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Abstract
Introducing design patterns into a program by hand is te-
dious and error-prone. Refactorings help but manual tasks
still remain: you must understand available refactorings, de-
termine a precise sequence of refactorings to invoke, and
perform these tasks repetitively to a laborious degree.

We present Reflective Refactoring (R2), a Java package to
automate the introduction of classical design patterns (Vis-
itor, Abstract Factory, etc), their inverses and variants. We
encoded 78% of classical design patterns as R2 scripts. In
one application,R2 automatically created a visitor with 276

visit methods by invoking 554 Eclipse refactorings in a
few minutes – an achievement that could not be done man-
ually. We demonstrate the generality and scalability of R2,
illustrate its productivity potential, and explain why refactor-
ing speed and correctness are critical issues for scripting in
next-generation refactoring engines.

1. Introduction
Modern IDEs – Eclipse, NetBeans, JDeveloper, IntelliJ
IDEA, and Visual Studio – mostly offer primitive refactor-
ings (eg rename, move, change method signature) that
constitute the basic steps to introduce design patterns, not
patterns themselves. It is surprising that they do not permit
the scripting of transformations (or refactorings) that intro-
duce whole patterns, especially as it has been 20 years since
design patterns were introduced [15], longer still for refac-
torings [17, 29, 30], and for at least 15 years it was known
that many design patterns could be automated by scripting
transformations [21, 39].

A Visitor pattern, for example, could be scripted and
thus created automatically by identifying a method (called

[Copyright notice will appear here once ’preprint’ option is removed.]

a “seed”) that is to be moved into a visitor. (All methods in
a class hierarchy that have the same return type, name, and
argument signature of the seed are also moved into a newly
created visitor class). While the steps to introduce this pat-
tern are not complex and have been well documented [21],
manually executing them is extraordinarily error-prone and
laborious. In one of our experiments, a seed method for a
Visitor entails creating a class with 276 visit methods by
invoking 554 Eclipse refactorings. It is hard to imagine that
anyone could manually execute such a change.

We teach undergraduate and graduate courses on software
design. Among the best ways to learn refactorings and pat-
terns is not only to use them, but also to write programs that
sequence transformations to mechanize patterns. Doing so
forces students, and programmers in general, to understand
the nuances and capabilities of each refactoring. Although
we are primarily motivated to improve tools for teaching
refactorings and patterns, we strongly believe our work will
benefit professional programmers as well.

The key question is: what language should be used to
script refactorings? There are many proposals with distin-
guished merit [3, 5, 6, 8, 9, 18, 23, 25, 36, 42, 44], but all
fall short in fundamental ways for our goal. Undergradu-
ates are novices to Java; it is unrealistic to expect them to
learn yet another language (functional or otherwise) or to
become proficient in sophisticated Program Transformation
Systems (PTSs) [5–8] or utilities, such as the Eclipse Lan-
guage Toolkit (LTK) [14], to manipulate programs. Although
PTSs and LTK are monuments of engineering prowess, their
learning curve is measured in weeks or months.

We present a practical way to move Java refactoring tech-
nology forward in this paper. Reflective Refactoring (R2) is
a Java package whose goal is to encode the construction of
classical design patterns as simple methods. Using Eclipse
Java Development Tools (JDT) [12],R2 leverages reflection
by presenting an Eclipse project, its packages, classes, meth-
ods, fields, etc, as Java objects whose methods are transfor-
mations and JDT refactorings. Automating design patterns
becomes no different than importing an existing Java pack-
age (R2) and using it to write programs (in this case, refac-
toring scripts). There is no need for a DSL.
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Figure 1. A Visitor Pattern Refactoring.

Our paper makes the following contributions:

• Design. We present a reflection-like API, R2, to script
refactorings to construct design patterns in Java.

• Generality. We encoded 78% of the Gang-of-Four de-
sign patterns and their inverses as short Java methods in
R2.

• Productivity. We asked 44 students (grads or 3rd-year
undergrads) to introduce a small visitor of 7 methods into
a program using Eclipse refactorings. R2 accomplished
the task in 13 seconds; the average completion time for
students was well over an hour and 47% of them required
help to do so.

• Evaluation. We used R2 to retrofit 37 pattern instances
into 6 real-world applications. To add a Visitor in one
case invoked 554 Eclipse refactorings; to undo the Visitor
coincidentally also used 554 Eclipse refactorings.

2. A Motivating Example
Consider the Visitor pattern. There are different ways to
encode a Visitor; we use the one below. Figure 1a shows a
hierarchy of graphics classes; Graphic is the superclass and
Picture, Square, Triangle are its subclasses. Each class
has its own distinct draw method.

A “mechanics” script in a refactoring text spells out
the procedure to install a Visitor into a program [21].
Look at how tedious it is to create a visitor for the draw

method (Figure 1b): First, create a singleton visitor class
(DrawVisitor). Next, each draw method has to be moved
into the DrawVisitor class, renamed to visit, and an ex-
tra parameter (namely the class from which the method was
moved) is added. Referenced non-public fields and meth-
ods must become public after a method move. Further, a
delegate (named accept) must be created for each moved
method, taking its place in the original class. The signature

of the accept method extends the original draw signature
with a DrawVisitor parameter and whose code is (for our
example):

void accept(DrawVisitor v) {

v.visit(this);

}

And finally, all calls to the original method, o.draw(), are
replaced with o.accept(DrawVisitor.instance).

Individual steps can be performed by JDT refactorings,
but this requires knowledge and familiarity with the avail-
able refactorings to know which to use and in what order.

After each step, the program is recompiled and regres-
sion tests are run to ensure that the refactored program was
not corrupted. It is easy to make a mistake or forget a step.
A programmer can loose track of the overall process, inad-
vertently skipping draw methods to move. One would think
that creating a visitor with only 7 methods using JDT refac-
torings is simple, yet as we see in Section 6.2.1, program-
mers may abandon, may request help, or may not attempt
this task. Refactoring scripts eliminate these problems.

Here is another complicating issue: Eclipse refactorings
were never designed with scripting in mind. We encountered
a series of design and implementation issues in Eclipse JDT
(version 4.2.2) [13] that compromises its ability to support
refactoring scripts without considerable work. (We think
these issues need to be addressed, regardless of our work).
Here are some examples.

2.1 Separation of Concerns
Figure 2a shows method draw in class Square, after a
DrawVisitor parameter was added. Figure 2b shows the re-
sult of Eclipse moving Square.draw to DrawVisitor.draw
and leaving a delegate behind. Not only was the method
moved, its signature was also optimized. Eclipse realizes
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class Square extends Graphic {
void draw(DrawVisitor v) {

...;
}

}

class DrawVisitor {
static final DrawVisitor instance

= new DrawVisitor();
}

class Square extends Graphic {
void draw(DrawVisitor v) {

v.draw()
}

}

class DrawVisitor {
static final DrawVisitor instance

= new DrawVisitor();

void draw() {
...;

}
}

(a)

(b)
error

class Graphic {
int ndraws;

}

class Triangle extends Graphic {
void draw(DrawVisitor v) {

...;
ndraws++;

}
}

class DrawVisitor {
static final DrawVisitor

instance = new DrawVisitor();
} (a)

class Graphic {
int ndraws;

}

class Triangle extends Graphic {
void draw(DrawVisitor v) {

v.draw(this);
}

}

class DrawVisitor {
static final DrawVisitor

instance = new DrawVisitor();

void draw(Triangle t) {
...;
ndraws++;

}
}

error
(b)

Figure 2. An Eclipse Refactoring Being Too Smart.

that the original draw method did not need its Square pa-
rameter, so Eclipse simply removes it.

