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Abstract. We consider a congested aggregation model that describes the evolution of a den-
sity through the competing effects of nonlocal Newtonian attraction and a hard height con-
straint. This provides a counterpoint to existing literature on repulsive-attractive nonlocal
interaction models, where the repulsive effects instead arise from an interaction kernel or the
addition of diffusion. We formulate our model as the Wasserstein gradient flow of an in-
teraction energy, with a penalization to enforce the constraint on the height of the density.
From this perspective, the problem can be seen as a singular limit of the Keller-Segel equation
with degenerate diffusion. Two key properties distinguish our problem from previous work on
height constrained equations: nonconvexity of the interaction kernel (which places the model
outside the scope of classical gradient flow theory) and nonlocal dependence of the velocity
field on the density (which causes the problem to lack a comparison principle). To overcome
these obstacles, we combine recent results on gradient flows of nonconvex energies with viscos-
ity solution theory. We characterize the dynamics of patch solutions in terms of a Hele-Shaw
type free boundary problem and, using this characterization, show that in two dimensions
patch solutions converge to a characteristic function of a disk in the long-time limit, with
explicit rate of convergence. We believe that a key contribution of the present work is our
blended approach, combining energy methods with viscosity solution theory.
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1. Introduction

In recent years, there has been significant interest in physical and biological models with
nonlocal interactions. These models describe the pairwise interactions of a large number of
individual agents, for which, in the continuum limit, the nonnegative density ρ(x, t) satisfies
the aggregation equation with degenerate diffusion

ρt = ∇ · (ρ∇N ∗ ρ) + ∆ρm,(1.1)

for an interaction kernel N : Rd → R and m ≥ 1. This equation is mass-preserving and,
provided that N (x) possesses sufficient convexity and regularity, it is a Wasserstein gradient
flow of the energy

Em(ρ) = W (ρ) + Sm(ρ),

where the interaction energy W (ρ) and Rényi entropy Sm(ρ) are given by

W (ρ) =
1

2

∫
(N ∗ ρ)(x)ρ(x)dx and Sm(ρ) :=

1

m− 1

∫
ρ(x)mdx.

See section 2.1 for further background on this gradient flow structure, including Remark 2.9
for the case when

∫
ρ 6= 1.

Depending on the choice of interaction kernel and diffusion parameter, equations similar
to (1.1) arises in a range applications in physics and biology, including models of granular
media [6, 18], biological swarming [12, 52], robotic swarming [19, 45], molecular self-assembly
[21,47,55], and the evolution of vortex densities in superconductors [3,37,40,46]. Of particular
interest are kernels and diffusion parameters for which the model exhibits competing repulsive
and attractive effects, causing solutions to blow up in finite time or form rich patterns in the
asymptotic limit (c.f. [4, 5, 7–9, 23–25, 50]). For example, with m ≥ 1 and the interaction is
given by the Newtonian interaction kernel

N (x) =

{
1

2π log |x| for d = 2,
−1

d(d−2)αd
|x|2−d for d 6= 2,

with αd the volume of the unit ball in Rd,(1.2)

equation (1.1) corresponds to the Keller-Segel model for biological chemotaxis [10,11,29]

ρt = ∇ · (ρ∇(N ∗ ρ)) + ∆ρm.(1.3)

In this case, the interaction kernel is purely attractive and competes with the repulsion induced
by the degenerate diffusion. If m > 2− 2/d, diffusion dominates at large density, and bounded
solutions exist globally in time [49]. Otherwise, depending on the choice of initial data, solutions
with bounded initial data may blow up in finite time.

In the present work, we consider a diffusion-aggregation model similar to the Keller-Segel
equation, but with the role of diffusion instead played by a hard height constraint on the
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density. Heuristically, the evolution of ρ(x, t) is given by the congested aggregation equation{
ρt = ∇ · (ρ∇Nρ) if ρ(x, t) ≤ 1,

ρ(x, t) ≤ 1 always,
(1.4)

where Nρ := N ∗ ρ denotes the Newtonian potential of ρ. Informally, solutions of 1.4 seek
to evolve according to the “desired velocity field” ∇Nρ, subject to a hard height constraint.
More precisely, we define ρ(x, t) as the Wasserstein gradient flow of the constrained interaction
energy

E∞(ρ) :=

{
1
2

∫
Nρ(x)ρ(x)dx if ‖ρ‖∞ ≤ 1,

+∞ otherwise.
(1.5)

Our choice of hard height constraint is inspired by the work of Maury, Roudneff-Chupin,
Samtambrogio, and Venel [41,42], who introduced such a constraint in their model of pedestrian
crowd motion. They considered a congested drift equation{

ρt = ∇ · (ρ∇V ) if ρ(x, t) ≤ 1,

ρ(x, t) ≤ 1 always,
(1.6)

for a local drift V : Rd → R, where ∇V is the “desired velocity field” of the density. As in the
present work, they rigorously defined the evolution of the density as the Wasserstein gradient
flow of the constrained potential energy

V∞(ρ) :=

{
1
2

∫
V (x)ρ(x)dx if ‖ρ‖∞ ≤ 1,

+∞ otherwise.

They then showed that this gradient flow satisfies a formulation of the continuity equation,
where the velocity field is given by the L2 projection of ∇V onto the set of admissible velocities
that do not increase the density in the saturated zone, {ρ = 1} [41]. Furthermore, when V (x)
is semiconvex (e.g. when ∇2V (x) is bounded below—see section 2.1) the energy V∞ is likewise
semiconvex and Wasserstein gradient flow theory ensures that this evolution is unique.

Building upon this work, Alexander, Kim, and Yao [1] showed that solutions of the con-
gested drift equation could be approximated by solutions to a corresponding nonlinear diffusion
equation

ρt = ∇ · (ρ∇V ) + ∆ρm(1.7)

as m→ +∞, which are gradient flows of the energy

Vm(ρ) :=

∫
V (x)ρ(x)dx+

1

m− 1

∫
ρ(x)mdx,

(Note that, for a fixed ρ, V∞(ρ) is the limit of Vm(ρ) as m→∞.) They then applied this result
to characterize the dynamics of the congested drift equation: given a velocity field satisfying
∆V > 0 and initial data that is a characteristic function on a patch, ρ(x, 0) = χΩ0(x) for

χΩ0(x) :=

{
1 if x ∈ Ω0,

0 otherwise,

the solution remains a characteristic function, and the evolution of the patch is given by a
Hele-Shaw type free boundary problem.
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In spite of the similarities between our congested aggregation equation (1.4) and the con-
gested drift equation (1.6), two key differences prevent its analysis by the same methods. First,
unlike V∞, the energy E∞ does not satisfy the semiconvexity assumptions of classical gradient
flow theory that ensure uniqueness. This lack of convexity also makes the equation inaccessible
by classical approximation methods—specifically, quantitative approximation by the discrete
gradient flow or JKO scheme for semiconvex energies—which was a key tool in Alexander, Kim,
and Yao’s result on the convergence of the nonlinear diffusion equation (1.7) as m → +∞ to
the congested drift equation. The second major difference between the congested aggregation
and congested drift equations is that the velocity field of the former depends nonlocally on
the density. This prevents a direct adaptation of Maury, Roudneff-Chupin, and Santambro-
gio’s characterization of solutions in terms of a continuity equation, since their argument relies
upon an Euler-Lagrange equation for the discrete gradient flow sequence, the proof of which
strongly leverages the local nature of the drift. Finally, the nonlocal nature of the velocity
field causes there to be no comparison principle, an important element in Alexander, Kim, and
Yao’s analysis of the patch dynamics.

To overcome these difficulties, we combine new results on the Wasserstein gradient flow of
non-semiconvex energies with a refined approximation of the congested aggregation equation
by nonlinear diffusion equations to characterize the dynamics of patch solutions and study
their asymptotic behavior. To address the lack of convexity, we appeal to recent work by
the first author, inspired by the present problem, that proves well-posedness of Wasserstein
gradient flows for energies that are merely ω-convex and provides quantitative estimates on
the convergence of the discrete gradient flow. (See section 2.1). We apply these results to
conclude that if the initial data ρ0 satisfies ‖ρ0‖∞ ≤ 1, then there exists a unique Wasserstein
gradient flow ρ∞ of the constrained interaction energy E∞. However, due to the low regularity
of E∞, gradient flow theory doesn’t provide a characterization of its evolution in terms of a
partial differential equation.

Our goal in this paper is to study the dynamics and asymptotic behavior of ρ∞. We focus
on the case when the initial data ρ0 is a patch, i.e. ρ0 = χΩ0 , where Ω0 ⊆ Rd is a bounded
domain with Lipschitz boundary, and we seek to answer the following questions:

1. If ρ0 is a patch, does ρ∞(·, t) remain a patch χΩ(t) for all t ≥ 0?
2. If so, what partial differential equation determines the evolution of the set Ω(t)?
3. What is the asymptotic behavior of Ω(t) as t→∞?

To answer these questions, we blend the gradient flow approach with viscosity solution
theory. Due to the attractive nature of the Newtonian kernel (1.2), we show that the solution
of the congested aggregation equation ρ∞(x, t) indeed remains a patch: ρ∞(x, t) = χΩ(t)(x) for
a time dependent domain Ω(t). We then show that Ω(t) evolves with outward normal velocity
V = V (x, t) satisfying

V = −ν · (∇p+∇Nρ∞) at x ∈ ∂Ω(t),

where ν = ν(x, t) is the outward unit normal at x ∈ ∂Ω(t) and, for each t > 0, p = p(x, t)
solves

−∆p(·, t) = 1 in Ω(t), p(·, t) = 0 outside of Ω(t).
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Since, Ω(t) = {p(·, t) > 0}, this gives a Hele-Shaw type free boundary problem for the pressure
variable p,  −∆p(·, t) = 1 in {p > 0};

V = −ν · (∇p+∇Φ) on ∂{p > 0};
Φ = Nχ{p>0}.

(P)

Provided that p is sufficiently regular (for example, p ∈ L1([0,∞);H1(Rd)), this would imply
that the solution of the congested aggregation is a weak solution of the continuity equation

(1.8) ρt = ∇ · (ρ(∇Nρ+∇p)),
where ∇p is the pressure generated by the height constraint that modifies the “desired velocity
field” ∇Nρ. In terms of p, ν = −∇p/|∇p| and V = pt/|∇p|, so in the smooth setting the
second condition in (P) can be written as

pt = |∇p|2 +∇p · ∇Φ on ∂{p > 0}.
Even if Ω0 has smooth boundary, the evolving set Ω(t) = {p(·, t) > 0} may undergo topo-

logical changes such as merging. Consequently, to describe the evolution of Ω(t), we require
a notion of weak solution for (P). While viscosity solutions are a natural choice, given their
utility in free boundary problems, because of the nonlocal dependence of the outward normal
velocity V on p itself, (P) lacks a comparison principle. Instead, we consider an auxillary
problem for a fixed, nonnegative function ρ(x, t) ∈ L∞(Rd × (0,∞)), −∆p(·, t) = 1 in {p > 0};

V = −ν · (∇p+∇Φ) on ∂{p > 0};
Φ = Nρ.

(P)∞

We show that the comparison comparison principle holds for (P)∞, hence viscosity solution
theory applies. We then define p to be a solution of (P) if it is a weak viscosity solution of
(P)∞ with ρ = χ{p>0} almost everywhere.

We now state our first main result, which follows from Theorems 3.8 and 3.14.

Theorem 1.1 (Characterization of dynamics of aggregation patches).

(a) Let Ω0 ⊆ Rd be a bounded domain with Lipschitz boundary, and let ρ∞(·, t) ∈ L∞(Rn)
be the gradient flow of E∞ with initial data χΩ0. Consider the free boundary problem
(P)∞ with ρ replaced by ρ∞, and the initial data p0 given by

(1.9) −∆p0(·, 0) = 1 in Ω0, p0(·, 0) = 0 outside of Ω0.

Then there is a unique minimal viscosity solution p(x, t) of (P)∞ with initial data p0.
(b) Let Ω(t) = {p(·, t) > 0}. Then ρ∞(·, t) remains a patch for all times, and

ρ∞(·, t) = χΩ(t) a.e. for all t ≥ 0.

(c) Therefore, p is a weak solution of (P) in the sense of Definition 3.2.

Next, we consider the asymptotic behavior of patch solutions as t→ +∞. For any given mass
and any dimension, the Riesz rearrangement inequality [35, Theorem 3.7] immediately gives
that the global minimizer of the constrained interaction energy (1.5) must be a characteristic
function of a ball. However, this does not guarantee that the gradient flow ρ∞(t) of the
constrained interaction energy always converges to a translation of the global minimizer as
t → +∞. In particular, the main obstacle is to show the mass of ρ∞(t) cannot escape to
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infinity in the long time limit, which requires us to obtain some compactness estimates on
ρ∞(t) uniformly in time.

For the Keller-Segel equation (1.3) with subcritical power m > 2 − 2/d, the situation is
very similar. Again, there exists a unique (up to a translation) global minimizer of Em for
any given mass [36, 38], but it is unknown whether solutions converge to it as t → +∞. In
dimension two, convergence has been recently shown by Carrillo, Hittmeir, Volzone, and the
third author [16], where compactness is obtained via a uniform in time bound of the second
moment, though no explicit convergence rate towards the global minimizer is given. For d ≥ 3,
the only available convergence result towards the global minimizer is work by the second two
authors on radial solutions [31].

In our work, for dimension two, we not only prove convergence of solutions towards the global
minimizer of the constrained interaction energy (1.5), but also provide explicit estimates on the
rate of convergence. We accomplish this by again applying a blended approach, combining the
gradient flow structure of the problem with viscosity solution theory and the characterization of
patch dynamics from Theorem 1.1. We begin by using a rearrangement inequality of Talenti [51]
to show that the second moment of ρ∞(t) is non-increasing in time and is strictly decreasing
at time t unless Ω(t) is a disk. Then, applying a quantitative version of the isoperimetric
inequality due to Fusco, Maggi, and Pratelli [26] and our characterization of patch dynamics,
Theorem 1.1, we provide explicit estimates on the rate that the second moment is decreasing,
in terms of the symmetric difference between Ω(t) and a disk. Finally, using the gradient flow
structure of the problem, we show that as t→ +∞, ρ∞(t) strongly converges to a characteristic
function of a disk in Lq for any 1 ≤ q < ∞, and its energy E∞(ρ∞) converges to its global
minimizer with an explicit rate. This gives our second main result, which combines Theorems
4.9 and 4.12.

Theorem 1.2 (Long time behavior in two dimensions). Assume d = 2. Let Ω0 ⊆ R2 be a
bounded domain with Lipschitz boundary, and let ρ∞ be the gradient flow of E∞ with initial
data χΩ0. Then as t→ +∞, ρ∞(·, t) converges to χB0 in Lq for any 1 ≤ q <∞, where B0 is
the unique disk with the same area and center of mass as those of Ω0. Furthermore, we have
the following rate of convergence in terms of the free energy,

0 ≤ E∞(ρ∞(·, t))− E∞(χB0) ≤ C(|Ω0|,M2[Ω0])t−1/6.

Remark 1.3. Let us point out that our control for the second moment relies on the particular
structure for the 2D Newtonian kernel, and we are unable to obtain similar compactness
estimates for higher dimensions. For d ≥ 3, whether ρ∞(t) converges to a ball as t → ∞
remains an interesting open question.

We now describe the key ingredients in our characterization of the dynamics of the congested
aggregation equation. At the heart of our analysis is an approximation of this equation as the
singular limit of a sequence of nonlinear diffusion equations. This provides the bridge between
the gradient flow and viscosity solution approach. In particular, while the gradient flow of
E∞ is merely a curve in the space of measures, approximating it by a sequence of solutions to
nonlinear diffusion equations allows us to bring to bear the tools of viscosity solution theory
in the limit.

Following the analogy with Alexander, Kim, and Yao’s previous work, one might hope to
approximate the congested aggregation equation by the Keller-Segel equation (1.3), which also
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has a gradient flow structure corresponding to the energy

EKS(ρ) =

∫∫
ρ(x)Nρ(x)dx+

1

m− 1

∫
ρ(x)mdx(1.10)

Note that for a fixed ρ, E∞(ρ) is the limit of EKS(ρ) as m → ∞. However, EKS satisfies
neither the classical assumptions for semiconvexity nor the weaker assumptions for ω-convexity.
Consequently, we lack the quantitative estimates on the rate of convergence of the discrete
gradient flow that are an essential element of our approach. Instead, we replace the nonlocal
potential Nρ in EKS with a local potential Φ1/m(x, t) that depends on time, the initial data
ρ(x, 0), and the diffusion parameter m ≥ 1. (See Definition 2.10 for a precise definition of this
potential.) This leads to the energy

Em,t(ρ) :=

∫
ρ(x)Φ1/m(x, t)dx+

1

m− 1

∫
ρ(x)mdx,

which we can show is ω-convex. We then prove that the (time dependent) gradient flow of this
energy, which corresponds to a solution of

ρt = ∇ · (ρ∇Φ1/m) + ∆ρm,(PME-D)m

converges as m → +∞ to a solution of the congested aggregation equation. (See section 2
for our construction of this time dependent gradient flow.) Then, rewriting (PME-D)m in the
form

ρt = ∇ · (ρ(∇Φ1/m +∇pm)), for pm =
m− 1

m
ρm−1,(1.11)

we use viscosity solution theory to show that, as m→ +∞, pm converges to a solution of the
free boundary problem (P). By uniqueness of the limit, we conclude the characterization of
dynamics of patch solutions of the congested aggregation equation, as stated in Theorem 1.1.

Our paper is organized as follows. In section 2, we prove that the solutions of the nonlinear
diffusion equations (PME-D)m converge as m → +∞ to the gradient flow of E∞ with an
explicit rate depending on m. We also provide background on Wasserstein gradient flow,
including recent results by the first author on the gradient flows of ω-convex energies. In
section 3, we show that the pressure pm corresponding to the nonlinear diffusion equations,
given in equation (1.11), converges as m→ +∞ to a solution of (P)∞. Combining these results,
we show that the gradient flow of E∞ is a characteristic function of the evolving set Ω(t) and
that Ω(t) can be obtained from the viscosity solution of (P )∞. In section 4, we consider the
asymptotic behavior of ρ∞ in two dimensions, proving that it converges to a disk with explicit
rate. Let us remark that the characterization of ρ∞ by the pressure variable p plays a crucial
role in the proof of this asymptotic result. Finally, we conclude with an appendix section
5, which contains proofs of several lemmas from section 2, as well as definitions of viscosity
solutions for the limiting free boundary problem (P )∞.

There are several directions for future work. First, our analysis only addresses solutions that
are initially a patch. Results for more general initial data could leverage recent work by Kim
and Pozar [30] and Mellet, Perthame, and Quiros [44]. Second, in the light of work by Maury,
Roudneff-Chupin, and Santambrogio [41], it would be interesting if one could characterize the
modified velocity ∇p +∇Nρ in (1.8) as the projection of the original velocity ∇Nρ onto the
space of admissible velocities under the height constraint. At the moment, this appears to be
a difficult question, due to the highly nonlinear nature of the projection and its dependence
on the solution. A third direction for future work would be to pursue to what extent our
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analysis extends to nonlocal velocity field generated by kernels aside from the Newtonian N ,
which arise in a range of biological and physical applications. While our result on the singular
limit of the nonlinear diffusion equations extends to a range of kernels (see Remark 2.1), our
analysis of the free boundary problem strongly leverages the structure of the Newtonian kernel.
A final direction for future work would be to make rigorous the link between the congested
aggregation equation and the Keller-Segel equation (1.3) as m→ +∞, completing the analogy
with previous work by Alexander, Kim, and Yao that found that the hard height constraint
may be obtained as the limit of slow diffusion.

2. Convergence of gradient flows: drift diffusion to height constrained
interaction

In this section, we show that the gradient flow of the height constrained interaction energy
E∞, defined in equation (1.5), may be approximated by solutions of the nonlinear diffusions
equations (PME-D)m as m → +∞. This provides a link between the abstract Wasserstein
gradient flow of E∞, which in general is merely a curve in the space of probability measures,
and solutions to partial differential equations.

Remark 2.1 (Choice of interaction kernel). For the sake of continuity with sections 3 and 4,
we assume that the interaction kernel N is Newtonian (1.2). However, our results in this
section may be extended to any kernels that satisfy [20, Assumption 4.1] and the estimates of
Proposition 2.3. In particular, this includes many repulsive-attractive potentials of interest in
the literature.

2.1. Preliminary results. We begin by collecting some results on the Wasserstein gradient
flow of ω-convex energies that will be useful in what follows. For further background on the
Wasserstein metric and gradient flows of semiconvex energies, we refer the reader to the books
by Ambrosio, Gigli, and Savaré [2] and Villani [54]. For more details on gradient flows of
ω-convex energies, see recent work by the first author [20].

Let P2(Rd) denote the set of probability measures on Rd with finite second moment, i.e.∫
|x|2dµ < +∞. If a measure µ ∈ P2(Rd) is absolutely continuous with respect to Lebesgue

measure (µ � Ld), we will identify µ with its density, i.e. dµ(x) = µ(x)dx. In particular, we
write ‖µ‖L∞ < +∞ if dµ(x) = µ(x)dx and µ(x) ∈ L∞(Rd).

Given µ, ν ∈ P2(Rd), a measurable function t : Rd → Rd transports µ onto ν in case∫
f(t(x))dµ =

∫
f(y)dν for all f ∈ L1(dν). We then call ν the push-forward of µ under t and

write ν = t#µ. If µ is absolutely continuous with respect to Lebesgue measure (as will be the
case for all the measures we consider), then the Wasserstein distance from µ to ν is given by

(2.1) W2(µ, ν) = inf

{(∫
|t− id|2dµ

)1/2

: t#µ = ν

}
,

where id(x) = x. Furthermore, the infimum is attained by an optimal transport map t = tνµ,
which is unique µ-almost everywhere.

The metric space (P2(Rd),W2) is complete, and convergence can be characterized as

W2(µn, µ)→ 0 ⇐⇒
∫
fdµn →

∫
fdµ for all f ∈ C(Rd) such that

∃C > 0, x0 ∈ Rd so that |f(x)| ≤ C(1 + |x− x0|2).
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We will refer to such f as continuous functions with at most quadratic growth. Furthermore, for
any f ∈ C1(Rd) with uniformly bounded gradient, we can quantify the difference between the
integral of f against µ and the integral of f against ν using the following elementary lemma.

Lemma 2.2. For f ∈ C1(Rd) and µ, ν ∈ P2(Rd),∣∣∣∣∫ fdµ−
∫
fdν

∣∣∣∣ ≤ ‖∇f‖∞W2(µ, ν).

Proof. For simplicity, suppose that µ� Ld, so there exists an optimal transport map tνµ. (The
proof is identical in the general case, using optimal transport plans.) By Jensen’s inequality,∣∣∣∣∫ fdµ−

∫
fdν

∣∣∣∣ ≤ ∫ ∣∣f − f ◦ tνµ
∣∣ dµ ≤ ‖∇f‖∞(∫ |tνµ − id|2dµ

)1/2

= ‖∇f‖∞W2(µ, ν).

