method compare to professional video tutorials. Finally, it evaluates the
result of this thesis work and the efficiency of the production method.

The second part of this thesis compares the syntactical similarities and
differences between four of the languages taught via video tutorials for PVT. These
languages are: C++, C#, Java, and PHP. The purpose of this comparison is to provide
a bridge for programmers knowing one of these languages to rapidly learn one or
more of the other languages. The reason why this would be necessary is because there
is no single language suited for every area of software development. Knowing a
multitude of languages gives a programmer a wider range of job opportunities and
more choices in how to solve their problems. Part two of the thesis also includes a
comparison of Java and C# in the context of a video tutorial series that shows how to
build a basic text editor.

Sammanfattning
Den första delen av denna examensredovisning beskriver en effektiv metod för att
producera videokurser. Denna metod har använts under detta examensarbete för att
skapa kurser på utbildningssajten PVT (http://www.programmingvideotutorials.com).
Del ett berättar också hur produktionsmetoden utvecklades och hur kurser
producerade enligt denna metod står sig mot professionellt skapade videokurser.
Slutligen utvärderas resultatet av examensarbetet och effektiviteten av
produktionsmetoden.

Den andra delen av denna redovisning framför de syntaktiska likheterna och
olikheterna mellan fyra av de språk som har lärts ut via videokurser på PVT. Dessa
språk är: C++, C#, Java, och PHP. Meningen med denna jämförelse är att underlätta
för programmerare som kan ett av dessa språk och som snabbt vill lära sig ett eller
flera av de andra språken. Anledningen till varför detta skulle vara nödvändigt är för
att det inte finns något enstaka språk anpassat till alla områden av programutveckling.
Att kunna ett flertal språk ger en programmerare ett bredare utbud av jobbmöjligheter
och mer val i hur han eller hon kan lösa sina problem. Del två av redovisningen
inkluderar också en jämförelse av Java och C# i sammanhanget av en videokurs som
visar hur man bygger en enkel text editor.

http://www.programmingvideotutorials.com/�
http://www.programmingvideotutorials.com/�

‐ ii ‐

Table of Contents

1. Introduction .. 1

2. Developing a Production Method .. 3

2.1 Updatable ... 3
2.2 Convenient ... 3
2.2.1 Choosing Video over Text ... 4

2.3 Rapid Production .. 5
2.4 Relevant .. 5

3. Production Method ... 7

3.1 Work Environment ... 7
3.2 Outline .. 7
3.3 Script ... 8
3.4 Examples ... 8
3.5 Snapshots ... 9
3.6 Audio .. 9
3.7 Production .. 9

4. Evaluation ... 11

4.1 Production Results .. 11
4.2 Production Method Efficiency .. 11
4.2.1 Optimizations to the Production Method .. 12
4.2.2 Time Needed to Update Sections ... 13

4.3 Production Method Comparison .. 13
4.3.1 Advantages ... 13
4.3.2 Disadvantages ... 14

5. Basic Syntax and Semantics ... 15

5.1 Data Types .. 15
5.2 Variables ... 15
5.3 Constants .. 16
5.4 Comments .. 17
5.5 Operators .. 17
5.6 Strings ... 18
5.7 Arrays .. 19
5.7.1 Multidimensional Arrays .. 19

5.8 Pointers... 20

6. Intermediate Syntax and Semantics .. 22

6.1 Conditions ... 22
6.1.1 If .. 22
6.1.2 Switch ... 22
6.1.3 Ternary.. 23

6.2 Loops .. 23
6.3 Jump Statements .. 24
6.4 Functions .. 25
6.4.1 Passing Arguments ... 25
6.4.2 Method Overloading .. 26
6.4.3 Variable Parameter Lists ... 27

‐ iii ‐

6.4.4 Main Method .. 27

7. Advanced Syntax and Semantics ... 29

7.1 Class .. 29
7.1.1 Static ... 30
7.1.2 Constructors and Destructors ... 31
7.1.3 Class Members.. 32

7.2 Access Modifiers ... 33
7.3 Inheritance ... 34
7.3.1 Overriding ... 34
7.3.2 Final .. 35
7.3.3 Calling Constructors .. 36

7.4 Interface ... 37
7.4.1 Explicit Interface Implementation .. 38

7.5 Abstract Class ... 38

8. Expert Syntax and Semantics .. 40

8.1 Namespace ... 40
8.1.1 Namespace Members ... 40
8.1.2 Using Namespaces .. 41
8.1.3 Alias .. 42

8.2 Preprocessor ... 42
8.3 Exception Handling ... 43
8.3.1 Exception Specification ... 43

8.4 Enumerator ... 44
8.5 Struct .. 44
8.6 Operator Overloading ... 45
8.7 Implicit and Explicit Conversions .. 46
8.8 Properties ... 47
8.8.1 Indexers .. 48
8.9 Generics .. 49

9. Software Development ... 50

9.1 Section I – Multipad .. 50
9.2 Section II – Interface ... 50
9.3 Section III – New Open ... 51
9.4 Section IV – Save SaveAs .. 53
9.5 Section V ... 54

10. Conclusions ... 55

10.1 Future Work.. 55

Appendix A. ... 56

References ... 57

‐ iv ‐

List of Tables

Table 1. Produced video sections. .. 11
Table 2. Average time spent at each production step. .. 12
Table 3. The fundamental (native) data types. .. 15
Table 4. Comment notations. .. 17
Table 5. Operators ... 17
Table 6. Jump statements. .. 24
Table 7. Allowed class members. .. 32
Table 8. Class level access modifiers. .. 33
Table 9. Allowed top-level members. .. 41
Table 10. List of video sections uploaded to PVT during the project. 56

‐ v ‐

List of Examples
Example 1. The outline for my C# tutorial showing the sections contained in part one. 8
Example 2. Variable declaration and initialization. .. 16
Example 3. Creating constants. ... 17
Example 4. Creating strings. ... 18
Example 5. Single-dimensional arrays. ... 19
Example 6. Jagged and rectangular multidimensional arrays. .. 20
Example 7. Using pointers. .. 21
Example 8. Using the if-statement. .. 22
Example 9. Performing fall-throughs in switch statements. .. 23
Example 10. Using the ternary conditional operator. .. 23
Example 11. Loop statements. .. 24
Example 12. Breaking out of nested loops. ... 25
Example 13. Defining a method. ... 25
Example 14. Passing parameters by value and/or reference. .. 26
Example 15. Method overloading and default parameters. ... 26
Example 16. Methods that accept a variable number of parameters. 27
Example 17. Valid main function signatures. .. 28
Example 18. Creating and using classes and class methods. .. 30
Example 19. Creating and using static methods. .. 31
Example 20. Defining constructors and destructors. ... 32
Example 21. Using access modifiers. ... 33
Example 22. Inheriting a class. .. 34
Example 23. Overriding and hiding parent methods. .. 35
Example 24. Non-virtual methods and classes that cannot be inherited. 35
Example 25. Calling base class constructors and constructor chaining. 37
Example 26. Using and declaring interfaces. .. 38
Example 27. Explicit interface implementation. ... 38
Example 28. Abstract classes and methods. .. 39
Example 29. Namespace declarations. ... 40
Example 30. Importing code and/or namespaces. .. 42
Example 31. Type and namespace aliasing. ... 42
Example 32. Using preprocessor directives. ... 43
Example 33. Generating and handling exceptions. ... 43
Example 34. Specifying exceptions. .. 44
Example 35. Creating an enumerator. .. 44
Example 36. Creating a struct. .. 45
Example 37. Operator overloading. ... 46
Example 38. Custom type conversions. .. 47
Example 39. Using accessor methods. ... 48
Example 40. Using indexers. ... 48
Example 41. Using generics. ... 49
Example 42. Implementing a menu event handler. ... 51
Example 43. Creating a new-file method. ... 52
Example 44. Creating an open-file method. .. 53
Example 45. Creating a save-file method. .. 54
Example 46. Creating a save-file-as method. ... 54

‐ vi ‐

List of Acronyms and Abbreviations

AVI Audio Video Interleave – A common multimedia container format.
e-learning Education through the use of computer technology.
ASP.NET A programming framework for building web-based applications.
BASIC A family of high-level programming languages.
CBT Computer-based Training – Education through the use of training programs.
Codec Coder-decoder – A program used to encode and decode data.
CLR Common Language Runtime – The virtual machine of Microsoft .NET.
DVD Digital Versatile Disc – A popular optical disc storage media format.
Flash A popular technology for adding animation and interactivity to web sites.
GUI Graphical User Interface – A type of human-computer interface.
HTML Hypertext Markup Language – The standard language for creating web pages.
IDE Integrated Development Environment – A software development environment.
iPhone An internet-connected multimedia smartphone created by Apple Inc.
kbit/s Kilobits per second – A unit of data transfer rate equal to 1,000 bits per second.
kHz Kilohertz – A unit of frequency equal to 1,000 periods per second.
LAME An open source program used to encode audio into MP3.
MP3 MPEG-1 Audio Layer 3 – A common digital audio encoding format.
MSDN Microsoft Developer Network – An information service from Microsoft for

software developers.
MVT Motionless Video Tutorial – The video tutorial production method developed for

this thesis project.
PHP PHP Hypertext Preprocessor – A scripting language primarily used for producing
 dynamic web pages.
PNG Portable Network Graphics – A lossless bitmap image format.
PPT PowerPoint Presentation – A file format used to store presentations in Microsoft
 PowerPoint.
PVT Programming Video Tutorials – The e-learning site where the video tutorials

produced in this thesis project can be found.
SCORM Sharable Content Object Reference Model – A collection of standards for
 web-based e-learning.
SWF Shockwave Flash – The dominant format for displaying animated and interactive

vector graphics on the Internet.
VLE Virtual Learning Environment – A program facilitating e-learning.
XML Extensible Markup Language – A language used to structure and store data.
ZIP A popular data compression and archival format.

‐ 1 ‐

1. Introduction
A video tutorial is a type of e-learning in which the student learns about a topic by
watching a video. It is a particularly effective medium for teaching skills, because the
student not only observes as the skill is demonstrated and explained, but he or she can
also follow along with the teacher by performing the skill themselves. Essentially,
video tutorials provide many of the same benefits as having a real live teacher, but
with the added advantage that the video tutorial can be paused, rewound, and re-
watched – however many times the student wants. From the teacher’s standpoint the
video tutorial medium also has a lot of leverage in that once a video tutorial has been
produced it can be distributed worldwide using the Internet at almost no cost.

The objectives of this thesis project were to produce video tutorials in the area of
computer programming and to upload these tutorials to the e-learning site PVT[1]. The
main tutorials to be created were intended to teach the programming languages C++,
C#, Java, PHP, and ASP.NET; as well as to demonstrate how to build a basic text
editor in each of these languages. The uploaded tutorials were to be made available in
three different formats: a downloadable AVI version, a streamable Adobe Flash
version, and a SCORM version that could be used with a Virtual Learning
Environment (VLE). The audio scripts and code examples used in the tutorials were
also to be made available on the e-learning site (in this case as a wiki)[2].

Chapter two will explain how the production method used in this project was
developed. Typically, the standard method of producing video tutorials involves
recording the screen content using screen capture software, such as TechSmith
Corporation’s Camtasia Recorder[3]. As shown in chapter two this method has certain
weaknesses, mainly because both the audio and the video have to be recorded live.
Therefore, a new method was developed based upon studying the approaches used by
several large video tutorial companies and through trial and error. In this new method
the video consists of a series of snapshots that are synchronized to the separately
recorded audio using TechSmith Corporation’s Camtasia Studio. This method is
similar to the non-linear editing (NLE) method used for film postproduction, which
allows video frames to be moved around in time without any loss in quality.

In chapter three all the steps in the fully developed production method are
explained in detail – in the context of how they were used during the project. This
method contains six steps. The first step is to outline what video sections the tutorial
will contain and in which order the sections will appear. The rest of the steps are
repeated in a cycle for each of the outlined video sections. The second step is to
compile an audio script for the section. The third step is to create practical examples
based on this script. The fourth step is to use the examples to create snapshot images.
Finally, the fifth step is to record and edit the audio. And the sixth step is to
synchronize the snapshots with the video and produce the finished product.

In chapter four the results of this thesis project are evaluated. This evaluation
includes what kinds of video sections were completed during the project. This chapter
also assesses the efficiency of each step in the production method as well as the time
needed to update a tutorial section.

Chapters five to eight compare the syntactic similarities and differences between
four of the languages taught via video tutorials on PVT, namely: C++, C#, Java, and
PHP. These programming languages were chosen because they are among the most
widely used today[4] and all share similar syntax. However, although their syntax may
be similar the languages have numerous important differences in both syntax and
semantics. This comparison is based not only on the finished tutorials uploaded to
PVT during the project, but also on scripts for unfinished tutorials that have yet to be
produced. While effort has been taken to make this comparison as complete and
accurate as possible, its intention is not to address every possible syntax variation in
the four languages; as the subject area is simply too broad. Instead, the main objective

‐ 2 ‐

is to cover the most commonly used syntax – thus enabling a programmer to leverage
their existing knowledge of one of these languages in order to quickly begin to
program in another of these languages.

Chapter nine compares the software development tutorials that were finished in
this project, which show how to design and implement a basic text editor. The
solutions used for making this text editor are compared section by section using the
two languages for which the tutorials were finished: C# and Java. This chapter also
explains how creating these tutorials were different from producing the programming
syntax tutorials.

Chapter ten presents some overall conclusions from this thesis project and
suggests some future work that should be undertaken.

‐ 3 ‐

2. Developing a Production Method
In order to determine a suitable method of video tutorial production the tutorials of
several large e-learning companies were studied. These companies include: 3dbuzz[5],
AppDev[6], CBT Nuggets[7], Keystone[8], Learn Visual Studio .NET[9], Learnkey[10],
Lynda[11], Total Training[12], and Virtual Training Company[13]. Through this research
and my own trials a unique six-step method of producing tutorials was developed
(See chapter 3). This new method focuses on producing tutorials that are superior to
those I have studied in four different ways – creating tutorials that are updatable,
more convenient to use, quicker to produce, and more relevant to their subject.

2.1 Updatable
One of the main goals of the production method was that each tutorial would be
created in a way that allowed the tutorial to be easily updated and changed. This idea
that a tutorial would continue to be updated and improved after its initial production
was unique among the tutorials production methods I studied. Therefore, a radical
new approach to video tutorial production was required.

Making tutorials that are easy to update requires three things. First, each video
section has to be stand-alone, so that it can be changed independently of any other
section. If the video sections in a tutorial were not standalone, then editing one
section would require that all sections that depended on the edited section would have
to be redone.

The second condition for making updatable tutorials is that the material needed to
reproduce a tutorial must be stored in a lossless fashion. Otherwise a video section
would not be considered updatable, because whenever the snapshots or the audio that
make up a section would be edited the quality of the reproduced video would
deteriorate.

The third condition is that it must be possible to edit the video and audio
separately from each other. If the audio and video were recorded at the same time
they could not be edited independently and the whole section would generally have to
be re-recorded in order to make an update. The solution for this dilemma was to
ensure that the video consists of a series of distinct snapshots. These snapshots could
easily be produced and edited separately from the audio, then they could both be
synchronized together.

As a result of the tutorials being updatable it was possible to employ mass
collaboration[14] in improving the video tutorial scripts through the use of a wiki[2].
This means that anyone visiting the site can edit the audio scripts and code examples
used to produce the tutorials. Thus, visitors can help to improve sections, fix errors,
or even contribute with entirely new sections to the tutorials. This form of mass
collaboration has not been used in the context of video tutorials in any of the e-
learning companies that I studied and may prove to be an important change in how e-
learning material is produced.

2.2 Convenient
Another goal for the production method was that the tutorials would be convenient to
view and accessible for a wide range of users. One way in which this is achieved is
by providing multiple formats for watching the videos. The tutorials are first of all
available in the Adobe Flash format (.swf). This format is streamed online from the
site[1] which guarantees that the student will always see the latest version of the
tutorials. Flash also allows for interactivity which allowed this version to include a
side menu for easy navigation between the video sections of a tutorial. Another
advantage of Flash is that it can be viewed by 99%[15] of the internet users.

The second format available is the downloadable AVI version (.avi). This version
has a slightly higher quality than the Flash version, because it is encoded with a

‐ 4 ‐

lossless video codec optimized for video tutorials (See section 3.6). This codec[24] has
the minor inconvenience that it must first be installed on the student’s computer
before he or she can view this format. However, using a common video codec such as
Windows Media Video (.wmv) or QuickTime (.mov) would be more inconvenient,
because of the large file size that these codecs produce for this kind of content. For
example, the video section covering programming loops in my C# tutorial has a file
size of 972 Kb (without the audio) using the lossless codec. Encoded using Camtasia
Studio’s recommended settings the same section is 1,641 Kb in the WMV format and
1,246 Kb in the MOV format.