As a refactoring, this optimization is not an error. But
when an entire set of refactorings must produce a coher-
ent result, it is an error. Preserving all parameters of moved
methods in a Visitor pattern is essential. This is an exam-
ple where two concerns – method movement and method
signature optimization – were bundled into a single refac-
toring, instead of being separated into distinct refactorings.
We were able to deactivate method signature optimizations
in our Eclipse plug-in; we do not know how to disable this
optimization from the Eclipse GUI.

2.2 Bugs
Figure 3a shows method Triangle.draw that increments
field ndraws. When Eclipse moves Triangle.draw to
DrawVisitor, the code of Figure 3b is produced, which
is incorrect. The correct increment should be t.ndraws++.

class Square extends Graphic {
void draw(DrawVisitor v) {

...;
}

}

class DrawVisitor {
static final DrawVisitor instance

= new DrawVisitor();
}

class Square extends Graphic {
void draw(DrawVisitor v) {

v.draw()
}

}

class DrawVisitor {
static final DrawVisitor instance

= new DrawVisitor();

void draw() {
...;

}
}

(a)

(b)
error

class Graphic {
int ndraws;

}

class Triangle extends Graphic {
void draw(DrawVisitor v) {

...;
ndraws++;

}
}

class DrawVisitor {
static final DrawVisitor

instance = new DrawVisitor();
} (a)

class Graphic {
int ndraws;

}

class Triangle extends Graphic {
void draw(DrawVisitor v) {

v.draw(this);
}

}

class DrawVisitor {
static final DrawVisitor

instance = new DrawVisitor();

void draw(Triangle t) {
...;
ndraws++;

}
}

error
(b)

Figure 3. Bugs in Eclipse Refactorings.

We were unable to repair this refactoring in our Eclipse
plug-in and reported it and other bugs that we found (see
Table 5 in Section 6). For these situations, we repaired the
transformed source code by hand.

2.3 Limited Scope
A benefit of Visitor is that a single visitor class enables a
programmer to quickly review all variants of a method. Of-
ten, such methods invoke the corresponding method of their
superclass. Our graphic class hierarchy could extend sub-
class Triangle with Isosceles, where Isosceles.draw
invokes Triangle.draw (Figure 4a). A visitor implemen-
tation is shown in Figure 4b. Moving methods with super

calls is not only possible, it is desirable.

class Triangle 

extends Graphic { 

   void draw() {...;} 

} 

 

class Isosceles  

extends Triangle { 

   void draw() { 

      ...; 

      super.draw(); 

      ...; 

   } 

} (a) 

class Triangle 

extends Graphic { 

   void accept(DrawVisitor v) { 

     v.visit(this); 

   } 

} 

 

class Isosceles 

extends Triangle { 

   void accept(DrawVisitor v) { 

     v.visit(this); 

   } 

} 

 

class DrawVisitor { 

   static final DrawVisitor instance  

      = new DrawVisitor(); 

 

   void visit(Triangle t) {...;} 

   void visit(Isosceles i) { 

      ...; 

      visit((Triangle) i); 

      ...; 

   } 

} (b) 

visitor

Figure 4. Visitors with super References.

Eclipse refuses to move methods that reference super. It
is not an error, but a strong limitation. In our Eclipse plug-in,
this limitation is removed (see Section 5.1).

3. Reflective Refactoring
A key decision for us was choosing the scripting language.
As refactorings are transformations, our initial inclination
was to define and script refactorings in a functional or dedi-
cated language, as others have done [3, 5, 6, 8, 9, 18, 23, 36,
42, 44]. But as we said earlier, the learning curve to become
proficient in yet another language makes these approaches
unappealing. The obvious answer is to script refactorings in
Java.

Let P denote the current program or project of Eclipse.
We leverage reflection — we define class RClass whose
instances are the classes in P; we define classes RMethod

and RField whose instances are the methods and fields of
P, and so on. When P is compiled by Eclipse, a set of tables
(one for RClass, RMethod, RField, etc) is created, where
each row corresponds to a class, a method, or a field instance
of P. These tables are not persistent; they exist only when the
Eclipse project for P is open.

The fields of RClass, RMethod, and RField — hence-
forth calledR2 classes — also define the association and in-
heritance relationships among table rows (A is a superclass of
B, foo is a method of A, etc). The methods ofR2 classes ex-
pose primitive Eclipse refactorings, simple transformations,
or composite refactorings (our scripts).

The usage scenario for all R2 refactorings is this: a user
(student, programmer) points to a field, method, or class
in the Eclipse GUI (using our plug-in) and invokes an R2

refactoring/script just like a native Eclipse refactoring. Let’s
look at a few R2 methods to get a feel for what is needed to
write anR2 script.

3.1 Automating the Visitor Pattern
Figure 5 shows our makeVisitor, a method of class RMethod.
The Java keyword “this” in Figure 5 denotes the “seed”
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method to which our script is applied. Again, this seed de-
fines the set of methods (with the same name, argument
signature, and return type) that are to be moved into a visi-
tor.

Lines 5–7 create a visitor class (called visitorClassName)
in the same package as this and add a static singleton field
instance. Lines 9–11 find the superset of all methods with
the same signature as this and add a new parameter of type
visitorClassName to each of these methods. Calls to these
methods have visitorClassName.instance as the default
extra argument. Lines 13–19 move each movable method
to the visitor class, leaving behind a delegate, and each
moved method is renamed to visit. Lines 21–23 collect
all delegate methods and methods that were not moved,
and rename them to accept. All references to moved or
renamed methods are automatically revised. Line 25 returns
the visitor class.

1 // member of RMethod class
2 void RClass makeVisitor(String visitorClassName)
3 throws RException
4 {
5 RPackage pkg = this.getPackage ();
6 RClass vc = pkg.newClass(visitorClassName);
7 RField singleton = vc.addSingleton ();
8
9 RMethodList methodList = this.getRelatives ();

10 RParameter newPara =
11 methodList.addParameter(vc, singleton);
12
13 RMethod delegate = null;
14 for(RMethod m : methodList) {
15 if(!m.isMovable ())
16 continue;
17 delegate = m.moveAndDelegate(newPara);
18 m.rename("visit");
19 }
20
21 RMethodList delegateList =
22 delegate.getRelatives ();
23 delegateList.rename("accept");
24
25 return vc;
26 }

Figure 5. A makeVisitor Method.