�

Along with its metric structure, (P2(Rd),W2) is a geodesic space, since any two measures
µ0, µ1 ∈ P2(Rd) are connected by a geodesic µα ∈ P2(Rd), α ∈ [0, 1], satisfying

W2(µα, µβ) = |β − α|W2(µ0, µ1) for all α, β ∈ [0, 1].

If µ0 � Ld, then the geodesic from µ0 to any µ1 ∈ P2(Rd) is unique and of the form

µα = ((1− α)id + αtµ1
µ0

)#µ0.

Unlike a square Hilbertian norm, the square Wasserstein distance is not convex along geodesics
(α 7→W 2

2 (ν, µα) is not convex) [2, Example 9.1.5]. Consequently, Ambrosio, Gigli, and Savaré
introduced an expanded class of curves known as generalized geodesics, so that, between any two
measures, there is always at least one curve along which the square distance is convex [2, Lemma
9.2.1, Definition 9.2.2]. Given µ0, µ1, ν ∈ P2(Rd) with ν � Ld, the generalized geodesic from
µ0 to µ1 with base ν is

µα = ((1− α)tµ0
ν + αtµ1

ν )#ν,

and along such a curve we have

W 2
2 (ν, µα) = (1− α)W 2

2 (ν, µ0) + αW 2
2 (ν, µ1)− α(1− α)‖tµ0

ν − tµ1
ν ‖2L2(dν).

An additional class of curves along which the square Wasserstein metric is convex are linear
interpolations of measures,

µα := (1− α)µ0 + αµ1.

For any µ0, µ1, ν ∈ P2(Rd), we have

(2.2) W 2
2 (ν, µα) ≤ (1− α)W 2

2 (ν, µ0) + αW 2
2 (ν, µ1).

(See, for example, [48, Proposition 7.19].)
Due to the fact that (P2(Rd),W2) is a geodesic space, it induces a natural notion of con-

vexity on energy functionals E : P2(Rd) → R ∪ {+∞}, i.e. given a geodesic µα, the function
α 7→ E(µα) is convex. We recall both this standard notion of convexity, as well as two gener-
alizations: semiconvexity and ω-convexity.

(i) E is convex along µα if E(µα) ≤ (1− α)E(µ0) + αE(µ1).
(ii) E is semiconvex along µα if there exists λ ∈ R so that

E(µα) ≤ (1− α)E(µ0) + αE(µ1)− α(1− α)λ2W
2
2 (µ0, µ1).
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(iii) E is ω-convex along µα if there exists λω ∈ R and a continuous, nondecreasing function
ω : [0,+∞)→ [0,+∞), which vanishes only at x = 0, so that
E(µα) ≤ (1−α)E(µ0)+αE(µ1)− λω

2 [(1−α)ω(α2W 2
2 (µ0, µ1))+αω((1−α)W 2

2 (µ0, µ1))].

If, for any µ0, µ1 ∈ P2(Rd), there exists a geodesic µα from µ0 to µ1 along which E satisfies
one of the above inequalities, we say E is convex/semiconvex/ω-convex along geodesics. On
the other hand, if for any µ0, µ1, ν ∈ P2(Rd), there exists a generalized geodesic µα from µ0

to µ1 with base ν along which E satisfies one of the above inequalities (replacing W2(µ0, µ1)
on the right hand side with ‖tµ0

ν − tµ1
ν ‖2L2(ν)), we say E is convex/semiconvex/ω-convex along

generalized geodesics. We will also say that E is proper if the domain of the energy D(E) =
{µ : E(µ) < +∞} is nonempty.

A key element of our analysis is that the height constrained interaction energy E∞ defined
in equation (1.5) is ω-convex along generalized geodesics. This follows from the following
estimates on the Newtonian potential of a bounded, integrable function.

Proposition 2.3 (c.f. [39, Theorem 2.7]). Suppose ρ, µ, ν ∈ P2(Rd) with ‖ρ‖∞, ‖µ‖∞ ≤ 1.
Then there exists Cd ≥ 1, depending only on the dimension, so that

‖∇Nρ‖∞ ≤ Cd, ‖∆Nρ‖∞ ≤ 1,

∫
Nρdν ≥ −Cd,

|∇Nρ(x)−∇Nρ(y)| ≤ Cdσ(|x− y|), and ‖∇Nρ−∇Nµ‖L2(Rd) ≤W2(ρ, µ).

where

σ(x) :=

{
2x| log x| if 0 ≤ x ≤ e(−1−

√
2)/2,√

x2 + 2(1 +
√

2)e−1−
√

2 if x > e(−1−
√

2)/2.
(2.3)

We defer the proof of this proposition to the appendix in Section 5.2.
By the above estimates and [20, Theorem 4.3, Proposition 4.4], E∞ is ω-convex along gen-

eralized geodesics with λω = −Cd and ω(x) a log-Lipschitz modulus of convexity

ω(x) =

{
x| log x| if 0 ≤ x ≤ e−1−

√
2,√

x2 + 2(1 +
√

2)e−1−
√

2x if x > e−1−
√

2.
(2.4)

The ω-convexity of E∞ then leads to the following result on the well-posedness of the gradient
flow:

Theorem 2.4 ( [20, Theorem 4.3, Proposition 4.4]). For any ρ0 ∈ D(E∞) (that is, ρ0 ∈ P2(Rd)
with ‖ρ0‖∞ ≤ 1), the gradient flow ρ∞(t) of E∞ with initial data ρ0 is well-posed. Specifically
ρ∞ : (0,+∞)→ P2(Rd) is the unique curve that is locally absolutely continuous in time, with

ρ∞(t)
t→0−−→ ρ0 and

1

2

d

dt
W 2

2 (ρ∞(t), ν) +
λω
2
ω(W 2

2 (ρ∞(t), ν)) ≤ E(ν)− E(ρ∞(t)), ∀ν ∈ D(E∞), a.e. t > 0.(2.5)

In order to provide a PDE characterization of ρ∞(x, t) in Section 3, we use the following
higher regularity of ρ∞(x, t) and ∇Nρ∞(x, t), which we prove in appendix Section 5.2.

Proposition 2.5 (time regularity of the gradient flow of E∞). Suppose ρ∞(x, t), with initial
data ρ∞(x, 0) ∈ D(E∞), is a gradient flow of E∞. Then W2(ρ∞(t), ρ∞(s)) ≤ 2Cd|t− s|, where
Cd > 0 is as in Proposition 2.3.
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Proposition 2.6. Suppose ρ∞(x, t), with initial data ρ∞(x, 0) ∈ D(E∞), is a gradient flow
of E∞. Then ∇Nρ∞(x, t) is log-Lipschitz in space and 1/2d-Hölder continuous in time. In
particular, with Cd > 0 and σ(x) as in Proposition 2.3,

|∇Nρ∞(x, t)−∇Nρ∞(y, t)| ≤ Cdσ(|x− y|) for all x, y ∈ Rd, t ≥ 0,

|∇Nρ∞(x, t)−∇Nρ∞(x, s)| ≤ 10Cd|t− s|1/2d for all 0 < |t− s| < e(−1−
√

2)/2, x ∈ Rd.

An important tool in the analysis of Wasserstein gradient flows is a discrete time approxi-
mation of gradient flows known as the discrete gradient flow or JKO scheme [27]. This scheme
is analogous to the implicit Euler method for approximation of ordinary differential equations
in Euclidean space. For any µ ∈ D(E∞) and time step τ > 0, the discrete gradient flow of E∞
is given by

ρnτ ∈ argmin
ν∈P2(Rd)

{
1

2τ
W 2

2 (ρn−1
τ , ν) + E∞(ν)

}
and ρ0

τ := ρ.

By [20, Theorem 4.3, Proposition 4.4], the discrete gradient flow of E∞ exists for all ρ ∈ D(E∞)
and τ > 0, and if τ = t/n for any t ≥ 0, the discrete gradient flow converges to the continuous
gradient flow,

lim
n→+∞

W2(ρnt/n, ρ∞(t)) = 0.

As demonstrated in previous work by the first author [20], well-posedness of the gradient
flows of ω-convex eneriges is closely related to the well-posedness of the ODE{

d
dtFt(x) = −Cdω(Ft(x)),

F0(x) = x.
(2.6)

For ω(x) as in equation (2.4), 0 ≤ x ≤ e−1−
√

2, and t ≥ 0, the solution is given by Ft(x) = xe
Cdt .

Furthermore, for all x, t ≥ 0, Ft(x) is nondecreasing in space and nonincreasing in time.
In a similar way, analysis of the discrete gradient flow of E∞ is closely related to a discrete

time approximation of (2.6). In particular, we define

fτ (x) :=

{
x− Cdτω(x) if x ≥ 0,

0 if x ≤ 0,

so that f
(m)
τ (x) is the mth step of the explicit Euler method with time step τ . In the following

proposition, we recall some properties of the function fτ (x) that will be useful in our estimates
of the discrete time sequences.

Proposition 2.7 (properties of fτ (x)).

(i) If 0 ≤ x ≤ y ≤ r, there exists cr > 0 so that fτ (x) ≤ fτ (y) + C2
dc

2
rτ

2.
(ii) For all x, y ≥ 0, fτ (x+ y) ≤ fτ (x) + y.

(iii) For all x, t ≥ 0, |Ft(x)− f (n)
t/n(x)| ≤ Cdω(x)t/n.

Proof. (i) and (ii) are consequences of [20, Lemma 2.25]. (iii) is a consequence of [20, Propo-
sition 2.24] and the fact that Ft(x) is nonincreasing in time. �

Finally, we recall a contraction inequality for the discrete gradient flow of an ω-convex
energy, which we use to conclude stability of the discrete gradient flow sequences.
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Proposition 2.8 (contraction inequality). Let E : P2(Rd)→ R∪{+∞} be proper, lower semi-
continuous, bounded below, and ω-convex along generalized geodesics, for ω(x) as in equation
(2.4) and λω ≤ 0. Fix ρ, µ ∈ D(E) and, for τ > 0, choose ρτ and µτ satisfying

ρτ ∈ argmin
ν∈P2(Rd)

{
1

2τ
W 2

2 (ρ, ν) + E(ν)

}
and µτ ∈ argmin

ν∈P2(Rd)

{
1

2τ
W 2

2 (µ, ν) + E(ν)

}
.

Then there exist positive constants C and τ∗ depending on W2(ρ, µ), λω, E(µ), and E(ν) so
that for all 0 < τ < τ∗,

f (2)
τ (W 2

2 (ρτ , µτ )) ≤W 2
2 (ρ, µ) + |λω|τω(CW2(µ, µτ )) + 2τ(E(ρ)− E(ρτ )) + Cτ2.

Proof. This is a particular case of [20, Theorem 3.2]. �

Remark 2.9 (Wasserstein gradient flow of measures with mass not equal to 1). We conclude
by observing that the gradient flow theory can be easily extended to nonnegative measures
whose integral is not equal to 1. For a fixed A > 0, let P2,A(Rd) denote the set of non-negative

measures that integrate to A and have finite second moment. For µ, ν ∈ P2,A(Rd) (with the
same A), we can then define W2(µ, ν) in the same way as in (2.1), and given initial data
ρ0 ∈ P2,A(Rd) with ‖ρ0‖∞ ≤ 1, the same arguments lead to the well-posedness of a gradient

flow ρ∞ : (0,+∞)→ P2,A(Rd) of E∞. However, for the sake of simplicity, we will assume that
ρ0 is a probability measure for the remainder of this section.

2.2. Definitions of energies and discrete time sequences. We now turn to the definitions
of the energies and discrete time sequences that we will use to show that solutions of the
nonlinear diffusions equations (PME-D)m converge as m → +∞ to the the gradient flow
of the height constrained interaction energy E∞. We begin by defining the local potential
Φ1/m(x, t), which induces the drift in (PME-D)m. As described in the introduction, previous
work by Alexander, Kim, and Yao suggests that the gradient flow of E∞ should be obtained
as the limit of the gradient flows of the Keller-Segel energy EKS , defined in equation (1.10).
However, we lack sufficient convexity of EKS to prove this rigorously. Instead, we replace
the nonlocal potential Nρ in EKS with a local potential Φ1/m(x, t) that depends on time, the
initial data ρ0(x) of the gradient flow of E∞, and the diffusion parameter m ≥ 1.

Definition 2.10 (local potential Φ1/m(x, t)). Given initial data ρ0, let ρ∞(x, t) be the gradient

flow of the height constrained interaction energy E∞. Fix a mollifier ψ ∈ C∞c (Rd) satisfying
ψ ≥ 0 and

∫
ψ = 1, and let ψ1/m(x) = mdψ(mx). Then, for any m > 1, define

Φ(x, t) = Nρ∞(x, t) and Φ1/m(x, t) = ψ1/m ∗Nρ∞(x, t).(2.7)

This definition is guided by the following intuition: given initial data ρ0, one heuristically
expects that the gradient flow of EKS should converge to ρ∞. Consequently, if we replace Nρ
in the definition of EKS by Nρ∞, we expect that the gradient flow of this new energy will still
converge to ρ∞ as m → +∞. We include the extra mollification on the potential to leverage
the existing theory on the porous medium equation with drift, which requires the potential to
be twice continuously differentiable in space. By Proposition 2.6, ∇Φ(x, t) is log-Lipschitz in
space, hence ∇Φ1/m = ψ1/m ∗ ∇Φ converges to ∇Φ uniformly on Rd × [0,+∞). Furthermore,
by Proposition 2.3,

‖∇Φ1/m(·, t)‖∞ ≤ Cd, ‖∆Φ1/m(·, t)‖∞ ≤ 1.(2.8)
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With this precise definition of the drift arising in (PME-D)m in hand, we now turn to
the definitions of the the three energy functionals that we use in our analysis of the limit of
(PME-D)m as m→ +∞.

Definition 2.11 (energy functionals). Fix ψ ∈ C∞c (Rd) as in Definition 2.10 and µ ∈ P2(Rd)
with ‖µ‖∞ ≤ 1. For any ρ ∈ P2(Rd), define

E∞(ρ) :=

{
1
2

∫
Nρ(x)dρ(x) if ‖ρ‖∞ ≤ 1,

+∞ otherwise;

Ẽ∞(ρ;µ) :=

{∫
Nµ(x)dρ(x) if ‖ρ‖∞ ≤ 1,

+∞ otherwise;

Em(ρ;µ) :=

{
1

m−1

∫
ρ(x)mdx+

∫
ψ1/m ∗Nµ(x)dρ(x) if ρ� Ld,

+∞ otherwise.

As shown in previous work by the first author, the gradient flows of the above energies are
well-posed [20, Theorem 4.3, Proposition 4.4]. In particular, while these energies fall outside
the scope of the theory of gradients flows of semiconvex energies, all three energies are instead
ω-convex along generalized geodesics for λω = −Cd, as in Proposition 2.3, and ω(x) a log-
Lipschitz modulus of convexity, as in equation (2.4). The third energy is also λ-convex along

generalized geodesics for λ = λ(m)
m→+∞−−−−−→ −∞ [2, Proposition 9.3.2, Proposition 9.3.9].

Corresponding to these energies, we consider the following discrete time sequences.

Definition 2.12 (discrete time sequences). For a fixed time step τ > 0 and ρ ∈ D(E∞), define

(i) discrete gradient flow of E∞:

ρnτ ∈ argmin
ν∈P2(Rd)

{
1

2τ
W 2

2 (ρn−1
τ , ν) + E∞(ν)

}
and ρ0

τ := ρ.

(ii) time varying discrete gradient flow of Ẽ∞: for ρnτ as in (i),

ρ̃nτ ∈ argmin
ν∈P2(Rd)

{
1

2τ
W 2

2 (ρ̃n−1
τ , ν) + Ẽ∞(ν; ρnτ )

}
and ρ̃0

τ := ρ.

(iii) time varying discrete gradient flow of Em: for ρnτ as in (i) and m > 1,

ρnτ,m ∈ argmin
ν∈P2(Rd)

{
1

2τ
W 2

2 (ρn−1
τ,m , ν) + Em(ν; ρnτ )

}
and ρ0

τ,m := ρ.

The existence of the above sequences is guaranteed by [20, Theorem 4.3, Proposition 4.4].
However, they are not necessarily unique, and we use the notation ρnτ , ρ̃

n
τ , and ρnτ,m to denote

any such sequence. Still, using Proposition 2.8, which provides a contraction inequality for
ω-convex functions, we can at least bound the Wasserstein distance between any two such
sequences—for example, see Proposition 5.5 in the appendix for such an estimate for Ẽ∞.

If one takes τ = t/n for t ≥ 0, then as n→ +∞ the discrete gradient flow of E∞ converges to
the continuous gradient flow of E∞ with initial data ρ∞(0) = ρ [20, Theorem 4.3, Proposition
4.4]. Likewise, ρnt/n,m converges to a solution of the nonlinear diffusion equations (PME-D)m,

which we denote by ρm(x, t), with the same initial data (see Proposition 5.6) . We refer to ρnτ,m
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as the “time varying” discrete gradient flow of Em since we change the second argument of
Em(·; ·) at each step of the sequence to accommodate the time dependent drift in (PME-D)m.

The main goal of this section is to show that limm→+∞W2(ρ∞(t), ρm(t)) = 0, which we
accomplish by showing that the distance between the sequences ρnτ and ρnτ,m becomes arbitrarily
small as m→ +∞. We use the sequence ρ̃nτ , defined in (ii) above, to serve as a bridge between
the two. In what follows, we will often use the crude estimate ω(x) ≤ √x, for x ≥ 0 sufficiently
small. Consequently, the rate of convergence we obtain for ρm(t) → ρ∞(t) is certainly not
sharp, but the inequalities are much simpler.

We close this introductory section with a few elementary estimates on the above discrete
time sequences. In these estimates, as well as in what follows, it will be useful to consider one
step of the above sequences:

Definition 2.13 (one step minimizers). For a fixed time step τ > 0, we define

(i) one step of discrete gradient flow of E∞: given ρ ∈ P2(Rd),

ρτ ∈ argmin
ν∈P2(Rd)

{
1

2τ
W 2

2 (ρ, ν) + E∞(ν)

}
(ii) one step of discrete gradient flow of Ẽ∞(·;µ): given ρ ∈ P2(Rd) and µ ∈ P2(Rd) with
‖µ‖∞ ≤ 1,

ρ̃τ ∈ argmin
ν∈P2(Rd)

{
1

2τ
W 2

2 (ρ, ν) + Ẽ∞(ν;µ)

}
.

(iii) one step of discrete gradient flow of Em(·;µ): given ρ ∈ P2(Rd), µ ∈ P2(Rd) with
‖µ‖∞ ≤ 1, and m > 1,

ρτ,m ∈ argmin
ν∈P2(Rd)

{
1

2τ
W 2

2 (ρ, ν) + Em(ν;µ)

}
.

As before, [20, Theorem 4.3, Proposition 4.4] ensures these minimization problems admit at
least one solution. Again, these minimizers are not necessarily unique, and we use the notation
ρτ , ρ̃τ , and ρτ,m to denote any such minimizer.

First, we estimate how the Wasserstein distance, energies, and Lm norms behave under one
step of the discrete gradient flow.

Lemma 2.14. Fix ρ, µ ∈ P2(Rd) with ‖µ‖∞ ≤ 1. Then for Cd > 0 as in Proposition 2.3 and
any τ > 0 and m ≥ 2,

(i) If ‖ρ‖∞ ≤ 1, then W2(ρτ , ρ) ≤ 2Cdτ and E∞(ρ) ≤ E∞(ρτ ) + 2C2
dτ ;

(ii) If ‖ρ‖∞ ≤ 1, then W2(ρ̃τ , ρ) ≤ 2Cdτ and Ẽ∞(ρ;µ) ≤ Ẽ∞(ρ̃τ ;µ) + 2C2
dτ ;

(iii) For all ρ ∈ P2(Rd),
W2(ρτ,m, ρ) ≤

√
2τ
m−1(‖ρ‖mm − ‖ρτ,m‖mm) + 2Cdτ , 1

m−1‖ρτ,m‖mm ≤ 1
m−1‖ρ‖mm + τ

2C
2
d ,

and Em(ρ;µ) ≤ Em(ρτ,m;µ) + (‖ρ‖mm − ‖ρτ,m‖mm) + Cd

√
2τ
m−1‖ρ‖mm + 2C2

dτ .

Proof. We begin with (ii). Taking ν = ρ in the definition of ρ̃τ and rearranging,

W 2
2 (ρ̃τ , ρ) ≤ 2τ

(
Ẽ∞(ρ;µ)− Ẽ∞(ρ̃τ ;µ)

)
.
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Thus, applying Lemma 2.2, with f = Nµ, and Proposition 2.3

0 ≤ Ẽ∞(ρ;µ)− Ẽ∞(ρ̃τ ;µ) =

∫
Nµdρ−

∫
Nµdρ̃τ ≤ CdW2(ρ̃τ , ρ).

Combining the above two inequalities gives the results.
Next, we show (i). Again, taking ν = ρ in the definition of ρτ ,

W 2
2 (ρτ , ρ) ≤ 2τ(E∞(ρ)− E∞(ρτ )).

Thus, applying Lemma 2.2, with f = Nρ and f = Nρτ , along with Proposition 2.3,

0 ≤ E∞(ρ)− E∞(ρτ ) =
1

2

(∫
Nρdρ−

∫
Nρdρτ +

∫
Nρτdρ−

∫
Nρτdρτ

)
≤ CdW2(ρτ , ρ).

Combining the above two inequalities again give the results.
It remains to show (iii). For simplicity of notation, let Φ1/m = ψ1/m ∗Nµ. Taking ν = ρ in

the definition of ρτ,m,

1

2τ
W 2

2 (ρ, ρτ,m) + Em(ρτ,m;µ) ≤ Em(ρ;µ).(2.9)

By definition of Em, Lemma 2.2 with f = Φ1/m, and Proposition 2.3, this implies

‖ρτ,m‖mm/(m− 1) ≤ ‖ρ‖mm/(m− 1) +

(∫
Φ1/mρ−

∫
Φ1/mρτ,m

)
−W 2

2 (ρ, ρτ,m)/(2τ)

≤ ‖ρ‖mm/(m− 1) + CdW2(ρ, ρτ,m)−W 2
2 (ρ, ρτ,m)/(2τ)

= ‖ρ‖mm/(m− 1)− (W2(ρ, ρτ,m)− τCd)2 /(2τ) + τC2
d/2

Dropping the negative term shows the second inequality. Rearranging gives

(W2(ρ, ρτ,m)− τCd)2 /(2τ) ≤ ‖ρ‖mm/(m− 1)− ‖ρτ,m‖mm/(m− 1) + τC2
d/2,

which, by the subadditivity of
√·, gives the first inequality.