The third format that the tutorials exist in is the SCORM[16] conforming version
which can be downloaded in the ZIP format (.zip). This version of the tutorials is to
be used with a Virtual Learning Environment (VLE), such as Moodle[17]. The format
provides a convenient way to distribute tutorials to a large number of students, for
example in universities or corporations.

In addition to these three versions – Flash, AVI, and SCROM – a fourth text only
version of the tutorials can also be read through the site’s wiki[2]. This version
includes both the audio script and the code examples in clear text, which offers
certain accessibility advantages over the other three video versions. For example, the
text/code can be copied, enlarged, or read using a screen reader.

Another convenience feature is that the tutorials are recorded using a large font
size and low resolution (640x480). This makes it easier for the student to follow
along with the examples in the tutorials as they are viewing them – since the window
showing the tutorial need not take up the user’s entire desktop screen. The large font
size even makes it possible to watch the tutorials on handheld devices. This was
tested to work fine on an iPhone, where the text was clearly readable on the phone’s
3.5 inches screen with 480x320 pixels resolution[18]. However, because the iPhone
does not have a Flash player the tutorials tested had to be streamed from the site’s
YouTube channel[19] instead of from the main site.

One more feature that can be deemed as convenient is that the structure of the
tutorials allows them to be used as a quick reference. Because all the tutorials are
grouped into short named sections a student can quickly search through the site’s
library of tutorials to find the material that they need for the moment. Most sections
also start with a picture summarizing what the section is about, thus facilitating the
student's decision of whether this section is likely to be relevant or not.

The reason why convenience was deemed as an important goal was due to some
bad examples that I encountered in my preliminary study. In these cases an e-learning
company made it more difficult than it had to be for their users to view their tutorials.
For example, CBT nuggets and Keystone only allow their tutorials to be ordered on
DVD and not viewed or downloaded online – thus they are inconvenient to access.
Another example of poor accessibility is AppDev which forces the user to install a
VLE in order to view their tutorials. This VLE not only takes up the whole screen,
but does not allow the video to be resized.

2.2.1 Choosing Video over Text
The video format itself can be seen as a convenience feature. Since the video part of
the tutorials consists of a series of still images, an easier option than producing video
would have been to simply combine the snapshots and script into an HTML tutorial.
However, video tutorials have several advantages over HTML tutorials. For starters,
because video tutorials include audio narrations instead of text the students are freed
from the tediousness of reading and scrolling through HTML pages. The students can
simply sit back and relax without having to do anything but learn. Another advantage
is that in a video tutorial I can use highlights and progressive disclosure* to direct the

* Progressive disclosure means to gradually add more information so as to direct the student’s attention and not to
overwhelm him or her.

‐ 5 ‐

students focus. These techniques make it easy for the student to know what I am
referring to. The script in a video tutorial can therefore be shorter than the equivalent
HTML tutorial, because I do not have to be as specific to what part of the code
examples I am referring to. The HTML tutorials does have accessibility advantages
over video tutorials, such as allowing the text/code to be resized, copied, and read
using a screen reader. However, all of these advantages have been preserved through
the use of a wiki. My final reason for choosing the video format was that video
tutorial learning in my personal opinion is a more fun and interesting way to learn
compared to reading.

2.3 Rapid Production
A third goal for the new method was that it should allow rapid tutorial production. In
order for this to be accomplished a highly streamlined workflow was needed that
avoided any unnecessarily time-consuming steps. In my experience the longest step
in producing a tutorial was the live recording of the audio and video. This was
because a single mistake in either the audio or the video would generally ruin the
recording, thus a lot of re-takes were required for each section in order to reach an
acceptable level of quality. I also had to know the subject by heart, since I could not
look at any script at the same time as I was recording. Although this is the standard
method used by all e-learning companies that I studied; it was a very unforgiving
approach to producing video tutorials that need to be updated and changed at a later
point in time.

The solution adopted was to allow non-linear editing of the tutorials by creating
the video and audio separately, which proved to be an immense timesaver. Instead of
using live recordings the video was created as a series of snapshots that were later
synchronized to the audio. By creating both the audio and the examples/snapshots
from the same script they could easily be made to match each other without any
inconsistencies. This method made it possible to produce nearly flawless tutorials in a
single take, because in contrast to live video the snapshots could be designed and
organized without any time constraints (i.e., the re-synchronization allows the video
to be cut or expanded as necessary to suit the audio narration). The snapshots could
also be reviewed and edited to make sure that there were no mistakes or typos, giving
a more professional feel than live video recordings, which in general are never
flawless. Best of all, once the snapshots had been created they did not have to be re-
recorded in order to reproduce the desired video. If either the snapshots or the audio
needed to be modified new video could be reproduced and the appropriate audio
added in a fraction of the time needed to redo a live recording.

As a result of the audio being recorded separately from the video there was no
requirement (hence no pressure) that the recording had to be flawless, in contrast to
live video recordings. This was because when recording only the audio it is possible
to take pauses, reiterate, and rephrase the script without any problem, since this
content could be edited out or re-ordered later. Because of the updatable attribute of
the tutorials the production of the script also required less time, since there was no
need to try to make the script “perfect” by double checking everything. Instead, the
tutorials could be produced knowing that if any mistakes were later discovered they
could easily be fixed.

2.4 Relevant
The fourth and last goal was for each video section to only cover what was relevant to
that section. Having read one too many programming books where the author was
paid by the number of pages he or she wrote and not by the content, this was a major
issue to be addressed. A common theme in most tutorials I studied was that the pace
was very slow and that the teachers had trouble separating the relevant from the
irrelevant. The teachers did not use a script and thus had to improvise, oftentimes

‐ 6 ‐

making the tutorials several times longer than they needed to be. Because of how
much time was spent explaining everything – even simple concepts could be made to
seem difficult.

In the new method that was being developed each video section was designed to
be short and to the point, explaining only the practical “how to” and “why to” of each
section without any repetition or needless theory. A primary concern for the new
method was to keep the student’s attention and as such I would not bore them by
repeating every piece of information. Instead, the students would be responsible for
the repetition they need, since they can easily rewind or re-watch each video section
until they have fully understood the content. Once the repetition and irrelevant parts
of a tutorial have been stripped away, it is surprising how short and simple each
section became. As an example, one of my tutorials teaches most of the commonly
used elements of PHP in less than 30 minutes.

‐ 7 ‐

3. Production Method
This chapter describes the method adopted to produce the video tutorials for this
thesis project. The method (named the MVT method*) contains six steps: outline,
script, examples, snapshots, audio, and production. The first step is done once for
every tutorial and the five following steps are repeated in order to produce each video
section.

3.1 Work Environment
Before attempting to produce a video tutorial it is important to first have the correct
work environment setup. In terms of software the following kinds of applications are
required: a text editor, a presentation program, a video editing program, a graphics
editing program, and a digital audio editor. It is also recommended that the producer
has a screenshot program, such as Techsmith Corporation’s SnagIT[20]. The
applications I prefer to use in the listed categories are: Microsoft Visual Studio,
Microsoft PowerPoint, Techsmith Corporation’s Camtasia Studio, Paint.NET,
Audacity, and SnagIT.

When it comes to hardware the producer should have at least two and preferably
three computer monitors installed. Using multiple monitors significantly speeds up
the video production since the producer must often work with several applications in
parallel. One of the monitors should always be set to 640x480 pixels, which is the
resolution used for the video tutorials. This is the “recording” monitor where the
producer sets up and captures the video portion of a tutorial.

Another piece of hardware that is required is a microphone in order to record the
audio. This does not have to be an expensive studio microphone, but it should not be
the cheapest one either. I currently record using a Sennheiser PC-151 Headset[21].
When recording audio it is important to first remove as much background noise as
possible. Although a noise reduction filter can be applied to the audio after the
recording is done too much filtering will significantly reduce the audio quality.

3.2 Outline
The first step in producing a tutorial is to make an outline for it as a text file. I prefer
to do this in Visual Studio because it allows me to collapse the text using the
#region directive. What I do in this step is simply to name and order every section
that the tutorial will contain. Each section name should describe a very specific area
of the tutorial, because this will make it easier for the students to search through the
tutorial. It is also important that the sections are placed in an order such that they do
not have to refer to later sections to explain something. To organize the large number
of sections that a tutorial can contain I prefer to visually group every ten or so
sections into a region called a part. At the bottom of the file I keep another region
containing mistakes and updates to sections that I am already done producing.
Whenever enough of these fixes are found, either by me or by people writing in the
wiki, then that section will be scheduled for an update. A period of time every month
will be dedicated to performing these updates, unless an update is deemed critical, in
which case that section will be fixed as soon as possible.

* MVT method – Motionless video tutorial method.

‐ 8 ‐

Example 1. The outline for my C# tutorial showing the sections contained in part one.

3.3 Script
Once the outline is complete I start working on the sections one at a time. The first
step in this cycle is to write the audio script. This script is compiled from sources all
over the web that are summarized in the outlined text file. The script is then rewritten
extensively to make it readable and easier to understand. My goal is to cover
everything important about the section in less than 500 words. The reason for this
limit is twofold. First, it forces me to come up with simpler ways to explain
everything. And second, it only allows me to keep what is important to the section, in
accordance with the goal of relevance. I chose 500 words because I have found that it
is very rare that a section cannot be explained within this limit. If despite my best
efforts I am unable to explain a section in 500 words, then I will split that section into
two parts rather than go past the word limit, because in my experience this tends to be
faster than producing a single longer section.

3.4 Examples
The third step is to produce programming examples for the concepts I talk about in
the audio script. These examples are created and tried out in the development
program used for that tutorial, then copied into the script where they can be
organized. Storing the code in the script file also makes it easier to reproduce the
snapshots if any changes needed to be made later. If the section contains elements
that would be useful to have as a quick reference a Microsoft PowerPoint slide of
those elements is created as well. This slide will be used as the first frame of the
video section. If needed, other slides will also be created to present tables and other
information rich content in the section. I chose to use PowerPoint for the creation of
these slides because this program makes it easy to create, edit, and design these
slides. Note that only an image of each slide is used in the video tutorial, thus the
student does not need to have a PowerPoint viewer.

‐ 9 ‐

3.5 Snapshots
When the code examples for a section are done they are used to create the snapshots.
The key here is to only change what the student should focus on from one frame to
the next. It is also important that the snapshots closely match what is talked about in
the audio script (or vice versa, adjusting the script to match the snapshots). The
snapshots used are 640x480 pixels. For capturing the snapshots I use SnagIT, because
it is the only program I have found that is able to capture and save a fixed region of
the screen with the press of a single button. The pictures are losslessly stored in the
PNG format (.png). When the snapshots are complete they are renamed with a
number and a letter, where the numbers correspond to paragraphs in the audio script.
This way new snapshots can be added without having to rename every single file to
maintain the order. Finally, when the pictures are named and placed in that section’s
folder a graphical editor is used to fix any small mistakes or distractions in the
images. I personally use Paint.NET[22] to correct the images, because it is a free, easy
to use program that is more than adequate for this task.

3.6 Audio
Before recording the audio it is important to first read the script out loud a couple of
times to make it sound more natural and not as if a script is being read. While it is
possible to record the audio without any preparation this form of rehearsal does in my
personal experience significantly improve the quality of the final result. The rehearsal
also allows me to make any final adjustments to the script in order to improve its
readability. These improvements can be very difficult to discover before the script is
read out loud. Once I can read the script smoothly I record the audio with a 44kHz
sampling rate. The program I use to record is Audacity[23], because it is a free audio
editor that is both easy to use and feature-rich. If I make a mistake when recording the
audio I will just speak that sentence again until the entire script has been recorded.
Mistakes are then edited out and the pauses are adjusted as needed. Any pause in the
beginning of the audio is removed so that all videos will start immediately when they
begin playing. A one second pause is also added at the end of the audio to mark the
end of the section. This pause provides a much needed break before the next section
begins. When the editing is done the file is saved in the lossless wave format (.wav).
The audio is then finalized by running a script that does noise reduction,
normalization, and downsampling the file to 22kHz. This final version is saved under
another filename in case a different set of filters are to be used in the future.

3.7 Production
With both the snapshots and audio now completed it is time to produce the video. For
this step the files are added to the timeline in a Camtasia Studio project and a one
second fade-in transition is applied between all clips. This slow transition is important
in order to direct the students focus and to make it easier for them to distinguish what
changes are taking place. The snapshots are then carefully synchronized to the audio.
This is mainly achieved by moving the beginning of each video fade to the start of the
audio that corresponds to the snapshot following that fade. When all snapshots are
synchronized the last frame is extended so that it ends at the same time as the audio
ends (note that the audio was extended by one second of silence). Once this is done
the video is ready to be produced as an AVI file. The video is compressed with the
Techsmith Screen Capture Codec (TSCC). This codec was chosen because it is a
freely available lossless video codec optimized for compressing screen recordings[24].
As for the audio it is compressed as 22kHz LAME encoded MP3 at 32kbit/s. The
MP3 format was chosen because it is a popular compressed audio format that most
video players support without having to install additional codecs. When the AVI file
is completed it is reviewed a final time to make sure that everything is correct. The
file is then added to another Camtasia project containing all the completed video

‐ 10 ‐

sections for that tutorial. This project is used to produce the streamable flash version
(.swf) and the SCORM version (.zip). Finally, everything is uploaded to the site and
the script is added to the wiki.

‐ 11 ‐

4. Evaluation

4.1 Production Results
During the course of the thesis project 85 video tutorial sections were completed and
uploaded to PVT (See Appendix 1). Although the original plan was to produce two
video sections per work day for a total of 200 sections this goal proved to be too
ambitious. The actual production rate was only slightly above one video per day and
some time had to be devoted to writing this thesis. Out of the 85 completed sections
75 of them cover programming syntax and 10 cover software development.

Among the 75 programming syntax videos: 15 of them were for Java, 22 for C#,
11 for C++, 16 for PHP, and 11 for ASP.NET. Based on the outlines made for the
tutorials the released Java sections constitute 75% of the language syntax. C# was
covered to about 80%, although it had several more sections than Java. This is
because the C# language is substantially larger than Java. Only about 1/3 of C++ was
covered because it was the most difficult language to teach. PHP was the smallest
language taught and was essentially completely covered in the released sections. The
last 11 sections cover the fundamentals of how to produce ASP.NET pages with C#.

The 10 tutorial sections covering software development demonstrate how to build
a basic text editor in Java and C#. Equivalent tutorials were also planned for the other
three languages, but these were not finished in time to be evaluated and included in
this thesis.

Table 1. Produced video sections.

Topic Videos Complete Topic Videos

C++ 11 33%

C# 22 80% C# Example 5

Java 15 75% Java Example 5

PHP 16 100%

ASP.NET 11

4.2 Production Method Efficiency
Using the MVT method a typical tutorial section takes me on average four hours to
complete; with between three and five hours being common. About one to two hours
of this time is spent creating the audio script. Another hour is needed to create the
examples and the snapshots. The audio is recorded and edited in 30 to 60 minutes
time and the production step takes another half an hour. These numbers have been
confirmed repeatedly, because as a way of trying to improve my own efficiency I
always time how long it takes to complete each video section. Although the amount
of time needed for each production step has decreased significantly since I first
started producing tutorials; there is still a lot of room for improvement, particularly in
the script and audio steps.

Even though four hours may seem like a long time to produce such short videos
(sections are generally 2-3 minutes long) a lot of that time is actually spend making
the video so concise. It is interesting to note how much time these few minutes
corresponds to in a professionally made commercial tutorial. As an example, in my
C++ tutorial I cover loops (See section 6.2 on page 23) in 2 minutes and 1 second. In
3dBuzz’s C++ tutorial their section covering the exact same area is 18 minutes and 47
seconds long. Simply by following the MVT method’s goal of keeping only what is

‐ 12 ‐

relevant (See section 2.4) I was able to teach the same information in almost one
tenth the time. Unfortunately, I do not know how much time was required to produce
the 3dBuzz tutorial; thus I cannot compare their time efficiency for preparation with
mine.

Table 2. Average time spent at each production step.