Looping through a list of methods and invoking add-
Parameter on each method would be the obvious way
to code a Visitor pattern. But this is not how the Eclipse
change method signature refactoring works (Lines 9–
11). It is applied to a “seed” method; all methods with the
same signature as the seed in an interconnected interface and
class hierarchy are modified. Consider Figure 6. Suppose D.m
is the method that “seeds” a change method signature.
All m methods in D’s class hierarchy {A.m, B.m, C.m, D.m} and
interconnected interface and class hierarchies {I1.m, I2.m,
E.m} are affected by this refactoring. That is, all of these
methods will have their signature changed.

The methodList variable in Line 9 is the list of all
methods in P whose signature will change. This list includes
methods that cannot be moved, such as interface and abstract
methods. In this example, the methods moved into the visitor
are from classes {A, B, C, D, E}.

+m()

B

+m()

A

+m()

C

+m()

D

+m()

E

«interface»I3

+m()

«interface»I2

+m()

«interface»I1

seed

Figure 6. Methods Altered by Change Signature.

Our Eclipse plug-in allowsR2 scripts to be invoked from
the Eclipse GUI, just like native JDT refactorings. Alterna-
tively, an R2 method could be invoked programmatically
from anotherR2 method which is part of a larger, automated
refactoring. We show below how makeVisitor is used in
an example of Visitor pattern script where method C.m() in
package p of project R is the seed:

RPackage p = RProject.getPackage("R", "p");

RClass c = p.getClass("p.C");

RMethod m = c.getMethod("void", "m", null);

m.makeVisitor("Visitor");

3.2 Automating the Inverse Visitor
Figure 7 depicts a common scenario. An R2 program-
mer creates a visitor to provide a convenient view that al-
lows him/her to inspect all draw methods in the graphic

class hierarchy. The programmer then updates the program,
including visitor methods, as part of some debugging or
functionality-enhancement process. At which point, he/she
wants to remove the visitor to return the program back to its
original structure.1

isec14‐1

visitor class modified
classes in red

Figure 7. A Common Programming Scenario.

In this scenario, undoing a visitor is not a roll-back, as
a roll-back would undo all of the programmer’s debugging
edits. Instead an inverse visitor – a refactoring that removes
a visitor and preserves debugging edits – is required.

Figure 8 shows our inverseVisitor, a method of
RClass, that moves visit methods back to their original
classes and deletes the visitor class. Here’s how inverseVi-
sitor works: We want each visit method to be moved

1 Of course for this to be possible, certain structures and naming
conventions (as we use in our makeVisitor method) should not
be altered. Effectively the only edits that are permitted are those
that would have modified the original program. Restricting modi-
fications can be accomplished similar to GUI-based editors, where
generated code is “greyed” out and cannot be changed.
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1 // member of RClass class
2 void inverseVisitor(String originalName)
3 throws RException
4 {
5 RMethod anyDelegate = null;
6
7 for(RMethod m : this.getMethodList ()) {
8 anyDelegate = m.getDelegate ();
9

10 RParameter para = m.getParameter (0);
11 RClass returnToClass = para.getClass ();
12
13 m.move(returnToClass);
14
15 m.inlineSuperDelegate ();
16 m.inline ();
17 }
18
19 RMethodList methodList =
20 anyDelegate.getRelatives ();
21 methodList.removeParameter (0);
22 methodList.rename(originalName);
23
24 this.delete ();
25 }

Figure 8. An inverseVisitor Method.

back to its original class. Lines 10–11 recover the original
class of a visit method. As we turned off method signature
optimization in Section 2.1, the original class is encoded
as the type of the visit method’s first parameter. Line 13
moves the method back to its original class. Lines 15–16
inline super-delegates if they exist by replacing each call to
super xθ with a call to super.x (Section 5.1) and then re-
store the original method body as the body of the accept

method by inlining.
Lines 8–16 are performed for all visit methods. At this

point, the accept methods (ie the delegate methods) contain
the body of the original methods.

Lines 19–22 collect all of the accept methods, remove
the first parameter (of type visitor class) from them, and
restore the original name of the method. The visitor class
is then deleted in Line 24.

Note: Because our visitor and inverse visitor used
unique names to avoid name capture, multiple instances
of the Visitor refactoring can be applied to the same class
and its inversion can be applied without problems.

Another practical reason to have an inverse visitor is if
a program already contained a hand-crafted visitor, and the
programmer wanted to weave its methods back into the class
hierarchy, say for efficiency reasons [27]. We address this
case in a broader setting in the next section.

3.3 More Opportunities
It is well-known that there are many variations of design pat-
terns. Visitor is no exception. Consider the PostageVisitor
of Figure 9 adapted from [37]. It differs from the visitor
of our Motivating Example (Section 2) in several ways:
PostageVisitor is not a singleton, it includes state total-
Postage, it has a custom method getTotalPostage() – a

+accept(in  : PostageVisitor)

CD

+accept(in  : PostageVisitor)

DVD

+accept(in  : PostageVisitor)
+getPrice() : double
+getWeight() : double

-price : double
-weight : double

Book

+accept(in  : PostageVisitor)

<<interface>>
Item

+visit(in  : Book)
+visit(in  : CD)
+visit(in  : DVD)
+getTotalPostage() : double

-totalPostage : double

PostageVisitor

void visit(Book book) {
    if (book.getPrice() < 10.0) {
        totalPostage += book.getWeight() * 2;
    }
}
void visit(CD cd) {}
void visit(DVD dvd) {}

double getTotalPostage() {
    return totalPostage;
}

Figure 9. Visitor with State.

1 // member of RClass class
2 void inverseVisitorWithState(String originalName ,

String visitMethodName)
3 throws RException
4 {
5 RMethod anyDelegate = null;
6
7 for(RMethod m : this.getMethodList(

visitMethodName)) {
8 anyDelegate = m.getDelegate ();
9

10 RParameter para = m.getParameter (0);
11 RClass returnToClass = para.getClass ();
12
13 m.move(returnToClass);
14
15 m.inlineSuperDelegate ();
16 m.inline ();
17 }
18
19 RMethodList methodList = anyDelegate.

getRelatives ();
20 methodList.rename(originalName);
21 }

Figure 10. Another inverseVisitor variant.

non-visit method, and at least one of its visit methods
visit(Book) references totalPostage.

To create this visitor (from a program that does not have
a visitor) requires a slight modification of our R2 make-
Visitor method. To ‘undo’ this visitor – ie to move its
visit methods back into the class hierarchy – requires
a corresponding change to inverseVisitor. Figure 10
shows this customized R2 inverseVisitorWithState

method. It differs from Figure 8 by moving only visit

methods, not removing the visitor parameter, and not delet-
ing the visitor class.

This illustrates howR2 can handle design pattern variants
– either we can generate these patterns (by transforming
a program without these patterns into programs with these
patterns) or we can remove these patterns (by transforming
programs with hand-crafted patterns into programs without
those patterns).R2 offers a practical way to cover all of these
possibilities.
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4. Other Patterns
Table 1 summarizes our review of the Gang-of-Four Design
Patterns text [15]. We found 35% of its patterns are fully
automatable, 43% are partially automatable, and for the re-
maining 22%, we are unsure of their role in a refactoring
tool (although some are automatable). We elaborate these
findings in the next sections.