To show the third inequality, we combine (2.9) with Lemma 2.2 and use the previous estimate
on the Wasserstein distance,

0 ≤ Em(ρ;µ)− Em(ρτ,m;µ) ≤ 1

m− 1
(‖ρ‖mm − ‖ρτ,m‖mm) +

∫
Nµd(ρ− ρτ,m)

≤ (‖ρ‖mm − ‖ρτ,m‖mm) + Cd

√
2τ

m− 1
‖ρ‖mm + 2C2

dτ.

�

Iterating the above lemma provides bounds on the Wasserstein distance between the discrete
time sequences of E∞, Ẽ∞, and Em and their initial data.

Corollary 2.15. Under the assumptions in Lemma 2.14, given initial data ρ ∈ D(E∞),

W2(ρnτ , ρ) ≤ 2Cdnτ, W2(ρ̃nτ , ρ) ≤ 2Cdnτ, and W2(ρnm,τ , ρ) ≤
√

4nτ‖ρ‖mm + 8C2
dn

2τ2.

Proof. The first two inequalities are a direct consequence of Lemma 2.14 and triangle inequality,
so it remains to show the third inequality. By Lemma 2.14 and (a+ b)2 ≤ 2a2 + 2b2,

W 2
2 (ρiτ,m, ρ

i−1
τ,m) ≤ 4τ

m− 1
(‖ρi−1

τ,m‖mm − ‖ρiτ,m‖mm) + 8C2
dτ

2.
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The result then follows by the triangle inequality, Cauchy’s inequality, and 1/(m− 1) ≤ 1,

W 2
2 (ρnτ,m, ρ) ≤

(
n∑
i=1

W2(ρiτ,m, ρ
i−1
τ,m)

)2

≤ n
n∑
i=1

W 2
2 (ρiτ,m, ρ

i−1
τ,m) ≤ 4nτ‖ρ‖mm + 8C2

dn
2τ2.

�

In the next three lemmas, we estimate the size of ρτ,m. These estimates are similar in
some respects to the corresponding results in previous work by Alexander with the second and
third authors [1]. However, the proofs must be adapted since the semiconvexity of the drift
potential ψ1/m ∗Nµ in the energy Em(·;µ) deteriorates as m→ +∞, and we must instead use
that Em(·;µ) is ω-convex uniformly in m.

Though we do not, in general, have ‖ρ1
τ,m‖∞ ≤ 1, in the next lemma, we show that the mass

of ρτ,m above 1 becomes arbitrarily small as m→ +∞.

Lemma 2.16. Fix ρ, µ ∈ P2(Rd) with both ‖ρ‖∞, ‖µ‖∞ ≤ 1 and consider ρτ,m as in Definition
2.13. Then for Cd > 0 as in Proposition 2.3 and 0 < τ < 1, m ≥ 2,∫

(ρτ,m(x)− 1)+dx ≤
√

(2 + C2
d)/m.

Proof. By the Cauchy-Schwarz inequality and the fact that |{ρτ,m ≥ 1}| ≤
∫
ρτ,m = 1,

(2.10)

∫
(ρτ,m − 1)+ ≤ |{ρτ,m ≥ 1}|1/2

(∫
(ρτ,m − 1)2

+

)1/2

≤
(∫

(ρτ,m − 1)2
+

)1/2

.

Furthermore, for m ≥ 2, the convexity of f(s) = sm ensures sm > 1+m(s−1)+ m(m−1)
2 (s−1)2

for all s > 1, which yields (s− 1)2
+ ≤ 2

m(m−1)s
m for all s > 0. Consequently, (2.10) becomes∫

Rd
(ρτ,m − 1)+ ≤

(
2

m(m− 1)

∫
Rd
ρmτ,m

)1/2

.

Since ‖ρ‖∞ ≤ 1, m ≥ 2, and τ < 1, Lemma 2.14 (iii) ensures 1
m−1‖ρτ,m‖mm ≤ 1 + C2

d/2.
Substituting this into the above inequality gives the result. �

Finally, we use the previous lemma to show that ρτ,m is always close to a measure ν that
satisfies ‖ν‖∞ ≤ 1 and is almost a one step minimizer.

Lemma 2.17. Under the assumptions of Lemma 2.16, there exists ν ∈ P2(Rd) with ‖ν‖∞ ≤ 1
and C > 0 depending only on the dimension, so that

(2.11) W2(ρτ,m, ν) ≤ Cm−1/4 and Em(ν;µ) ≤ Em(ρτ,m;µ) + Cm−1/2.

Proof. Define a :=
∫

(ρτ,m−1)+. Since ρτ,m is a probably measure, a < 1, and by Lemma 2.16,

we also have a ≤
√

(2 + C2
d)/m.

To construct ν, we decompose ρτ,m as ρτ,m = ρ1
τ,m + ρ2

τ,m, where ρ1
τ,m = min{ρτ,m, 1 − a}

and ρ2
τ,m = (ρτ,m − (1− a))+. First, note that

1 ≥
∫
ρm ≥ (1− a)|{ρm > 1− a}|+

∫
(ρm − 1)+ = (1− a)|{ρm > 1− a}|+ a,
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so subtracting a from both sides and dividing by 1− a ensures |{ρτ,m > 1− a}| ≤ 1. Thus,∫
ρ2
τ,m ≤

∫
(ρτ,m − 1)+ + a|{ρτ,m > 1− a}| ≤ a+ a · 1 = 2a.(2.12)

Now, choose Rd so g := 1
2χBRd (0) ∈ P2(Rd) and define ν = ρ1

τ,m + g ∗ ρ2
τ,m ∈ P2(Rd). By

Young’s inequality, the definition of ρ1
τ,m, and inequality (2.12),

‖ν‖∞ ≤ ‖ρ1
τ,m‖∞ + ‖g‖∞‖ρ2

τ,m‖1 ≤ (1− a) +
1

2
· 2a ≤ 1.

It remains to show that ν satisfies (2.11). To show the first inequality, we construct a
transport plan between ρτ,m and ν as follows: keep all the mass of ρ1

τ,m at its original location

and distribute the mass of ρ2
τ,m(x) uniformly over the disk BRd(x). Since

∫
ρ2
τ,m ≤ 2a, the total

cost of this plan is bounded by 2aR2
d, which gives W2(ρτ,m, ν) ≤

√
2aRd ≤ Rd(4(2+C2

d)/m)1/4.
To show the second inequality in (2.11), we abbreviate Φ1/m = ψ1/m ∗Nµ. Then,

Em(ν;µ)− Em(ρτ,m;µ) =
1

m− 1

∫
νm − 1

m− 1

∫
ρmτ,m +

∫
Φ1/mdν −

∫
Φ1/mdρτ,m

≤ ‖ν‖mm/(m− 1) +

∫
(g ∗ Φ1/m − Φ1/m)ρ2

τ,m ≤ (m− 1)−1 + 2a‖g ∗ Φ1/m − Φ1/m‖∞

≤ 2m−1 + 2a ess supx

∣∣∣∣∣
∫
y∈BRd (x)

(Φ1/m(y)− Φ1/m(x))g(x− y)dy

∣∣∣∣∣
≤ 2m−1 + 2a‖∇Φ1/m‖∞Rd‖g‖1 ≤ 2m−1 + 2CdRd

√
(2 + Cd)2/m,

where in the last inequality we use Proposition 2.3. �

2.3. Distance between discrete time sequences of E∞, Ẽ∞, and Em. In this section,
we apply the previous results to show that as m → +∞, ρm(t) converges to ρ∞(t), with
quantitative rates of convergence on bounded time intervals. We accomplish this by first
estimating the distance between the discrete time sequences of E∞ and Ẽ∞ and then Ẽ∞ and
Em. We begin by showing that one step of the discrete gradient flow of E∞ is also one step of
the discrete time sequence corresponding to Ẽ∞.

Lemma 2.18 (one-step comparison between ρτ and ρ̃τ ). Given τ > 0 and ρ ∈ P2(Rd), if ρτ
is a one step minimizer of E∞, then it is also a one step minimizer of Ẽ∞(·, ρτ ).

Proof. Assume, for the sake of contradiction, that ρτ is not a one step minimizer of Ẽ∞(·, ρτ ).
Then there exists ν ∈ P2(Rd) with ‖ν‖∞ ≤ 1, such that

1

2τ
W 2

2 (ρ, ρτ ) + Ẽ∞(ρτ ; ρτ ) >
1

2τ
W 2

2 (ρ, ν) + Ẽ∞(ν; ρτ ).(2.13)

Define ρε := (1− ε)ρτ + εν ∈ P2(Rd), so ‖ρε‖∞ ≤ 1. We will show that for ε > 0 small,

1

2τ
W 2

2 (ρ, ρτ ) + E∞(ρτ ) >
1

2τ
W 2

2 (ρ, ρε) + E∞(ρε),(2.14)

which contradicts the fact that ρτ is a one step minimizer of E∞.
By inequality (2.2), W 2

2 is convex along linear interpolations of measures, hence

W 2
2 (ρ, ρε) ≤ (1− ε)W 2

2 (ρ, ρτ ) + εW 2
2 (ρ, ν) = W 2

2 (ρ, ρτ )− ε
(
W 2

2 (ρ, ρτ )−W 2
2 (ρ, ν)

)
.(2.15)
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Likewise, we use that 2E∞(ρτ ) = Ẽ∞(ρτ ; ρτ ) to estimate the behavior of E∞ along ρε by

E∞(ρε) =
1

2

∫
N ((1− ε)ρτ + εν) d ((1− ε)ρτ + εν)

= (1− ε)2E∞(ρτ ) + ε(1− ε)Ẽ∞(ν; ρτ ) + ε2E∞(ν)

= E∞(ρτ )− ε(Ẽ∞(ρτ ; ρτ )− Ẽ∞(ν; ρτ )) +Dε2,

(2.16)

where D := E∞(ρτ ) + E∞(ν) − Ẽ∞(ν, ρτ ) is a constant independent of ε. Multiplying (2.15)
by 1/(2τ) and adding to (2.16) yields

1

2τ
W 2

2 (ρ, ρε) + E∞(ρε)

≤ 1

2τ
W 2

2 (ρ, ρτ ) + E∞(ρτ )− ε
(

1

2τ
(W 2

2 (ρ, ρτ )−W 2
2 (ρ, ν)) + Ẽ∞(ρτ ; ρτ )− Ẽ∞(ν; ρτ )

)
+Dε2.

By (2.13), the quantity within parentheses is strictly positive, hence we obtain (2.14) for ε
small. �

Using this lemma and Proposition 2.8, which proves a contraction inequality for one step
of the discrete gradient flows of ω-convex energies, we can bound the distance between the
discrete gradient flow of E∞ and the discrete time sequence corresponding to Ẽ∞.

Proposition 2.19 (multi-step comparison between ρnτ and ρ̃nτ ). Given T > 0 and initial data
ρ ∈ D(E∞), there exist positive constants C and N depending on the dimension, T , and E∞(ρ)
so that for τ = t/n, 0 ≤ t ≤ T , and n > N ,

W2(ρnτ , ρ̃
n
τ ) ≤ C(n−1/2)1/2e2CdT ,

Proof. By Lemma 2.18, ρnτ is also a time varying discrete gradient flow of Ẽ∞, in the sense of
Definition 2.12 (ii). Hence, by Proposition 5.5, for any T > 0 there exist positive constants
C and N (which we allow to change from line to line), depending on the dimension, T , and
E∞(ρ) so that for τ = t/n, 0 ≤ t ≤ T , and n > N ,

f (2n)
τ (W 2

2 (ρnτ , ρ̃
n
τ )) ≤ Cω(t/n) ≤ Cn−1/2

Furthermore, combining Corollary 2.15 and the triangle inequality provides the following crude
bound for the distance between the two sequences:

W2(ρnτ , ρ̃
n
τ ) ≤W2(ρnτ , ρ) +W2(ρ̃nτ , ρ) ≤ 4CdT ≤ C.

Therefore, by Proposition 2.7 (iii) and the fact that Ft(x) is decreasing in time,

F2nτ (W 2
2 (ρnτ , ρ̃

n
τ )) ≤ Cn−1/2 + 2Cdω(C)T/n =⇒ F2T (W 2

2 (ρnτ , ρ̃
n
τ )) ≤ Cn−1/2

Since for 0 ≤ x ≤ e−1−
√

2, Ft(x) = xe
Cdt , for n sufficiently large, we have

W2(ρnτ , ρ̃
n
τ ) ≤ C(n−1/2)1/2e2CdT ,

which gives the result. �

Next, we bound the distance between one step of the discrete time sequences corresponding
to Ẽ∞ and Em.
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Proposition 2.20 (one-step comparison between ρ̃τ and ρτ,m). Given ρ, µ ∈ P2(Rd) with
‖ρ‖∞, ‖µ‖∞ ≤ 1 and Cd > 0 as in Proposition 2.3, there exists C > 0 depending only on the
dimension so that for all 0 < τ < 1/6Cd and m ≥ 2,

W2(ρτ,m, ρ̃τ ) ≤ Cm−1/8 + 2e−1/(4Cdτ).

Proof. Let ν be as in Lemma 2.17 and define

η :=

(
1

2
tνρ +

1

2
tρ̃τρ

)
#ρ

to be the midpoint on the generalized geodesic from ν to ρ̃τ with base ρ. Since the L∞ norm of
a generalized geodesic is bounded by the L∞ norm of its endpoints (c.f. [20, inequality (60)]),
we have ‖ν‖∞ ≤ 1. Furthermore, by the optimality of ρτ,m and ρ̃τ ,

1

2τ
W 2

2 (ρ, η) + Em(η;µ) ≥ 1

2τ
W 2

2 (ρ, ρτ,m) + Em(ρτ,m;µ),

1

2τ
W 2

2 (ρ, η) + Ẽ∞(η;µ) ≥ 1

2τ
W 2

2 (ρ, ρ̃τ ) + Ẽ∞(ρ̃τ ;µ).

Adding these inequalities together and collecting the distance and energy terms gives

TW + TE ≥ 0,(2.17)

for

TW :=
1

τ
W 2

2 (ρ, η)− 1

2τ
W 2

2 (ρ, ρτ,m)− 1

2τ
W 2

2 (ρ, ρ̃τ ),

TE := Em(η;µ) + Ẽ∞(η;µ)− Em(ρτ,m;µ)− Ẽ∞(ρ̃τ ;µ).

Next, we find upper bounds on TW and TE . Define A := ‖tνρ − tρ̃τρ ‖L2(ρ). Since W 2
2 (ρ, ·) is

2-convex along generalized geodesics with base ρ [2, Lemma 9.2.1],

W 2
2 (ρ, η) ≤W 2

2 (ρ, ν)/2 +W 2
2 (ρ, ρ̃τ )/2−A2/4.

Substituting this in the definition of TW ,

TW ≤
1

2τ
(W 2

2 (ρ, ν)−W 2
2 (ρ, ρτ,m))− A2

4τ
≤ 1

2τ
W2(ρτ,m, ν)(W2(ρ, ν) +W2(ρ, ρτ,m))− A2

4τ

≤ 1

2τ
W2(ρτ,m, ν)(W2(ρτ,m, ν) + 2W2(ρ, ρτ,m)− A2

4τ
≤ C

2τ
m−1/4 − A2

4τ
,

where in the last inequality we apply W2(ρτ,m, ν) ≤ Cm−1/4 from Lemma 2.17, W2(ρτ,m, ρ) ≤√
2τ + 2Cdτ from Lemma 2.14, and the facts that m ≥ 2 and τ < 1. We also allow C > 0,

depending only on the dimension, to change from line to line.
In order to bound TE from above, we first estimate the difference between Em(µ̃, µ) and

Ẽ∞(µ̃, µ) for any µ̃ ∈ P2(Rd) with ‖µ̃‖∞ ≤ 1. As usual, we abbreviate Φ := Nµ and Φ1/m :=

ψ1/m ∗Nµ. Given Rψ > 0 so that supp ψ ⊆ BRψ(0), for any x ∈ Rd, Proposition 2.3 ensures

|Φ1/m(x)− Φ(x)| =
∣∣∣∣∫

Rd
(Φ(x− y)− Φ(x))ψ1/m(y)dy

∣∣∣∣ ≤ Rψ‖∇Φ‖∞m−1 ≤ Cdm−1.

Consequently,∣∣∣Em(µ̃;µ)− Ẽ∞(µ̃;µ)
∣∣∣ ≤ 1

m− 1

∫
µ̃m+

∫ ∣∣Φ1/m − Φ
∣∣ dµ̃ ≤ (m−1)−1+‖Φ1/m−Φ‖∞ ≤ (2+Cd)m

−1.
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Therefore, first applying Lemma 2.17 to the definition of TE and then using the above inequal-
ity,

TE ≤ Em(η;µ) + Ẽ∞(η;µ)− Em(ν, µ)− Ẽ∞(ρ̃τ ;µ) + Cm−1/2(2.18)

≤ 2Ẽ∞(η;µ)− Ẽ∞(ν, µ)− Ẽ∞(ρ̃τ ;µ) + Cm−1/2.

Since Ẽ∞(·, µ) is ω-convex along generalized geodesics and η is the midpoint along the gener-
alized geodesic from ν and ρ̃τ with base ρ,

2Ẽ∞(η;µ)− Ẽ∞(ν;µ)− Ẽ∞(ρ̃τ ;µ) ≤ Cd
2
ω

(
A2

4

)
.

Substituting this into inequality (2.18) gives

TE ≤ Cm−1/2 + Cdω
(
A2/4

)
.

Finally, combining our upper bounds on TW and TE with inequality (2.17), we obtain

(2.19) A2 ≤ Cm−1/4 + 4Cdτω
(
A2/4

)
.

We now claim that

A ≤
√

2Cm−1/8 + 2e−1/(4Cdτ)(2.20)

If A2/4 > e−1−
√

2, then combining inequality (2.19) and τ < 1/(6Cd) implies

A2 ≤ Cm−1/4 + 4τCdω
(
A2/4

)
≤ Cm−1/4 + 3τCdA

2 =⇒ A ≤
√

2Cm−1/8,

hence (2.20) holds. Alternatively, if A2/4 ≤ e−1−
√

2,

(2.21) A2 ≤ Cm−1/4 + 4τCdω
(
A2/4

)
= Cm−1/4 − CdτA2 log

(
A2/4

)
.

If (2.20) is violated, we have A >
√

2Cm−1/8 and A > 2e−1/(4Cdτ), so Cm−1/4 < A2/2 and

−CdτA2 log(A2/4) < A2

2 . Adding these together would contradict (2.19), so again (2.20) holds.

Since A = ‖tνρ−tρ̃τρ ‖L2(ρ) = ‖tνρ ◦tρρ̃τ −id‖L2(ρ̃τ ) and tνρ ◦tρρ̃τ#ρ̃τ = ν, we have W2(ν, ρ̃τ ) ≤ A.

Therefore, using (2.20) and Lemma 2.17, we may conclude the result,

W2(ρτ,m, ρ̃τ ) ≤W2(ρτ,m, ν) +W2(ν, ρ̃τ ) ≤ Cm−1/4 +A

≤ Cm−1/4 +
√

2Cm−1/8 + 2e−1/(4Cdτ) ≤ Cm−1/8 + 2e−1/(4Cdτ).

�

Proposition 2.21 (multi-step comparison between ρ̃nτ and ρnτ,m). Given T > 0 and initial
data ρ ∈ D(E∞), there exist positive constants C, N , and M depending on the dimension, T ,

E∞(ρ), and ψ so that for τ = t/n, 0 ≤ t ≤ T , n > N , m > M , and n = o(m1/8),

W2(ρnτ,m, ρ̃
n
τ ) ≤ C(n−1/4 + nm−1/8)1/2e2CdT

Proof. Define di := W2(ρiτ,m, ρ̃
i
τ ) for any i = 1, . . . , n. Using Corollary 2.15 and ‖ρ‖mm ≤ 1, we

have the crude bound

di ≤W2(ρiτ,m, ρ) +W2(ρ̃iτ , ρ) ≤
√

4T + 8CdT 2 + 2CdT.(2.22)
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Ẽ∞

Figure 1. An illustration of the tree structure used in the multi-step compar-
ison between ρ̃nτ and ρnτ,m

The one step estimates from Proposition 2.20 allow us to control the distance between
one-step minimizers of Em and Ẽ∞ when they have the same initial data. In particular, for

δ := Cm−1/8 + 2e−1/(4Cdτ),(2.23)

we have d1 ≤ δ. In order to apply Proposition 2.20 to control di for i = 2, . . . , n, we use a
sequence of densities ηi to serve as a bridge between ρiτ,m and ρ̃iτ , following the tree structure

in Figure 1. Specifically, we choose ηi ∈ P2(Rd) so that, by Proposition 2.20,

(2.24) ηi ∈ argmin
ν∈P2(Rd)

{
1

2τ
W 2

2 (ρ̃i−1
τ , ν) + Em(ν; ρiτ )

}
=⇒ W2(ρ̃iτ , η

i) ≤ δ.

Since ηi and ρiτ,m are one-step minimizers of the same energy Em(·, ρiτ ) with different initial

data (ρ̃i−1
τ and ρi−1

τ,m respectively), we may control their distance using Proposition 2.8.
First, we obtain a few elementary bounds on how the energy changes along the discrete time

sequence. Combining Lemma 2.2, Proposition 2.3, Lemma 2.14, and the definition of ρi−1
τ,m as

a minimizer,

Em(ρi−1
τ,m; ρiτ ) = Em(ρi−1

τ,m; ρi−1
τ ) + Em(ρi−1

τ,m; ρiτ )− Em(ρi−1
τ,m; ρi−1

τ )

= Em(ρi−1
τ,m; ρi−1

τ ) +

∫
ψ1/m ∗Nρi−1

τ,md(ρiτ − ρi−1
τ ) ≤ Em(ρi−2

τ,m; ρi−1
τ ) + CdW2(ρiτ , ρ

i−1
τ )

≤ Em(ρi−2
τ,m; ρi−1

τ ) + 2C2
dτ ≤ · · · ≤ Em(ρ; ρ1

τ ) + 2C2
dT.
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Likewise, we may control the first term on the right hand side of the last inequality by

Em(ρ; ρ1
τ ) = ‖ρ‖mm/(m− 1) +

∫
ψ1/m ∗Nρ1

τdρ ≤ 1 + 2E∞(ρ) +

∫
Nρd(ψ1/m ∗ ρ1

τ − ρ)

≤ 1 + 2E∞(ρ) + CdW2(ψ1/m ∗ ρ1
τ , ρ) ≤ 1 + 2E∞(ρ) + Cd(W2(ψ1/m ∗ ρ1

τ , ρ
1
τ ) +W2(ρ1

τ , ρ))

≤ 1 + 2E∞(ρ) + Cd((1/m)Mψ + 2Cdτ)

where, in the last step, we apply [2, Lemma 7.1.10], which ensures

W2(µ ∗ ψ1/m, µ) ≤ 1

m

(∫
|x|2ψ(x)dx

)1/2

=:
1

m
Mψ.(2.25)

Combining the above two inequalities, we conclude that there exists constant C > 0 (which
we allow to change from line to line) depending on the dimension, T , E∞(ρ), and ψ so that

Em(ρi−1
τ,m; ρiτ ) ≤ C for all i = 1, . . . , n.