Step Description Duration %

1. Outline Creating an outline 5m 2,1 %

2. Script Gathering information
Rewriting script

30m
60m 37,5 %

3. Examples Creating examples
Organizing examples

30m
15m 18,8 %

4. Snapshots Taking snapshots
Editing snapshots

10m
10m 8,3 %

5. Audio Recording Audio
Editing Audio

30m
15m 18,8 %

6. Production Synchronizing
Producing/Uploading

15m
10m 10,4 %

4.2.1 Optimizations to the Production Method
The method for producing the tutorials was adjusted significantly during the project
in order to speed up production. In the beginning the outline step included compiling
the material that would be contained in all sections. This compilation part proved to
take a lot more time than doing the compilation for individual sections – so this part
was delegated to the script step. Another optimization made was moving the script
step before the examples and snapshot steps. This came as a result of noticing that it
was generally easier to produce the examples based on the script rather than to rewrite
the script based on the examples.

The original method also included a step where all the PowerPoint slides
covering the theory part of the tutorial were compiled. This step was moved into the
examples step because the actual content of every section has to be known in order
for the slides to be produced. The new method of creating the slides only when they
were needed was not only faster, but also made a lot more sense. In the old method
some of the slides produced were never used and those that could be used often had
to be remade in the examples step.

These seemingly small changes actually reduced the production time needed to
complete a tutorial by a third. Using the old method the first two steps would take
nearly a week and resulted in no completed videos (i.e., there was no video to show
for all this effort). During the second week when the sections were worked on
individually, both the script and slides had to be modified extensively before they
could be produced, which took at least half a week. With the new method only an
hour or so is needed to plan and outline the tutorial and the rest of the time is spent
focused on producing individual sections. This workflow not only proved to be much
more effective, but also provided better motivation since it was possible to see the
resulting videos on a day to day basis.

‐ 13 ‐

4.2.2 Time Needed to Update Sections
The time needed to update a video section various significantly depending on what
changes need to be made. For example, if there is a small change in the audio script I
only need to edit that part of the audio and resynchronize any clips that have been
offset by the change. All in all this type of change can be done under ten minutes.
Another common change is to edit one or more of the snapshots that make up a video
section. Such an easy change does not require any resynchronization to be made and
can generally be done in a few minutes. If more extensive changes need to be made to
both the audio script and the snapshots, then it may take up to half an hour to
reproduce the video.

The site’s wiki[2] is meant to make the process of updating tutorial sections
significantly easier. Because wikis are self-correcting the audio scripts should
gradually improve over time and become more accurate[25]. Therefore, I would not
have to personally spend time looking for improvements or errors in the video
sections. All I would need to do is to make the necessary changes to the snapshots
and audio in accordance with the suggested changes on the wiki.

Unfortunately, this wiki project has as of yet not received much attention. Despite
several marketing attempts I have been unable to get even a single person other than
myself to make any contributions – thus no updates have been made as a result of the
wiki. Although I initially found this lack of participation from the visitors to be quite
vexing, I believe the answer is quite simple. The reality of any wiki project is that
only a small minority of the visitors ever make any contributions[26]. For example, out
of the 684 million visitors Wikipedia received in 2008 only 75,000 of them are active
contributors (people who contribute at least 5 times per month)[27]. As of yet my
e-learning wiki has not attracted more than a few thousand visitors – thus it is
understandable why it has not received any contributions.

4.3 Production Method Comparison
As mentioned in the introduction to this thesis the standard method of producing
video tutorials involves recording the screen content using screen capture software.
This method, which I call the SR method*, is used by all e-learning companies that I
have studied. The MVT method has both advantages and disadvantages when
compared with this SR method.

4.3.1 Advantages
The first advantage is that it is easier to produce professional looking tutorials using
the MVT method. Since this method allows the audio and snapshots to be edited
separately any flaws or mistakes can easily be removed. The producer can also take
as much time as he or she needs to design and organize the snapshots before the video
is produced – thus making it easy to create a high quality professional looking video
tutorial.

In the SR method the audio and video are recorded at the same time. Therefore,
tutorials produced using this method typically cannot be edited after they have been
recorded without the changes being noticeable. At the same time it is difficult to
avoid making mistakes when recording a video tutorial live, and these mistakes tend
to reduce the perceived quality of the tutorial. Therefore, making a professional
looking video tutorial using the SR method generally requires a lot of retakes, which
in my experience can be very frustrating. In the MVT method there are no retakes
necessary. Each step in the production cycle is performed only once for every section.

Another important advantage of the MVT method is that the tutorials can be
updated quickly. Using the SR method a tutorial section cannot be updated without
re-record the whole section again from the beginning.

* SR method – Screen recording Method.

‐ 14 ‐

4.3.2 Disadvantages
The MVT method has two drawbacks compared with the SR method. First, in terms
of production speed the SR method is faster (the first time a video section is
produced). The production speed can vary a lot depending on the producer’s
experience, the number of retakes necessary, and the required quality of the tutorial.
However, because the SR method does not use a word-for-word script and does not
require the tutorial to be updatable it is significantly faster than the MVT method,
provided that the producer knows the subject area well enough.

The second drawback is that the MVT method cannot be used in all areas where
the SR method can be used. Because the video is made up of snapshots the MVT
method is not suitable for tutorials that require a lot of motion. For example, the MVT
method would not be suitable for teaching 3D animation or any form of computer
drawing.

‐ 15 ‐

5. Basic Syntax and Semantics

5.1 Data Types
The fundamental data types built into the four programming languages can be
grouped into four categories: integer, floating-point, character, and boolean types. As
can be seen in the table below, C++, Java, C#, and PHP all share the same
fundamental types, with some differences. An important difference is illustrated by
Java and PHP which does not provide any unsigned integer types, whereas C++ and
C# do. C# has distinct data types for signed and unsigned integers, while C++ uses
the keywords signed and unsigned to specify these as distinct sub-types.

Another difference is that C++, Java and C# provides different data types
depending on how large or precise a value the integer or floating-point type must be
able to store, whereas PHP do not. PHP in contrast to the other three languages is a
loosely typed language, meaning the programmer does not need to explicitly specify
the data type of the variable(s). Instead, PHP automatically converts variables to the
correct data type, depending on the context in which they are used. The keywords
shown in the PHP column below are not used for declaring variables, only for type
casting[28].

Table 3. The fundamental (native) data types.

C++ Java C# PHP Description

short, unsigned short
int, unsigned int
long, unsigned long

byte
short
int
long

sbyte, byte
short,
ushort
int, uint
long,
ulong

int Integers

float
double

float
double

float
double
decimal

float Floating-point
 numbers

char
wchar_t

char char string Character
 Wide-character

bool boolea
n

bool bool Boolean value

5.2 Variables
Variables are declared in the same way in C++, C#, and Java, with the data type
specified first followed by an identifier. In contrast, PHP variables are declared
without specifying the type of the identifier, since variables in PHP are automatically
declared and initialized the first time they are used. Another difference between PHP
and the other three languages is that PHP variables must be prefixed with a dollar
sign “$”, which indicates to the parser that they are variables.

Assigning values to variables is done with the same syntax in all four languages,
using the assignment operator “=”. C++ also supports an alternative way of
initializing variables called constructor initialization. This is done by enclosing the
initial value in parentheses and only works at the time the variable is declared. If
more than one variable needs to be declared and optionally initialized there is a
shorthand way of doing this using the comma operator “,” (See Example 1. Variable

‐ 16 ‐

declaration and initialization.Example 1). This operator works for all languages
except for PHP.

In C# and Java the use of global variables are forbidden. All variables must be
contained within a type or a function. This is not the case in C++ and PHP, where
variables may be declared globally as well as within containing types or functions.
Variables in PHP are always initialized to their default values whether they are
declared globally, locally, or in a class. In C++ only global varables are automatically
initialized, but not local or class variables. Local variables are also not automatically
initialized in C# and Java, only class variables (fields) are. In contrast to C++, C# and
Java do not allow local variables to be used unless they are initialized. Consequently,
using uninitialized variables is a common programming mistake in C++[29].

Example 2. Variable declaration and initialization.

Java C#

int a = 50, b = 10; int a = 50, b = 10;

C++ PHP

int a = 50, b = 10;
int b(50); $a = 50;

5.3 Constants
Constants can be divided into two categories: compile-time and run-time constants.
Compile-time constants are replaced by the compiler and must therefore be initialized
to a constant value at the same time as they are declared. Run-time constants on the
other hand are not set until the program runs. They can therefore be initialized to a
dynamic value, and may be set in a constructor if they are declared in a class.

Both kinds of constants exists in all languages except for C++, which only has
compile-time constants. The C++ developer can use either the const modifier or
the #define directive to declare compiler-time constants. With #define the
preprocessor (which is run before the compiler) replaces any occurrences of its first
argument with whatever follows it to the end of the line. Const on the other hand has
the benefit of type checking[30].

In PHP, constants can be set either using the define() function for a run-time
constant, or using the const modifier for a compiler-time constant. Note that these
constants are used in the script without the “$” parser token, which is required when
using variables[31]. C# uses const for compile-time and readonly for runtime
constants. The Java language declares compile-time constants with static final,
and run-time constants with only final[32].

The final modifier in Java along with the const keyword in C++ can also be
applied to method parameters to make them unchangeable. This functionality does
not exist in C# or PHP. In C++, the const modifier can even be applied to a
function’s return type in order to return a constant, or after a class method’s
parameter list, to hint that the method does not change the interal state of a class[33].

‐ 17 ‐

Example 3. Creating constants.

Java C#
static final int PI = 3.14;
final int PI;

const int PI = 3.14;
readonly int PI;

C++ PHP

#define PI 3.14
const int PI = 3.14;

define("PI", 3.14);
const PI = 3.14;

5.4 Comments
Comments are used to increase the readability of the source code and have no effect
on the execution of a program. As can be seen in the table below, C#, PHP, and Java
all inherit the standard C++ multiline (/* */) and single-line (//) comment
notations. In addition to these PHP also has the Perl-style single-line comment (#).
For writing documentation both C# and Java provide their own notations, specifically
the Javadoc multiline comment (/** */) for Java and the single line XML comment
(///) for C#.

Table 4. Comment notations.

C++ Java PHP C# Description

/* */ /* */ /* */ /* */ multiline comment

// // // # // single-line comment

 /** */ /// documentation comment

5.5 Operators
The operators in the four programming languages are very similar, both in terms of
the symbols used and their functionality. In fact, C# and C++ share the same
operators, while Java and PHP have made some small additions. The operators have
all been included in a table below. For comparison purposes they have been grouped
into five categories: arithmetic, assignment, comparison, logical, and bitwise
operators.

Table 5. Operators

All languages PHP Java Operator type

+ - * / % arithmetic

= += -= *= /= %= ++ --
&= |= ^= <<= >>=

=& >>>= assignment

== != > < >= <= === !== <> comparison

&& || ! and or xor logical

& | ^ << >> ~ >>> bitwise

Java includes the zero-fill right shift operator “>>>” and its assignment counterpart
“>>>=”. The zero-fill right shift operator moves all bits to the right filling with
zeroes on the left, whereas the right shift operator “>>” ignores the sign bit. The need

‐ 18 ‐

for this operator comes as a result of Java not having unsigned data types. There is no
need for it in C++ and C# since the right shift operator “>>” works differently on
unsigned variable types and signed variables, i.e., for signed variables it fills with the
sign bit.

PHP 4 introduced the identical “===” and not identical “!==” operators for
comparing both value and data type[34]. The language also includes the BASIC-style
not equal operator “<>” along with three extra logical operators “and”, “or”, and
“xor”. The first two of these “and” and “or” have the same meaning as “&&” and
“||”, but all three have a lower level of precedence than the other logical operators.

5.6 Strings
String variables are used to store values that contain string literals. They are built-into
every language except for C++, where the string header from the standard library
needs to be included in order to work with strings. To create strings in Java the
String class is used, which is included by default with the java.lang package.
Similarly, C# uses the string keyword which is an alias for the System.String
class.

One difference between the languages is that string concatenation is performed
using the “+” and “+=” operators in C++, C#, and Java, while PHP uses the “.” and
“.=” operators. Furthermore, strings in C++, C#, and PHP can be accessed as arrays,
while Java strings cannot. Another difference is that C++ and PHP strings can be
modified, whereas Java and C# strings are immutable. Methods in Java and C# that
appear to modify a string’s content actually simply return a new string.

In all languages except for PHP string constants are always delimited by double
quotes (“”). PHP strings on the other hand can be delimited in four different ways.
There are two singleline notations – double-quote and single-quote – and two
multiline notations: heredoc and nowdoc. Variables and escape characters are not
parsed in single-quote and nowdoc strings, whereas they are parsed in double-quote
and heredoc strings.

In contrast to PHP, Java and C++ do not have a way to cause escape characters to
be ignored. However, C# strings can be set to ignore both escape characters and
newlines by pre-appending the string constant with the “@” symbol. Creating
multiline strings is also possible in C++ by using the backslash character to break the
line – without including the new line or white space in the string.

Example 4. Creating strings.

Java C#
String a = "Hello";
String b =
new String(" World");
String c = a + b;

string a = "Hello";
string b = a + " World";

string e = @"verbatim
 string";

C++ PHP
#include <string>
using namespace std;

string a = "Hello";
string b(" World");
string c = a + b;

// C-style string
char *c = "Hello \
 World";

$a = "Hello";
$b = $a . " World";

$a = 'Hello $b'; // no parsing

$s = <<<LABEL
Heredoc (with parsing)
LABEL;

$s = <<<'LABEL'
Nowdoc (without parsing)
LABEL;

‐ 19 ‐

5.7 Arrays
Arrays are data structures used for storing a collection of values. In C++, C#, and
Java arrays have fixed sizes and all values in the array must in general be of the same
data type. In contrast to this PHP arrays are dynamically sized and they can contain a
mixture of data types.

Java and C# arrays are objects that are bounds-checked, making them safer than
the unconstrained C++ arrays. Because they are objects they also have methods for
retreiving their own length, which C++ arrays do not.

The syntax for declaring C# arrays is different from C++ arrays in that the square
brackets follows the array type in C# and not the identifier (e.g., int[] foo;).
Java arrays on the other hand can be declared with either the square brackets after the
data type or after the identifier. In PHP, arrays are declared automatically when they
are used, just as with variables.

Arrays are initialized in the same way in C# and Java, using the new keyword
followed by the data type and the length in square brackets. This notation is also used
in C++ to create arrays in the heap, which in contrast to the other garbage collected
languages these arrays must be deleted manually. In addition to heap based arrays,
C++ also allows stack-based arrays, which none of the other languages do. These can
be declared by placing the desired length of the array inside the square brackets.
Unlike heap arrays however, the length of stack-based arrays must be a constant
value. Lastly, in PHP an array does not have to be initialized and can be used as if it
were an array of unbounded length.

At the same time as an array is declared it can be initialized with multiple values
using a curly bracket notation in C++, C#, and Java. Note that this notation can only
be used for stack-based arrays in C++, not for arrays in the heap. In PHP the array
constructor can be used to initialize an array with content.

When assigning individual elements all languages access the array in the same
way: by referencing the element with its index in square brackets. Only PHP has the
option of leaving out the index when appending a value to the end of the array.

In addition to numeric arrays PHP also has built-in support for associative arrays.
With these arrays the key is given as a string name instead of a number. The double
arrow operator “=>” is used to tell which key refers to what value. This operator can
also be used in the numerical array’s constructor to indicate where elements will be
placed.

Example 5. Single-dimensional arrays.

Java C#
int x[] = new int[3];
int[] y = {1,2,3};

int[] x = new int[3];
int[] y = {1,2,3};

C++ PHP

int x[3];
int y[] = {1,2,3};

int z[] = new int[3];
delete z[]

$a = array(1,2,3);
$a[] = 4;

$map = array("one" => "a", "two" => 2);
$map["one"] = "a";

5.7.1 Multidimensional Arrays
Arrays can be made multidimensional by adding additional pairs of square brackets.
As with single-dimensional arrays, these arrays can either be filled in one at a time, or
all at once at the time of the declaration. All languages except for C++ support
creating arrays-of-arrays, or jagged arrays. Java has a shortened notation for creating

‐ 20 ‐

these, while C# must use the new initializaiton syntax for the subarrays.
Multidimensional arrays in PHP can also be assigned quickly by nesting array
constructors.

In addition to jagged arrays, C# includes true multidimensional arrays, or
rectangular arrays. This kind of array is also the only type of multidimensional array
that C++ has built-in. They differ from jagged arrays in that each subarray must have
the same dimensions.

C++ creates rectangular arrays using the same syntax as Java’s jagged arrays.
However, in C++ the dimensions must be specified, which is optional in Java.
Rectangular arrays in C# are declared by separating the dimensions with commas
instead of using multiple square brackets. This array type also supports the short
initialization syntax without the use of new, just like Java and C++.

Example 6. Jagged and rectangular multidimensional arrays.