Design Pattern Automation Possibility
Full Some Unsure

Abstract Factory X
Adapter X
Bridge X
Builder X

Chain of Responsibility X
Command X
Composite X
Decorator X

Façade X
Factory Method X

Flyweight X
Interpreter X

Iterator X
Mediator X
Memento X
Observer X
Prototype X

Proxy X
Singleton X

State X
Strategy X

Template Method X
Visitor X

Percentage 35% 43% 22%

Table 1. Automation Potential of Design Patterns.

4.1 Fully Automatable Patterns
The Visitor pattern, its inverse and variants are fully au-
tomatable as they produce no “TO DOs” for a user. Ap-
pendix A sketches other fully automatable patterns as R2

methods: abstract factory, command, and memento. 35% of
patterns are in this category.

4.2 Partially Automatable Patterns
43% of patterns are partially automatable – the creation of a
pattern produces “TO DOs” that must be completed by a user.
The Adapter pattern, below, is typical. Appendix B sketches
another partially automatable pattern: Strategy.

The Adapter pattern resolves incompatibilities between a
client interface and a legacy class. For example, given inter-
face Target and class Legacy in Figure 11, an intermediate
class (called Adapter) adapts Target to Client.

The makeAdapter R2 method in Figure 12 creates an
Adapter class that implements interface Target and refer-
ences class Legacy. Programmers must provide bodies for
the generated method stubs – these are the user “TO DOs”. Al-
though partially automated – method bodies are still needed
– tedious and error-prone work is done byR2.2

2 For readers who are unconvinced that creating an adapter is not tedious
and error prone, try the following example: access Java String through the
collection < Character > interface.

+d()
+e()
+f()

Legacy

*

-legacy

1

a( ) {  /* TO DO */  }
b( ) {  /* TO DO */  }
c( ) {  /* TO DO */  }+a()

+b()
+c()

<<interface>>
Target

+a()
+b()
+c()

Adapter

+m1(in param1, in param2)
+undo_m1(in param1, in param2)
+m2(in param)
+undo_m2(in param)

Document

+do()
+undo()

Command

+do()
+undo()

-param1
-param2

m1

-doc

1 *

+do()
+undo()

-param

m2

m2(d,p) {
doc = d;
param = p;

}

do( ) {
doc.m2(param);

}

undo( ) {
doc.undo_m2(param);

}

Figure 11. Adapter Pattern.

1 // member of RInterface class
2 RClass makeAdapter(String adapterName ,
3 RClass adaptee) {
4 RClass c = getRPackage ().newClass(adapterName);
5
6 RField f = c.newField(adaptee);
7 c.newConstructor(f);
8
9 for(RMethod m : getAllMethod ()) {

10 c.newMethod(m);
11 }
12
13 c.setInterface(this);
14
15 return c;
16 }

Figure 12. A makeAdapter Method.

4.3 Remaining Patterns
We are unsure of the role for the remaining 22% in a refac-
toring tool (some of which we note below are automatable).
Consider:

• Façade is a convenient class abstraction for a package.
Creating a façade requires deep knowledge of an appli-
cation that only an expert, not a refactoring tool, would
have. AnR2 script could be written to produce a particu-
lar façade, but it would be so application-specific it would
not be reusable.

• Interpreter is common in compiler-compiler tools [4, 31];
given the grammar of a language, a class hierarchy for the
language’s AST can be generated. Providing a grammar
to a refactoring engine to generate a class hierarchy is
possible, but we are unsure that it is consistent with
current refactoring tools.

• State is a simple application of Model Driven Engineer-
ing (MDE). Given a statechart of a finite state machine,
MDE tools can generate the class hierarchies and method
bodies that implement the State pattern. Again, providing
a statechart to a refactoring engine to generate the code
of a State pattern is possible, but we are unsure that it is
appropriate.

• Mediator is the basis for GUI builders; the drag-and-drop
of class instances from a pallete of classes is the essence
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of a mediator. Again, it is unclear that this functionality
belongs to a refactoring engine.

• Iterator is already part of the Java language. It is unclear
what a refactoring engine should do.

5. Current Implementation
Implementing R2 was very challenging. We found Eclipse
source to be highly tangled, there was little or no useful doc-
umentation, and it was particularly difficult for us to under-
stand how to invoke refactorings programmatically [22].

In the end, we used existing refactoring GUI dialogs to
trigger refactorings. Doing so, we could automate exactly
the same procedures Eclipse users would follow manually,
allowing us to measure the actual time spent on overall
refactoring process and accurately estimate the overhead
of JDT refactorings due to GUI operations. Overall, we
changed 51 lines in 8 Eclipse internal packages; the R2

package consists of ∼ 5K LOC.

5.1 Generalizing Eclipse move
We said in Section 2.3 that Eclipse does not move meth-
ods that reference super. Our makeVisitor of Figure 5
is generic in that it does not impose super constraints on
the methods that it moves; rather it is the Eclipse move

instance method refactoring that imposes the super con-
straint. The fix is shown in Figure 13, where method B.foo()
is moved to class C. Prior to invoking move, we replace each
method call super.x() with a call to a manufactured method
super xθ(), whose body calls super.x(); θ is simply a ran-
dom number to make the name of the manufactured method
unique.3,4 The revised method no longer invokes super, and
thus can be moved by Eclipse.

class B extends A {

void foo() {

...;

super.bar();

...;

}

}

class C {} (a)

class B extends A {

void super_bar() {
super.bar();

}

}

class C {

void foo(B b) {

...;

b.super_bar();
...;

}

} (b)

super
move

Figure 13. Move Method With super Call.

Here is our case analysis for this revision. The first case is
when super keywords are present but are not needed. Fig-
ure 14a shows a program with superclass A and its subclass
B. The body of method B.bar has the super keyword. Sup-
pose we want to move B.bar to Visitor.bar and make the

3 If super.x returns a result of type X, super xθ returns type X.
4 A unique name is needed for a refactoring that “undoes” or “re-
moves” a visitor (Section 3.2). It also guarantees the correct super-
delegate is called, as the meaning of this and super depends on
the position in a class hierarchy from which it is invoked.

Visitor pattern in Figure 14b. Because subclass B does not
override A.foo, the expression super.foo() can be replaced
by foo(), at which point the body of B.bar has no reference
to super and can be moved directly by Eclipse.

class A {

void foo() {}

}

class B extends A {

void bar() {

super.foo();

}

}

class A {

void foo() {}

}

class B extends A {

void accept(Visitor v) {

v.visit(this);

}

}

class Visitor {

static final Visitor instance

= new Visitor();

void visit(B b) {

b.foo();

}

}(a) (b)

Figure 14. No Need For super.