Furthermore, by Proposition 2.3, we also have that Em(·; ·) is uniformly bounded below.
Using these estimates on the energy, we may now apply Proposition 2.8 to conclude that

there exist positive constants C and N depending on the dimension, T , E∞(ρ), and ψ, which
we allow to change from line to line, so that for τ = t/n, 0 ≤ t ≤ T , and n > N ,

f (2)
τ (W 2

2 (ηi, ρiτ,m)) ≤ d2
i−1 + Cdτω(CW2(ηi, ρ̃i−1

τ )) + 2τ(Em(ρi−1
τ,m; ρiτ )− Em(ρiτ,m; ρiτ )) + Cτ2.

By Lemma 2.14 (iii), we have the following bounds for two quantities on the right hand side:

W2(ηi, ρ̃i−1
τ ) ≤

√
2τ

m− 1
‖ρ̃i−1

τ ‖mm + 2Cdτ ≤ C
√
τ ,

Em(ρi−1
τ,m; ρiτ )− Em(ρiτ,m; ρiτ ) ≤

(
‖ρi−1

τ,m‖mm − ‖ρiτ,m‖mm
)

+ C
√
τ .

Therefore,

f (2)
τ (W 2

2 (ηi, ρiτ,m)) ≤ d2
i−1 + 2τ

(
‖ρi−1

τ,m‖mm − ‖ρiτ,m‖mm
)

+ Cτ5/4(2.26)

We now use this estimate to bound di = W2(ρiτ,m, ρ̃
i
τ ). By the triangle inequality and (2.24),

d2
i ≤

(
W2(ηi, ρiτ,m) +W2(ρ̃iτ , η

i)
)2 ≤W 2

2 (ηi, ρiτ,m) +
(
2W2(ηi, ρiτ,m) + δ

)
δ(2.27)

Furthermore, by Lemma 2.14 (iii), inequality (2.22), and equation (2.23)

W2(ηi, ρiτ,m) ≤W2(ηi, ρ̃i−1
τ ) + di−1 + δ ≤ C,

Thus, by Proposition 2.7, we may apply f
(2)
τ to both sides of the (2.27) to obtain

f (2)
τ (d2

i ) ≤ f (2)
τ (W 2

2 (ηi, ρiτ,m)) + Cδ + Cτ2.

Combining this with (2.26) gives, for all i = 1, . . . , n,

f (2)
τ (d2

i ) ≤ d2
i−1 + 2τ

(
‖ρi−1

τ,m‖mm − ‖ρiτ,m‖mm
)

+ Cτ5/4 + Cδ.(2.28)

We claim that the result will follow if we can show that, for all j = 1, . . . , n,

f (2j)
τ (d2

n) ≤ d2
n−j + 2τ(‖ρn−jτ,m ‖mm − ‖ρnτ,m‖mm) + 2Cτ5/4j + Cδj.(2.29)

In particular, if this holds, then taking j = n and using that e−1/4Cdτ = O(τ5/4) gives

f (2n)
τ (d2

n) ≤ 2τ‖ρ‖mm + 2CTτ1/4 + Cδn ≤ C(n−1/4 + nm−1/8).
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By Proposition 2.7 (iii) and the fact that Ft(x) is decreasing in t,

F2nτ (d2
n) ≤ C(n−1/4 + nm−1/8) + 2Cdω(C)T/n =⇒ F2T (d2

n) ≤ C(n−1/4 + nm−1/8).

For 0 ≤ x ≤ e−1−
√

2, we have Ft(x) = xe
Cdt . Thus, for n and m sufficiently large, depending

on the dimension, T , E∞(ρ), and ψ, and with n = o(m1/8), we have

dn ≤ C(n−1/4 + nm−1/8)1/2e2CdT ,

which gives the result.
It remains to show (2.29). We proceed by induction. The base case for j = 1 follows from

(2.28), so we assume the result holds for j − 1,

f (2(j−1))
τ (d2

n) ≤ d2
n−j+1 + 2τ(‖ρn−j+1

τ,m ‖mm − ‖ρnτ,m‖mm) + 2Cτ5/4(j − 1) + Cδ(j − 1).

For any j = 1, . . . , n, the right hand side is bounded by a constant depending on the dimension,

T , E∞(ρ), and ψ. Thus, by Proposition 2.7, we may apply f
(2)
τ to both sides to conclude

f (2j))
τ (d2

n) ≤ f (2)
τ (d2

n−j+1) + 2τ(‖ρn−j+1
τ,m ‖mm − ‖ρnτ,m‖mm) + 2Cτ5/4(j − 1) + Cδ(j − 1) + C2τ2

≤ d2
n−j + 2τ(‖ρn−jτ,m ‖mm − ‖ρnτ,m‖mm) + 2Cτ5/4j + Cδj

where, in the second inequality, we apply (2.28) and the fact that C2τ2 ≤ Cτ√τ . �

Combining the previous propositions, we obtain our main result.

Theorem 2.22 (convergence of ρm(t) to ρ∞(t)). Given T > 0 and initial data ρ ∈ D(E∞),
there exist positive constants C and M depending on d, T , E∞(ρ), and ψ so that for all
0 ≤ t ≤ T and m ≥M ,

W2(ρm(t), ρ∞(t)) ≤ Cm−1/144e4CdT .

Proof. Combining Proposition 2.19, Proposition 2.21, [20, Theorem 3.8], and Proposition 5.6,
there exist positive constants C and N depending on d, T,E∞(ρ), and ψ so that for τ = t/n

and all n ≥ N , m ≥ d+ 1, 0 ≤ t ≤ T , and n = o(m1/8),

W2(ρnτ , ρ̃
n
τ ) ≤ Cn−1/4e2CdT , W2(ρnτ,m, ρ̃

n
τ ) ≤ C(n−1/4 + nm−1/8)1/2e2CdT

W2(ρnτ , ρ∞(t)) ≤ Cn−1/16e2CdT , W2(ρnt/n,m, ρm(t)) ≤ Cn−1/16e4CdT .

Hence,

W2(ρm(t), ρ∞(t)) ≤ C(n−1/16e4CdT + n1/2e2CdTm−1/16e2CdT )

Taking n = m1/9 gives the result. �

3. Convergence of viscosity solutions: drift diffusion pressure to free
boundary problem

In the previous section, we showed that the gradient flow of the height constrained interaction
energy E∞, which is merely a curve in the space of measures, may be approximated by solutions
of the nonlinear diffusion equations (PME-D)m as m → +∞. This approximation provides
the bridge by which we are able to unite the energy methods approach with viscosity solution
approach. In the present section, we use this approximation to characterize the dynamics of
patch solutions in terms of a Hele-Shaw type free boundary problem. We accomplish this by
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considering the nonlinear diffusion equations in terms of their pressure variables: given ρm a
weak solution of (PME-D)m, the pressure variable pm := m

m−1(ρm)m−1 uniquely solves

(pm)t − (m− 1)pm(∆pm + ∆Φ1/m)−∇pm · (∇pm +∇Φ1/m) = 0.(P)m

For initial data given by (1.9), we show that as m → +∞ the half-relaxed limits of viscosity
solutions of (P)m satisfy sub- and supersolution properties of (P)∞. The comparison principle
of (P)∞ then yields that these half-relaxed limits are ordered with respect to the viscosity
solution p of (P)∞ with the same initial data. In terms of the density variable, we show that
ρm uniformly converges to χΩ(t) away from ∂Ω(t), where Ω(t) = {p(·, t) > 0}. It follows that
ρ∞ = χΩ(t) almost everywhere, and thus (P)∞ identifies with (P). Due to the fact that the
link between (P )∞ and (P ) lacks a priori stability estimates as the initial data varies, we must
introduce additional perturbations and approximations into our proof of this final result.

Remark 3.1. The lack of the comparison principle for the original problem (P) is not the main
reason we consider (PME-D)m. We could have considered the drift term given by Φ := N ∗ρm,
and thus proved the convergence of the Keller-Segel equation to our problem, if we had known
that the corresponding solutions ρm converged to ρ∞ as m→ +∞. Obtaining such convergence
seems to require a uniform L∞ bound on the gradient flow solutions of (PME-D)m, which is
an open question at the moment.

3.1. Basic properties of viscosity solutions of (P)m and (P)∞. We refer the reader to
Alexander, Kim, and Yao [1, Section 3] and Kim and Lei [33, Section 2.1] for the definitions
of classical and viscosity solutions of (P)m, and we refer the reader to appendix section 5.1 for
the definition of viscosity solutions of (P)∞. To clarify our notion of weak solutions for the
original free boundary problem (P ), we make the following definition:

Definition 3.2. p is a weak solution of (P ) if it is a viscosity solution of (P )∞ with initial
data p0 and ρ∞ = χ{p>0} almost everywhere.

We now recall the several results on well-posedness of viscosity solutions of (P)m and the
L1 contraction of the corresponding density variable.

Lemma 3.3. Consider the porous medium equation with drift and source terms,

(3.1) ρt = ∇ · (ρ∇Φ1/m) + ∆ρm + ρf,

with f ∈ L1 and bounded initial data.

(a) If ρ1 and ρ2 are weak solutions of (3.1) with source terms f1 and f2, then for all t ≥ 0,

‖ρ1(·, t)− ρ2(·, t)‖L1(Rd) ≤ ‖ρ1(·, 0)− ρ2(·, 0)‖L1(Rd) +

∫ t

0

∫
Rd
|ρ1f1 − ρ2f2|.

(b) Let ρ be a weak solution of (3.1) for any continuous, compactly supported initial data
ρ0 and continuous function f . Then the pressure variable pm := m−1

m ρm−1 is a viscosity
solution to

(pm)t − (m− 1)pm(∆pm + ∆Φ1/m + f)−∇pm · (∇pm +∇Φ1/m) = 0.

Proof. (a) is due to [53, Section 3.2.2], and (b) follows from [33, Corollary 2.11]. �

We now turn to the following estimates on the size and support of solutions to (P)m, which
are uniform in m. The first ensures that if the initial data is bounded uniformly in m, it
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remains so on bounded time intervals. The second ensures that if the support of the initial
data is bounded uniformly in m, it likewise remains so on bounded time intervals.

Lemma 3.4 (Estimates on size and support of solutions to (P)m). Let pm be a viscosity
solution of (P)m with continuous, compactly supported initial data pm(·, 0). Suppose that there
exists R0 ≥ 1 sufficiently large so that {pm(·, 0) > 0} ⊆ BR0/2(0) and pm(·, 0) ≤ R2

0/4d. Define

R(t) := (R0 + Cd
d )et/d − Cd

d , with Cd > 0 as in (2.8). Then,

(a) {pm(·, t) > 0} ⊆ BR(t)(0) for all t ∈ [0, T ];

(b) pm(x, t) ≤ R(t)2/2d for all t > 0.

Proof. We prove the result by comparison with a classical supersolution of (P)m. Define

h(x) =

{
1−|x|2

2d for |x| < 1,

0 for |x| ≥ 1,

so that h(x) satisfies −∆h = 1 in |x| < 1 and h = 0 in |x| ≥ 1. Let φ(x, t) := R(t)2h(x/R(t)),

where R(t) solves R′(t) = R(t)
d +Cd with r(0) = R0, and Cd is the upper bound of ‖∇Φ1/m‖∞

given by (2.8). We claim that such φ is a classical supersolution of (P)m for all m. To check
this, direct computation gives that in the support of φ,

(3.2) φt(x, t) = 2R(t)R′(t)
1− |x|2

R(t)2

2d
+R(t)2

(
− x

dR(t)

)
·
(
−xR

′(t)

R(t)2

)
=
R(t)R′(t)

d
.

and ‖∇φ(·, t)‖∞ = R(t)‖∇h‖∞ = R(t)
d . In addition, since ∆φ = −1 in its support and

∆Φ1/m ≤ 1 for all m, we have

(3.3) (m− 1)φ (∆φ+ ∆Φ1/m)︸ ︷︷ ︸
≤0

−∇φ · (∇φ+∇Φ1/m) ≤ R(t)

d

(
R(t)

d
+ Cd

)
.

Comparing (3.2) with (3.3) gives that φ is a classical supersolution if R′(t) = R(t)
d + Cd.

With R(0) = R0, we have pm(·, 0) ≤ φ(·, 0) for all m, so comparison principle yields that
{pm(·, t) > 0} ⊆ BR(t)(0) for all t, and pm(x, t) ≤ R(t)2/2d for all x, t. �

Remark 3.5. Lemma 3.4 (b) and the fact that ρm = (m−1
m pm)1/(m−1) directly lead to the bound

(3.4) lim sup
m→∞

‖ρm(·, t)‖∞ ≤ 1 for all t ≥ 0,

which we will make use of in what follows.

A key property of viscosity solutions of (P)m is that they satisfy a comparison principle,
which we now recall. We say two functions f, g : Rd → [0,∞) are strictly separated, denoted

by f ≺ g, if f < g in {f > 0}, and {f > 0} is a compact subset of {g > 0}.
Theorem 3.6 (comparison theorem for (P)m). Suppose u and v are viscosity sub- and super-
solutions of (P)m. If the initial data are strictly ordered, i.e.

u(·, 0) < v(·, 0) in {u(·, 0) > 0} and {u(·, 0) > 0} is a compact subset of {v(·, 0) > 0},
then u(·, t) ≺ v(·, t) for all t > 0.

Proof. The result follows from [33, Theorem 2.25]. �
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We also have the following comparison theorem for solutions to (P)∞, which we prove at
the end of this section.

Theorem 3.7 (comparison theorem for (P)∞). Suppose (u,Σ) and v are respectively viscosity
sub- and supersolutions of (P)∞. If the initial data are strictly ordered, i.e.

u(·, 0) < v(·, 0) in Σ ∩ {t = 0} and Σ ∩ {t = 0} is a compact subset of {v(·, 0) > 0},(3.5)

then u(·, t) ≺ v(·, t) and Σ̄ ∩ {t} ⊂ {v(·, t) > 0} for all t > 0.

While the above theorem almost provides uniqueness of (P)∞, the requirement that the
initial data be strictly ordered prevents us from concluding this result. However, combining
the comparison principle with Perron’s method yields the following:

Theorem 3.8. For any bounded open set Ω0 ⊆ Rd with Lipschitz boundary, there exists
minimal and maximal viscosity solutions of (P)∞.

Proof. The result follows from [32]. �

We will use this comparison theorem, as well as the L1 contraction theorem for ρm, to obtain
our first main result: we identify ρ∞ with the characteristic function on the support of the
minimal viscosity solution of (P)∞, when the initial data p0 is given by (1.9).

3.1.1. Comparison theorem for (P)∞. To conclude this section on basic properties of viscosity
solutions of (P)m and (P)∞, we sketch the proof of the comparison principle for (P)∞, Theorem
3.7. Our approach is to consider the first contact time for regularizations of the sub- and
supersolutions, obtained by considering their sup and inf convolutions over space-time smooth
sets. Such regularizations are often used to prove comparison principles for free boundary
problems (c.f. [1, 13, 14, 32]), as they ensure that, when the free boundaries intersect for the
first time, the free boundaries have both the interior and exterior ball property at the contact
point. This provides sufficient regularity to consider a first-order asymptotic expansion of
the free boundary graph at the contact point. In many ways, our proof parallels previous
work by Alexander, Kim, and Yao [1, Theorem 2.7], the main differences being that our
drift term ∇Φ1/m has less regularity uniformly in m. This makes (P)∞ more susceptible to
perturbations, so we must carefully choose our regularization procedure so that the regularized
solutions remain sub- and supersolutions of the original problem.

We now describe the details of these regularizations of the sub- and supersolutions. Fix

r0 ∈ [0, e(−1−
√

2)/2). Let r(t) be the unique solution to{
r′(t) = −2Cdσ(r(t)),

r(0) = r0,
(3.6)

with Cd and σ(x) as defined in Proposition 2.6. Given (u,Σ) and v as in Theorem 3.7, define
the spatial sup and inf convolutions

(3.7) ur(x, t) := sup
Br(t)(x)

u(y, t), vr(x, t) := inf
Br(t)(x)

v(y, t), Σr := ∪t>0Ωr(t)(t)× {t},

where Ωr(t)(t) := {x : d(x,Ω(t)) ≤ r(t)}. Next we define the spacetime sup and inf convolutions
(3.8)

ũr(x, t) := sup
Br∗ (x,t)

ur(y, s), ṽr(x, t) := inf
Br∗ (x,t)

vr(y, s), Σ̃r := {(x, t) : d((x, t),Σr) < r∗}.
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for fixed r∗ > 0.

Lemma 3.9. Let r∗ := [σ(r(T ))/11]2d. Then (ũr, Σ̃r) and ṽr are viscosity sub- and superso-
lutions of (P)∞ in Rn × (r0, T − r∗).
Proof. We will show that (ũr, Σ̃r) is a subsolution of (P)∞ according to Definition 5.1. Parallel
arguments apply to prove that ṽr is a supersolution.

We begin by showing that (ur,Σr) is a subsolution of (P)∞. It follows quickly from the
definition that ur is upper semicontinuous and (ur,Σr) satisfies (a), so we devote our attention
to (b).

Suppose ur − ϕ has a local maximum zero at (x0, t0) with respect to Σr ∩ {t ≤ t0}. In case
(i), if either x0 ∈ Ωr(t0) or ur(x0, t0) > 0, fix y0 ∈ Br(t0)(x0) so that u(y0, t0) = ur(x0, t0) and
either y0 ∈ Ω(t0) or u(y0, t0) > 0. Let ϕ̃(x, t) = ϕ(x+x0−y0, t), so u−ϕ̃ has a local max zero in
Σ∩ {t ≤ t0} at (y0, t0). Since (u,Σ) is a subsolution, we have −∆ϕ(x0, t0) = −∆ϕ̃(y0, t0) ≤ 1.

Now consider case (ii), so ur(x0, t0) = 0, with (x0, t0) ∈ ∂Σr and |∇ϕ|(x0, t0) 6= 0. Choose
y0 ∈ ∂Br(t0)(x0) so that (y0, t0) ∈ ∂Σ and u(y0, t0) = 0. Since |∇ϕ|(x0, t0) 6= 0 and ur − ϕ has
a local maximum at (x0, t0), y0 − x0 is parallel to v := ∇ϕ/|∇ϕ|(x0, t0).

Define ϕ̃(x, t) := ϕ(x− r(t)v, t). Then ϕ̃(y0, t0) = ϕ(x0, t0) and u− ϕ̃ has a local maximum

zero at (y0, t0) with respect to {u > 0} ∩ {t ≤ t0}. Consequently,

min(−∆ϕ̃− 1, ϕ̃t − |∇ϕ̃|2 −∇ϕ̃ · ∇Φ)(y0, t0) ≤ 0.

By Proposition 2.6,
|∇Φ(y0, t0)−∇Φ(x0, t0)| ≤ Cdσ(r(t0)).

Since ϕ̃t(y0, t0) = ϕt(x0, t0)− r′(t0)|∇ϕ|(x0, t0), we have

min(−∆ϕ− 1, ϕt − |∇ϕ|2 −∇ϕ · ∇Φ− r′|∇ϕ| − Cdσ(r)|∇ϕ|)(x0, t0) ≤ 0.

Hence, since r′(t) = −2Cdσ(r(t)),

(3.9) min(−∆ϕ− 1, ϕt − |∇ϕ|2 −∇ϕ · ∇Φ + Cdσ(r)|∇ϕ|)(x0, t0) ≤ 0,

which, in particular, implies (ii). Therefore, (ur,Σr) is a subsolution of (P)∞.

Now we use this fact to show that (ũr, Σ̃r) is a subsolution of (P)∞. Again, ũr is upper

semicontinuous and (ũr, Σ̃r) satisfies (a), so we devote our attention to (b). Property (i)
follows as above, so we only discuss (ii), the barrier property on the free boundary. Suppose

ũr − ϕ has a local maximum zero in Σ̃r ∩ {t ≤ t0} at (x0, t0) ∈ ∂Σ̃r with ũr(x0, t0) = 0 and
|∇ϕ|(x0, t0) 6= 0. Choose (y0, s0) ∈ ∂Br∗(x0, t0) so (y0, s0) ∈ ∂Σr and ur(y0, s0) = 0. Since
|∇ϕ|(x0, t0) 6= 0 and ũr − ϕ has a local maximum zero at (x0, t0), (y0 − x0, s0 − t0) is parallel
to w := ∇x,tϕ/|∇x,tϕ|(x0, t0).

Define ϕ̃(x, t) := ϕ((x, t)−r∗w). Then ϕ̃(y0, s0) = ϕ(x0, t0) and ur− ϕ̃ has a local maximum

zero at (y0, s0) with respect to {ur > 0} ∩ {t ≤ t0}. Consequently, by inequality (3.9) above,

min(−∆ϕ̃− 1, ϕ̃t − |∇ϕ̃|2 −∇ϕ̃ · ∇Φ + Cdσ(r)|∇ϕ̃|)(y0, s0) ≤ 0.

For 0 ≤ x ≤ e(−1−
√

2)/2, we have − log(x) ≤ x−1/2 ≤ x−1+1/2d, hence σ(x) ≤ x1/2d. Therefore,
by Proposition 2.6,

|∇Φ(y0, s0)−∇Φ(x0, t0)| ≤ 11Cd(r
∗)1/2d = Cdσ(r(T )) ≤ Cdσ(r(s0)),

and thus it follows that

min(−∆ϕ− 1, ϕt − |∇ϕ|2 −∇ϕ · ∇Φ)(x0, t0) ≤ 0,
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which concludes the proof. �

The rest of the proof of Theorem 3.7 parallels [1, Theorem 2.7], so we omit the proof.

3.2. Convergence of (P)m to (P)∞. In this section, we show that, as m → +∞, viscosity
solutions pm of (P)m approach a solution p of (P)∞ and use this to show that patch solutions
to the congested aggregation equation satisfy ρ∞ = χΩ(t) almost everywhere, where Ω(t) =
{p(·, t) > 0}.

We begin with the following lemma which states that ρm converges to ρ∞ weakly even if ρm
has initial data ( m

m−1p0)1/(m−1), instead of requiring the initial data of ρm to coincide with the
initial data of ρ∞, as proved in Theorem 2.22.

Lemma 3.10. Let Ω0 ⊆ Rd be a bounded domain with Lipschitz boundary, and let ρ∞(·, t) be
the gradient flow of E∞ with initial data ρ0 = χΩ0. Let ρm be the weak solution of (PME-

D)m with initial data ( m
m−1p0)1/(m−1), where p0 is as in (1.9). Then for any t ≥ 0 and any

f ∈ C(Rd), we have

(3.10) lim
m→∞

∫
Rd
ρm(x, t)f(x)dx =

∫
Rd
ρ∞(x, t)f(x)dx for all t ≥ 0.