Java C#
String[][] j =
 {{ "00" },
 { "10", "11" }};

string[,] r =
 {{ "00", "01" },
 { "10", "11" }};

string[][] j =
 { new string[] { "00" },
 new string[] { "10", "11" }};

C++ PHP

#include <string>
std::string r[2][2] =
 {{ “00”, “01” },
 { “10”, “11” }};

$j = array(array("00", "01"),
 array("10", "11"));

5.8 Pointers
A pointer is a variable that contains a memory address. This is a powerful low-level
feature commonly used in C++. It provides the ability to directly manipulate specific
memory locations. Because pointers are so powerful they are also one of the main
sources of software bugs[35]. Consequently, Java and PHP do not have pointers, and
C# only allows restricted use of them. Instead, these languages use only references.
References are restricted pointers that cannot be modified with pointer-arithmetic,
making them much safer and simpler to use than pointers.

C++ also has a form of reference data types created by adding the address-of
operator “&” to the data type. These types are more restricted than pointers, in that
they must be initialized when they are declared (or in a constructor if they belong to a
class) and once assigned they can never be changed[36].

Just like in C++, a variable in PHP can be assigned the reference of another
variable by placing the address-of operator “&” before it. This allows PHP to create
references to value types in a way that is not possible in C# or Java.

Core C# does not have any pointers, however code blocks and methods can be
marked with the unsafe keyword to enable the use of pointer types and operators.
Such code can deal directly with pointers just as in C++.

A major use of pointers in C++ is to point to memory that has been dynamically
allocated on the heap using the new keyword. Such memory must be explicitly
deleted using the delete keyword when it is no longer used in order to avoid
memory leaks. C#, Java, and PHP do not have a delete keyword since they all have
garbage collectors that handle the cleanup. This simplifies the syntax of these
languages a bit compared to C++.

‐ 21 ‐

Example 7. Using pointers.

C++ C#
int i = 1;
int *p;
p = &i;
*p = 2;

int& ref = i;
ref = 3;

unsafe
{
 int i = 1;
 int *p;
 p = &i;
 *p = 2;
}

Java PHP

// not supported
$i = 1;
$ref = &$i;
$ref = 3;

‐ 22 ‐

6. Intermediate Syntax and Semantics

6.1 Conditions
The conditional statements are used to execute different code blocks based on the
stated conditions. All four programming languages use the same two conditional
statements – if and switch – with almost the same syntax. In addition to the
normal syntax PHP also provides an alternative “colon-syntax” for the conditional
statements. The opening brace is then replaced with a colon, the closing braces are
removed and the last closing brace is replaced with either the endif or endswitch
keyword (See Example 7).

6.1.1 If
The if-statement will execute only if the conditional expression inside the parethessis
evaluates to true. The curly braces that make up the body of the if-statement can be
left out if there is only one statement in the codeblock.

The only differences between the languages is that in Java and C# the expression
must evaluate to a boolean value, whereas in C++ and PHP it can be anything that
evaluates to a number. If the number is zero it will be interpreted as false and any
other value will be interpreted as true. Conditional expressions in Java and C# are
therefore easier to understand at the cost of being a bit longer. The additional type
safety also helps to find some forms of errors at compile time, such as the common
programming error of mistakenly writing assignment “=” instead of comparison “==”
in a condition[37].

Example 8. Using the if-statement.

Java C#
if(bool) {}
else if(bool) {}
else {}

if(bool) {}
else if(bool) {}
else {}

C++ PHP
if(expression) {}
else if(expression) {}
else {}

if(expression) {}
else if(expression) {}
else {}

if (expression):
else if (expression):
else:
endif;

6.1.2 Switch
The switch statement executes the case whose label matches the value of the
expression given in parenthesis. In C++ and Java this expression must evaluate to an
integer, while in C# it may also be a string. In addition to integers and strings, PHP
also allows the expression to be a floating-point value.

Another difference is that the switch case statements in C# must end with a jump
statement (such as break) unless the case is empty. This is enforced because
unintentional fall-throughs by leaving out the break keyword is a common
programming mistake in other programming languages. To explicitly perform a fall-
through in C# the goto jump statement can be used, while the break keyword can
just be left out to achieve the same effect in the other languages.

‐ 23 ‐

Example 9. Performing fall-throughs in switch statements.

Java C#
switch (integer)
{
 case 0:
 case 1: break;
 default: break;
}

switch (integer, string)
{
 case 0: … goto case 1;
 case 1: break;
 default: break;
}

C++ PHP
switch (integer)
{
 case 0:
 case 1: break;
 default: break;
}

switch (integer, string, float)
{
 case 0:
 case 1: break;
 default: break;
}

6.1.3 Ternary
In addition to the if and switch conditional statements, the ternery conditional
operator “?:” can also be used. This operator replaces a single if-else clause that
assigns one of two values to a specific variable based on a condition.

The operator takes three expressions. If the first expression evaluates to true, then
the value of the second expression is returned, otherwise the value of the third
expression is returned. In C++ and PHP this operator can be used as a stand-alone
statement as well as an expression, whereas in Java and C# it can only be used as an
expression.

Example 10. Using the ternary conditional operator.

Java C#

x = (bool) ? 0 : 1; x = (bool) ? 0 : 1;

C++ PHP

x = (expression) ? 0 : 1;
(expression) ? (x = 0) : (x = 1);

$x = (expression) ? 0 : 1;
(expression) ? ($x = 0) : ($x = 1);

6.2 Loops
Loop statements are used to execute a specific codeblock several times. There are
three of them in C++: while, do-while, and for. In addition to these three Java, PHP,
and C# also include the foreach loop. Although the foreach loop is missing from C++
it can easilly be replaced with the for loop.

The syntax of the while, do-while, and for loops are identical in all four
languages, except for the boolean/numeric difference in the conditional expression’s
value as meantioned earlier (See section 6.1.1). The for-each loop however has a
slightly different syntax in each language, which can be seen in the examples below.

As with the conditional statements in PHP the while, for, and foreach loops can
also use the alternative “colon syntax”. That is, the braces can be rewritten into a
colon and the endwhile, endfor, or endforeach keyword used. PHP also
features an extension of the foreach loop – to be used with associative arrays to get
the key’s name as well as its value.

‐ 24 ‐

Example 11. Loop statements.

Java C#
while (i < 10) {}
do {} while (j < 10);
for (int k = 0; k < 10; k++) {}
for (int value : array) {}

while (i < 10) {}
do {} while (j < 10);
for (int k = 0; k < 10; k++) {}
foreach (int value in array) {}

C++ PHP
while (i < 10) {}
do {} while (j < 10);
for (int k = 0; k < 10; k++) {}

while ($i < 10) {}
do {} while ($j < 10);
for ($k = 0; $k < 10; $k++) {}
for (int $arr as $val) {}
for (int $arr as $key => $val) {}

6.3 Jump Statements
Jump statements redirect the program’s execution from one program location to
another. The four languages share the following four jump statements: break,
continue, return, and throw. C++ and C# also support the goto statement,
although this keyword is restricted in C#; where it may only be used to jump within
the current scope[38], but not into another code block as is allowed in C++. The goto
keyword is also reserved in Java, even though it is not implemented.

The break and continue keywords can be used inside of loops to end a loop
or skip an iteration. In PHP, both break and continue can be given a numeric
argument in order to apply to an outer level loop. Java has a feature similar to this
where a label is added before the outer loop and then that label is given as an
argument to break or continue. To achieve the same result in C# and C++ the goto
statement has to be used.

The return keyword has the same usage in all four languages. A return exits a
method and returns a value or reference to the caller as determined by the data type
specified in the function’s declaration. In PHP, since data types are not specified, a
function may return a value of any type. The throw keyword will be looked at later
(See section 8.3).

Table 6. Jump statements.

C++ PHP Java C# Description

break break break break ends current loop

continue continue continue continue skips current iteration

return return return return returns to caller

goto goto unconditional jump

throw throw throw throw throws an exception

‐ 25 ‐

Example 12. Breaking out of nested loops.

Java C#
MyLabel: while (true)
{
 while (true)
 { break MyLabel; }
}

while (true)
{
 while (true)
 { goto MyLabel; }
}
MyLabel:

C++ PHP
while (true)
{
 while (true)
 { goto MyLabel; }
}
MyLabel:

while (true)
{
 while (true)
 { break 2; }
}

6.4 Functions
A function is a reusable code-block that will execute only when called. Functions are
defined in the same way in C++, C#, and Java, with the return type followed by the
function’s name, parameter list, and body. In PHP the return type is replaced by the
function keyword, since data types are not explictly specified. Another difference
is that functions as well as classes in PHP are case insensitive.

In C# and Java functions must always belong to a class, whereas in C++ and PHP
functions may also be declared globally. PHP functions can even be defined inside of
other functions, allowing a run-time decision as to whether or not a function should
be defined.

Functions as well as classes in C++ need to be declared before they can be called.
If the function is to be used before it is implemented, then a prototype must be
specified. In contrast, C#, Java, and PHP requires no forward declarations.

Example 13. Defining a method.

Java C#
class MyClass
{
 void MyMethod(int x) {}
}

class MyClass
{
 void MyMethod(int x) {}
}

C++ PHP

void MyMethod(int x); // prototype
void MyMethod(int x) {} function MyMethod($x) {}

6.4.1 Passing Arguments
Arguments to a method can be passed either by value or by reference. When passing
arguments by reference both value and reference data types can be changed or
replaced and the changes will affect the original. On the other hand, with pass-by-
value only a local copy of the variable or reference is accessible from within the
method. Therefore, changing the variable or replacing the object will not change the
original. However, the state of an object can still be modified, since the copy points to
the original’s memory location.

For passing parameters C++, C#, and PHP support both pass-by-reference and
pass-by-value, while Java supports only pass-by-value. In order to pass a value type
by reference in Java the variable must first be encapsulated within a class. Objects are

‐ 26 ‐

always passed by reference in C# and PHP, while value types are by default passed
by value. This is different from C++, where all variables and objects are passed by
value unless they are explicitly passed as a pointer or a reference.

C# can force a value type to be passed by reference by using either the ref or
out keyword in both the caller and the method declaration. The ref keyword simply
passes the variable by reference, while out allows the developer to pass an
unassigned variable which must then be initialized in the method.

In C++ and PHP, passing a value type by reference is done by adding an
ampersand “&” before the arguments name in the function definition. To pass a
variable by pointer instead in C++ the dereference operator “*” is added after the
argument’s data type and the address is passed when calling the method.

Example 14. Passing parameters by value and/or reference.

Java C#
void ByValue(int a) {}

int x = 1;
ByValue(x);

void ByValue(int a) {}
void ByRef(ref int a) {}

int x = 1;
ByValue(x);
ByRef(ref x);

C++ PHP
int ByValue(int a) {}
int ByRef(int &a) {}
int ByPointer(int* a) {}

int x = 1;
ByValue(x);
ByRef(x);
ByPointer(&x);

function ByValue($a) {}
function ByRef(&$a) {}

$x = 1;
ByValue($x);
ByRef($x);

6.4.2 Method Overloading
Method overloading means that a function can be defined multiple times with
different arguments. This is a powerful feature which allows a method to handle a
variety of parameters transparent to the user of the class.

Methods can be overloaded in C++, C#, and Java, but not in PHP. Since PHP
does not have strong typing, a function parameter can already accept any data type by
default. In combination with this PHP allows default parameter values – thus enabling
the effect of method overloading. Default parameters are also avaliable in C++, but
not in C# or Java. They are defined in the same way in PHP and C++, simply by
assigning values to the arguments, starting with the last argument of the method.

Example 15. Method overloading and default parameters.

Java C#
void F(int a) {}
void F(float a) {}

void F(int a) {}
void F(float a) {}

C++ PHP

void F(int a = 3) {}
void F(float a = 3.14) {} function F($a = 3.14) {}

‐ 27 ‐

6.4.3 Variable Parameter Lists
In all four languages it is possible to make a function take a variable number of
arguments. This is done by using the params keyword in C# as a modifier to the last
argument of the method which must be an array[39]. Similarly, the same effect is
achieved in Java by appending an ellipsis “…” to the type name of the last argument of
the method[40]. Just as in C# the argument becomes available as an array in the called
method.

A variable parameter in C++ is also created using an ellipsis, but unlike in Java it
is added as an argument to the end of the list. The optional arguments can then be
retrieved by using the va_list, va_start, va_arg, and va_end macros[41].
Unlike the other languages, PHP always allow more arguments to be passed then are
specified in the method declaration. These additional arguments can be accessed
using the built-in functions func_get_arg(), func_get_args(), and
func_num_args().

Example 16. Methods that accept a variable number of parameters.

Java C#
void F(int... args)
{
 for(int i : args) {}
}

void F(params int[] args)
{
 foreach (int i in args) {}
}

C++ PHP
#include <stdargs.h>
void F(int first, ...)
{
 int i = first;
 va_list marker;
 va_start(marker, first);

 while(i != -1)
 i = va_arg(marker, int);

 va_end(marker);
}

function F()
{
 $args = func_get_args();
 foreach ($args as $arg) {}
}

6.4.4 Main Method
The entry point of C++, C#, and Java programs is the main method. PHP does not
have a specific method from which execution starts. Instead, the scripts are simply
executed from top to bottom.

The syntax of the main method varies somewhat between the languages. In Java
this method must have the public static void modifiers and accept the
command-line arguments as a string array. The main method in C++ needs to have
the int return type, but it is optional whether the method actually returns an integer
or not. The parameter list for main may be empty or contain the number and values of
the command-line arguments.

The main method in C# must be capitalized as all methods are by convention in
.NET. It can return a value of either int or void type and can be declared with or
without the command-line string array parameter. If the int type is specified, then
the return statement is not optional as it is in C++. The static modifier must be
applied to main just as in Java, but the method does not have to be marked as
public. The main method will default to private access so that only the CLR can
invoke the method[42].

‐ 28 ‐

Example 17. Valid main function signatures[43].

Java C#
public static void main(String[] a)
public static void main(String a[])
public static void main(String... a)

static void Main()
static void Main(string[] a)
static int Main()
static int Main(string[] a)

C++ PHP

int main(int argc, const char* a[])
int main() // has no main method

‐ 29 ‐

7. Advanced Syntax and Semantics

7.1 Class
A class is a template used to create objects. Each class is made up of class members,
with the main two members being fields and methods. Fields are variables that hold
the state of the object, while the methods define what can be done to the instance of
the object.

In Java and C# everything belongs to a class and there are no global functions or
data. Although classes are important in C++ and PHP, they are not required. The
equivalent of global functions and fields in C++ and PHP would be using static
methods and fields within a class in Java or C#.

Class methods in C++ can be defined either inside or outside of the class, while
in the other three languages class methods are only allowed inside of the class. A
method in C++ that is implemented inside the class becomes an inline method, but if
it is defined outside of the class then it is outline method. An outline class method has
only a prototype defined inside the class and the actual implementation follows the
class definition. The method’s name outside the class must be prefixed with the class
name and the scope resolution operator “::” to indicate which class it belongs to[44].
A class definition in C++ is also different from the other three languages in that it
always ends with a semicolon.

Objects in C++ can be created on either the stack or the heap. An object in the
heap is created with the new keyword and stack-based objects are created without the
use of new. The initialization part used when creating stack-based objects can
optionally be left out, in which case the no parameter constructor will be used to
create the object. Java and PHP have no way of creating objects on the stack,
however C# can create stack-based types using the struct keyword as will be
shown later (See section 8.5).

Fields in Java, C#, and PHP can be given initial values at the same time as they
are declared. These values cannot refer to non-static fields or methods of the currant
instance, but can otherwise be set as in the constructor. Direct assignments to fields
cannot be done in C++; thus all field initialization must be performed using the
constructor.

Another difference with regard to fields is that PHP has to use the $this pseudo
variable to access instance fields from inside a class. In the other languages this
also exists as a keyword referencing the current instance, but it is not necessary to use
it in order to access instance fields.

All members of a class are accessed using the dot operator in Java and C#. This
operator is also used in C++ for accessing instance members of stack-based objects.
PHP has the arrow operator “->” to access instance members, this same operator is
used in C++ when accessing objects allocated in the heap.

‐ 30 ‐

Example 18. Creating and using classes and class methods.