The next case is when super keywords are needed due
to method overriding. In Figure 15a, the super keyword is
used to invoke an overridden method A.foo(). We remove
super by calling a delegate method which calls the over-
ridden method A.foo(). Figure 15b shows a super delegate
super fooθ which replaces the super.foo() call in B.bar,
thus allowing Eclipse to move B.bar() to the visitor class.
Of course, super-delegates throw the same exception types
as its super invocation.

class A {

void foo() {}

}

class B extends A {

void foo() {}

void bar() {

super.foo();

}

}

class A {

void foo() {}

}

class B extends A {

void foo() {}

void accept(Visitor v) {

v.visit(this);

}

void super_foo() {

super.foo();

}

}

class Visitor {

static final Visitor instance

= new Visitor();

void visit(B b) {

b.super_foo();

}

}(a) (b)

Figure 15. Rewrite that Uses super Delegate.

Lastly, suppose an overriding method B.foo() uses super
to reference its overridden method A.foo() (see Figure 16a).
As a Visitor pattern moves both methods, a super delegate is
not needed since the same effect of calling a super method
can be achieved by type casting. However, super-delegates
are required in the general case.
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class A {
void foo() {}

}

class B extends A {
void foo() {

super.foo();
}

}

class A {
void accept(Visitor v) {

v.visit(this);
}

}

class B extends A {
void accept(Visitor v) {

v.visit(this);
}

}

class Visitor {
static final Visitor instance

= new Visitor();
void visit(A a) {}
void visit(B b) {

visit((A)b);
}

}(a) (b)

Figure 16. Rewrite That Uses Type Casting.

5.2 Field Access using super
Now consider the use of super to reference field variables.
Unlike method overriding, fields in Java are hidden and not
overridden. So we can get super references simply by cast-
ing to their declared type. In Figure 17, method B.foo ref-
erences field A.i with the expression super.i. When B.foo
is moved to class Visitor, expression super.i is replaced
with ((A)b).i.

class A { 

   int i; 

} 

 

class B extends A { 

   int i; 

   void foo() { 

      super.i = 0; 

   } 

} 

 

 

 

 

 

 

 

 

class A { 

   int i; 

} 

 

class B extends A { 

   int i; 

   void accept(Visitor v) { 

      v.visit(this); 

   } 

} 

 

class Visitor { 

   static final Visitor instance 

            = new Visitor(); 

   void visit(B b) { 

      ((A)b).i = 0; 

   } 

} (a) (b) 

Figure 17. super Field Access.

6. Evaluation
To evaluate the usefulness of R2 we answer three research
questions:

• RQ1: DoesR2 improve productivity?
• RQ2: Is R2 scalable? Can it be applied to large pro-

grams?
• RQ3: IsR2 safer than manual changes?

These questions address the higher level question “Is R2

useful?” from different angles. Productivity measures whether

automation saves programmer time. Scalability measures
whether R2 can work with large programs. Safety ensures
that runtime behavior is not modified byR2.

6.1 Experimental setup
We combine two methods, a user study and a case study, that
complement each other. The user study allows us to quan-
tify programmer time and programmer errors, while the case
study gives us confidence that R2 is generalizable to real-
world situations.

User Study. We conducted a user study with graduate and
undergraduate classes in software design at UTCS in Fall
2013. Both classes had over 20 students each. Overall, a
total of 44 students participated. Our participants had on
average 5.4 years of programming experience, and 4.1 years
of programming in Java. 64% of them were already very
familiar with Eclipse. Most students self-organized in teams
of 2-3 but 8 students worked individually.

We explained the Visitor pattern to both classes (pointing
to standard web site videos and web explanations, too). We
gave the code base of Q (from Table 2), a Java GUI appli-
cation that computed module expressions for different pro-
gram generation approaches, along with its regression tests,
and told each team to work for up to one hour to create a vis-
itor. If after an hour they did not finish, or if they gave up, we
would give them a “mechanics script” for them to follow to
produce the visitor. As the visitor required only 7 methods to
be moved (those methods have simple bodies with few ref-
erences (11)), we felt confident that most would not request
help.

To carry out the experiment, among our 44 participants,
33 used Eclipse JDT refactorings to introduce the Visitor
pattern, and 11 manually introduced the pattern outside of
the Eclipse IDE.

Case Study. The greatest challenge for us was implement-
ing the Visitor and Inverse Visitor patterns: these R2 meth-
ods stressed Eclipse, R2 capabilities, and exposed the core
challenges for future work. The other patterns (discussed in
Section 4 and the Appendixes) did not require complex JDT
refactorings – they mostly added new program elements or
class relationships.

We used six real-world, publicly available Java applica-
tions. We selected applications with three criteria in mind:
(1) they had non-trivial class hierarchies, (2) regression tests
were available for us to determine if our refactorings altered
application behavior, and (3) there were numerous method
candidates that could “seed” a visitor. We randomly selected
methods among these candidates. We believe this selection
process presents both a representative set of applications and
a fair test for our work.

The Subject column of Table 2 lists these applications,
their versions, application size in lines of code, and the
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Seed Subject Seed Method Name Super Chg Move Ren # of Elap Esti # of Bug
ID (Ver#, LOC, #Tests) Del Sig Refact Time Time Errors IDs
A1

AHEAD
jak2java [4]
(130320, 26K, 75)

getAST Exp 0 26 26 52 104 70s 23s 26 B2
A2 getExpression 0 17 17 34 68 52s 22s 17 B2
A3 printorder 0 1 276 277 554 547s 298s 0 -
A4 reduce2Ast 1 1 29 30 60 45s 18s 23 B2
A5 reduce2Java 7 1 47 48 96 83s 40s 100 B2
C1

Commons
Codec [1]
(1.8, 16K, 6103)

encode 0 1 2 3 6 5s 2s 27 B2, B4
C2 getCharset 0 4 4 8 16 13s 6s 0 -
C3 getDefaultCharset 0 4 4 8 16 12s 6s 0 -
C4 getEncoding 0 2 4 6 12 11s 6s 3 B4
C5 isInAlphabet 0 1 2 3 6 4s 2s 2 B2
I1

Commons
IO [2]
(2.4, 24K, 810)

getDefaultEncoding 0 1 1 2 4 4s 2s 0 -
I2 getEncoding 0 1 1 2 4 5s 3s 0 -
I3 getFileFilters 0 1 2 3 6 5s 3s 0 -
I4 getSize 0 1 1 2 4 8s 6s 0 -
I5 setFileFilters 0 1 2 3 6 5s 2s 0 -
J1

JUnit [19]
(4.11, 23K, 2807)

countTestCases 1 1 7 8 16 13s 6s 1 B4
J2 failedTest 0 1 1 2 4 6s 1s 0 -
J3 getName 0 4 5 9 18 109s 101s 2 B2, B4
J4 run 2 1 9 10 20 22s 10s 4 B4, B6
J5 testCount 0 1 1 2 4 4s 2s 2 B1

Q Quark [4]
(1.0, 575, 9)

apply 0 1 7 8 16 13s 6s 0 -

R1
Refactoring
Crawler [10]
(1.0.0, 7K, 15)

computeLikeliness 0 1 13 14 28 21s 10s 14 B2, B4
R2 extractFullyQualifie... 0 1 1 2 4 4s 1s 0 -
R3 isRename 0 1 12 13 26 25s 15s 10 B4
R4 pruneFalsePositives 1 1 4 5 10 8s 4s 1 B4
R5 pruneOriginalCandid... 7 1 13 14 28 23s 12s 4 B4

Table 2. Applications and Visitor Pattern Results.

number of regression tests. We used an Intel CPU i7-2600
3.40GHz, 16 GB main memory, Windows 7 64-bit OS.