Proof. We will first prove (3.10) for all f ∈ C(Rd) ∩ L∞(Rd), and at the end of the proof we
will extend it to all (possibly unbounded) continuous functions.

Let ρ̃m be the weak solution of (PME-D)m with initial data χΩ0 . Theorem 2.22 then yields
that limm→∞W2(ρ̃m(t), ρ∞(t)) = 0 for any t > 0. By [2, Remark 7.1.11 and Remark 5.1.2],
convergence in W2 distance implies that

(3.11) lim
m→∞

∫
Rd
ρ̃m(x, t)f(x)dx =

∫
Rd
ρ∞(x, t)f(x)dx for all f ∈ C(Rd) ∩ L∞(Rd).

To relate ρ̃m with ρm, note that they are both weak solutions to (PME-D)m, with different

initial data χΩ0 and ( m
m−1p0)1/(m−1) respectively. Since ( m

m−1p0)1/(m−1) → χΩ0 pointwise as
m→ +∞, we have

lim
m→∞

∥∥∥( m

m− 1
p0

)1/(m−1)
− χΩ0

∥∥∥
L1(Rd)

= 0

by dominated convergence theorem. Also, recall that for any m > 1 and t ≥ 0, the L1

contraction result in Lemma 3.4 gives

‖ρ̃m(·, t)− ρm(·, t)‖L1(Rd) ≤
∥∥∥( m

m− 1
p0

)1/(m−1)
− χΩ0

∥∥∥
L1(Rd)

.

Combining the above two equations yields limm→∞ ‖ρ̃m(·, t)− ρm(·, t)‖L1(Rd) = 0, hence

(3.12) lim
m→∞

∫
Rd

(ρ̃m(x, t)− ρm(x, t))f(x)dx = 0 for all f ∈ L∞(Rd).

Putting (3.11) and (3.12) together gives us (3.10) for all f ∈ C(Rd) ∩ L∞(Rd). To remove
the requirement f ∈ L∞(Rd), recall that Lemma 3.4 gives that ρ̃m(·, t) is supported in some
bounded set B(0, R(t)) for all m, and as a result ρ∞(·, t) is supported in it too. If f ∈ C(Rd)
is unbounded, we can simply set f̃ = fη, where η is a smooth cut-off function that is 1 in
B(0, R(t)) and 0 outside of B(0, R(t) + 1). We then have (3.10) holds for f̃ . Since changing f̃
to f will not change the integrals in (3.10), we know (3.10) holds for f too. �
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We begin our study of the limit of solutions of (P)m with the following result, which shows
that the half relaxed “limit infimum” of solutions of (P)m is a supersolution of (P)∞.

Proposition 3.11. Suppose pm(x, t) is a viscosity solution of (P)m with initial data pm(·, 0) =
p0 as given in (1.9). Then the half relaxed limit

u2(x, t) := lim inf
∗

pm(x, t) = lim
n→+∞

inf
m>n

|(x,t)−(y,s)|<1/n

pm(y, s)(3.13)

is a viscosity supersolution of (P)∞.

Proof. First, note that u2 is lower semicontinuous. Next, suppose that u2 − ϕ has a local
minimum zero at (x0, t0) with respect to Rd∩{t ≤ t0}. By subtracting δ(x−x0)2+δ(t0−t) from
ϕ with δ > 0 sufficiently small, we may assume that u2−ϕ has a strict minimum at (x0, t0) with
respect to a parabolic neighborhood Q of (x0, t0). Define (xm, tm) := argminQ pm − ϕ, Cm :=
pm(xm, tm)−ϕ(xm, tm), and ϕm := ϕ+Cm, so pm−ϕm has a local minimum zero at (xm, tm).
As in [1, Theorem 3.4] (see paragraph A.2), up to a subsequence, we have (xm, tm)→ (x0, t0),

limm→+∞ pm(xm, tm) = lim inf∗ pm(x0, t0) = u2(x0, t0), and (xm, tm) ∈ {pm > 0}. Since pm is
a viscosity supersolution of (P)m,

(3.14) (ϕt − (m− 1)pm(∆ϕ+ ∆Φ1/m)−∇ϕ · (∇ϕ+∇Φ1/m))(xm, tm) ≥ 0 for all m.

First, consider the case when u2(x0, t0) > 0, and assume −∆ϕ(x0, t0) < 1 for the sake of
contradiction. Since ϕ ∈ C2,1(Q), we have ϕt−∇ϕ·(∇ϕ+∇Φ1/m)|(xm,tm) is uniformly bounded
for all m. Hence if we can show that

(3.15) lim sup
m→∞

pm(xm, tm)
(
∆ϕ(xm, tm) + ∆Φ1/m(xm, tm)

)
> c > 0

for some positive c, it would imply that the left hand side of (3.14) goes to −∞ along a
subsequence of m → ∞, contradicting (3.14). Let us take a subsequence of m → +∞ such
that (xm, tm) → (x0, t0) and pm(xm, tm) > 1

2u2(x0, t0) > 0 for all terms in this subsequence.
(We still denote this subsequence by m for notational simplicity.) Since limm→∞∆ϕ(xm, tm) =
∆ϕ(x0, t0) > −1, to show (3.34), it suffices to show that ∆Φ1/m(xm, tm) = 1 for all sufficiently
large m in this subsequence. Since (xm, tm) minimizes pm − ϕ in Q, combining this with
pm(xm, tm) > 1

2u2(x0, t0) yields that pm(x, t) > 1
4u2(x0, t0) > 0 for all (x, t) ∈ Q∩Br0(xm, tm),

where r0 > 0 is a sufficiently small constant only depending on u2(x0, t0) and ‖ϕ‖C1,1(Q). Also,
note that we have Br0/2(x0, t0) ⊆ Br0(xm, tm) for sufficiently large m due to the fact that
(xm, tm)→ (x0, t0). In other words, for all sufficiently large m, we have

ρm(x, t) =

(
m

m− 1
pm(x, t)

) 1
m−1

≥
(
u2(x0, t0)

8

) 1
m−1

=: c
1

m−1

2 for all (x, t) ∈ Q ∩Br0/2(x0, t0).

Since limm→∞ c
1

m−1

2 = 1, combining the above inequality with the weak convergence of ρm
towards ρ∞ in Lemma 3.10 yields that ρ∞(x, t) ≥ 1 almost everywhere in Q ∩ Br0/2(x0, t0)
(indeed, we must have ρ∞ = 1 in this set since ρ∞ ≤ 1 by definition), hence

∆Φ1/m(xm, tm) = ψ1/m ∗ ρ∞(xm, tm) = 1

for all sufficiently large m in this subsequence, which yields (3.34) and thus contradicts (3.14).
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Now, we consider the case when (x0, t0) ∈ ∂{u2 > 0}, u2(x0, t0) = 0 and ϕ satisfies (5.2).
For a given small a > 0, let us consider a (second-order) perturbed version of ϕ,

ϕ̃(x, t) := ϕ(x, t)− a(x− x0) · ν − aC((x− x0)T )2 +M((x− x0) · ν)2.

Here ν = Dϕ(x0, t0) 6= 0, (x− x0)T = (x− x0)− [(x− x0) · ν]ν, C = max |D2ϕ|. We choose M
sufficiently large so that

(3.16) ∆ϕ̃(x0, t0) > 0.

Note that in a small neighborhood of (x0, t0) that depends on a and M , ϕ̃ ≤ max[ϕ, 0]. Thus
ϕ̃ still touches u2 from below at (x0, t0). We will show that, for any choice of a > 0,

(ϕ̃t − |∇ϕ̃|2 −∇ϕ̃ · ∇Φ)(x0, t0) ≥ 0,

which yields the desired conclusion for ϕ.

Assume, for the sake of contradiction, that there is c0 > 0 so

ϕ̃t − |∇ϕ̃|2 −∇ϕ̃ · ∇Φ(x0, t0) < −c0 < 0.(3.17)

Let (xm, tm) chosen as before but with ϕ̃ instead of ϕ. First, suppose pm(xm, tm) > 0 for
sufficiently large m. Then (3.14) and (3.16)-(3.17) yields a contradiction.

Lastly suppose (xm, tm) 6∈ {pm > 0} for m sufficiently large. Since (xm, tm) ∈ {pm > 0}, up
to a subsequence, we have (xm, tm) ∈ ∂{pm > 0}. This contradicts [1, Lemma 3.3]. (Though
the proof of this lemma in [1] only considers the time independent case, it continues to hold
in our setting.)

�

Next we proceed to show that taking a “limit supremum” of pm yields a subsolution of (P).
Here we need to be a bit careful, due to the fact that subsolution property is based on maximum
points only in the support of the subsolution. (See Definition 5.1.) Indeed, due to the nature
of one-phase problem it is not possible to perturb a smooth test function ϕ to create a strict
maximum of u1 − ϕ without restricting the domain to {u1 > 0}. This can create technical
difficulties with arguments along the lines of above proof to ensure that the local maximum
points are stable under the limit m → ∞, especially when the support of pm degenerates as
m→∞. To overcome this obstacle, we work with a modified notion of viscosity subsolutions,
which are comprised of a pair (u,Σ). This allows the set evolution Σ to be larger than the
support of u. (See Definition 5.1 for details.)

Proposition 3.12. Suppose pm(x, t) is a viscosity solution of (P)m. Define

(3.18) S(t) := ∩M≥1(∪m>M{pm(·, t) > 0}), Σ1 := ∪t>0(S̊(t)× {t})

Then if u1 is the half-relaxed limit of pm,

u1(x, t) :=
∗

lim sup pm(x, t) = lim
n→+∞

sup
m>n

|(x,t)−(y,s)|<1/n

pm(y, s),

(u1,Σ1) is a viscosity subsolution of (P)∞.
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Proof. Since u1 is upper semicontinuous and S̊(t) is open, it remains to check properties (a)-

(b) of Definition 5.1. By definition, S(t)c ⊆ {u1(·, t) = 0}, hence {u1(·, t) > 0}̊ ⊆ S̊(t).
By [1, Theorem B.1], for all t0 > 0,

if (x0, t0) ∈ Σ1 then (x0, t0) ∈ (Σ1 ∩ {t ≥ t0})̊(3.19)

In particular, we have, Σ ∩ {t ≤ t0} ⊆ Σ ∩ {t < t0} for all t0 > 0.
Now we turn to property (b). Let u−ϕ have a local maximum zero at (x0, t0) in Σ1∩{t ≤ t0}.

First we consider part (i), where either (x0, t0) ∈ Σ1 or u1(x0, t0) > 0. By adding δ(x− x0)2 +
δ(t0 − t) to ϕ with δ > 0 sufficiently small, we may assume there is a parabolic neighborhood
Q of (x0, t0) so that u1 −ϕ has a strict maximum with respect to Q∩Σ1 ∩ {t ≤ t0} = Q∩Σ1.

First, note that if suffices to consider the case when u1(x0, t0) > 0. In particular, if (x0, t0) ∈
Σ1, then by (3.19), we may assume that Q is sufficiently small so that Q ⊆ Σ1. This implies
u1(x0, t0) > 0, since otherwise ϕ(·, t0) has a local minimum zero at x0, contradicting the fact
that it is superharmonic. Likewise, we may assume that u1 − ϕ has a strict maximum zero at
(x0, t0) with respect to Q, since ϕ(x0, t0) = u1(x0, t0) > 0 and u1 = 0 in (Σ1)

c
.

We now show that

(3.20) −∆ϕ(x0, t0) ≤ f(x0) for any f ∈ C(Rd) such that f ≥ ρ∞(·, t0) almost everywhere.

In particular, this implies that −∆ϕ(x0, t0) ≤ 1, which gives the result. Suppose for the sake
of contradiction that −∆ϕ(x0, t0) > f(x0) for some f .

Let (xm, tm) := argmaxQ pm − ϕ̃, Cm := pm(xm, tm) − ϕ̃(xm, tm), and ϕ̃m := ϕ̃ + Cm,

so pm − ϕ̃m has a maximum zero at (xm, tm) with respect to Q. As in [1, Theorem 3.4] (see
paragraph A.2), up to a subsequence, we have (xm, tm)→ (x0, t0) ∈ Q, limm→+∞ pm(xm, tm) =
lim sup∗ pm(x0, t0) = u1(x0, t0) > 0. Since pm is a viscosity subsolution of (P)m,

(3.21) (ϕt − (m− 1)pm(∆ϕ+ ∆Φ1/m)−∇ϕ · (∇ϕ+∇Φ1/m))(xm, tm) ≤ 0.

Because ∆Φ1/m = ψ1/m ∗ ρ∞ ≤ f + o(1) and −∆ϕ(x0, t0) > f(x0), we have

(∆ϕ+ ∆Φ1/m)(xm, tm) < 0

for sufficiently large m, which is a contradiction.
Now we consider part (ii), where (x0, t0) ∈ ∂Σ1, u1(x0, t0) = 0, and |∇ϕ|(x0, t0) 6= 0.

Suppose, for the sake of contradiction, that

(3.22) −∆ϕ(x0, t0) > 1 and (ϕt − |∇ϕ|2 −∇ϕ · ∇Φ)(x0, t0) > 0.

We can now apply parallel argument as in the proof of Theorem 3.4 in [AKY] to conclude.
�

We now show that the initial data of the half-relaxed limits coincides with the initial data
given in equation (1.9). Specifically, this ensures that the initial data of u1 and u2 coincides
with the initial data of the sequence pm, in spite of the time regularization inherent in the
definitions of these half-relaxed limits. In what follows, we make frequent use of the following
inner and outer approximations:

Ω−r := {x : d(x,Ωc) > r} and Ωr := {x : d(x,Ω) < r}.(3.23)

Lemma 3.13. Consider a bounded domain Ω0 ⊆ Rd with the“no-crack” property Ω̊0 = Ω0.
Suppose pm are viscosity solutions of (P)m with initial data p0 as given in (1.9). Then, for the
half-relaxed limits u1 and u2, we have u1(x, 0) = u2(x, 0) = p0(x).



32 KATY CRAIG, INWON KIM, AND YAO YAO

Proof. 1. We begin by proving the following claim on the support of pm for given ε > 0:

There is Tε > 0 such that Ω−ε0 ⊆ {ui(·, t) > 0} ⊆ Ωε
0 for all t ∈ [0, Tε] and i = 1, 2.(3.24)

We begin by showing {pm(·, t) > 0} ⊆ Ωε
0 for 0 ≤ t ≤ tε for some tε ∈ (0, 1) that is independent

of m. Suppose x0 ∈ (Ωε
0)c, so that pm = 0 in Bε(x0) for all m.

Let us define

φ(x, t) =
(
N (x− x0)− |x− x0|2

2d
+ f(t)

)
+
,

where f is an increasing function which we will determine momentarily. Let f(0) = −N (ε) +
C1 +1, where C1 > 0 is such that pm(·, t) ≤ C1 for all m and t ∈ [0, 1], given by Lemma 3.4(b).
Such choice of f guarantees that φ(x, 0) ≥ C1 ≥ pm(x, 0) in {ε ≤ |x − x0| ≤ 1} (hence
φ(·, 0) ≥ pm(·, 0) in B1(x0)), and φ(x, t) ≥ C1 ≥ pm(x, t) on ∂B1(x0) for all t ∈ [0, 1].

We claim that if we let f(t) increase sufficiently fast, φ would be a classical supersolution
of (P)m for all m in B1(x0) × [0, tε] for some tε > 0. Note that at time t, φ(·, t) has support

{r(t) ≤ |x − x0| ≤ 1}, where r(t) ∈ (0, 1) solves N (r(t)) − r(t)2

2d + f(t) = 0, hence it satisfies

r(t) > N−1(−f(t) + 1) > 0. (Here N−1 is the inverse function of N ). By definition, ∆φ = −1
in its support. Thus in order to make φ a classical supersolution of (P)m, all we need is
φt ≥ |∇φ|(|∇φ|+ |∇Φ1/m|) everywhere in its support. In the support of φ, we have φt = f ′(t),

and |∇φ| ≤ N ′(r(t)) + 1 ≤ N ′(N−1(−f(t) + 1)) + 1. Finally, let

f ′(t) = (N ′(N−1(−f(t) + 1)) + 1 + Cd)
2,

where Cd is the bound for |∇Φ1/m| as in (2.8). The standard ODE theory guarantees that
f is finite in some [0, tε] (where tε > 0 depends on ε, C1 and d), hence r(t) > 0 in [0, tε].
By comparing pm with φ in the domain B1(x0) × [0, tε] and using the definition of viscosity
solutions, we conclude that pm = 0 in Br(t)(x0) for t ∈ [0, tε]. In particular, x0 ∈ {pm(·, t) > 0}c
for all m and all t ∈ [0, tε], and since x0 ∈ (Ωε

0)c was arbitrary, this gives the result.

Similarly we show Ω−ε0 ⊆ {pm(·, t) > 0} for small times by constructing a classical subsolu-
tion of (P)m. Suppose y0 ∈ Ω−ε0 , so that Bε(y0) ⊆ Ω0. Let hm(x, t) solve −∆hm(·, t) = 1

m in
Br(t)(y0), with hm(·, t) = 0 on ∂Br(t)(y0). Here r(t) := ε −Mt, and M is a large constant to

be determined later. Note that hm takes the explicit expression hm(x, t) :=
(
r(t)2−|x−y0|2

2dm

)
+
,

thus |∇hm(·, t)| ≤ r(t)/dm in its support. So the following holds in the support of hm:

(m− 1)hm(∆hm + ∆Φ1/m) +∇hm · (∇hm +∇Φ1/m) ≥ −m− 1

m
hm −

r(t)

dm

(
r(t)

dm
+ Cd

)
≥ −r(t)

2

2dm
− r(t)

dm

(
r(t)

dm
+ Cd

)
,

where Cd is the bound for ‖∇Φ1/m‖ by (2.8), and we also used ∆Φ1/m ≥ 0 in the first inequality.
Since (hm)t = r(t)r′(t)/dm in its support, in order for hm to be a classical subsolution of (P)m,
all we need is r′ ≤ −r/2−(r+‖∇Φ1/m‖∞), so we can simply let r(t) = ε−Mt with M = 1+Cd.

Since pm(·, 0) ≥ hm(·, 0) for all m > 1, comparison principle yields that pm ≥ hm for 0 ≤
t ≤ ε

2M . It follows that pm ≥ hm ≥ ε2

16dm in Σε := Bε/4(y0)× [0, ε
2M ]. Even though this lower

bound of pm is not uniformly positive in m, we can still conclude that lim infm→∞ ρm ≥ 1 in
Σε by definition of ρm = ( m

m−1pm)1/(m−1). Given the weak convergence of ρm to ρ∞ in Lemma
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3.10, we have that ρ∞ = 1 almost everywhere in Σε. This implies that ∆Φ1/m = ρ∞ ∗ψ1/m ≡ 1
in Bε/8(y0)× [0, ε

2M ] for all sufficiently large m (more precisely, for all m > 8/ε).

With this information on ∆Φ1/m, we can now define a new subsolution ϕ(x, t) that solves
−∆ϕ = 1 in Br̃(t)(y0), with ϕ(·, t) = 0 on ∂Br̃(t)(y0), where r̃(t) = ε/8−Mt, and M = 1 +Cd.
One can check that ϕ is a classical subsolution of (P)m, hence pm ≥ ϕ ≥ cε for some cε > 0
(that is independent of m) in Bε/32 × [0, Tε] for all sufficiently large m, where Tε := ε

16M ,
yielding (3.24).

2. To show that u1(·, 0) = u2(·, 0) = p0, we construct our first barrier as follows: suppose
hε(x) solves

−∆hε = 1 + ε in Ωε, hε = 0 on ∂Ωε.

By (3.24), S(t) ⊆ Ωε/2 for t ∈ [0, T̃ε] for some T̃ε > 0. Thus, u1 ≤ hε in S(t). Furthermore,
since u1 = 0 in (S(t))c, we conclude that

(3.25) u1(·, t) ≤ hε in Ωε × [0, T̃ε].

Next, comparison of pm with the classical subsolution ϕ given above yields that

(3.26) pm ≥ cε in Ω−ε × [0, Tε].

Now we construct our second barrier using (3.26). Consider g(x) solving

−∆g = 1− ε in Ω−ε, g = cε on ∂Ω−ε.

Since u2 is a supersolution of (P)∞ and (3.24) ensures that Ω−ε ⊆ {u2 > 0} for t ∈ [0, Tε], we
have −∆u2 ≥ 1 in Ω−ε × [0, Tε]. Furthermore, (3.26) ensures that g ≤ u2 on ∂Ω−ε × [0, Tε].
Therefore,

(3.27) g ≤ u2 in Ω−ε × [0, Tε].

Combining inequalities (3.25) and (3.27) and sending ε→ 0, we can conclude. �

We now show our main convergence theorem.

Theorem 3.14. Let Ω0 ⊆ Rd be a bounded domain with Lipschitz boundary, and let pm solve
(P)m with initial data p0 as given in (1.9). Let ρm be the density variable corresponding to
pm, and let U be the unique maximal solution of (P)∞ with initial data p0, i.e.

U(x, t) := (inf{w : w is a viscosity supersolution of (P)∞ with w(·, 0) ≥ p0})∗.
Then the following holds for each t > 0:

(a) ρ∞(·, t) = χ{u1(·,t)>0} = χ{u2(·,t)>0} = χ{U(·,t)>0} almost everywhere;

(b) Let Ω(t) := {u2(·, t) > 0}, and Ω1(t) := {u1(·, t) > 0}. Then for every t ≥ 0, Ω(t) is
an open set with |∂Ω(t)| = 0, and we also have |∂Ω1(t)| = 0;

(c) ρm converges to 1 uniformly in Ω(t) away from its boundary—that is, the conver-
gence is uniform in any compact set Q ⊆ {(x, t) : x ∈ Ω(t)}. Furthermore, we have
limm→∞ ‖ρm(·, t)− χΩ(t)‖L1(Rd) = 0 for every t ≥ 0.

Remark 3.15. The fact that U is a solution of (P)∞ is a consequence of a standard Perron’s
method argument.
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Proof. 1. To begin with, let us define two families of functions that are approximations of

pm. For n ∈ N, let pn,−0 (x) and pn,+0 (x) be solutions to (1.9) with Ω0 replaced by Ω
−1/n
0 and

Ω
1/n
0 (as defined in (3.23)) respectively. Note that pn,−0 ≺ p0 ≺ pn,+0 . We then let pn,−m be the

viscosity solution to (P)m with initial data pn,−0 , and denote by ρn,−m the corresponding density

function. We let pn,+m solve a modified version of (P)m with an extra source term, namely

pt = (m− 1)p(∆p+ ∆Φ1/m) +∇p · (∇p+∇Φ1/m) + pfn,

where

fn := χΩn−Ω, Ω := {u2 > 0} and Ωn := {(x, t) : d((x, t),Ω) ≤ 1

n
},

and denote by ρn,+m the corresponding density function. Finally we let (un,−1 , Sn,−(t)) and un,+2

denote the corresponding half-relaxed limits for pn,−m and pn,+m .
The motivation of these two family of functions is as follows: in step 2, we will show that

(3.28) un,−1 ≤ U ≤ u2 ≤ u1 ≤ un,+2 for any n ∈ N,

and it turns out that in order to show the last inequality we have to let pn,+m solve the equation
with the extra source term, rather than (P)m. In step 3, we will use L1 contraction result

between ρn,−m and ρn,+m to show that for any t ≥ 0,

(3.29) An(t) :=
∣∣supp un,+2 (·, t) \ supp un,−1 (·, t)

∣∣→ 0 as n→∞,
and by combining it with (3.28) we have that U , u1 and u2 are supported on the same set.