Java C#
class MyClass
{
 public void MyMethod() {}

 public static void
 main(String[] a)
 {
 MyClass c = new MyClass();
 c.MyMethod();
 }
}

class MyClass
{
 public void MyMethod() {}

 static void Main()
 {
 MyClass c = new MyClass();
 c.MyMethod();
 }
}

C++ PHP

class MyClass
{
 public:
 void MyMethod();
 void MyInlineMethod() {}
};
void MyClass::MyMethod() {};

int main()
{
 MyClass stack;
 stack.MyMethod();

 MyClass* heap = new MyClass();
 heap->MyMethod();
 delete heap;
}

class MyClass
{
 function MyMethod() {}
}

$c = new MyClass;
$c->MyMethod();

7.1.1 Static
The static keyword is used to declare fields and methods that can be accessed without
having to create an instance of the class. These static members exist as a single copy
which belongs to the class itself, whereas instance members are created as new copies
for each new object.

In C++ and PHP variables can also be declared static inside a function to enable
the function to remember the state of the variable. This variable can still only be used
inside the function’s scope, but it retains its value until the program ends. A class in
C# can also be marked as static, but only if it only contains static members and
constant fields. These static classes then become restricted, so that they cannot be
inherited or instanciated into objects.

To access a static member the class name is used instead of an object’s name.
Following this is the dot operator in C# and Java, just as when accessing instance
members; while PHP and C++ uses the scope resolution operator “::”.

‐ 31 ‐

Example 19. Creating and using static methods.

Java C#
class MyClass
{
 public static void F() {}

 public static void
 main(String[] a)
 { MyClass.F(); }
}

class MyClass
{
 public static void F() {}

 static void Main()
 { MyClass.F(); }
}

C++ PHP

class MyClass
{
 public:
 static void F();
};
void MyClass::F() {}

int main()
{ MyClass::F(); }

class MyClass
{
 static function F() {}
}

MyClass::F();

7.1.2 Constructors and Destructors
A constructor is a special kind of class method used to initialize an object. This
method is called whenever a new instance of a class is created. In C++, C#, and Java
the constructor has the same name as the class and does not have a return type, since
it implicitly returns an new instance of the class. The constructor in PHP 5 has the
special name __construct(), although using the class name as in the other
languages also works for backwards compatibility reasons[45]. Another difference in
PHP is that the parenthesis is optional when calling a constructor that takes no
parameters.

C++ member variables can be assigned values using the constructor’s
initialization list, as well as in the constructor itself like in the other languages. The
initialization list starts with a colon after the parameters to the constructor and is
followed by calls to the field constructors using the constructor initialization syntax
(See section 5.2).

In addition to constructors, classes can also have a destructor. The destructor is
called before an object is destroyed. Thus the destructor can release any unmanaged
resources allocated by the object. A class may only have one destructor and it never
takes any parameters or return anything.

In C++ and C# the destructor has the same name as the class, but unlike the
constructor it is prefixed by a tilde “~”. Java uses the finalize() method to define
its destructor and PHP has the __destruct() method.

Destructors are called automatically in C#, Java, and PHP by the garbage
collectors when objects are no longer used. However, in the case of C++ the
destructor is only invoked for stack-based objects when the object goes out of scope.
The destructor for objects in the heap must be called explicitly with delete, as
otherwise the system would have no way of knowing when an object could be gotten
rid of.

‐ 32 ‐

Example 20. Defining constructors and destructors.

Java C#
class MyClass
{
 public MyClass() {}
 public void finalize() {}
}

class MyClass
{
 public MyClass() {}
 ~MyClass() {}
}

C++ PHP

class MyClass
{
 public:
 MyClass();
 ~MyClass();
};

MyClass::MyClass() {}
MyClass::~MyClass() {}

class MyClass
{
 function __construct() {}
 function __destruct() {}
}

7.1.3 Class Members
Classes in all four languages can contain fields and methods. In the case of PHP,
these are the only two class members that are allowed. C++ classes have a little bit
more variety due to the addition of the enum type and overloaded operators[46].

The enum type is also available in Java and C#. These languages are also the only
two that allow interfaces and other classes to be contained in a class. Although C++
does not allow a class to directly enclose another class, it is legal to define classes
inside of functions. This is also allowed in Java, but not in C# or PHP.

C# has by far the largest variety of class members. In addition to those already
mentioned, classes may also contain delegates, events, properties, indexers, operator
overloading methods, and implicit/explicit type conversion methods.

Table 7. Allowed class members.

C++ PHP Java C# Description

fields fields fields fields class variables

methods methods methods methods class functions

 interface interface class contract

 class class nested class

enum enum enum constant container

operators operators overloaded
operators

 delegates, events function pointers

 properties, indexers accessor methods

 implicit, explicit type conversion

‐ 33 ‐

7.2 Access Modifiers
Each top-level* and class level member has an accessibility level which determines
where that member will be visible. As can be seen in the table below, all four
languages have the three access modifiers: public, protected, and private.
Members in Java can also have package private access, which cannot be declared
explicitly using a keyword. Package private corresponds to internal access in C#
and grants access within the entire assembly or package.

The protected modifier in Java has a different meaning from the other three
languages in that it grants access within the package as well as in derived classes,
which is the same as protected internal in C#. In contrast, the protected
access level used in the other three languages only grants access inside the defining
class and in deriving classes. Java does not have an equivalent to this.

Table 8. Class level access modifiers.

C++ PHP Java C# Accessible from

public public public public Anywhere

protected protected protected Inside defining or derived class

private private private private Inside defining class

 default internal Own assembly/package

 protected protected
internal

Own assembly and derived
classes

Java has package private access by default for all class and top-level members. Class
members in C++ and C# have private access by default, while PHP class members
become public without an access modifier. Namespace members have internal
access by default in C#, while such members cannot have any access modifiers in
C++ or PHP. In addition to internal in C# and package private in Java, top-level
elements can also be granted public access in both languages, but nothing else.

The syntax for using access modifiers is the same in all languages, except for
C++. In the case of C++, the access modifier is followed by a colon and becomes the
default modifier for all subsequent members. In the other languages an access
modifier only applies to a single member. Fields in PHP must have an explicit access
modifier or be declared using the deprecated var keyword which gives them
public access. Fields cannot be declared by only using the field’s name as is done
when declaring local variables.

Example 21. Using access modifiers.

Java C#
class MyClass {
 int y; // package private
 public int x;
}

class MyClass {
 int y; // private
 public int x;
}

C++ PHP

class MyClass {
 int x; // private
 public: int y;
};

class MyClass {
 var $y; // public
 public $x;
}

* A top-level member is declared directly in a namespace (See section 8.1)

‐ 34 ‐

7.3 Inheritance
Inheritance enables a class to reuse accessible members from another class. The child
class also gains the ability to be used instead of the parent class. C#, Java, and PHP
only support a single-inheritance of classes, while C++ supports multiple inheritance.
The reason for this is because “multiple inheritance causes more problems and
confusion than it solves”[47]. Most notably, the ambiguity that arises when two parents
defines the same method, known as the diamond problem[48].

Java and C# uses a single-rooted class hierarchy where all objects ultimately
inherit from the root class Object. Therefore, if no base class is specified then the
class will implicitly inherit from Object. This does not apply to the fundamental
types in Java which are disjoint from the object model, while C# provides a
completely unified type system where all types are derived from Object. In C#, the
fundamental types are merely aliases for objects, for example int is actually an alias
for System.Int32 (a struct). C++ and PHP have no single root class, although
the object data type exists in PHP.

As can be seen in the examples below, Java and PHP uses the extends
keyword when utilizing inheritance, while C++ and C# uses the colon operator.
Another difference is that when a class is inherited in C++ it is possible to change the
access level of the inherited members. For the other languages public inheritance is
the default and is the only inheritance level which let all members keep their original
access[49]. However, the default inheritance level in C++ is private, which gives all
inherited members private access.

Example 22. Inheriting a class.

Java C#
class Apple extends Fruit {} class Apple : Fruit {}

C++ PHP

class Apple : public Fruit {}; class Apple extends Fruit {}

7.3.1 Overriding
In Java, class methods are always virtual. Therefore, redefining an inherited class
method in Java will override the parent’s implementation. This means that the
method will be redefined both upwards and downwards in the class hierarchy, so
even if the class is upcast the redefined method will still get called. In contrast,
redefining an instance method will only hide the parent’s method. If the child class is
then upcast to the parent’s type, then the parent’s definition will be used.

In C# and C++, methods are non-virtual by default and can only be made
virtual by explicitly specifying this keyword. This means that both the hide and
override mechanisms can be applied to any methods in C++ and C#. An inherited
method in C# can be hidden using the new keyword; additionally if the parent
method is marked as virtual it can be overridden with the override keyword. In
contrast, C++ will implicitly override the parent’s method if it is declared with the
virtual modifier, and implicitly hide it if it is non-virtual.

Redefining inherited methods is also allowed in PHP, but because of the loose
typing concepts such as hiding and overriding are not relevant. There is no way to
encapsulate a child class in a parent container, because attempting to do so would
automatically convert the container to the child’s type.

‐ 35 ‐

Example 23. Overriding and hiding parent methods.

Java C#
class A
{
 public void F() {}
 public static void G() {}
}
class B extends A
{
 // overrides
 public void F() {}

 // hides
 public static void G() {}
}

class A
{
 public void F() {}
 public virtual void G() {}
}
class B extends A
{
 // hides
 public new void F() {}

 // overrides
 public override void G() {}
}

C++ PHP

class A
{
 public:
 void F() {}
 virtual void G) {}
};
class B : public A
{
 // hides
 public void F() {}

 // overrides
 public void G() {}
};

class A
{
 function F() {}
}
class B extends A
{
 // redefines
 function F() {}
}

7.3.2 Final
Java, PHP, and C# all provide class modifiers to prevent a class from being inherited.
The final modifier is used in Java and PHP, while C# has the sealed keyword. In
addition to this functionality, the final keyword can also be used as a method
modifier, both in Java and PHP. It prevents the method from being overridden by
derived classes. To achieve the same result in C# and C++ the methods just have to
not be marked as virtual.

Example 24. Non-virtual methods and classes that cannot be inherited.

Java C#
final class A
{
 final public void F() {}
}

sealed class A
{
 public void F() {}
}

C++ PHP

// not supported

final class A
{
 final function F() {}
}

‐ 36 ‐

7.3.3 Calling Constructors
All four languages provide a way to call a base class constructor with specific
parameters. C# and Java also allow calling one constructor from another constructor
within the same class[50]. However, this constructor chaining cannot be done in C++.
Additionally, constructor chaining is not supported in PHP since this language has no
method overloading and therefore there is only one constructor per class.

In C# and Java the first line of a constructor must either be a call to another
constructor or a call to the base class constructor. If the first line is neither of these,
then the compiler automatically inserts a call to the base class’s default constructor.
Invoking another constructor is done using the this keyword in both languages,
while calling the base class constructor is done using super in Java and base in
C#. Unlike Java, the this() call in C# is done by placing the call before the
constructor’s body, similar to the constructor’s initialize list in C++.

The default base class constructor is not implicitly called in C++. Instead, the
constructor must be explicitly invoked in the beginning of the constructor’s
initialization list using the parent’s class name. PHP is the only language where the
parent’s constructor is inherited. Therefore the base class constructor only needs to be
called if the child class also defined a constructor. In order to invoke a parent’s
constructor its class name is followed by the scope resolution operator “::” and a
call to the constructor. This call does not have to be the first line of the constructor, as
in all the other three languages.

A minor difference between the four languages is that the super and base
keywords in Java and C# only allow access to methods in the immediate parent class,
i.e., a single level up in the hierarchy. However, base-class scoping in C++ and PHP
allows access to methods that are deeper in the hierarchy.

Similar to C++, if a class constructor is not defined in C#, Java, or PHP, a default
constructor with no parameters is automatically generated. The default constructor in
C++ only allocates memory for the object, but does not initialize the fields, while the
other three language’s default constructor initializes all fields to their default values.

‐ 37 ‐

Example 25. Calling base class constructors and constructor chaining.

Java C#
class Shape
{
 public String name;
 public Shape(String a)
 { name = a; }
}
class Square extends Shape
{
 int x;
 public Rectangle()
 { this(10); }
 public Rectangle(int a)
 {
 super("Box");
 x = a;
 }
}

class Shape
{
 public string name;
 public Shape(string a)
 { name = a; }
}
class Square : Shape
{
 int x;
 public Rectangle() : this(10) {}
 public Rectangle(int a)
 {
 base("Box");
 x = a;
 }
}

C++ PHP

#include <string>
using namespace std;
class Shape
{
 public: string name;
 Shape(string a)
 { name = a; }
}
class Square : Shape
{
 public: int x;
 Rectangle() :
 Shape("Box"), x(10) {}
 Rectangle(int a) :
 Shape("Box"), x(a) {}
}

class Shape
{
 public $name;
 function __construct($a)
 { $this->name = $a; }
}
class Square extends Shape
{
 var $x;
 function __construct($a = 10)
 {
 Shape::__construct("Box");
 $this->x = $a;
 }
}

7.4 Interface
An interface is used to specify members that deriving classes must implement. This is
a powerful language feature avaliable in Java, PHP, and C#. Although classes in these
languages may only inherit from a single base class, they can implement any number
of interfaces. This enables multiple inheritance of types, while avoiding the problems
associated with multiple inheritance of implementation, i.e., there can be only one
applicable implementation.

In Java and PHP an interface can contain method signatures* and constants, while
in C# they can contain signatures of methods, properties, indexers, and events. The
signatures does not have any implementations, instead their bodies are replaced by
semi-colons. All interface members are implicitly marked public. Explicitly
declaring members as public is optional in Java and PHP, but illegal in C#. Fields in
Java interfaces are also implicitly marked with static final, forcing them to
become compiler-time constants.

To specify what interfaces a class must implement the interfaces are placed in a
comma-separated list after the class name. In C#, the interfaces are mixed in with the
base class, while in PHP and Java the interfaces are listed after the implements
keyword. By convention, the interfaces are placed after the base class.

* A method signature includes the method’s name, the number and type of its parameters, and its return type.

‐ 38 ‐

Example 26. Using and declaring interfaces.

Java C#

interface MyInterface
{
 int MyMethod();
 int PI = 3.14;
}

class C implements MyInterface {…}

interface MyInterface
{
 int MyMethod();
 int MyProperty { get; set; }
 int this[int index] { get; set; }
 event System.EventHandler MyEvt;
}

class C : MyInterface {…}

C++ PHP

// not supported

interface MyInterface
{
 public function MyMethod();
 const PI = 3.14;
}

class C implements MyInterface {…}

7.4.1 Explicit Interface Implementation
The ambiguity problem with multiple inheritance still remains with interfaces. If two
interfaces are implemented in the same class and have the same method signature
there will be a conflict. In Java and PHP, there is no solution to this problem and a
single method will be implemented for both interfaces. C# solves this problem
through the use of explicit interface methods which allows an implemented method to
be bound to a specific interface. Explicit interface methods will always be private and
therefore hide the method from the primary class interface.

Example 27. Explicit interface implementation.

C#
public interface INetwork { void Close(); }
public interface IFile { void Close(); }

public class Node : INetwork, IFile
{
 void INetwork.Close() {}
 void IFile.Close() {}
}

// Usage
IFile f = new Node();
f.Close();

7.5 Abstract Class
A class declared as abstract can contain abstract class members. These classes are
similar to interfaces in that they both define member signatures that deriving classes
must implement and neither one of them can be instanciated. The key differences are
that the abstract class can contain non-abstract members while the interface cannot,
and that a class can implement any number of interfaces, but can only inherit from
one class, abstract or not.

Abstract classes and methods exists in C#, Java, and PHP with the same syntax
and functionality. The class is modified with the abstract keyword which permits the
use of the abstract function modifier that allows a method to be left undefined. In

‐ 39 ‐

addition to methods – which is the only class member in Java and PHP that can be
declared as abstract – C# also allows abstract properties, indexers, events, and
classes.

C++ can also implement abstract classes using pure virtual functions. To create a
pure virtual function the function’s prototype is assigned the value zero (=0). This
will force deriving classes to provide the implementation. Since C++ has multiple
inheritance these functions can also be used to simulate interfaces.

Example 28. Abstract classes and methods.

Java C#
abstract class MyAbstract
{
 public abstract int F();
}

abstract class MyAbstract
{
 public abstract int F();
}

C++ PHP
class MyAbstract
{
 public: virtual int F() = 0;
};

abstract class MyAbstract
{
 public abstract function F();
}

‐ 40 ‐

8. Expert Syntax and Semantics

8.1 Namespace
Namespaces are used to avoid naming conflicts and to organize types into groups in a
hierarchy. They are defined in the same way in both C++ and C#, using the
namespace keyword followed by an identifier and a code block containing the
grouped members. In both of these languages multiple namespaces can be defined
within a single source file and the same namespace may exist in several files.