To determine whether the subjects were unchanged in
terms of runtime behavior after applying an R2 refactoring,
we ran all available regression tests included with each ap-
plication before and after refactoring.

6.2 Results
6.2.1 DoesR2 Improve Productivity?
The results of the user study are shown in Table 3. Again,
we asked teams of students to create a visitor using JDT
refactorings. The two rows of Table 3 partition these teams
into two groups – those that followed directions (the top row)
and those that didn’t and created the requested visitor by
hand.

Individuals who used JDT refactorings took 107 minutes
to complete the refactoring; 60% of them requested help.
Teams of two or three took 71 minutes and 43% of these
teams requested help. Interestingly, individuals who imple-
mented the visitor without using JDT refactorings completed
the assignment in 76 minutes, and teams of two or more took
54 minutes, none requesting help.

To put these numbers into perspective, R2 took 13 sec-
onds (6 seconds estimated) to correctly perform the task.
Even relatively simple refactorings – in this case creating
a visitor with 7 methods – is harder than it seems. It is easy
to get lost and make mistakes. We have concluded that any
help is beneficial.

The data coming from the case study shows too that
R2’s automation can not be beaten by manual transforma-
tions. Each Eclipse refactoring invoked in makeVisitor

Individual Team of 2-3

Use Eclipse JDT Time to Finish (min) 107 71
Reference Help Pages (%) 60 43

Manual change Time to Finish (min) 76 54
Reference Help Pages (%) 0 0

Table 3. User Study to Introduce a Visitor.

took roughly 1 second. Our largest experiment, A3, which
invoked 554 Eclipse refactorings took 547 seconds (over 9
minutes). Had programmers done this experiment by hand,
we believe that most of them would have given up at the
sheer scale of change.

Using R2, there can be a huge improvement in program-
mer productivity even for programmers who are experts on
working with Eclipse’s refactoring tools. A single Eclipse
refactoring requires several mouse clicks (or keyboard short-
cuts) and text inputs. When multiple refactorings are applied
in concert, the number of clicks and inputs become burden-
some. Manual interactions with dialogs require additional
decisions (eg when refactorings violate preconditions, but
refactorings can repair these exceptions), all of which is hid-
den byR2.

6.2.2 IsR2 Scalable?
Visitor Pattern: Using the data from the case study, Table 2
lists results of applying our makeVisitor refactoring to dif-
ferent methods in multiple applications. Each row represents
data from a subject program. The columns are:

• Seed ID identifies the experiment.
• Subject is the Java subject program.
• Seed Method Name is the seed of the visitor.
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• Super Del is the number of super delegates created (Sec-
tion 5.1).

• Chg Sig is the number of change method signatures

applied.
• Move is the number of methods moved into the visitor.
• Ren is the number of methods renamed, which is the sum

of the Chg Sig and Move columns.
• # of Refact is the total number of Eclipse refactorings

invoked by the makeVisitor call.
• Elap-Time is the clock time to perform makeVisitor.

This includes the overhead for dialog box displays.
• Esti-Time is our estimate of the time specific to LTK core

execution.
• # of Errors is the number of compilation errors that

JDT refactorings generated, all which had to be manually
corrected.

• Bug IDs are identifiers of the reported Eclipse bugs (see
the Safety subsection 6.2.3 and Table 5).

About Table 2: recall that the R2 makeVisitor method
of Figure 5 invokes addParameter to the list of methods
that are relatives of the method seed. Ideally, these relatives
are all descendant from a single root method (A.m in Fig-
ure 18a). This means that the R2 addParameter method
invokes the Eclipse change method signature refactoring
once on A.m to add an extra parameter to all of its relatives
B.m, C.m.

In general there can be multiple roots. Figure 18b shows
a seed whose relatives are not descendant from a single root.
This means that the R2 addParameter method invokes the
Eclipse change method signature refactoring three times,
once for each root E.m, F.m, G.m, to add an extra parameter to
all relatives.

seed

seed

root(a) (b) root

Figure 18. Method Seeds and Method Roots.

With the above in mind, now look at row/experiment A3
in Table 2. Our tool created a visitor for the printorder

method in AHEAD. 276 methods were moved into a vis-
itor, no super delegates were created, and one change

method signature was applied. The number of rename

methods (277) was determined in this way: each method
that is moved is renamed to visit (276). Although 276

method delegates were created, only one had to be renamed
to accept. By renaming a root method, all of its descen-
dants were renamed. Thus the total number of renames is
276+ 1 = 277.

Now consider row/experiment J3. Our tool created a vis-
itor for the getName method in JUnit. 5 methods were
moved into a visitor, no super delegates were created, and 4

change method signatures were applied. The reason for
4 is that there were 4 method roots for the given seed (Fig-
ure 18b). Thus, the number of renames performed is 9; 5
methods were moved, and 4 delegates (roots) were renamed.

Finally, consider row/experiment R5. Our tool created
a visitor for the pruneOriginalCandidates method in
RefactoringCrawler. 13 methods were moved into the
visitor class, where 7 of these methods referenced “super”
and thus required a super delegate for each to be created.

As R2 invokes refactorings automatically via dialog
boxes, there is unnecessary overhead. Every Eclipse refac-
toring incurs three basic computations: checkInitial-
Conditions confirms that the refactoring is applicable,
checkFinalConditions performs the remaining precondi-
tion checks, and createChange changes the code [14, 45].
We profiled our executions to determine the amount of time
spent in them and in dialogs. Let τ be the clock time that
we measured to execute anR2 refactoring and γ be our esti-
mate of run-time without GUI overhead, where Esti-Time
equals γ, the time to execute checkInitialConditions,
checkFinalConditions, and createChange APIs. To a
good approximation, τ = 2γ; that is, 50% of our clock time
measurements estimates the LTK core execution-time of an
R2 refactoring. We repeated each experiment five times and
found no significant variance.

Inverse Visitor: As discussed in Section 3.2, an inverse
Visitor can remove a manually-created visitor from a legacy
program, or (as we concentrate here) can undo anR2-created
visitor; it is definitely not just a “roll-back” of edits.

Seed Chg Move/ Ren # of Elap Esti
ID Sig Inline Refact Time Time
A3 1 276 1 554 407s 308s
C2 4 4 4 16 14s 10s
C3 4 4 4 16 17s 10s
I1 1 1 1 4 4s 3s
I2 1 1 1 4 3s 2s
I3 1 2 1 6 5s 4s
I4 1 1 1 4 3s 2s
I5 1 2 1 6 4s 3s
J2 1 1 1 4 4s 2s
Q 1 7 1 16 10s 8s
R2 1 1 1 4 6s 4s

Table 4. Inverse Visitor Results.