2. In this step we aim to prove (3.28). The second inequality is a direct consequence from
the minimality of U and the fact that u2 is supersolution of (P)∞ with initial data p0 (which
follows from Proposition 3.11 and Lemma 3.13). The third inequality immediately follows from
the definition of the half relaxed limits u2 and u1. As for the first inequality, note that by
Proposition 3.12, (un,−1 , Sn,−(t)) is a subsolution of (P)m. (Proposition 3.12 does not require

the initial data be the same as p0.) In addition, we have un,−1 (·, 0) = pn,−0 via the same

argument as in Lemma 3.13. Since pn,−0 ≺ p0, combining the above discussion on un,−1 with
Proposition 3.11 and the comparison principle in Theorem 3.7 yields

(3.30) un,−1 ≺ u2 with Sn,−1 (t) ⊆ {u2(·, t) > 0},
which gives us the first inequality.

The last inequality of (3.28) is more difficult to obtain. We point out that this is not a

direct consequence of the comparison principle for (P)∞, since we do not know that un,+2 is a

supersolution of (P)∞ due to the fact that pn,+m (·, 0) 6= p0. (In order to apply Proposition 3.11,
the initial data must be the same as p0.)

To overcome this difficulty, we will show that u1 and un,+2 are sub- and supersolutions of
another free boundary problem, for which the comparison principle also holds. From the
proof (in particular (3.20)) of Proposition 3.12, it follows that in addition to (u1, S(t)) being a
viscosity subsolution of (P)∞, u1 satisfies

(3.31) −∆u1(·, t) ≤ ρ∞
in the integral sense. On the other hand, parallel arguments as in Proposition 3.11 yield
that un,+2 satisfies supersolution properties of (P)∞(see Definition 5.2), but with the interior
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operator −∆− 1 replaced by −∆− ρ∞. In particular we have

(3.32) −∆un,+2 ≥ ρ∞ in {un,+2 > 0}
in the integral sense. As a result, (u1, S(t)) and un,+2 are respectively viscosity sub- and
supersolutions of  −∆p(·, t) = ρ∞ in {p > 0};

V = −ν · (Dp+DΨ) on ∂{p > 0};
Ψ = N ∗ ρ∞.

(P̃ )∞

Using this fact, one can modify the proof of comparison principle for (P)∞ to show that, for
any n ∈ N,

(3.33) u1 ≺ un,+2 with S1(t) ⊆ {un,+2 (·, t) > 0}.
The proof of (3.33) is parallel to that of Theorem 2.7 in [1] with the only difference lies

showing the second inequality in the interior operator which we discuss below. Let us give a
heuristic sketch of the proof under the assumption that S(t) and {un,+2 (·, t) > 0} have smooth
boundaries: the actual proof is carried out with regularizations as given in (3.7)-(3.8) which

generate strict subsolution and supersolution of (P̃ )∞. As usual in the proof of comparison

principle, we begin with the scenario that u1 crosses un,+2 from below at some time and yield
a contradiction. More precisely we suppose that the first crossing time is finite, i.e.

t0 := sup{t : u1(·, s) ≺ un,+2 (·, s) and S(t) ⊆ {un,+2 (·, t) > 0} for s ≤ t} <∞.
Note that t0 > 0 since S(0) = Ω0 = {u1(·, 0) > 0} due to Lemma 3.13 and u1 ≺ un,+2 at

t = 0 from the construction. Observe also that (3.31)-(3.32) rules out the possibility that the
crossing occurs at an interior point, i.e.,

u1(·, t) < un,+2 (·, t) in {u1(·, t) > 0}
as long as {u1(·, t) > 0} ⊆ S(t) ⊆ {un,+2 > 0}.

Hence this means that the set S(t) touches the boundary of {un,+2 (·, t) > 0} for the first time

at some point (x0, t0). Then the normal velocity law for the sets S(t) and {un,+2 (·, t) > 0}, as

well as the fact that u1(·, t0) ≤ un,+2 (·, t0) yields a contradiction.
Note that (3.32) and the definition of Ωn ensures that the source term for u1 remains smaller

than that of un,+2 after the regularization process given in (3.7)-(3.8) if r(t) is sufficiently small.
Based on this fact, the rest of the proof is the same as to that of Theorem 2.7 in [1].

3. Next we will show (3.29). First, note that ρn,−m satisfies (3.1) with no source term, while

ρn,+m satisfies (3.1) with source term ρn,+m fn which is non-negative. Since their initial data is

also ordered, comparison principle for (3.1) yields that ρn,−m ≤ ρn,+m . We then define

Anm(t) :=

∫
(ρn,+m (x, t)− ρn,−m (x, t))dx,

which is nonnegative. We can apply the L1 contraction property of (3.1) in Lemma 3.3 to
conclude that, for any t > 0 and any m > 1,

(3.34) Anm(t) ≤
∫ t

0

∫
ρn,+m (x, s)fn(x, s)dxds+Anm(0).
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By (3.30) and the definition of Sn,−1 , for all t ≥ 0 and sufficiently large m, we have

(3.35) supp ρn,−m (t) = supp pn,−m (t) ⊆ supp u2(t) =: Ω(t).

Thus for all sufficiently large m, the spatial integral in (3.34) can be controlled as∫
ρn,+m (x, s)fn(x, s)dx =

∫
Ωn(s)\Ω(s)

ρn,+m (x, s)dx ≤ Anm(s),

where in the last step we used that ρn,−m (x, s) ≡ 0 in Ωn(s) \Ω(s) for all large m, which follows

from (3.35). Plugging this into (3.34) yields Anm(t) ≤
∫ t

0 A
n
m(s)ds + Anm(0), thus Gronwall’s

inequality immediately yields that Anm(t) ≤ Anm(0)et. It is easy to check that limm→∞A
n
m(0) =

|Ω1/n
0 \ Ω

−1/n
0 | ≤ C/n, which yields lim infm→∞A

n
m(t) ≤ Cet/n for all n ∈ N, t ≥ 0.

Next we claim

lim inf
m→∞

Anm(t) ≥ |supp un,+2 (·, t) \ supp un,−1 (·, t)|.
To show this, it suffices to show that
(3.36)

lim inf
m→∞

∫
ρn,+m (x, t)dx ≥ |supp un,+2 (·, t)| and lim sup

m→∞

∫
ρn,−m (x, t)dx ≤ |supp un,−1 (·, t)|.

For the first inequality, note that by definition of the half-relaxed limit, for any x ∈ supp un,+2 (·, t),
we have lim infm→∞ p

n,+
m (x, t) > 0, thus lim infm→∞ ρ

n,+
m (x, t) ≥ 1. Therefore∫

lim inf
m→∞

ρn,+m (x, t)dx ≥ |supp un,+2 (·, t)|,

and applying Fatou’s lemma to it yields the first inequality of (3.36). The second inequality fol-

lows from the definition of the half-relaxed limit un,−1 and the fact that lim supm→∞ ‖ρn,−m ‖∞ ≤
1, which is due to (3.4).

We now combine the above claim with lim infm→∞A
n
m(t) ≤ Cet/n to conclude that the

An(t) defined in (3.29) satisfies An(t) ≤ Cet/n for all n ∈ N, t ≥ 0, which yields (3.29).
Applying this to (3.28) then yields that χ{u1>0} = χ{u2>0} = χ{U>0} almost everywhere. So
the proof of part (a) would be finished if we can show ρ∞ is also equal to these functions almost
everywhere, which we postpone to step 4.

At the end of step 3, let us point out part (b) can be easily proved using the above bound
on An(t): note that Ω(t) = {u2(·, t) > 0} is open due to the lower-semicontinuity of u2, hence

∂Ω(t) = Ω(t) \ Ω(t) ⊆ supp un,+2 (·, t) \ supp un,−1 (·, t),
where we used (3.28), (3.30) and (3.33) in the last inequality. The above bound on An(t) thus
gives |∂Ω(t)| ≤ An(t) ≤ Cet/n for all n ∈ N, t ≥ 0, and by sending n→∞ we obtain part (b)
for Ω(t). In addition, the inequalities (3.28), (3.30) and (3.33) also lead to |∂Ω1(t)| ≤ An(t),
hence we also have |∂Ω1(t)| = 0.

4. To finish the proof of part (a), it suffices to relate u2 and ρ∞ and show that

(3.37) ρ∞ = χ{u2>0} a.e.

The direction ρ∞ ≥ χ{u2>0} is easier: take any (x0, t0) such that a := u2(x0, t0) > 0.
By definition of the half-relaxed limit u2, there exists some positive r0 and N0, such that
pm(x, t0) ≥ a/2 > 0 for all x ∈ Br0(x0), m > N0. Hence ρm(x, t0) ≥ (m−1

m a)1/(m−1) for x,m as
above. Combining this lower bound (which approaches 1 asm→∞) with the weak convergence
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of ρm towards ρ∞ in Lemma 3.10, we have ρ∞(·, t0) ≥ 1 in Br0(x0). Since x0 ∈ {u2(·, t0) > 0}
is arbitrary, we have ρ∞ ≥ χ{u2>0}.

For the other direction, we will use pn,−m . Using the definition of Sn,−(t) (see (3.18)) as well
as (3.28), we have

(3.38) lim sup
m→∞

χ{pn,−m (·,t)>0} = χSn,−(t) ≤ χ{u2(·,t)>0} for any n ∈ N, t ≥ 0.

In addition, since lim supm→∞ ‖ρn,−m (t)‖∞ ≤ lim supm→∞ ‖ρm(t)‖∞ ≤ 1 by (3.4), it implies

(3.39) lim sup
m→∞

ρn,−m (·, t) ≤ lim sup
m→∞

χ{ρn,−m (·,t)>0} = lim sup
m→∞

χ{pn,−m (·,t)>0}.

Finally we will relate ρ∞ with ρn,−m . Note that for any continuous, bounded f ≥ 0, we have
the following (where we omit the x dependence in integrals due to space limitation):

(3.40)

∫
ρ∞(t)fdx = lim

m→∞

∫
ρm(t)fdx = lim

m→∞
lim
n→∞

∫
ρn,−m (t)fdx ≤

∫
lim sup
m,n→∞

ρn,−m (t)fdx,

where the first equality follows from Lemma 3.10, the second one is due to the L1 contraction
property of Lemma 3.3(a) and the fact that ρn,−m ≤ ρm, and the last inequality follows from
Fatou’s lemma. This implies that
ρ∞(·, t) ≤ lim supm,n→∞ ρ

n,−
m (·, t) a.e., and this with (3.38)-(3.39) implies ρ∞ ≤ χ{u2>0}, which

finishes the proof of (3.37), thus yielding part (a).

5. To prove part (c), take any compact set Q ⊆ {(x, t) : x ∈ Ω(t)}. By definition of the
half-relaxed limit u2, for each (x0, t0) ∈ Q there is some r0 > 0, such that pm ≥ u(x0, t0)/2
in Br0(x0, t0) for all sufficiently large m, which yields that ρm uniformly approaches 1 in
Br0(x0, t0). The compactness of Q then allows us to find a finite number of points (xi, ti) such
that Bri(xi, ti) covers Q, implying that ρm → 1 uniformly in Q.

Finally let us prove the L1 convergence result, where we use the elementary inequality

(3.41) ‖f − g‖L1 =

∫
(g − f)+dx+

∫
(f − g)+dx ≤ 2

∫
(g − f)+dx+

∣∣∣∣∫ (f − g)dx

∣∣∣∣ .
Let f = ρm(·, t), g = χΩ(t) = ρ∞(·, t). Since the mass of ρm(·, t) and ρ∞(·, t) are both preserved
in time, we have∣∣∣∣∫ (f − g)dx

∣∣∣∣ ≤ ‖ρm(·, 0)− χΩ0‖L1 =
∥∥(

m

m− 1
p0)1/(m−1) − χΩ0

∥∥
L1 → 0 as m→∞.

To control
∫

(g− f)+dx, note that g = 0 a.e. in Ω(t)c, hence
∫

(g− f)+dx =
∫

Ω(t)(1− ρm)+dx.

Since Ω(t) is open, for any ε > 0 we can find a compact set D ⊆ Ω(t), such that |Ω(t)\D| ≤ ε.
We can then apply the uniform convergence result of ρm in D to conclude that

∫
(g−f)+dx ≤ 2ε

for sufficiently large m, and since ε > 0 is arbitrary we have limm→∞
∫

(g−f)+dx = 0. Plugging
the above results into (3.41) yields the L1 convergence result.

�

4. Long time behavior

In this section, we investigate the long-time behavior of a patch solution ρ∞ in two dimen-
sions, using the pressure variable characterization of the dynamics of ρ∞ obtained in section 3.
Throughout this section, we consider our spatial domain to be R2. By Theorem 3.14, we know
that ρ∞(·, t) = χΩ(t) for some Ω(t) ⊆ R2 for all t ≥ 0. Our goal is to show that, as t → ∞,
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Ω(t) converges to the unique disk B0 with the same mass and the center of mass as Ω0. (See
Theorem 4.12)

We proceed as follows: in sections 4.1 and 4.2, we show that the second moment of ρ∞(·, t) =
χΩ(t) decreases unless Ω(t) is a disk, from which we are able to conclude that Ω(t) cannot stay
uniformly away from a disk for all times, in terms of its Fraenkel asymmetry. In section 4.3,
we combine this with the gradient flow structure of ρ∞ to show that as t → +∞ the energy
E∞(ρ∞(t)) approaches the minimum of E∞, with a quantitative estimate on the rate. Lastly,
in section 4.4, we show that ρ∞(·, t) converges to χB0 strongly in Lq for any 1 ≤ q <∞.

4.1. Evolution of the second moment. Let M2[f ] :=
∫
R2 f(x)|x|2dx denote the second

moment of f . In this subsection, we investigate the evolution of the second moment of
ρ∞(·, t) = χΩ(t). Before we present the rigorous derivation of the evolution of the second
moment, we begin with the following heuristic computation. As described in the introduction,
ρ∞(·, t) formally satisfies the transport equation

ρt = ∇ · (ρ(∇Nρ+∇p)),
where p is a solution to (P). (See equation (1.8).) By definition, p(·, t) solves ∆p = −1 in Ω(t)
and p = 0 on ∂Ω(t). Hence, supposing that ∂Ω(t) is smooth, the evolution of M2[ρ∞(t)] is
given by

d

dt
M2[ρ∞(t)] = −2

∫
R2

ρ∞∇Nρ∞ · xdx− 2

∫
R2

ρ∞∇p · xdx

= − 1

π

∫
R2

∫
R2

ρ∞(x)ρ∞(y)
(x− y) · x
|x− y|2 dydx− 2

∫
Ω(t)
∇p · xdx

= − 1

2π

∫
R2

∫
R2

ρ∞(x)ρ∞(y)dydx+ 4

∫
Ω(t)

p(x)dx

= − 1

2π
|Ω(t)|2 + 4

∫
Ω(t)

p(x)dx = − 1

2π
|Ω0|2 + 4

∫
Ω(t)

p(x)dx.

(4.1)

In the second equality, we use that, in two dimensions, Nρ∞ = N ∗ρ∞ with N (x) = 1
2π log |x|.

In the third equality, we symmetrize x and y in the first integral (hence the extra factor of 1
2),

and in the last equality, we use that ρ∞ preserves its mass (which is |Ω0|) for all time.
In the following proposition, we rigorously obtain the time evolution of M2[ρ∞(t)] by an-

alyzing the evolution of the second moments for each ρm and sending m → +∞, using our
convergence results from the previous sections. We show that the evolution of the second mo-
ment indeed satisfies a time-integral form of (4.1), with the exception that we must substitute
p(x) with u1(x), the half-relaxed limit of pm defined in Lemma 3.12, to take into account the
fact that Ω(t) may not have smooth boundary for all time.

Proposition 4.1. Let Ω0 ⊆ R2 be a bounded domain with Lipschitz boundary, and let ρ∞(·, t) =
χΩ(t) be the gradient flow of E∞ with initial data ρ0 = χΩ0. Then for any T > 0,

(4.2) M2[ρ∞(T )]−M2[ρ0] ≤ − 1

2π
|Ω0|2T + 4

∫ T

0

∫
Ω(t)

u1(x, t)dxdt,

where u1 is the half-relaxed limit of pm, defined in Lemma 3.12, and Ω(t) = {u2(·, t) > 0}, as
defined in Theorem 3.14 (b).



CONGESTED AGGREGATION VIA NEWTONIAN INTERACTION 39

Proof. For anym > 1, let ρm be the weak solution of (PME-D)m with initial data (m−1
m p0)1/(m−1),

where p0 is given by equation (1.9). Let pm := m
m−1ρ

m−1
m be the corresponding solution of (P)m.

Taking |x|2 as our test function, we have for any T > 0,∫
R2

ρm(x, T )|x|2dx︸ ︷︷ ︸
=:I1

−
∫
R2

ρm(x, 0)|x|2dx︸ ︷︷ ︸
=:I2

(4.3)

= −2

∫ T

0

∫
R2

ρm∇Φ1/m(x, t) · xdxdt︸ ︷︷ ︸
=:I3

+4

∫ T

0

∫
R2

ρmm(x, t)dxdt︸ ︷︷ ︸
=:I4

.

(Since ρm has compact support in [0, T ], our test function is not required to have compact
support since we can always take a cut-off sufficiently far away.) As m → +∞, Lemma 3.10
yields that I1 converges to M2[ρ∞(T )] and I2 converges to M2[ρ∞(0)].

To show the convergence of I3, we decompose the integral into two parts:

I3 =

∫ T

0

∫
R2

ρm∇Φ(x, t) · xdxdt+

∫ T

0

∫
R2

ρm∇(Φ1/m(x, t)− Φ(x, t)) · xdxdt =: I31 + I32.

Since ∇Φ(x, t) · x ∈ C(Rd) for any t, Lemma 3.10 again gives that

I31
m→+∞−−−−−→

∫ T

0

∫
R2

ρ∞∇Φ(x, t) · xdxdt =
1

4π

∫ T

0

(∫
R2

ρ∞dx

)2

dt =
1

4π
|Ω0|2T,

where the last two equalities are obtained by symmetrizing x and y in the integrand and using
conservation of mass, as in equation (4.1).

To control I32, we first bound ‖∇Φ1/m −∇Φ‖L2(R2). By Proposition 2.3,

(4.4) ‖∇Φ1/m −∇Φ‖L2(R2) ≤W2(ρ∞ ∗ ψ1/m, ρ∞) ≤ 1

m

∫
ψ(x)|x|2dx,

where, in the last step, we apply [2, Lemma 7.1.10]. Hence

|I32| ≤
∫ T

0
‖ρm(·, t)|x|‖L2‖∇Φ1/m −∇Φ‖L2(R2)dt→ 0 as m→ +∞,

where the fact that supt∈[0,T ] supm≥1 ‖ρm(·, t)|x|‖L2 < +∞ is a consequence of Lemma 3.4,
which ensures ρm is uniformly bounded and compactly supported. Combining the estimates
on I31 and I32 yields that I3 → 1

4π |Ω0|2T as m→ +∞.
Finally, we consider I4. We will show that

(4.5) lim sup
m→∞

∫ T

0

∫
R2

ρmm(x, t)dxdt ≤
∫ T

0

∫
Ω(t)

u1(x, t)dxdt.

The proof is then finished by taking lim supm→+∞ on both sides of (4.3).

To show (4.5), first note that, since pm := m
m−1ρ

m−1
m , we may write ρmm = m−1

m ρmpm and
apply Remark 3.5 to obtain

(4.6) lim sup
m→∞

∫ T

0

∫
R2

ρmm(x, t)dxdt ≤ lim sup
m→∞

∫ T

0

∫
R2

pm(x, t)dxdt.
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It remains to show that

(4.7) lim sup
m→∞

∫ T

0

∫
R2

pm(x, t)dxdt ≤
∫ T

0

∫
R2

u1(x, t)dxdt.

For any n ∈ N, define
u1,n(x, t) := sup

m>n
|(x,t)−(y,s)|<1/n

pm(y, s).

Note that u1,n is decreasing in n and lim
n→∞

u1,n = u1 by definition of u1. For each n ∈ N, we

have pm ≤ u1,n for all m > n, hence

lim sup
m→∞

∫ T

0

∫
R2

pm(x, t)dxdt ≤
∫ T

0

∫
R2

u1,n(x, t)dxdt for all n ∈ N.

We can then take n → +∞ in the above inequality and apply the monotone convergence
theorem. By Theroem 3.14 (a), Ω(t) = {u1(·, t) > 0} almost everywhere. Thus, inequality
(4.7) holds. �

4.2. Some rearrangement inequalities. In this subsection, we digress a bit to obtain an
upper bound for the quantity

(4.8) F (Ω) = − 1

2π
|Ω|2 + 4

∫
Ω
p(x)dx,

where Ω is a bounded set with smooth boundary and p : Ω̄ → R satisfies −∆p = 1 in Ω and
p = 0 on ∂Ω. This quantity appears in our heuristic computation for the evolution of the

second moment of ρ∞(t), where we show d
dtM2[ρ∞] ≤ F (Ω(t)). Likewise,

∫ T
0 F (Ω(t))dt would

have appeared on the right hand side of our rigorous result, given in equation (4.2), if the
boundary of Ω(t) were smooth for all time. While in this subsection we only aim to control
F (Ω) for smooth domains, in the next subsection we discuss how to use this bound to control
the right hand side of (4.2), even when the boundary of Ω(t) is not smooth.

The following result, due to Talenti [51], shows that F (Ω) ≤ 0, with equality if and only
if Ω is a disk. We sketch the proof below for the sake of completeness. In the subsequent
proposition, we will modify the proof to get a stronger inequality.

Proposition 4.2 (c.f. [51, Theorem 1]). Let Ω ⊆ R2 be a bounded domain with smooth bound-
ary, and let F (Ω) be as in (4.8). Then we have

(4.9) F (Ω) ≤ 0,

and the equality is achieved if and only if Ω is a disk.

Proof. First, note that maximum principle yields that p ≥ 0 in Ω̄ and p > 0 in Ω. For any
k ∈ [0, supΩ p), let us define

Ωk := {x ∈ Ω : p(x) > k} and g(k) := |Ωk|.
Note that g(0) = |Ω|. By definition of p and the divergence theorem, we have

(4.10) g(k) =

∫
Ωk

−∆p(x)dx =

∫
∂Ωk

−n · ∇p dσ =

∫
∂Ωk

|∇p|dσ.