Java uses packages to organize types. Unlike namespaces, a package by
convention specifies the folder where the source file is located. Therefore, there can
only be one package statement in each source file and it must be the first line of code
in the file. This means there is no way to declare members belonging to different
packages within a single sourcefile as can be done with namespaces.

As of version 5.3 PHP also includes namespaces[51]. They can be declared either
as in C++ with a code block, or with a statement as in Java where all code following
that statement belongs to the namespace. If namespace declarations are used in a
script, then all code in that file must belong to a namespace. The first namespace
therefore needs to be declared in the first line of the script. Although any PHP code
can be contained within a namespace, only classes, functions, and constants are
actually affected by them[51].

To access a namespace member from outside of that namespace, the dot operator
is used in both C# and Java. While C++ uses the scope resolution operator “::” and
PHP uses the backslash character “\” for this purpose. Like C++, C# also has the
“::” operator, but calls it the namespace alias qualifier operator. C# uses this
operator to qualify the global namespace (global::) if there are any
ambiguities[52].

Example 29. Namespace declarations.

Java C#

package Hello.World; namespace Hello.World { … }

C++ PHP

namespace Hello::World { … } namespace Hello\World;
namespace Hello\World { … }

8.1.1 Namespace Members
PHP allows any code to be contained directly within a namespace. This not only
includes classes, interfaces, functions and data, but also executable statements. In the
other three languages statements may only be used within functions. C# and Java
only allow certain container types to be declared as top-level members. Java has three
of these: class, interface, and enum. Adding to that list C# has struct and
delegate, as well as nested namespaces. The top-level container types allowed in
C++ include: class, struct, union, enum, and nested namespaces. C++ also
permits functions and data to be declared globally.

‐ 41 ‐

Table 9. Allowed top-level members.
C++ PHP Java C# Description

class class class class object template

 interface interface interface class contract

enum enum enum constant container

 delegate function pointer

namespace namespace nested namespace

struct/union struct lightweight class

functions functions global function

variables variables global data

8.1.2 Using Namespaces
Accessible namespace members can always be referenced using their fully qualified
name*. However, it is generally easier to import the namespace so that the members
can be referenced using only their name. Importing namespaces in C# is done with
the using keyword, Java has import, and C++ has using namespace. The
C# and Java keywords must both be defined globally at the top of the source file,
while the C++ keywords may be used anywhere, i.e., globally or even inside of code
blocks.

Since C#, Java, and PHP are all run in managed environments their standard
library functions are always readily availiable. However, in C++ programs merely
importing a namespace does not provide access to the members included in that
namespace. Due to the requirement that prototypes have to be available the
programmer also needs to include either the relevant prototypes or an include file
which has these declarations – the later can be done using the #include directive.

PHP does not have any means for importing namespaces, as the standard library
functions are all part of the global namespace there is no great need for explicitly
importing namespaces. However, to import user-defined functions and types PHP
does provide a built-in include() method, which similarly to #include in C++
it inserts the content of the indicated file. An important difference between these two
includes is that in PHP the include is done during compilation and in C++ it is done
before compilation.

Java allows importing of packages as well as specific classes. In contrast, C# and
C++ only allow importing of whole namespaces. Java is also the only one of the four
languages that can perform a static import – in order to import all static members of a
class so that they can be used without having to specify the class name.

* A fully qualified name specifies the absolute path to a member by including the namespace hierarchy where that
member is located. For example, the fully qualified name for the C# WriteLine() function is
System.Console.WriteLine().

‐ 42 ‐

Example 30. Importing code and/or namespaces.

Java C#
import java.util.List;
import java.util.*;
import static java.awt.Color.*;

using System;

C++ PHP
#include <iostream>
using namespace std; include("MyClass.php");

8.1.3 Alias
Aliasing is used to create alternative names for existing namespaces and types. This is
typically done to shorten fully qualified names or to avoid namespace collisions.
Type aliasing also allow aliased types used throughout a program to be changed
easily from a single location in the code. C++, C#, and PHP all allow types and
namespaces to be aliased, while Java does not. C++ uses typedef to alias a type
and namespace to alias a namespace. The typedef keyword is followed by the
type and then the alias, while namespace is followed by the alias which is assigned
a namespace.

C# has the using keyword for creating both type and namespace aliases, which
both are declared in the same way as the C++ namespace alias. PHP also uses the
same keyword for both type and namespace alias, namely use. This keyword is
followed by the path to the type or namespace separated by backslashes and then the
as keyword along with the alias. If the as part is left out, then the type or namespace
name itself will be used as the alias.

Example 31. Type and namespace aliasing.

Java C#

// not supported using MyType = My.Name.MyClass;
using MyAlias = My.Name;

C++ PHP
typedef My::Name::MyClass MyType;
namespace MyAlias = My::Name;

use My\Name\MyClass as MyType;
use My\Name as MyAlias;

8.2 Preprocessor
The C++ preprocessor directives tells the preprocessor to perform specific actions
before the actual compilation takes place. Two commonly used directives are
#define to replace tokens in the code and #include to insert the contents of
other files into the source file[53]. There is also directives for conditional compilation
using #if, #elif, #else, and #endif, which can be useful for debugging and
cross-platform portability[53].

C# does not have a preprocessor, but it does include a smaller set of the C++
preprocessor directives, mainly used for conditional compilation[54]. Specifically,
there is no #include directive and the #define constants can only be used to
specify compilation conditions. Java does not have any preprocessor directives and
neither does PHP. Even though PHP stands for “PHP hypertext preprocessor” this
simply refers to the HTML being dynamically generated and not that PHP would
have a preprocessor similar to C++. PHP does include some functions similar to

‐ 43 ‐

preprocessor directives, such as the declare() and include() functions
meantioned earlier (See sections 5.3 and 8.1.2)[55]. However, since PHP is normally
not compiled until runtime[56] these functions do not give the performance benefit of
preprocessor directives.

Example 32. Using preprocessor directives.

C++ C#
#define DEBUG
#if DEBUG
 // …
#else
 // …
#endif

#define DEBUG
#if DEBUG
 // …
#else
 // …
#endif

Java PHP

// not supported // not supported

8.3 Exception Handling
Exception handling is used to deal with unexpected situations that may occur in a
program. To handle exceptions all four of the languages use the try-catch statement.
This statement consists of a try block containing the code that may cause the
exception, and one or more catch blocks for handling exceptions. Java and C# also
have the finally block to clean up resources allocated in the try block.

Exceptions are thrown using the throw keyword in all four languages. Only
classes inheriting from Throwable can be thrown in Java, while classes deriving
from Exception may be thrown in C# and PHP. In C++ any data type can be given
as an argument to throw. However, there are also standard exceptions which are
derived from the class exception.

Example 33. Generating and handling exceptions.

Java C#
try { throw new IOException(); }
catch (IOException e) { }
catch (Exception e) { }
finally { }

try { throw new IOException(); }
catch (IOException e) { }
catch (Exception e) { }
finally { }

C++ PHP
try { throw "Failed"; }
catch (string e) {}
catch (...) {}

try { throw new Exception(); }
catch (Exception $e) {}

8.3.1 Exception Specification
An exception specification is a guarantee that a function will only throw the specified
exceptions. This mechanism exists in Java and C++, but not in C# or PHP. Java
specifies exceptions after the function parameter list using the throws keyword
followed by the exception types. Exceptions in Java are grouped into two categories;
checked and unchecked, depending on whether or not they need to be specified.
Methods that throw checked exceptions will not compile unless these exceptions are
specified and the calling method catches them. Unchecked exceptions on the other
hand do not have to be caught or declared with the throws clause.

‐ 44 ‐

Exceptions in C++ are specified using the throw keyword similarly to Java.
However, Java’s exception specification is superior to that in C++, because Java’s
specifications are checked and enforced at compile time. C++ compilers do not force
exceptions to be specified nor will they complain if the wrong exceptions are thrown.
The main reason to specify exceptions is to inform the programmer of what
exceptions a function may throw[57]. The exception specification in C++ is therefore
only marginally better than in C# and PHP, as in the later two languages there is no
way to programmatically specify what exceptions a function may throw. Instead, in
these languages it is up to the developer of the methods to document this.

Example 34. Specifying exceptions.

Java C++

void F() throws IOException {…} void F() throw (int) {…}

C# PHP

// not supported // not supported

8.4 Enumerator
An enumerator is a special type containing a fixed list of named constants. Compared
to using ordinary constants, the enum type forces the programmer to clearly specify
what constant values are allowed. This makes enumerators more readable and easier
to use than constants. The enum data type exists in C++, Java, and C#. The type is
not supported in PHP, but associative arrays can be used to achieve the same result.
However, associative arrays can be updated at runtime – while enumerators are static.

Enums in C++ and C# are very similar and can be seen as syntacic sugar around
the integer types. They both allow the data type of the constants to be defined and the
default constant values to be overriden. Java enums in contrast to C# and C++ are
much more powerful. Introduced in Java 1.5, the enum type is a special class that
extends java.lang.enum and can have fields and methods just as any other
class[58].

Example 35. Creating an enumerator.

Java C#

enum State { Run, Stop } enum State : byte
{ Run = 0, Stop = Run + 5 }

C++ PHP

enum State : short
{ Run = 0, Stop = Run + 5 };

// workaround
$State = array("RUN"=>0, "STOP"=>5);

8.5 Struct
The struct data type exists in both C# and C++, but are significantly different. In
C++ a struct is exactly like a class, except that the default access level is public
rather than private[59]. In contrast, the struct keyword in C# is used to create a
stack-based value type, which can be seen as a lightweight class. C#’s struct does not

‐ 45 ‐

allow inheritance nor can they be inherited by classes, but they can implement
interfaces. Structs do not exist in PHP or Java.

Example 36. Creating a struct.

C++ C#
struct Point
{
 int x, y;
};

struct Point
{
 public int x, y;
}

Java PHP

// not supported // not supported

8.6 Operator Overloading
Operator overloading allows operators to be redefined and used where one or both of
the operands are of the user-defined class. When done correctly, this can simplify the
code and make user-defined types as easy to use as the fundamental types. This
feature is supported in both C++ and C#, but not in Java or PHP. However, the
String class in Java does have the “+” and “+=” operators overloaded, but they
exist as a special built-in case.

C++ supports overloading for all operators shown in the operator table earlier
(See Table 5 on page 17), along with a couple of others (new, delete, [], –>, *, -
>, (), &, and comma)[60]. C# allows overloading of almost all operators in the same
table (minus &&, ||, and adding: true, false)[61]. The combined assignment
operators cannot be overloaded explicitly in C#, but their semantics are changed as
their corresponding arithmetic or bitwise operators are overloaded. Also, certain C#
operators must be overloaded in pairs (== !=, < >, <= >=, and true false).

The syntax for performing operator overloading is similar in C++ and C#. Both
languages use the operator keyword followed by the operator symbol as the
function name. However, in C# the function is static, thus one of the parameters must
be of the containing type. This is different from C++ where the operator is implicitly
applied to the current instance of the class. The operator overloading function
therefore requires one less parameter in C++ than in C#.

‐ 46 ‐

Example 37. Operator overloading.

C++ Java
class MyNum
{
 public:
 int val;
 MyNum(int i) : val(i) {}

 MyNum operator+(MyNum &a)
 { return MyNum(val + a.val); }

 MyNum operator++()
 { return MyNum(val + 1); }
};

// not supported

C# PHP
class MyNum
{
 public int val;
 public MyNum(int i) { val = i; }

 public static MyNum operator +(MyNum a, MyNum b)
 { return new MyNum(a.val + b.val); }

 public static MyNum operator ++(MyNum a)
 { return new MyNum(a.val + 1); }
}

// not supported

8.7 Implicit and Explicit Conversions
C# allows the programmer to explicitly define custom type conversions for an object.
The function signature looks similar to that used in unary operator overloading, but
instead of an operator symbol the return type is specified and the parameter is the
type that needs to be converted. The function must also be defined as either explicit
or implicit. The explicit keyword declares a conversion that must be invoked
with an explicit cast and the implicit keyword declares an implicit conversion.

Custom defined implicit and explicit conversions do not exist in PHP or Java, but
they can be defined in C++. However unlike C#, conversion from the object type
cannot be implemented in C++, only conversions to the object type are allowed.
Implicit conversions are defined by overloading a constructor to take a single
parameter of the desired type. When that type is assigned to an instance of the class,
then the constructor will implicitly be called to perform the conversion. To define an
explicit conversion the explicit constructor modifier is used, which specifies that
the constructor may only be used when an explicit cast is present.

‐ 47 ‐

Example 38. Custom type conversions.

C++ Java
#include <string>
using namespace std;

class MyType
{
 int i; string s;
 public:
 MyType(string a) { s = a; }
 explicit MyType(int a) { i = a; }
};

void test()
{
 MyType A = "Hi"; // implicit
 MyType B(10); // explicit
 B = (MyType)10; // explicit
 B = 10; // illegal
}

// not supported

C# PHP
class MyType
{
 private int i;
 public MyType(int a) { i = a; }

 public static implicit operator
 int(MyType t) { return t.i; }

 public static explicit operator
 MyType(int i) { return new MyType(i); }

 void test()
 {
 MyType x = (MyType)5; // explicit
 int i = x; // implicit
 }
}

// not supported

8.8 Properties
Accessor methods (getters and setters) are commonly used to provide safe access to
fields. To make this easier, C# has special built-in methods called properties. The first
part of a property looks like a field declaration, but is followed by a code block which
includes a get and/or a set accessor. These accessors in turn have their own code
blocks which return and assign the corresponding property’s value. C# properties
have the advantage over normal methods that they are implemented as methods, but
used as though they are fields. This allows them to hide implementation or
verification code; while at the same time giving easy access to the fields[62].

‐ 48 ‐

Example 39. Using accessor methods.

Java C#
class Time
{
 private int seconds;

 public int getSec()
 { return seconds; }

 public void setSec(int s)
 { seconds = s; }
}

class Time
{
 private int seconds;

 public int sec
 {
 get { return seconds; }
 set { seconds = value; }
 }
}

C++ PHP

class Time
{
 int seconds;
 public:
 int getSec()
 { return seconds; }

 void setSec(int s);
 { seconds = s; }
};

class Time
{
 var $seconds;

 function getSec()
 { return $seconds; }

 function setSec($a)
 { $seconds = $a; }
}

8.8.1 Indexers
An indexer is a special kind of accessor method available in C# that allows an object
to be accessed like an array. This can be useful for example when a class is created to
hold a collection type. Indexers are declared in the same way as properties, except
that the this keyword is used instead of a name and their accessors takes one or
more parameters.

The effect of the indexer’s get accessor can be duplicated in C++ by overloading
the square brackets. However, Java and PHP have no similar feature, thus the
programmer would have to use normal accessor methods.

Example 40. Using indexers.

C++ C#
class MyArray
{
 int a[10];
 public:
 int operator[](int i)
 { return a[i]; }
};

class MyArray
{
 object[] data
 = new object[10];

 public object this[int i]
 {
 get { return data[i]; }
 set { data[i] = value; }
 }
}

Java PHP

// not supported // not supported

‐ 49 ‐

8.9 Generics
Generics provide a way to make a class or function operate with any type. This is
done by adding one or more special type parameters to the class or method. This
allows greater code reuse, type safety, and increased performance[63].

Generics are a relatively recent feature that were not added until C# version 2.0
and Java version 1.5[63][64]. PHP does not support generics, but C++ has templates
which provide the same functionality. The syntax for generics is very similar in Java
and C# and only slightly different than templates in C++. To use generics the type
parameter (typically called “T”) is surrounded by angle brackets after the class or
method identifier. All uses of this generic type inside the body will be replaced when
the class is instantiated or the method is called. In C++ the format for class and
function templates is “template <class type>” followed by the class or
function declaration[65].

Generic programming is implemented differently in all three languages. One
difference is that in C++ separate copies of the class or function are generated for
each type parameter when compiled, which is not the case in Java or C#[66]. Another
difference is that Java does not allow generics with fundamental types, while any
types are allowed in C# and C++. In C#, generics can be specified for interfaces,
events and delegates, in addition to classes and methods.

Example 41. Using generics.

Java C#
class MyGeneric<T>
{
 void Add(T t) { }
}

MyGeneric<Integer> g
 = new MyGeneric<Integer>();

class MyGeneric<T>
{
 void Add(T t) { }
}

MyGeneric<int> g
 = new MyGeneric<int>();

Java PHP
template <class T>
class MyGeneric
{
 void Add(T t) { }
};

MyGeneric<int> g;

// not supported

‐ 50 ‐

9. Software Development
In addition to the programming syntax tutorials there were also two software
development tutorials produced in this project; one for Java and another for C# (See
Appendix 1). Both of these software development tutorials demonstrate how to build
a basic text editor and their solutions will be compared in this chapter. The focus of
this tutorial series is to teach practical programming techniques, rather than
programming basics. Therefore, the tutorials do not include any lengthy explanations
of the GUI controls or standard library functions that are used. Instead, those areas
will be covered in future tutorial series’.