Only experiments A3, C2-C3, I1-I5, J2, Q, R2 produced
no errors. It was for these cases that we could apply our
inverse Visitor refactoring. Table 4 lists the results. Each
Eclipse refactoring took roughly 1 second. To invert the
A3 visitor took 554 Eclipse refactorings for a total of 407
seconds (over 6 minutes). The Esti-Time column of Ta-
ble 4 gives our estimated run-time for LTK core APIs. When
fewer than 10 Eclipse refactorings are needed, run-times of
a few seconds are acceptable. For more than 10 refactorings,
the run-times seem too long to be “interactive”.

Can R2 refactorings be applied to large programs? A
qualified “yes” is the answer. Experiment A3 invoked 554
transformations on a code base of over 26K LOC, and did
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so in 9 minutes (which we estimate could be reduced to 5
minutes).

6.2.3 IsR2 Safer than Manual Changes?
From our user study, we found that 60% of solo teams
and 43% of multi-member teams that used JDT refactorings
requested help because they introduced all sorts of errors and
could not get the tests to pass.

Using the data from the case study, notice that numerous
compilation errors were introduced by JDT refactoring bugs
(ie column # of Errors in Table 2), all of which we manually
repaired. These bugs are documented in Table 5. We reported
these bugs to Eclipse bugzilla by August 2013 except one;
B1 was reported in February 2008. As of 3/6/2014 bugs with
a X have been resolved; those with a ? are now in the current
version of Eclipse (Kepler 4.3.1). We have since discovered
more bugs and they will be explained in future papers.

Bug Eclipse Description StatusID Bugzilla #
B1 217753 When a method with reference to

static import is moved, the reference
type is qualified incorrectly.

X

B2 385550 When a method with reference to inher-
ited fields is moved, the field access is
not updated.

X ?

B3 385989 When a method with reference to
import type is moved, the reference
type is not qualified as the import type.

X ?

B4 404471 When a method with @Override anno-
tation is moved, the annotation is also
moved with the method.

X

B5 404477 When a method is moved, wrong detec-
tion of duplicate methods occurs.

X

B6 411529 When a method with reference to
protected methods is moved to other
package, protected is not modified to
public.

X

B7 416198 When a method is inlined, its reference
in enum constructor call is not updated.

Table 5. Eclipse Bug Reports.

Manually repairing Eclipse-introduced errors is tedious
and error-prone. If many errors are introduced (eg experi-
ments A5 and C1), it is unclear whether programmers would
want to fix the errors or just abandon the refactoring alto-
gether.

Using Eclipse JDT, we implicitly adopted its strengths
and frailties. We built our tool on a foundation that we
thought was rock-solid; to our chagrin, it resembled quick-
sand. R2 should be safer than applying changes manually.
Trust is the real issue: correctness of refactorings is a signif-
icant scientific problem and lack of trust (correctness) is a
serious practical problem for future refactoring tools.

7. Related Work
Writing program transformations is a non-trivial exercise
as research has shown [3, 5–9, 14, 16, 18, 23–26, 29,
32, 33, 36, 40, 42–44]. Prior work introduced a num-
ber of impressive metaprogramming languages such as
ASF + DSF [42], iXj [6], JunGL [44], Parlanse [5],

Rascal [18], Refacola [36], SOUL [25], Stratego [8],
Tom [3], and TXL [9]. None match our requirements.

There are two primary distinctions betweenR2 and prior
work. First is using the base language (ie the language in
which programs to be refactored are written) as the refactor-
ing script language. Second, writing primitive refactorings
(ie rename method, move method, change method signature,
etc.) is non-trivial and adds further burden on the poten-
tial user of program transformation systems. It is important
to distinguish approaches that leverage existing refactoring
engines from those where primitives have to be written by
users. Table 6 categorizes these distinctions to the best of
our knowledge.

At the top of Table 6 are tools, R2 and Wrangler, whose
refactoring scripting language is the same as the base lan-
guage. The remaining rows of tools use a different scripting
language (possibly even a different scripting paradigm) than
the base language and/or requires writing primitive refactor-
ings. Tools that have • for a base language can be applied to
any language, given its language specification in that tool’s
formalism(s). Below we highlight representative works in
Table 6.

JunGL and Refacola are DSLs specialized for scripting
refactorings. JunGL is the ML-style functional language im-
plemented on the .NET platform and targeted the C# lan-
guage. JunGL facilitates AST manipulation with higher or-
der functions and tree pattern matching, and also supports
querying facilities for semantic and data flow information
look-up. Refacola is a constraint language where refactor-
ings are specified by constraint rules. The Refacola frame-
work supports implementation of program element queries
and constraint generation.

Program transformation systems are monuments of engi-
neering prowess. Among them are Codelink [40], DMS [5],
SmaCC [7], SYDIT [24], Wrangler [23], and XT [8]. Wrangl-
er, in particular, is a refactoring framework implemented
in functional language Erlang which is also the target lan-
guage. Wrangler supports refactoring commands for locat-
ing program elements to be refactored, and provides a cus-
tom DSL to execute the commands.

Hills et al. [18] also use JDT refactorings, which are avail-
able as APIs in the Rascal JDTRefactoring library. They
too target Java, but their scripting language (Rascal) is not
an OO language. Further, manual code changes are required
in their transformation process to fix incorrect access modi-
fiers, clean up unnecessary codes, etc, which we would have
preferred to have a tool to automatically.

Mens et al. [25] use declarative metaprogramming to
define design patterns and their constraints in a language-
independent manner. Their use of a variant of Prolog is
elegant, as they tackle problems similar toR2.

Finally,R2 deals with refactoring scripts, not when refac-
torings should be applied. There are excellent papers on this
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Tool or DSL Scripting Language Base Language Paradigm Primitives Available
R2 Java Java Imperative X

Wrangler Erlang Erlang Functional

ASF+SDF ASF, SDF • Term Rewrite
iXj iXj Java Imperative

JunGL JunGL C# Functional and Logic Query
DMS Parlanse • Lisp-like

Rascal Rascal Java Imperative, Non-OO X
Refacola Refacola Eiffel, Java Constraint
SOUL SOUL Java, C, Cobol, Smalltalk Logic Programming X

XT Stratego • Term Rewrite
Tom Tom C, Java, Python, C++, C#, etc Term Rewrite
TXL TXL • Functional, Term Rewrite

Codelink (GUI-based) • (N/A)
SmaCC SmallTalk Java, C#, Delphi Imperative
SYDIT (GUI-based) Java (N/A)

• indicates arbitrary languages that can be defined by users.

Table 6. Tools and Languages to Script Refactorings

topic [11, 20, 28, 34, 35, 38, 41] but all are orthogonal to the
use and goals ofR2.

8. Conclusions
Introducing design patterns into a program using refactor-
ings is tedious and error-prone. The burden can be alleviated,
either partially or fully, by refactoring scripts. Today’s IDEs
offer poor support for such scripts, or require a background
and understanding of IDE internals that students and most
programmers will never have. Proposed DSLs that can be
used for scripting typically require knowledge of yet another
programming language and maybe even require the need to
code primitive refactorings.