On the other hand, by the co-area formula (c.f. [22]),

(4.11) g(k) =

∫ ∞
k

∫
∂Ωs

1

|∇p|dσds, g′(k) = −
∫
∂Ωk

1

|∇p|dσ.
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Combining (4.10) and (4.11) and applying the Cauchy-Schwarz inequality,

g(k)g′(k) =

(∫
∂Ωk

|∇p|dσ
)(
−
∫
∂Ωk

1

|∇p|dσ
)
≤ −P (Ωk)

2,(4.12)

where P (Ωk) is the perimeter of Ωk. For any bounded domain E ⊆ R2, the isoperimetric
inequality yields

(4.13) 2
√
π
√
|E| ≤ P (E).

Applying inequality (4.13) to Ωk in (4.12) gives

g(k)g′(k) ≤ −
(

2
√
π
√
g(k)

)2
= −4πg(k),

hence g(k) satisfies the differential inequality

g′(k) ≤ −4π for all k ∈
(

0, sup
Ω
g

)
.(4.14)

Combining this with g(0) = |Ω| yields that g(k) ≤ (|Ω| − 4πk)+ for all k ≥ 0. Therefore,∫
Ω
p(x)dx =

∫ supΩ p

0
g(k)dk ≤

∫ ∞
0

(|Ω| − 4πk)+ dk =
1

8π
|Ω|2,

which gives (4.9). In order to achieve equality, Ωk must be a disk for almost every k > 0, hence
Ω must be a disk. �

We now prove a stronger version of the above inequality by replacing the isoperimetric
inequality in the above argument (see (4.13)) by the following quantitative version due to
Fusco, Maggi, and Pratelli [26].

Lemma 4.3 (c.f. [26, Section 1.2]). Let E ⊆ R2 be a bounded domain. We define the Fraenkel
asymmetry A(E) ∈ [0, 1] as

A(E) := inf

{ |E4(x0 + rB)|
|E| : x0 ∈ R2, πr2 = |E|

}
,

where B is the unit disk. Then there is some constant c ∈ (0, 1), depending only on the
dimension, such that

P (E) ≥ 2
√
π
√
|E|
(
1 + cA(E)2

)
,

where P (E) = H1(∂E) denotes the perimeter of E.

We begin with the following simple observation regarding the Fraenkel asymmetry.

Lemma 4.4. Let E ⊆ R2 be a bounded domain. For all U ⊆ E satisfying |U | ≥ |E|(1− A(E)
4 ),

we have

A(U) ≥ A(E)

4
.

Proof. Assume the statement is not true, so there exists some disk BU with the same area as
U so that

|U4BU |
|U | <

A(E)

4
.
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Since |U | = |BU |, we have |U4BU | = 2(|U | − |U ∩BU |). Hence the above inequality becomes

|U ∩BU | > |U |
(

1− A(E)

8

)
.

Let BE be a disk with the same area as E that contains BU . Then since |U | ≥ |E|(1− A(E)
4 ),

|E ∩BE | ≥ |U ∩BU | > |E|
(

1− A(E)

4

)(
1− A(E)

8

)
≥ |E|

(
1− 3A(E)

8

)
Therefore,

|E4BE |
|E| =

2(|E| − |E ∩BE |)
|E| <

3

4
A(E),

which contradicts the fact that A(E) ≤ |E4BE |/|E|. This gives the result. �

With this lemma, we are now able to conclude a stronger upper bound on F (Ω) than provided
by Proposition 4.2.

Proposition 4.5. Under the same assumptions as Proposition 4.2, there exists a constant
c0 ∈ (0, 1), such that

F (Ω) ≤ −c0A(Ω)3|Ω|2.
Proof. We follow the proof of Proposition 4.2, with the following difference: instead of apply-
ing the isoperimetric inequality (4.13) to the set Ωk in inequality (4.12), we now apply the
quantitative version from Lemma 4.3 to obtain

g′(k) ≤ −4π
(
1 + cA(Ωk)

2
)2 ≤ −4π

(
1 + cA(Ωk)

2
)
.

To relate A(Ωk) with A(Ω), we apply Lemma 4.4 to obtain that A(Ωk) ≥ A(Ω)
4 for any k such

that g(k) ≥ |Ω|(1− A(Ω)
4 ). In other words, we have

(4.15) g′(k) ≤ −4π

(
1 +

cA(Ω)2

16

)
for all k such that g(k) ≥ |Ω|

(
1− A(Ω)

4

)
.

We claim that this implies

(4.16) g(k) ≤ |Ω| − 4π

(
1 +

cA(Ω)2

16

)
k for all k ∈

(
0,
A(Ω)|Ω|

32π

)
.

To see this, note that for all k ∈ (0, A(Ω)|Ω|
32π ), the right hand side of (4.16) is greater than

|Ω|(1− A(Ω)
4 ) since 1+cA(Ω)2/16 ≤ 2. As a result, if (4.16) is violated at some k0 ∈ (0, A(Ω)|Ω|

32π ),

then we must have g(k) ≥ |Ω|(1− A(Ω)
4 ) for all k ∈ (0, k0), since g is a decreasing function. We

can then integrate (4.15) in (0, k0) to conclude that (4.16) actually holds at k0, a contradiction.

Let h(k) = (|Ω|−4πk)+. Inequality (4.16) implies that g(k) ≤ h(k)− cA(Ω)3|Ω|
128 at k = A(Ω)|Ω|

32π .

For k > A(Ω)|Ω|
32π , recall that by inequality (4.14), we have g′(k) ≤ −4π for k ∈ (0, supΩ g), and

by definition of h, we have h′(k) = −4π in (0, |Ω|/(4π)). This gives that g(k) ≤ h(k)− cA(Ω)3|Ω|
128

for A(Ω)|Ω|/32π ≤ k ≤ |Ω|/4π. Since A(Ω) ≤ 1 this range of k is larger than |Ω|/8π, and since
g(k) ≤ h(k) for all k, we have∫ ∞

0
g(k)dk ≤

∫ ∞
0

h(k)dk − cA(Ω)3|Ω|2
2000

=
|Ω|2
8π
− cA(Ω)3|Ω|2

2000
.
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Finally, this gives

F (Ω) =

∫ ∞
0

g(k)− |Ω|
2

8π
≤ cA(Ω)3|Ω|2

2000
,

hence the result holds with c0 := c
2000 . �

4.3. Convergence of energy functional as t → ∞. In this section, we aim to show that,
along the solution ρ∞(·, t), the energy functional E∞ converges to its global minimizer as t→
+∞. We begin by estimating the rate of change of the second moment along ρ∞. Combining
Proposition 4.5 with our heuristic computation (4.1) suggests that

d

dt
M2[ρ∞(t)] ≤ −c0A(Ω(t))3|Ω0|2.

We now show that this inequality is indeed true in the time-integral sense, even if Ω(t) does
not have smooth boundary.

Proposition 4.6. Let Ω0 ⊆ R2 be a bounded domain with Lipschitz boundary, and let ρ∞(·, t) =
χΩ(t) be the gradient flow of E∞ with initial data ρ0 = χΩ0. Then we have

(4.17) M2[ρ∞(T )]−M2[ρ0] ≤ −c0|Ω0|2
∫ T

0
A(Ω(t))3dxdt,

where c0 ∈ (0, 1) is the constant given in Proposition 4.5.

Proof. Since the evolution of the second moment is already given by Proposition 4.1, it remains
to show

(4.18) − 1

2π
|Ω0|2T + 4

∫ T

0

∫
Ω(t)

u1(x, t)dxdt ≤ −c0|Ω0|2
∫ T

0
A(Ω(t))3dt,

where u1 is the half-relaxed limit of pm defined in Lemma 3.12.
Let Ω1(t) = {u1(·, t) > 0}. By Theorem 3.14 (a) and (b), we have Ω1(t) = Ω(t) almost

everywhere, so A(Ω(t)) = A(Ω1(t)), and |∂Ω1(t)| = 0 for all t ∈ [0, T ]. Hence for any ε > 0

and t ∈ [0, T ], we can find a set D(t) ⊆ R2 with smooth boundary such that Ω1(t) ⊆ D(t),
and |D(t) \ Ω1(t)| ≤ ε. For any t ≥ 0, we then have a classical solution p(·, t) such that
−∆p(·, t) = 1 in D(t), and p(·, t) = 0 on ∂D(t) and D(t)c. In addition, we may choose D(t)
so that ∂D(t) is continuous in time with respect of Hausdorff distance of sets, which ensures
that p is continuous in time.

We first aim to show that

(4.19) u1(x, t) ≤ p(x, t).
It suffices to show that u1(x, t) ≤ ap(x, t) for any a > 1. Towards a contradiction, assume
that there exists some a > 0, such that supx∈R2,t∈[0,T ](u1 − ap) > 0. Since p is continuous in
both space and time, and u1 is upper semicontinuous by definition as the half-relaxed limit,
u1 − ap achieves a strictly positive maximum at some (x0, t0). Furthermore, since p ≥ 0,
we have u1(x0, t0) > 0. Again using that (u1,Σ1) is a subsolution of (P)∞, we have that
−a∆p(x0, t0) ≤ 1, which implies that −∆p(x0, t0) < 1. However, since x0 ∈ Ω1(t0) ⊆ D(t0),
we must have −∆p(x0, t0) = 1, which gives the contradiction.

We now show inequality (4.18). Since |D(t) \ Ω1(t)| ≤ ε, there exists C depending on
|Ω0| so that A(Ω1(t)) = A(Ω(t)) ≤ A(D(t)) + Cε. Combining this observation with (4.19)
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and Proposition 4.5, we obtain the following bound for the left hand side of (4.18), where C
depends on Ω0 and T :∫ T

0

(
− 1

2π
|Ω0|2 +

∫
Ω(t)

u1(x, t)dx

)
dt ≤

∫ T

0

(
− 1

2π
|D(t)|2 +

∫
D(t)

p(x, t)dx

)
dt+ Cε

≤ −c0

∫ T

0
A(D(t))3|D(t)|2dt+ Cε ≤ −c0|Ω0|2

∫ T

0
A(Ω(t))3dt+ Cε.

Sending ε→ 0 gives the result. �

Corollary 4.7. Under the assumptions of Proposition 4.6, for any T > 0, there exists some
t0 ∈ (0, T ), such that

(4.20) A(Ω(t0)) ≤ C(Ω0)T−1/3,

where C(Ω0) :=
(
M2[χΩ0 ]/c0|Ω0|2

)1/3
, for c0 as in Proposition 4.5.

Proof. Fix T > 0. Towards a contradiction, assume A(Ω(t0)) > C(Ω0)T−1/3 for all t0 ∈ (0, T ).
By Proposition 4.6 and the definition of C(Ω0),

M2[ρ∞(T )] ≤M2[ρ0]− c0|Ω0|2
∫ T

0
A(Ω(t))3dxdt ≤M2[ρ0]− c0|Ω0|2T (C(Ω0)T−1/3)3 = 0,

which contradicts with the fact that M2[ρ∞(t)] must be positive for all time. �

The above corollary does not directly yield that limt→∞A(Ω(t)) = 0. To show this and
conclude that Ω(t) converges to a disk, we will use the fact that the energy E∞ is decreasing
in time along ρ∞(·, t). In the next lemma, we show that if A(Ω) is small, then the energy is
close to its minimum.

Lemma 4.8. Let Ω ⊆ R2 be a bounded domain, and let BΩ ⊆ R2 be a disk with |BΩ| = |Ω|.
Then,

0 ≤ E∞(χΩ)− E∞(χBΩ
) ≤ 40|Ω|(1 + |Ω|+M2[χΩ])

√
A(Ω)

Proof. The first inequality is a direct consequence of Riesz’s rearrangement inequality. To
prove the second one, let us first rewrite E∞(χΩ)− E∞(χBΩ

) as

E∞(χΩ)− E∞(χBΩ
) =

1

2π

∫∫
R2×R2

(χΩ(x)− χBΩ
(x))(χΩ(y) + χBΩ

(y)) log |x− y|dxdy

=:
1

2π
I1 +

1

2π
I2,

where I1 and I2 denote the integral in the domains |x− y| ≤ 1 and |x− y| > 1, respectively.
First, we consider I1. Note that for any x ∈ R2, we have∣∣∣∣∣

∫
y∈B(x,1)

(χΩ(y) + χBΩ
(y)) log |x− y|dy

∣∣∣∣∣ ≤ 2

∣∣∣∣∣
∫
|x−y|≤1

log |x− y|dy
∣∣∣∣∣ = π,

hence

I1 ≤ ‖χΩ − χBΩ
‖1
∥∥∥∥∥
∫
y∈B(x,1)

(χΩ(y) + χBΩ(y)) log |x− y|dy
∥∥∥∥∥
∞

≤ π‖χΩ − χBΩ
‖1.
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Now, we consider I2. For |x− y| > 1, log |x− y| ≤ |x− y| ≤ |x|+ |y| ≤ (1 + |x|)(1 + |y|), so

I2 ≤
(∫

R2

|χΩ(x)− χBΩ
(x)|(1 + |x|)dx

)(∫
R2

(χΩ(y) + χBΩ
(y))(1 + |y|)dy

)
≤ ‖χΩ − χΩB‖

1/2
1

(∫
R2

|χΩ(x)− χBΩ
(x)|(1 + |x|)2dx

)1/2

· (2|Ω|)1/2

(∫
R2

|χΩ(y) + χBΩ
(y)|(1 + |y|)2dy

)1/2

≤ 2
√

2|Ω|1/2‖χΩ − χΩB‖
1/2
1 (M2[χΩ] +M2[χBΩ

] + 2|Ω|).

Combining the above estimates on I1 and I2 with the facts that ‖χΩ − χBΩ
‖1 ≤ 2|Ω| and

1/π ≤ 1, we have
(4.21)

E∞(χΩ)− E∞(χBΩ
) ≤ 1

2π
I1 +

1

2π
I2 ≤ |Ω|1/2‖χΩ − χBΩ

‖1/21 (1 +M2[χΩ] +M2[χBΩ
] + 2|Ω|).

The proof is then split into the following two cases: A(Ω) ≥ 1/2 and A(Ω) < 1/2.
Case 1: A(Ω) ≥ 1/2. In this case, we have ‖χΩ−χBΩ

‖1 ≤ 2|Ω| ≤ 4A(Ω)|Ω| for any disk BΩ

with the same measure as Ω. Since E∞ is invariant under translations, we can simply choose
BΩ to be centered at 0. Such a choice directly yields M2[χBΩ

] ≤M2[χΩ], hence (4.21) becomes

E∞(χΩ)−E∞(χBΩ
) ≤ |Ω|1/2(4A(Ω)|Ω|)1/2(1+2|Ω|+2M2[χΩ]) ≤ 4|Ω|(1+|Ω|+M2[χΩ])

√
A(Ω),

which gives the result.
Case 2: A(Ω) < 1/2. In this case, we choose BΩ to be the disk minimizing |Ω4BΩ|, which

then gives

(4.22) ‖χΩ − χBΩ
‖1 = A(Ω)|Ω|.

This choice of BΩ no longer directly gives us M2[χBΩ
] ≤ M2[χΩ], but we claim that we still

have M2[χBΩ
] ≤ 36M2[χΩ]. To see this, first note that A(Ω) < 1/2 implies |BΩ \Ω| < |BΩ|/2.

Also, a simple computation yields that for any x, y ∈ BΩ, we have |x|2 ≤ (|y| + |x − y|)2 ≤
2|y|2 + 2|x− y|2 ≤ 2|y|2 + 8|Ω|/π. Therefore,

M2[χBΩ
] =

∫
BΩ

|x|2dx ≤ |BΩ| max
x∈BΩ

|x|2 ≤ 2|BΩ ∩ Ω| max
x∈BΩ

|x|2 ≤ 2

∫
BΩ∩Ω

(
2|y|2 +

8

π
|Ω|
)
dy

≤ 4M2[χΩ] +
16

π
|Ω|2 ≤ 4M2[χΩ] + 32

( |Ω|2
2π

)
≤ 4M2[χΩ] + 32

(∫ √|Ω|/π
0

r2 · 2πrdr
)
≤ 36M2[χΩ],

Combining this and equation (4.22) with inequality (4.21) then yields

E∞(χΩ)− E∞(χBΩ
) ≤ |Ω|(1 + 37M2[χΩ] + 2|Ω|)A(Ω)1/2,

which completes the proof. �

Combining the above results, we are now able to show that, along the solution ρ∞(t), the
energy functional E∞ is converging towards its global minimizer with an explicit rate.
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Theorem 4.9. Let Ω0 ⊆ R2 be a bounded domain with Lipschitz boundary, and let ρ∞(·, t) =
χΩ(t) be the gradient flow of E∞ with initial data ρ0 = χΩ0. Suppose B0 is a disk with the
same area as Ω0. Then, for any t > 0, we have

0 ≤ E∞(χΩ(t))− E∞(χB0) ≤ C1(|Ω0|,M2[Ω0])t−1/6,

where C1(|Ω0|,M2[Ω0]) = C2|Ω|2/3(|Ω0|+M2[Ω0])7/6 and C2 is a universal constant.

Proof. By Corollary 4.7, we have that, for any t > 0, there exists some t0 ∈ (0, t), so that

A(Ω(t0)) ≤
(
M2[χΩ0 ]/c0|Ω0|2

)1/3
t−1/3.

By definition of the discrete gradient flow and the lower semicontinuity of E∞, E∞(ρ∞(t)) is
nonincreasing in time. Therefore, at time t, we may apply Lemma 4.8 to conclude

E∞(χΩ(t))− E∞(χB0) ≤ E∞(χΩ(t0))− E∞(χB0) ≤ 40|Ω(t0)|(1 + |Ω0|+M2[χΩ(t0)])
√
A(Ω(t0))

≤ 40|Ω0|(1 + |Ω0|+M2[χΩ0 ])
(
M2[χΩ0 ]/c0|Ω0|2

)1/6
t−1/6

≤ C2|Ω0|2/3(1 + |Ω0|+M2[Ω0])7/6t−1/6.

�

Remark 4.10. While the rate in Theorem 4.9 is probably not optimal, the following example
shows that the optimal power cannot go beneath −1. For 0 < ε � 1, let Ωε

0 = B(xε, ε) ∪
B(0, Rε), where xε := (ε−1, 0) ∈ R2, and Rε :=

√
1− ε2 is chosen such that |Ωε

0| = π. This
definition ensures thatM2[Ωε

0] is uniformly bounded for all ε < 1. Since ∂r(N∗χB(0,1))(r) ∼ r−1

for r � 1, the extra πε2 amount of mass will stay outside B(0, (2ε)−1) for all t ∈ [0, c1ε
−2],

where c1 > 0 is independent of ε. During this time interval, the free energy is at least c2ε
2| log ε|

greater than its global minimizer for some c2 > 0. Hence E∞(χΩε(Tε)) − E∞(χB(0,1)) &
T−1
ε | log Tε| for Tε = c1ε

−2, implying that the optimal power of t in Theorem 4.9 cannot
be less than −1.

4.4. Convergence of ρ∞(t) as t → ∞. We now conclude our study of asymptotic behavior
by showing that, as t→∞, ρ∞(t) converges to χB0 in Lq for any 1 ≤ q <∞, where B0 is the
disk with the same area and the center of mass as Ω0. We begin with the following lemma,
which ensures that the center of mass of ρ∞(t) is preserved for all time.

Lemma 4.11. Let Ω0 ⊆ R2 be a bounded domain with Lipschitz boundary, and let ρ∞(·, t) =
χΩ(t) be the gradient flow of E∞ with initial data ρ0 = χΩ0. Then for any T > 0, we have∫
R2 ρ∞(x, T )xdx =

∫
R2 ρ∞(x, 0)xdx.

Proof. We proceed as in the proof of Proposition 4.1. For any m > 1, let ρm be the weak
solution of (PME-D)m with initial data (m−1

m p0)1/(m−1), where p0 is as in equation 1.9. For
i = 1 or 2, we take our test function to be xi, the i-th component of x. Then, for any T > 0,

(4.23)

∫
R2

ρm(x, T )xidx−
∫
R2

ρm(x, 0)xidx = −
∫ T

0

∫
R2

ρm∂iΦ1/m(x, t)dxdt.

By Lemma 3.10, the left hand side of (4.23) converges to
∫
R2 ρ∞(x, T )xidx−

∫
R2 ρ∞(x, 0)xidx

as m→∞. The right hand side can be controlled in the same way as the term I3 in the proof
of Proposition 4.1, which gives

lim
m→∞

∫
R2

ρm∂iΦ1/m(x, t)dx =

∫
R2

ρ∞∂iΦ(x, t)dx =
1

2π

∫∫
R2×R2

ρ∞(x)ρ∞(y)
xi − yi
|x− y|2dxdy = 0.
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Hence, sending m → ∞ in (4.23), we have
∫
R2 ρ∞(x, T )xidx =

∫
R2 ρ∞(x, 0)xidx for i = 1, 2,

which finishes the proof. �

With this control on the center of mass of ρ∞(x, t) in hand, we now turn to the proof of the
main result.

Theorem 4.12. Let Ω0 ⊆ R2 be a bounded domain with Lipschitz boundary, and let B0 ⊆ R2

be a disk such that |B0| = |Ω0| and
∫
B0
xdx =

∫
Ω0
xdx. Let ρ∞(·, t) = χΩ(t) be the gradient

flow of E∞ with initial data χΩ0. Then for any 1 ≤ q < +∞, we have

lim
t→∞
‖ρ∞(·, t)− χB0‖Lq(R2) = 0.

Proof. We first show that, for any f ∈ Cb(R2), the space of bounded, continuous functions,

(4.24) lim
t→∞

∫
R2

ρ∞(x, t)f(x)dx =

∫
R2

χB0f(x)dx.

To show this, take any diverging time sequence (tn)∞n=1. By Proposition 4.6, M2[ρ∞(tn)] is
uniformly bounded for all n. Hence by Prokhorov’s Theorem [2, Theorem 5.1.3], there exists
a subsequence (tnk)∞k=1 and µ ∈ L1

+((1 + |x|)2dx) so that

lim
k→∞

∫
R2

ρ∞(x, tnk)f(x)dx =

∫
R2

µ(x)f(x)dx

for all f ∈ Cb(R2). Choosing suitable test functions f , we have
∫
µdx = |Ω0| and ‖µ‖∞ ≤

supt≥0 ‖ρ∞(·, t)‖∞ = 1. In addition, by letting the test function f approach f(x) = x, we have

(4.25) lim
k→∞

∫
R2

ρ∞(x, tnk)xdx =

∫
R2

µ(x)xdx.