One of the challenges in making these software development tutorials was to
keep the sections independent of each other. As mentioned in the beginning of this
thesis (See section 2.1 on page 3) this was one of the criteria for making a tutorial
easy to update. The reason why this criteria was difficult to implement is because
each section in an example application tutorial literary builds upon the previous ones.
In order to solve this I had to structure the tutorials so that each section only showed
the code that was relevant to that section as much as possible, without displaying
more than collapsed code blocks of methods implemented in previous sections. This
technique of not showing previously implemented code was not always feasible to
use, but it did allow large parts of the sections to be independent of each other.

9.1 Section I – Multipad
The first section in this tutorial series provides a short introduction and shows the
student how to set up the project. The name I chose for the project – Multipad –
comes from a Sourceforge project[67] I had created a long time ago by the same name.
As in the programming syntax tutorials the development environments used for these
practical tutorials are Visual Studio for C# and Netbeans for Java. Microsoft Visual
Studio was the obvious choice for the tutorial that would demonstrate real life C#
development, because it is by far the most widely used IDE among software
developers[68]. Since Visual Studio is also available in free lightweight versions, such
as Visual C#, there was also no reason to use a free alternative, such as
SharpDevelop[69]. My choice of using Netbeans for the practical Java tutorial was not
as easy to make since both Eclipse[70] and IntelliJ IDEA[71] are great alternatives. Still,
I decided to keep using Netbeans because in contrast to IDEA Netbeans is free, and in
contrast to Eclipse it includes a built-in visual GUI builder that would make designing
the text editor’s interface much easier.

9.2 Section II – Interface
The second section creates the interface for the text editor, which consists of a
textbox and a menu. In both the Java and C# tutorials these interfaces are created
using visual builders. The textbox element corresponds to the JTextArea
component* in Java and to the TextBox control† in C#. The menu element is added
using the JMenuBar component in Java and the MenuStrip control in C#. To this
menu a couple of standard menu items are then added together with events for when
the items are clicked. In the C# version this type of event is called click and in Java
it is called actionPerformed.

To simplify the code the same event handler is used for all menu items. The C#
version of the event handler determines which menu item is clicked using a switch
statement. The expression for the switch statement is the name of the object that
triggered the event (passed through the sender argument) and the labels in the
switch are the names of all the menu items. This solution could not be used in Java

* A Java class inheriting from javax.swing.JComponent is called a component.
† A C# class inheriting from System.Windows.Forms.Control is called a control.

‐ 51 ‐

since the switch statement in this language cannot take a string as its expression.
Instead, a series of if-statements are used, which compare the menu items to the
source of the event.

At the end of the second section the edit menu items are implemented using
methods of the JTextArea and TextBox classes. The JTextArea does not
include an undo() method as the TextBox class does, but otherwise both classes
have methods for cut, copy, paste, and select all. The difference in the casing used for
the method names in the code shown below is intentional, because Java and C# have
different naming conventions.

Example 42. Implementing a menu event handler.

Java C#
private void menuAction(
ActionEvent evt)
{
 Object s = evt.getSource();
 if (s == mNew)
 newFile();
 else if (s == mOpen)
 openFile();
 else if (s == mSave)
 saveFile();
 else if (s == mSaveAs)
 saveFileAs();
 else if (s == mExit)
 System.exit(0);
 else if (s == mCut)
 txt.cut();
 else if (s == mCopy)
 txt.copy();
 else if (s == mPaste)
 txt.paste();
 else if (s == mSelectAll)
 txt.selectAll();
}

private void Menu_Click(object
sender, EventArgs e) {
 switch (((ToolStripMenuItem)
 sender).Name) {
 case "mNew":
 NewFile(); break;
 case "mOpen":
 OpenFile(); break;
 case "mSave":
 SaveFile(); break;
 case "mSaveAs":
 SaveFileAs(); break;
 case "mPrint":
 PrintFile(); break;
 case "mExit":
 Application.Exit(); break;
 case "mUndo":
 txt.Undo(); break;
 case "mCut":
 txt.Cut(); break;
 case "mCopy":
 txt.Copy(); break;
 case "mPaste":
 txt.Paste(); break;
 case "mSelectAll":
 txt.SelectAll(); break;
 }

9.3 Section III – New Open
The third section implements the new-file and open-file methods. The first of these
methods clears the textbox after giving the user the option of saving his or her
changes (See Example 42). In order to determine if any changes has been made the
C# version uses the Modified field of the TextBox control, while the Java version
only checks if the JTextArea is empty. This is because JTextArea does not
include a modified field, so this feature was originally left out of the Java version.
However, to make the Java text editor more similar to the C# editor the fifth section
of the Java tutorial adds a modified field.

If the textbox has been modified a confirm dialog box is displayed to the user.
This dialog box is created using the JOptionPane class in Java and the
MessageBox class in C#. If the user answers yes in the dialog box the still
unimplemented save-file method is called. Whatever answer the user gives the
textbox is then cleared. To do this the Java version sets the text in the textbox to an
empty string using the setText method of the JTextArea. The C# version does
the same using the Text property of the TextBox.

‐ 52 ‐

The Java version introduces the filepath string field in this section. This field
will hold the path to the currently opened file if any, and should therefore be cleared
when the new-file method is called. The C# version does not add this field until the
fourth section.

Example 43. Creating a new-file method.

Java C#
private void newFile()
{
 if (!txt.getText().isEmpty())
 {
 int r = JOptionPane.
 showConfirmDialog(this,
 "Save current document?",
 "Question",
 JOptionPane.YES_NO_OPTION);

 if(r == JOptionPane.YES_OPTION)
 saveFile();
 }
 txt.setText("");
 filepath = null;
}

private void NewFile()
{
 if (txt.Modified)
 {
 DialogResult r =
 MessageBox.Show(this,
 "Save current document?",
 "Save",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Question,
 MessageBoxDefaultButton.
 Button1);

 if(r == DialogResult.Yes)
 SaveFile();
 }
 txt.Text = "";
}

To implement the open-file method an open file dialog box is needed. In C# this
functionality is given by the OpenFileDialog class and in Java through the
JFileChooser class. If the user cancels the dialog box the method returns,
otherwise the new-file method is called in order to clear the textbox. The file selected
in the dialog box is then read into the textbox using the ReadToEnd() method of
the StreamReader class in the C# version. The code needed to read a file in Java
is a bit longer and so this functionality is delegated to another method called
open().

In this open() method a FileReader object is constructed using the path to
the selected file. This FileReader is then used to construct a BufferedReader
in order to be able to read more than one character at a time from the file. Unlike the
StreamReader class in C#, the BufferedReader does not have a method for
reading all characters at once. Instead, the buffer is read one line at a time using the
readline() method and the returned string is added to the JTextArea using the
append() method. This is repeated until the ready() method returns false with
the help of a while loop. Note that the readline() method does not return the
newline character(s). Therefore, the Java version, which has to be able to run on more
systems than Windows, needs to append the current systems line separator to each
line that is read. Finally, the open() method updates the filepath string to the
location of the opened file.

The C# version of the open-file method uses a finally block to close the file
reader. This solution is not used in the Java version, because the close() method of
the BufferedReader can thrown an IOException that must be caught.
Therefore, in order to avoid having another try-catch statement in the finally block
the buffer is closed at the end of the try block instead. In the case where a stream is
successfully opened, but still throws an exception when it is read, the garbage
collection will be responsible for closing the BufferedReader.

‐ 53 ‐

Example 44. Creating an open-file method.

Java C#
private void openFile()
{
 if(dFile.showOpenDialog(this) !=
 JFileChooser.APPROVE_OPTION)
 return;
 newFile();
 try {
 open(dFile.getSelectedFile().
 getPath());
 }
 catch (Exception e) {
 JOptionPane.showMessageDialog(
 this, e.getMessage());
 }
}

private void open(String file)
throws Exception
{
 BufferedReader in =
 new BufferedReader(
 new FileReader(file));
 String sep = System.
 getProperty("line.separator");
 while (in.ready())
 txt.append(in.readLine()+sep);
 in.close();
 filepath = file;
}

private void OpenFile()
{
 if (dOpen.ShowDialog() !=
 DialogResult.OK)
 return;
 NewFile();

 StreamReader sr = null;
 try {
 StreamReader = new
 StreamReader(
 dOpen.FileName);
 txt.Text =
 sr.ReadToEnd();
 txt.Modified = false;
 }
 catch (Exception e) {
 MessageBox.Show(
 "Failed to open file.\n"
 + e.Message);
 }
 finally {
 if(sr!=null) sr.Close();
 }
}

9.4 Section IV – Save SaveAs
The fourth section shows how to implement the save-file and save-file-as methods for
the text editor. The first of these methods saves the current document to the location
specified in the filepath string. If this string is not set then the save-file-as method
is called instead. The C# version saves the file using the WriteLine() method of a
StreamWriter object that is constructed using the filepath string. Before the
Java version can save the file it first has to construct a FileWriter object from
the filepath, and then use that FileWriter to construct a
BufferedWriter. The text can then be saved using the write() method of the
BufferedWriter class. Just as in the open-file method the Java version closes the
stream at the end of the try statement instead of from a finally clause as is done in the
C# version.

‐ 54 ‐

Example 45. Creating a save-file method.

Java C#
private void saveFile()
{
 if (filepath == null)
 { saveFileAs(); return; }

 try {
 BufferedWriter out =
 new BufferedWriter(
 new FileWriter(filepath));
 out.write(txt.getText());
 out.close();
 }
 catch (Exception e) {
 JOptionPane.
 showMessageDialog(
 this, e.getMessage());
 }
}

private void SaveFile()
{
 if (filepath == null)
 { SaveFileAs(); return; }

 StreamWriter sw = null;
 try {
 sw = new
 StreamWriter(filepath);
 sw.WriteLine(txt.Text);
 txt.Modified = false;
 }
 catch (Exception e)
 {
 MessageBox.Show(
 "Failed to save file.\n"
 + e.Message);
 }
 finally
 { if(sw!=null) sw.Close(); }
}

The save-file-as method asks the user for a location with the help of a save file dialog
box. In the C# tutorial, a SaveFileDialog class is created to display this dialog
box. The Java tutorial on the other hand can reuse the JFileChooser object
created for the open-file method to show a save file dialog box. If the dialog box is
canceled the method returns, otherwise the filepath string is updated to the
selected location and the save-file method is called.

Example 46. Creating a save-file-as method.

Java C#
private void saveFileAs()
{
 if(dFile.showSaveDialog(this) !=
 JFileChooser.APPROVE_OPTION)
 return;
 filepath = dFile.
 getSelectedFile().getPath();
 saveFile();
}

private void SaveFileAs()
{
 if (dSave.ShowDialog() !=
 DialogResult.OK)
 return;
 filepath = dSave.FileName;
 SaveFile();
}

9.5 Section V
The fifth section was the last section produced for this tutorial series during the
project and it implements different features for the Java and C# versions. The C#
section is labeled “Print” and goes a bit further than the Java tutorial by showing the
student how to implement a print() method. The Java section is labeled
“Modified” and adds a modified field to the text editor. This addition unfortunately
makes section five dependent upon changes in sections two, three, and four, since
section five needs to show those section’s code in order to implement the modified
flag. In retrospective, this field should have been added in the second section as was
done in the C# version.

‐ 55 ‐

10. Conclusions
This thesis project has shown that the MVT method is a viable alternative to the
traditional screen recording method, at least in the area computer programming. The
MVT method makes it easy to produce high quality tutorials using a streamlined
workflow. The produced tutorials can be updated quickly and are convenient to use.
The audio script makes it easy for the producer to keep the tutorials relevant and the
tutorial production rate is fairly quick, although not as fast as producing tutorials
using the screen recording method.

As for the e-learning wiki it did not receive any contributions during the thesis
project, but on the other hand it did not cost anything to maintain it. At the very least
the wiki makes it easier for visitors to report errors that they find in the tutorials.
Given more time and better marketing I am fairly certain that the e-learning wiki idea
would become successful.

10.1 Future Work
Although a substantial number of video tutorials have been added to PVT a lot of
work still remains. For example, once the syntax tutorials have been completed
tutorials covering programming libraries, user interfaces, and application
development will also need to be made. In order for PVT to grow at a faster rate I will
need to assemble a team to assist me with tutorial production, tutorial updating,
administration, marketing, and so on. By bringing more people onto this project the
MVT method will also likely come to evolve further. As I see it now there are still
some areas of the method that can be improved – mainly by improving the audio
quality and by automating the production of the various video formats.

‐ 56 ‐

Appendix A.
Table 10. List of video sections uploaded to PVT during the project.

Programming syntax sections

CPP - 01 - Introduction
CPP - 02 - Hello World
CPP - 03 - Compile and Run
CPP - 04 - Variables I
CPP - 05 - Variables II
CPP - 06 - Operators
CPP - 07 - Pointers
CPP - 08 - Arrays
CPP - 09 - String
CPP - 10 - Conditions
CPP - 11 - Loops

ASP.NET - 01 - Introduction
ASP.NET - 02 - Using ASP.NET
ASP.NET - 03 - Hello World
ASP.NET - 04 - Form Control
ASP.NET - 05 - HTML Controls
ASP.NET - 06 - Control Members
ASP.NET - 07 - Web Controls
ASP.NET - 08 - Events
ASP.NET - 09 - Events II
ASP.NET - 10 - User Controls
ASP.NET - 11 - Validation Controls

Java - 01 - Introduction
Java - 02 - Hello World
Java - 03 - Compile and Run
Java - 04 - Variables
Java - 05 - Operators
Java - 06 - String
Java - 07 - Arrays
Java - 08 - Conditions
Java - 09 - Loops
Java - 10 - Functions
Java - 11 - Class
Java - 12 - Static
Java - 13 - Inheritance
Java - 15 - Package and Import
Java - 16 - Access levels

PHP - 01 - Introduction
PHP - 02 - Using PHP
PHP - 03 - Variables
PHP - 04 - Operators
PHP - 05 - Strings
PHP - 06 - Arrays
PHP - 07 - Conditions
PHP - 08 - Loops
PHP - 09 - Functions
PHP - 10 - Class
PHP - 11 - Inheritance
PHP - 12 - Access Levels
PHP - 13 - Static
PHP - 14 - User Input
PHP - 15 - Cookie
PHP - 16 - Session

CSharp - 01 - Introduction
CSharp - 02 - Hello World
CSharp - 03 - Compile and Run
CSharp - 04 - Variables
CSharp - 05 - Operators
CSharp - 06 - String
CSharp - 07 - Arrays
CSharp - 08 - Conditions
CSharp - 09 - Loops
CSharp - 10 - Functions
CSharp - 11 - Class

CSharp - 12 - Inheritance
CSharp - 13 - Overriding
CSharp - 14 - Access Levels
CSharp - 15 - Static
CSharp - 16 - Properties
CSharp - 17 - Indexers
CSharp - 18 - Interface
CSharp - 19 - Abstract
CSharp - 20 - Namespaces
CSharp - 21 - Enumerations
CSharp - 22 - Exception Handling

Software development sections

Java Example - 01 - Multipad
Java Example - 02 - Interface
Java Example - 03 - New Open
Java Example - 04 - Save SaveAs
Java Example - 05 - Modified

CSharp Example - 01 - Multipad
CSharp Example - 02 - Interface
CSharp Example - 03 - New Open
CSharp Example - 04 - Save SaveAs
CSharp Example - 05 - Print

‐ 57 ‐

References

[1] Mikael Olsson
 Programming Video Tutorials (website)
 http://www.programmingvideotutorials.com

Last accessed: 18 March 2009

[2] Mikael Olsson
 PVT wiki (website)
 http://www.programmingvideotutorials.com/wiki

Last accessed: 18 March 2009

[3] TechSmith Corporation, © 1995-2009
 Camtasia Studio (software)
 http://www.techsmith.com/camtasia.asp

Last accessed: 18 March 2009

[4] TIOBE Software BV, © 2009
 TIOBE Programming Community Index for February 2009 (website)
 http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Last accessed: 2 Mars 2009

[5] 3D Buzz, © 2008
 3D Buzz (website)

http://www.3dbuzz.com
Last accessed: 18 March 2009

[6] AppDev Products, LLC, © 2008
 Microsoft Training at AppDev: IT Training, Developer Training, Microsoft