Our solution R2 uses (1) Java as a metaprogramming
language, (2) metaobjects are classes, methods, and fields of
a Java program, and (3) metaobject methods are native JDT
refactorings or our scripts. We have used R2 to automate
classical design patterns, where each R2 script is a compact
Java method. We fail to see how any DSL could make these
scripts significantly shorter. And we fail to see how any
DSL (exposing JDT refactorings as primitives) would be any
easier to learn than Java.

Our experiments show that large refactoring scripts can
be successfully applied to non-trivial programs (554 refac-
torings applied to a code base of 26K), that refactoring
scripts can accomplish even small objectives and save signif-
icant time (reducing an hour of work to 13 seconds to create
a visitor with 7 methods), and in principle can be safer than
a manual process.

Our work reveals an Achilles heel in contemporary refac-
toring technology. Despite countless man-years of JDT de-
velopment, we repeatedly discovered errors not of our mak-
ing were introduced by JDT refactoring bugs. There is a
practical, not theoretical, limit to extend Eclipse with script-
ing. If too many errors are introduced, it is unclear whether
programmers would want to fix the errors or just abandon the
refactoring altogether. Correctness of refactorings remains a

significant scientific problem and lack of trust (correctness)
remains a serious practical problem.

Further, the speed at which refactoring scripts execute is
a concern. To execute 554 refactorings took 9 minutes (5
minutes estimated). While the magnitude of this task would
virtually preclude it from being done manually, and although
this run-time is miniscule to the time a manual attempt
would require, it is too long to be truly “interactive”.

It remains a conjecture on our part that students can script
refactorings using R2. This will take more time. Never-
the-less, we are convinced that IDE support for refactoring
scripts is an important problem that next-generation refac-
toring engines must solve. Our work takes us a step closer to
this goal.
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Appendices
A. Examples of Fully Automatable Patterns
A.1 Abstract Factory
The Abstract Factory pattern provides a general interface for
concrete factories. Figure 19 shows interface Abstract-
Factory that is implemented by concrete factory class
ConcreteFactory. ConcreteFactory consists of fac-
tory methods produced for every public/protected construc-
tor in a given package. (The package of Figure 19a con-
tains classes A and B; Figure 19b contains classes A, B,
AbstractFactory and ConcreteFactory). Figures 20
and 21 are R2 methods that produce these concrete and
abstract factories.
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Factory

+A()
+A(in ...)

A

+B()
+B(in ...)

B

+createA()
+createA(in ...)
+createB()
+createB(in ...)

<<interface>>
AbstractFactory

+createA()
+createA(in ...)
+createB()
+createB(in ...)

ConcreteFactory

A createA( ) { return new A(); }
A createA(...) { return new A(...); }
B createB( ) { return new B(); }
B createB(...) { return new B(...); }

+A()
+A(in ...)

A

+B()
+B(in ...)

B

(a) (b)

Figure 19. Factory Pattern.

1 // member of RPackage class
2 RClass makeConcreteFactory(String factoryName)
3 {
4 RClass f = this.newClass(factoryName);
5
6 for(RClass c : this.getClass(RModifier.Public |

RModifier.Protected)) {
7 for(RMethod m : c.getConstructor(RModifier.

Public | RModifier.Protected)) {
8 f.newFactoryMethod(m);
9 }

10 }
11
12 return f;
13 }

Figure 20. A makeConcreteFactory Method.

1 // member of RClass class
2 RInterface makeAbstractFactory(String absFacName)
3 {
4 RInterface i = getRPackage ().newInterface(

absFacName);
5
6 for(RMethod m : getMethod ()) {
7 i.newMethod(m);
8 }
9

10 this.setInterface(i);
11
12 return i;
13 }

Figure 21. A makeAbstractFactory Method.

A.2 Command and Memento
+d()
+e()
+f()

Legacy

*

-wraps

1

a( ) {  /* generated stub */  }
b( ) {  /* generated stub */  }
c( ) {  /* generated stub */  }+a()

+b()
+c()

«interface»
Target

+a()
+b()
+c()

Adapter

+m1(in param1, in param2)
+undo_m1(in param1, in param2)
+m2(in param)
+undo_m2(in param)

Document

+do()
+undo()

Command

+do()
+undo()

-param1
-param2

m1

-doc

1 *

+do()
+undo()

-param

m2

m2(d,p) {
doc = d;
param = p;

}

do( ) {
doc.m2(param);

}

undo( ) {
doc.undo_m2(param);

}

Figure 22. Command and Memento Patterns.

The Command pattern encapsulates a method invocation
as an object, typically for journaling. The Memento pat-
tern adds the ability to undo method calls, and completes
the usual abilities of logs to undo and redo calls. Figure 22
presents an example of Memento where an undo method is

1 // member of RMethod class
2 RClass makeCommand(String commandName)
3 {
4 RClass c = getRPackage ().newClass(commandName);
5
6 ArrayList <RField > l = new ArrayList <RField >();
7
8 RField f = c.newField(getRClass ());
9 l.add(f);

10
11 for(RParameter p : getParameters ()) {
12 f = c.newField(p);
13 l.add(f);
14 }
15
16 c.newConstructor(l);
17 c.newCommandMethod(this);
18
19 return c;
20 }

Figure 23. A makeCommand Method.

1 // member of RMethod class
2 RClass makeMemento(RClass commandClass) {
3 commandClass.newCommandMethod(this);
4 return commandClass;
5 }

Figure 24. A makeMemento Method.

given for every do method. (Another way is to remember the
state of an object prior to a do method call; undo restores
the previous object state. This would be another R2 method
variant). The makeCommand R2 method in Figure 23 is ap-
plied to the target method and creates a concrete command
class. The makeMemento R2 method in Figure 24 adds the
target undo method to the command class, which becomes a
memento class.

B. Partially Automatable Patterns
B.1 Strategy
The Strategy pattern encapsulates each concrete algorithm
independently and selects one dynamically at runtime. The
participants in Strategy are a common strategy interface,
concrete strategies, and a Context class that references the
strategy interface (Figure 25).

+execute()

«interface»
Strategy

+execute()

ConcreteStrategyA

+execute()

ConcreteStrategyB

Context

* 1

Figure 25. Strategy Pattern.

The makeStrategy R2 method in Figure 26 is applied
to a method (that becomes a strategy) in class Context.
Then, an interface (called Strategy) is created along with
a concrete class where the strategy method is moved from
Context. A field of the concrete class type is added to
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Context and the strategy method is moved via the field.
OurR2 method can be extended by adding different concrete
strategy classes.

1 // member of RMethod class
2 RClass makeStrategy(String strategyName)
3 {
4 RPackage p = getRPackage ();
5 RInterface i = p.newInterface(strategyName);
6 i.newMethod(this);
7
8 RClass c = p.newClass(getName () + "Strategy");
9 c.newMethod(this);

10 c.setInterface(i);
11
12 RField f = getRClass ().newField(c, String.

format("new %s()", c.getFullName ()));
13 this.moveAndDelegateVia(f);
14
15 f.setType(i);
16
17 return c;
18 }

Figure 26. A makeStrategy Method.
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