Certification Training, Microsoft .NET Training (website)
http://www.appdev.com
Last accessed: 18 March 2009

[7] CBT Nuggets, LLC, © 1999-2009
 CBT Nuggets: Training for Cisco CCNA SQL MCSE VB.NET A+ Linux
 PMP & Many More IT Certification Exams! (website)

http://www.cbtnuggets.com
Last accessed: 18 March 2009

[8] KeyStone Learning Systems, LLC, © 2008
 Online Video Training, Computer Based Training, eLearning, Certification,

Classroom, Webinar, and Enterprise Training Solutions - KeyStone Learning Systems
(website)
http://www.keystonelearning.com
Last accessed: 18 March 2009

[9] LearnVisualStudio.NET, © 2002-2009
 ASP.NET, C#, Visual Basic Tutorials and Training on LearnVisualStudio.NET
 (website)

http://www.learnvisualstudio.net
Last accessed: 18 March 2009

[10] Learnkey, Inc., © 2009
 LearnKey State of the Art Training (website)
 http://www.learnkey.com

Last accessed: 18 March 2009

[11] Lynda.com, Inc., © 1995-2009

‐ 58 ‐

 Tutorials – Online Training – Lynda.com (website)

http://www.lynda.com
Last accessed: 18 March 2009

[12] Total Training, Inc., © 2009
 Total Training: Online Video Training, Adobe Photoshop, Flash, Dreamweaver and

Microsoft Online Software Training (website)
http://www.totaltraining.com
Last accessed: 18 March 2009

[13] The Virtual Training Company
 Online software tutorials, training CDs, Photoshop Tutorials, Dreamweaver Tutorials,

Apple Tutorials from vtc.com (website)
 http://www.vtc.com

Last accessed: 18 March 2009

[14] Don Tapscott and Anthony D. Williams
 Wikinomics: How mass Collaboration Changes Everything (book)

Published: 28 Dec 2006, Penguin Group (USA)
ISBN-10: 1591841380

[15] Adobe Systems, Inc., © 2009
 Adobe - Flash Player Statistics (website)

http://www.adobe.com/products/player_census/flashplayer/
Last updated: 7 Aug 2008

[16] One-Minute SCORM Overview for Anyone (website)

http://www.scorm.com/resources/oneminuteoverview/ OneMinuteOverview.htm
 Last accessed: 18 March 2009

[17] Moodle.org: open-source community-based tools for learning (software)

http://moodle.org
Last accessed: 18 March 2009

[18] Will Park, IntoMobile, © 2005-2009
 Apple iPhone - Disappointing LCD Screen? (article)

http://www.intomobile.com/2007/03/11/apple-iphone-disappointing-lcd-screen.html
Published: 11 March 2007

[19] Mikael Olsson
 YouTube - ProgrammingVideos's Channel (website)

http://www.youtube.com/user/ProgrammingVideos
 Last accessed: 18 March 2009

[20] TechSmith Corporation, © 1995-2009
 Screen Capture | Snagit | Screen capture software by TechSmith (website)
 http://www.techsmith.com/screen-capture.asp

Last accessed: 18 March 2009

[21] Sennheiser Communications
 Sennheiser: PC 151 (hardware)

http://www.sennheiser.com/comm/icm_eng.nsf/root/05351
Last accessed: 18 March 2009

[22] Rick Brewster, dotPDN LLC, © 2008
 Paint.NET - Free Software for Digital Photo Editing (software)

http://www.getpaint.net
Last accessed: 18 March 2009

‐ 59 ‐

[23] Audacity (software)

http://audacity.sourceforge.net/
 Last accessed: 18 March 2009

[24] 1) TechSmith Corporation, © 1995-2009
 TechSmith Screen Capture Codec (TSCC) (website)
 http://www.techsmith.com/codecs/tscc/default.asp

Last accessed: 3 Mars 2009

 2) TechSmith Corporation, © 1995-2009
 Download Video Codecs (website)

http://www.techsmith.com/download/codecs.asp
Last accessed: 3 Mars 2009

[25] Time Inc., © 2009
 It's a Wiki, Wiki World – TIME (article)

http://www.time.com/time/magazine/article/0,9171,1066904,00.html
Published: 29 May 2005

[26] Jakob Nielsen, © 2006

Participation Inequality: Lurkers vs. Contributors in Internet Communities (Jakob
Nielsen 's Alertbox)
http://www.useit.com/alertbox/participation_inequality.html

 Last accessed: 21 April 2009

[27] Wikipedia:About - Wikipedia, the free encyclopedia

http://en.wikipedia.org/w/index.php?title=Wikipedia:About&oldid=285003875
 Last accessed: 21 April 2009

[28] The PHP Group, © 2001-2009
 PHP Manual – Type Juggling (website)

http://www.php.net/language.types.type-juggling
Last updated: 27 Feb 2009

[29] Cprogramming.com, © 1997-2005
 Common Programming Mistakes (website)

http://www.cprogramming.com/tutorial/common.html
Last accessed: 2 Mars 2009

[30] Microsoft Corporation, © 2009
 Constant Values (website)

http://msdn.microsoft.com/en-us/library/357syhfh.aspx
Last accessed: 2 Mars 2009

[31] The PHP Group, © 2001-2009
 PHP Manual – Constant (website)

http://www.php.net/constant
Last updated: 27 Feb 2009

[32] Roedy Green, © 1995-2009 Canadian Mind Products
 Java Glossary – Constant (website)

http://mindprod.com/jgloss/constant.html
Last updated: 3 Jan 2008

[33] Andrew Hardwick
 The C++ 'const' Declaration: Why & How (website)

http://duramecho.com/ComputerInformation/WhyHowCppConst.html
Last updated: 22 May 2006

‐ 60 ‐

[34] The PHP Group, © 2001-2009
 PHP Manual – Comparison Operators (website)

http://www.php.net/operators.comparison
Last updated: 27 Feb 2009

[35] James Gosling and Henry McGilton, Sun Microsystems, Inc., © 1997
 The Java Language Environment (white paper)

http://java.sun.com/docs/white/langenv/Simple.doc2.html#4107
Published: May 1996

[36] Reference (C++) – Relationship to pointers (website)

http://en.wikipedia.org/w/index.php?title=
Reference_(C%2B%2B)&oldid=273921693#Relationship_to_pointers
Last updated: 28 Feb 2009

[37] Alex, LearnCpp.com
 Eight C++ programming mistakes the compiler won’t catch (website)

http://www.learncpp.com/cpp-programming/eight-c-programming-mistakes-the-
compiler-wont-catch/
Posted: 2 July 2007

[38] Microsoft Corporation, © 2009
 Flow Control (C# vs. Java) (website)

http://msdn.microsoft.com/en-us/library/ms228393.aspx
Last accessed: 2 Mars 2009

[39] Microsoft Corporation, © 2009
 Params (C# Reference) (website)

http://msdn.microsoft.com/en-us/library/w5zay9db.aspx
Last accessed: 2 Mars 2009

[40] Sun Microsystems, © 2004
 Varargs (website)
 http://java.sun.com/j2se/1.5.0/docs/guide/language/varargs.html

Last accessed: 2 Mars 2009

[41] Wes Haggard
 Variable number of parameters... C/C++ vs C# - Wes' Puzzling Blog (blog post)

http://weblogs.asp.net/whaggard/archive/2004/07/03/172616.aspx
Last updated: 3 July 2004

[42] MSDN Forums – why is "Main" in C# not a "public" static (forum post)
 http://social.msdn.microsoft.com/Forums/en-US/csharpgeneral/thread/9184c55b-

4629-4fbf-ad77-2e96eadc4d62
Last accessed: 2 Mars 2009

[43] Main function (programming) (website)

http://en.wikipedia.org/w/index.php?title=Main_function_(programming)&oldid=27395
1281
Last updated: 28 Feb 2009

[44] IBM Corporation, © 1994, 2009
 Inline member functions (C++ only) (website)
 http://publib.boulder.ibm.com/infocenter/lnxpcomp/v8v101/
 index.jsp?topic=/com.ibm.xlcpp8l.doc/language/ref/inline_member.htm

Last accessed: 2 Mars 2009

[45] The PHP Group, © 2001-2009
 PHP Manual – Constructors and Destructors (website)

‐ 61 ‐

http://www.php.net/manual/en/language.oop5.decon.php
Last updated: 27 Feb 2009

[46] C++ structures and classes – Declaration and usage (website)

http://en.wikipedia.org/w/index.php?title=C%2B%2B_
structures_and_classes&oldid=272658002#Declaration_and_usage
Last updated: 23 Feb 2009

[47] Tony Sintes, Network World, Inc., © 2006-2008
 JavaWorld – Why not multiple inheritance? (article)

http://www.javaworld.com/javaqa/2002-07/02-qa-0719-multinheritance.html
Published: 19 July 2002 in JavaWorld

[48] 1) Bill Venners, Network World, Inc., © 2006-2008
 Designing with Interfaces (article)

http://www.javaworld.com/javaworld/jw-12-1998/jw-12-techniques.html
Published: Dec 1998 in JavaWorld

 2) Tony Sintes, Network World, Inc., © 2006-2008
 Java Diamonds Are Forever (article)

http://www.javaworld.com/javaworld/javaqa/2001-03/02-qa-0323-diamond.html
Published: 23 March 2001 in JavaWorld

 3) Eddy Truyen, Wouter Joosen, Bo Nørregaard Jørgensen, and Pierre Verbaeten,
Research Institute for Computer science (RIACS)
 A Generalization and Solution to the Common Ancestor Dilemma Problem in
Delegation-Based Object Systems (Tech. Report)
Pages 103-119 of the report labeled: Proceedings of the 2004 Dynamic Aspects
Workshop
http://aosd.net/2004/workshops/daw/Proc-2004-Dynamic-Aspects.pdf
Published: March 2004, Lancaster, England

[49] Alex, LearnCpp.com
 Inheritance and access specifiers (website)

http://www.learncpp.com/cpp-tutorial/115-inheritance-and-access-specifiers/
Posted: 14 Jan 2008

[50] Alex, LearnCpp.com
 Constructors (Part II) (website)

http://www.learncpp.com/cpp-tutorial/88-constructors-part-ii/
Posted: 7 Sep 2007

[51] The PHP Group, © 2001-2009
 PHP Manual – Namespaces overview (website)

http://www.php.net/manual/en/language.namespaces.rationale.php
Last updated: 27 Feb 2009

[52] Microsoft Corporation, © 2009
 How to: Use the Namespace Alias Qualifier (C# Programming Guide) (website)

http://msdn.microsoft.com/en-us/library/c3ay4x3d.aspx
Last accessed: 2 Mars 2009

[53] Microsoft Corporation, © 2009
 Preprocessor Directives (website)

http://msdn.microsoft.com/en-us/library/3sxhs2ty.aspx
Last accessed: 2 Mars 2009

[54] Microsoft Corporation, © 2009

‐ 62 ‐

 C# Preprocessor Directives (website)

http://msdn.microsoft.com/en-us/library/ed8yd1ha.aspx
Last accessed: 2 Mars 2009

[55] Jupitermedia Corporation, © 2009
 List of Reserved Words (website)
 http://www.phpbuilder.com/manual/en/reserved.php

Last updated: 26 June 2008

[56] PHP (website)

http://en.wikipedia.org/w/index.php?title=PHP&oldid=274191239#Speed_optimization
Last updated: 1 March 2009

[57] Herb Sutter, © 2009
 A Pragmatic Look at Exception Specifications (website)

http://www.gotw.ca/publications/mill22.htm
Last accessed: 2 Mars 2009

[58] Sun Microsystems, © 2004
 Enums (website)

http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html
Last accessed: 2 Mars 2009

[59] C++ structures and classes – Differences between struct in C and classes in C++

(website)
http://en.wikipedia.org/w/index.php?title=C%2B%2B_structures_and_classes&oldid=2
72658002#Differences_between_struct_in_C_and_classes_in_C.2B.2B
Last updated: 23 Feb 2009

[60] Microsoft Corporation, © 2009
 Operator Overloading (website)

http://msdn.microsoft.com/en-us/library/5tk49fh2.aspx
Last accessed: 2 Mars 2009

[61] Microsoft Corporation, © 2009
 Operator Overloading (C# vs Java) (website)

http://msdn.microsoft.com/en-us/library/ms228498.aspx
Last accessed: 2 Mars 2009

[62] Microsoft Corporation, © 2009
 Properties (C# Programming Guide) (website)

http://msdn.microsoft.com/en-us/library/x9fsa0sw(VS.80).aspx
Last accessed: 2 Mars 2009

[63] Microsoft Corporation, © 2009
 Generics (C# Programming Guide) (website)

http://msdn.microsoft.com/en-us/library/512aeb7t(VS.80).aspx
Last accessed: 2 Mars 2009

[64] Gilad Bracha, Sun Microsystems, Inc.
 Generics in the Java Programming Language – Introduction (PDF, pp. 2)

http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf
Published: 5 July 2004

[65] Juan Soulie, cplusplus.com, © 2000-2009
 Templates (website)

http://www.cplusplus.com/doc/tutorial/templates.html
Last updated: 16 Nov 2007

‐ 63 ‐

[66] Comparison of Java and C++ – Templates vs. Generics (website)
 http://en.wikipedia.org/w/index.php?title=Comparison_of_Java_and_
 C%2B%2B&oldid=273495583#Templates_vs._Generics

Last updated: 26 Feb 2009

[67] Mikael Olsson
 Multipad (freeware)
 http://sourceforge.net/projects/multipad

Last accessed: 18 March 2009

[68] Ziff Davis Enterprise Holdings Inc., © 1999-2009
 Visual Studio most widely used IDE, survey says (article)

http://www.windowsfordevices.com/news/NS2484248296.html
Published: 14 June 2006

[69] IC#Code, © 2000-2009
 SharpDevelop (freeware)

http://www.icsharpcode.net/OpenSource/SD/Default.aspx
Last accessed: 18 March 2009

[70] The Eclipse Foundation
 Eclipse IDE (freeware)

http://www.eclipse.org/
Last accessed: 18 March 2009

[71] JetBrains, © 2000-2009
 IntelliJ IDEA (software)

http://www.jetbrains.com/idea/
Last accessed: 18 March 2009

www.kth.se

TRITA-ICT-EX-2009:8

	List of Tables
	Abstract
	Sammanfattning

	List of Examples
	List of Acronyms and Abbreviations
	1. Introduction
	2. Developing a Production Method
	2.1 Updatable
	2.2 Convenient
	2.2.1 Choosing Video over Text

	2.3 Rapid Production
	2.4 Relevant

	3. Production Method
	3.1 Work Environment
	3.2 Outline
	3.3 Script
	3.4 Examples
	3.5 Snapshots
	3.6 Audio
	3.7 Production

	4. Evaluation
	4.1 Production Results
	4.2 Production Method Efficiency
	4.2.1 Optimizations to the Production Method
	4.2.2 Time Needed to Update Sections

	4.3 Production Method Comparison
	4.3.1 Advantages
	4.3.2 Disadvantages

	5. Basic Syntax and Semantics
	5.1 Data Types
	5.2 Variables
	5.3 Constants
	5.4 Comments
	5.5 Operators
	5.6 Strings
	5.7 Arrays
	5.7.1 Multidimensional Arrays

	5.8 Pointers

	6. Intermediate Syntax and Semantics
	6.1 Conditions
	6.1.1 If
	6.1.2 Switch
	6.1.3 Ternary

	6.2 Loops
	6.3 Jump Statements
	6.4 Functions
	6.4.1 Passing Arguments
	6.4.2 Method Overloading
	6.4.3 Variable Parameter Lists
	6.4.4 Main Method

	7. Advanced Syntax and Semantics
	7.1 Class
	7.1.1 Static
	7.1.2 Constructors and Destructors
	7.1.3 Class Members

	7.2 Access Modifiers
	7.3 Inheritance
	7.3.1 Overriding
	7.3.2 Final
	7.3.3 Calling Constructors

	7.4 Interface
	7.4.1 Explicit Interface Implementation

	7.5 Abstract Class

	8. Expert Syntax and Semantics
	8.1 Namespace
	8.1.1 Namespace Members
	8.1.2 Using Namespaces
	8.1.3 Alias

	8.2 Preprocessor
	8.3 Exception Handling
	8.3.1 Exception Specification

	8.4 Enumerator
	8.5 Struct
	8.6 Operator Overloading
	8.7 Implicit and Explicit Conversions
	8.8 Properties
	8.8.1 Indexers
	8.9 Generics

	9. Software Development
	10. Conclusions
	10.1 Future Work

	Appendix A.
	References