Since the energy functional E∞ is lower-semicontinuous with respect to weak-* convergence
of probability measures [20, Proposition 4.5], by Theorem 4.9,

E∞(µ) ≤ lim inf
k→∞

E∞(ρ∞(tnk)) = E∞(χB0).

As the only global minimizers of E∞ are translations of χB0 , µ must equal some translation
of χB0 almost everywhere. Finally, recall that Lemma 4.11 and the definition of B0 give that∫
R2 ρ∞(x, t)xdx =

∫
χΩ0xdx =

∫
χB0xdx for all time. Combining this with (4.25), we obtain∫

R2 µ(x)xdx =
∫
χB0xdx, leading to µ = χB0 a.e.. Thus, any diverging time sequence contains

a subsequence satisfying (4.24), so we conclude that (4.24) must hold.
We now show that ρ∞(·, t)→ χB0 in L1(R2). Since 0 ≤ ρ∞ ≤ 1, we have ρ∞ ≤ χB0 a.e. in

B0 and ρ∞ ≥ χB0 a.e. in Bc
0. Hence

‖ρ∞(·, t)− χB0‖1 = 2

∫
R2

(χB0 − ρ∞(x, t))χB0dx.

Thus, by choosing f ∈ Cb(R2) sufficiently close to χB0 and applying (4.24), we can show that,
for any ε > 0, ‖ρ∞(·, t)− χB0‖1 ≤ ε for sufficiently large t. This shows that ρ∞(·, t)→ χB0 in
L1(R2). Finally, for 1 < q <∞, the convergence in Lq follows directly from the L1 convergence
and the fact that ‖ρ∞(·, t)− χB0‖∞ ≤ 1. �
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5. Appendix

5.1. Definition of viscosity solutions of (P)∞. We begin by recalling some notation. For
Q ⊆ Rd × (0,∞), we write f ∈ C2,1(Q) if f is twice continuously differentiable in x and once
in t. We say that u−ϕ has a local maximum (minimum) zero (x0, t0) in Q if there exists ε > 0
such that

ϕ(x0, t0) = u(x0, t0) and ϕ ≥ u (ϕ ≤ u) in Q ∩ (Bε(x0)× (t0 − ε, t0 + ε)).

In other words, ϕ touches u from above (below) at (x0, t0) with respect to Q.
Likewise, given an open set Ω ⊆ Rd and a function h : Ω × [0,+∞) → R, we denote its

upper and lower semicontinuous envelopes by

h∗(x, t) := lim
ε→0

sup
|x−y|≤ε,
|t−s|≤ε

h(y, s), h∗(x, t) := lim
ε→0

inf
|x−y|≤ε,
|t−s|≤ε

h(y, s).(5.1)

Note that h∗ is the smallest upper semicontinuous function satisfying h ≤ h∗, and h∗ is the
largest lower semicontinuous function satisfying h ≥ h∗.

Now, we define the notion of viscosity subsolution, supersolution, and solution of (P)∞.
Instead of proceeding as above and defining solutions of (P)∞ by comparison with classical
sub- and supersolutions, we follow an approach reminiscent of Kim [32] and Alexander, Kim,
and Yao [1]. While the former would ease our proof of the comparison theorem, Theorem 3.7,
the latter is more natural from the perspective of the convergence theorem, Theorem 3.14.
One notable difference in the definition below from those of Alexander, Kim, and Yao [1] is
the separation of the solution and the set evolution in our notion of subsolutions.

Definition 5.1 (subsolution of (P)∞). An upper semicontinuous function u : Rd× (0,+∞)→
[0,+∞), paired with a space-time set Σ = ∪t>0(Ω(t)×{t}), is a viscosity subsolution of (P)∞
if

(a) {u(·, t) > 0} ⊆ Ω(t) and Σ ∩ {t ≤ t0} ⊆ Σ ∩ {t < t0} for every t0 > 0;
(b) for all ϕ ∈ C2,1(Rd × (0,+∞)) so that u − ϕ has a local maximum zero at (x0, t0) in

Σ ∩ {t ≤ t0},
(i) if x0 ∈ Ω(t0)◦ or u(x0, t0) > 0, then −∆ϕ(x0, t0) ≤ 1;

(ii) if x0 ∈ ∂Ω(t0), u(x0, t0) = 0, and |∇ϕ|(x0, t0) 6= 0, then

min(−∆ϕ− 1, ϕt − |∇ϕ|2 −∇ϕ · ∇Φ)(x0, t0) ≤ 0.

We will say that u : Rd × [0,+∞) → [0,+∞) has compactly supported initial data u0 if, in
addition,

(c) u(·, 0) = u0(·) and {u0 > 0} = Σ ∩ {t = 0}.
We introduce the set Σ for technical reasons, to allow the possibility that u becomes zero in

the evolving set Ω(t). Condition (a) ensures that a subsolution does not jump up from zero.
Condition (b)(ii) ensures that limits of viscosity solutions are viscosity solutions, since it is
possible that the boundary collapses in a limit and boundary points of the limiting functions
become interior points of the limit.

Definition 5.2 (supersolution of (P)∞). A lower semicontinuous function v : Rd×(0,+∞)→
(0,+∞) is a viscosity supersolution of (P)∞ with initial data v0 if for all ϕ ∈ C2,1(Rd ×
(0,+∞)) so that v − ϕ has a local minimum zero at (x0, t0) with respect to Rd ∩ {t ≤ t0},

(i) if (x0, t0) ∈ {v > 0}, −∆ϕ(x0, t0) ≥ 1;
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(ii) if (x0, t0) ∈ ∂{v > 0}, v(x0, t0) = 0,

|∇ϕ|(x0, t0) 6= 0, and {ϕ > 0} ∩ {v > 0} ∩B 6= ∅ for some ball B centered at (x0, t0)(5.2)

then max(−∆ϕ− 1, ϕt − |∇ϕ|2 −∇ϕ · ∇Φ)(x0, t0) ≥ 0.

Will we say that v : Rd × [0,+∞)→ (0,+∞) has initial data v0 if v(·, 0) = v0(·)
Condition (5.2) ensures that ϕ touches v from below in a non-degenerate way.

Definition 5.3. A lower semi-continuous function u is a viscosity solution of (P)∞ in Rd ×
(0,∞) with compactly supported initial data u0 if (u∗, {u > 0}) and u are respectively viscosity
sub- and supersolutions of (P)∞ with initial data u0.

The following lemma illustrates the fact that the solution of (P)∞ is entirely characterized
by its support.

Lemma 5.4. Suppose u is a viscosity solution of (P)∞ in Rd×(0,∞) and {u∗ > 0} = {u > 0}.
Then, for each t > 0, u(·, t) = (ht)∗, where

ht(x) = inf{α(x) : −∆α ≥ 1 in an open set E containing {u(·, t) > 0};α ≥ 0 on E.}
Proof. By the definition of a viscosity supersolution, −∆u(·, t) ≥ 1 in {u(·, t) > 0}, so (ht)∗ ≤
u(·, t). On the other hand, by the definition of a viscosity subsolution, −∆u∗(·, t) ≤ 1 in Rd
and u∗(·, t) is supported in {u(·, t) > 0}. Therefore u∗(·, t) ≤ α for any candidate function α(x)
in the definition of ht, so u∗(·, t) ≤ (ht)

∗. Consequently, we conclude that u(·, t) = (ht)∗.
�

5.2. Further properties of gradient flows of E∞, Ẽ∞, and Em. In this section, we collect
several results on the gradient flows of E∞, Ẽ∞, and Em. We begin by proving Proposition
2.3, which provides elementary estimates on the Newtonian potential of a bounded, integrable
function. We use these estimates to conclude that E∞ is ω-convex along generalized geodesics.
(See [20, Theorem 4.3, Proposition 4.4].)

Proof of Proposition 2.3. The fourth inequality is a classical potential theory result (c.f. [17,
Proposition 2.1], [28, Lemma 2.1]), and the fifth inequality is due to Loeper [39, Theorem 2.7].
(While Loeper only considers the case d ≥ 3, the same argument applies in d = 2.)

For the bounds on ∇Nρ and ∆Nρ, note that if B = B1(0),

‖∇Nρ‖∞ ≤ ‖∇N‖L1(B)‖ρ‖∞ + ‖∇N‖L∞(Bc)‖ρ‖1 ≤ Cd and ‖∆Nρ‖∞ = ‖ρ‖L∞ ≤ 1.

Likewise, for the lower bound on
∫

Nρdρ, if we let N−(x) denote the negative part of N (x),∫
Nρdµ ≥

∫
N− ∗ ρ(x)dµ(x) ≥ −‖N− ∗ ρ‖∞ ≥ −‖N−‖L1(B)‖ρ‖∞ − ‖N−‖L∞(Bc)‖ρ‖1 ≥ −Cd.

�

Next, we prove Proposition 2.5, which ensures that ρ∞ is Lipschitz in time, with respect to
the Wasserstein metric.

Proof of Proposition 2.5. By [20, Theorem 3.11], the function S(t) : D(E∞) → D(E∞) :
ρ∞(·, 0) 7→ ρ∞(·, t) is a semigroup, i.e. S(t + s) = S(t)S(s)µ for t, s ≥ 0. Therefore, it
suffices to show that W2(ρ∞(t), ρ∞(0)) ≤ 2Cdt for all t ≥ 0.
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Let ρnτ be the discrete gradient flow of E∞ with initial data ρ = ρ∞(0) and time step τ > 0,
as defined by equation (i). By [20, Theorem 3.8], if we take τ = t/n for any t ≥ 0, then
limn→+∞W2(ρnt/n, ρ∞(t)) = 0. Therefore,

W2(ρ∞(t), ρ∞(0)) = lim
n→+∞

W2(ρnt/n, ρ) ≤ lim
n→+∞

n∑
i=1

W2(ρit/n, ρ
i−1
t/n ) ≤ 2Cdt,

where the last inequality follows from Lemma 2.14, which ensures W2(ρit/n, ρ
i−1
t/n ) ≤ 2Cd(t/n).

�

We now turn to the proof of Proposition 2.6, which concerns the regularity of ∇Nρ∞(x, t)
in space and time.

Proof of Proposition 2.6. The fact that ∇Nρ∞(x, t) is log-Lipschitz in space is an immediate
consequence of Proposition 2.3. We now consider the continuity with respect to time. By
Proposition 2.5, ρ∞ is Lipschitz in time with respect to the Wasserstein metric, so it suffices
to translate this into continuity in time with respect to the Euclidean norm.

Fix ψ ∈ C∞c (Rd) so that supp ψ ⊆ B1(0) and ‖ψ‖∞ ≤ 1, and let Φ(x, t) = Nρ∞(x, t) and
Φ1/m := Φ ∗ ψ1/m. Combining the fifth inequality in Proposition 2.3 with Proposition 2.5,

|∇Φ1/m(x, t)−∇Φ1/m(x, s)| = |ψ1/m ∗ (∇Nρ(x, t)−∇Nρ(x, s))|
≤ ‖ψ1/m‖L2(Rd)‖∇Nρ∞(t)−∇Nρ∞(s)‖L2(Rd) ≤ md/2W2(ρ∞(t), ρ∞(s)) ≤ 2Cdm

d/2|t− s|.
We now use this inequality controlling the continuity in time of ∇Φ1/m(x, t) to estimate the

continuity in time of ∇Φ(x, t). By Proposition 2.3,

|∇Φ(x, t)−∇Φ1/m(x, t)| =
∣∣∣∣∫ (∇Φ(x, t)−∇Φ(x− y, t))ψ1/m(y)dy

∣∣∣∣ ≤ Cd ∫ σ(|y|)ψ1/m(y)dy

≤ Cdσ(1/m)

∫
ψ1/m(y)dy = Cdσ(1/m).

Therefore,

|∇Φ(x, t)−∇Φ(x, s)|
≤ |∇Φ(x, t)−∇Φ1/m(x, t)|+ |∇Φ1/m(x, t)−∇Φ1/m(y, t)|+ |∇Φ1/m(y, t)−∇Φ(y, t)|
≤ 2Cdσ(1/m) + 2Cdm

d/2|t− s|.

Let p = 1/2d. Since |t − s| < e(−1−
√

2)/2, if we choose m = |t − s|(−2/d)(1−p) ≥ 1, we have

md/2|t−s| = |t−s|p, which takes care of the second term in the above inequality. Furthermore,

q = 1/(2(2− 1/d)) < 1/2 ensures | log(x)| ≤ x−1/2 ≤ xq−1 for 0 ≤ x ≤ 1. Therefore,

σ(1/m) ≤
{

(1/m)q if 1/m < e(−1−
√

2)/2

3/m if 1/m ≥ e(−1−
√

2)/2

}
≤ 3(1/m)q = 3|t− s|(2q/d)(1−p) = 3|t− s|p.

Therefore, |∇Φ(x, t)−∇Φ(x, s)| ≤ 10Cd|t− s|1/2d, which gives the result. �

In the next proposition, we show that, while the discrete time sequence corresponding to
Ẽ∞ may not be unique, the distance between any two such sequences converges to zero as the
time step τ → 0.
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Proposition 5.5. Fix T > 0 and initial data ρ ∈ D(E∞) and let ρ̃nτ and µ̃nτ be two choices for

the time discrete time sequence corresponding to Ẽ∞, as defined in Definition 2.12 (ii). Then
there exist positive constants N and C, depending on the dimension, T , and E∞(ρ), so that
for τ = t/n and all 0 ≤ t ≤ T and n > N ,

f (2n)
τ (W 2

2 (ρ̃nτ , µ̃
n
τ )) ≤ Cω(τ).

Proof. By Corollary 2.15, we have the following crude bound for all i = 1, . . . , n,

W2(ρ̃iτ , µ̃
i
τ ) ≤W2(ρ̃iτ , ρ) +W2(µ̃iτ , ρ) ≤ 4CdT.

To obtain a more refined bound, we use Proposition 2.8. First, we estimate the behavior of
the energy Ẽ∞ along the discrete time sequence. By Proposition 2.3, Lemma 2.14, and the
definition of ρ̃iτ as a minimizer

Ẽ∞(ρ̃i−1
τ ; ρiτ )

= Ẽ∞(ρ̃i−1
τ ; ρi−1

τ ) + Ẽ∞(ρ̃i−1
τ ; ρiτ )− Ẽ∞(ρ̃i−1

τ ; ρi−1
τ ) = Ẽ∞(ρ̃i−1

τ ; ρi−1
τ ) +

∫
Nρ̃i−1

τ d(ρiτ − ρi−1
τ )

≤ Ẽ∞(ρ̃i−2
τ ; ρi−1

τ ) + CdW2(ρiτ , ρ
i−1
τ ) ≤ Ẽ∞(ρ̃i−2

τ ; ρi−1
τ ) + 2C2

dτ ≤ · · · ≤ Ẽ∞(ρ; ρ1
τ ) + 2C2

dT.

Likewise, we may control the first term on the right hand side by

Ẽ∞(ρ; ρ1
τ ) = 2E∞(ρ) + Ẽ∞(ρ; ρ1

τ )− Ẽ∞(ρ; ρ) = 2E∞(ρ) +

∫
Nρd(ρ1

τ − ρ) ≤ 2E∞(ρ) + 2C2
dτ.

Thus, there exists C > 0 (which we allow to change from line to line) depending only on the
dimension, T , and E∞(ρ) so that

Ẽ∞(ρ̃i−1
τ ; ρiτ ) ≤ C.

Likewise, by Proposition 2.3, Ẽ∞(·; ·) is uniformly bounded below by −Cd.
Due to these estimates, we may apply Proposition 2.8 to conclude that there exist positive

constants C and N depending on the dimension, T , and E∞(ρ) so that for τ = t/n, 0 ≤ t ≤ T ,
and n > N ,

f (2)
τ (W 2

2 (ρ̃iτ , µ̃
i
τ ))

≤W 2
2 (ρ̃i−1

τ , µ̃i−1
τ ) + Cdτω(CW2(µ̃iτ , µ̃

i−1
τ )) + 2τ(Ẽ∞(ρ̃i−1

τ ; ρiτ )− Ẽ∞(ρ̃iτ ; ρiτ )) + Cτ2.

By Lemma 2.14 (ii), we may bound the second term by Cdτω(Cτ) and the third term by
4C2

dτ
2. Therefore, for all i = 1, . . . , n,

f (2)
τ (W 2

2 (ρ̃iτ , µ̃
i
τ )) ≤W 2

2 (ρ̃i−1
τ , µ̃i−1

τ ) + Cτω(τ).(5.3)

We now show that, for all j = 1, . . . , n,

f (2j)
τ (W 2

2 (ρ̃nτ , µ̃
n
τ )) ≤W 2

2 (ρ̃n−jτ , µ̃n−jτ ) + 2Cτω(τ)j.(5.4)

Once we have this, taking j = n gives the result. We prove (5.4) by induction. The base case,
when j = 1, is a consequence of (5.3). Suppose that the result holds for j − 1,

f (2(j−1))
τ (W 2

2 (ρ̃nτ , µ̃
n
τ )) ≤W 2

2 (ρ̃n−j+1
τ , µ̃n−j+1

τ ) + 2Cτω(τ)(j − 1).
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By Proposition 2.7, applying f
(2)
τ to both sides,

f (2j)
τ (W 2

2 (ρ̃nτ , µ̃
n
τ )) ≤ f (2)

τ (W 2
2 (ρ̃n−j+1

τ , µ̃n−j+1
τ )) + 2Cτω(τ)(j − 1) + Cτ2

≤W 2
2 (ρ̃n−j , µ̃n−j) + 2Cτω(τ)j

where the second inequality is a consequence of (5.3) and the fact that Cτ2 ≤ Cτω(τ). This
gives the result. �

Now, we turn to the proof that the discrete time sequence ρnτ,m corresponding to Em con-
verges to the solution of (PME-D)m as the time step goes to zero.

Proposition 5.6. Given initial data ρ ∈ D(E∞), let ρnτ,m be the discrete time sequence given
in Definition 2.12 (iii). Then, for any t ≥ 0, ρnt/n,m converges as n → +∞ to a limit ρm(t),

and there exist positive constants C and N depending on the dimension, E∞(ρ), and T so that
for all n ≥ N , m ≥ d+ 1, and 0 ≤ t ≤ T ,

W2(ρnt/n,m, ρm(t)) ≤ Cn−1/16e4CdT .

Furthermore, ρm(t) is the unique weak solution of (PME-D)m.

Proof. Given initial data ρ ∈ D(E∞), let ρnτ be the discrete gradient flow of E∞, as in Definition
2.12 (i). Using this sequence, we define a time dependent energy Enτ,m by

Enτ,m(ν) := Em(ν; ρnτ ) =

{
1

m−1

∫
Rd ν(x)mdx+

∫
Rd ψ1/m ∗Nρnτ (x)dν(x) if ν � Ld,

+∞ otherwise.

Then ρnτ,m given in Definition 2.12 (iii) is the time varying discrete gradient flow of this energy
in the sense that

ρnτ,m ∈ argmin
ν∈P2(Rd)

{
1

2τ
W 2

2 (ρn−1
τ,m , ν) + Enτ,m(ν)

}
and ρ0

τ,m := ρ.(5.5)

Consequently, we may apply the first author’s results on convergence of the discrete gradient
flow of time dependent energies [20, Theorem A.3], provided that we can show Enm satisfies [20,
Assumption A.2].

First, by [20, Theorem 4.3, Proposition 4.4], Enτ satisfies [20, Assumption 2.18] uniformly for
n ∈ N, m > 1, and τ > 0. In particular, there exists a solution to the minimization problem
(5.5) and Enτ is ω-convex along generalized geodesics, for λω = −Cd as in Proposition 2.3 and
ω(x) as in equation (2.4).

Next, we estimate the behavior of the energies and Wasserstein distance along the discrete
gradient flow. By Lemma 2.14 (iii), for all 1 ≤ i ≤ n,

W2(ρiτ,m, ρ
i−1
τ,m) ≤

√
2τ

m− 1
(‖ρi−1

τ,m‖mm − ‖ρiτ,m‖mm) + 2Cdτ ≤
√

2τ
(
1 + nτC2

d/2
)

+ 2Cdτ.

where, in the second inequality, we use that ‖ρ0‖mm ≤ 1. Likewise, by Corollary 2.15,

W2(ρnm,τ , ρ) ≤
√

4nτ(1 + 8C2
dnτ).

Finally, since Proposition 2.3 ensures Enτ,m is uniformly bounded below by −Cd, there exists a

constant C̃d > 0, depending only on the dimension, so that

E0
τ,m(ρ)− Enτ,m(ρnτ,m) ≤ Em(ρ, ρ) + Cd ≤ 1 +

∫
Nρ(x)ψ1/m ∗ ρ(x)dx+ Cd ≤ C̃d + E∞(ρ),
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where in the last inequality we use that Nρ(x) is a continuous function with at most quadratic

growth and ψ1/m ∗ ρ m→+∞−−−−−→
W2

ρ, so
∫

Nρ(x)ψ1/m ∗ ρ(x)dx
m→+∞−−−−−→

∫
Nρ(x)ρ(x)dx.

It remains to show that Enτ,m possesses sufficient continuity in nτ . To do this, we first
estimate the continuity of ρnτ in nτ . By Lemma 2.14, we have the following crude bound

W 2
2 (ρnτ , ρ

k
h) ≤ (2Cd(nτ + kh))2 ≤ 16C2

dT
2.

Combining this with Proposition 2.7 (iii) and [20, Theorem 3.6], we obtain that for any T > 0,
there exists τ̄ = τ̄(T, d) and C̄ = C̄(T, d) so that for all 0 ≤ h < τ < τ̄ and k, n ∈ N with
kh, nτ ≤ T ,

F2kh(W 2
2 (ρnτ , ρ

k
h)) ≤ C̄

[√
(nτ − kh)2 + τ2n+ hkω̃(

√
τ) + h2k + ω̃(h2)k

]
+ 2h(E∞(ρ)− inf E∞) + Cdω(16C2

dT
2)T/n.

Since Ft(x) is decreasing in t, this implies there exists C̃ = C̃(T, d,E∞(ρ)) so that for 0 < τ < τ̄ ,

F2T (W 2
2 (ρnτ , ρ

k
h)) ≤ C̃

[√
(nτ − kh)2 +

√
τ | log τ |

]
.(5.6)

Since F2T (x) is strictly increasing and convex in x, F−1
2T (x) is strictly increasing and concave.

Therefore,

σ(x) :=
√
F−1

2T (
√
x)

is a continuous, nondecreasing, concave function that vanishes only at zero. In particular, σ(x)
is also subadditive, so (5.6) implies that, for some C ′ = C ′(T, d,E∞(ρ)),

W2(ρnτ , ρ
k
h) ≤ C ′

[
σ
(
(nτ − kh)2

)
+ σ

(
τ | log τ |2

)]
.(5.7)

We use this estimate to show that Enτ,m is continuous in nτ , up to an error that decreases

with τ . Since f := N(ψ1/m ∗ ρiτ,m) ∈ C1, by Lemma 2.2,

|Enτ,m(ρiτ,m)− Ekh,m(ρiτ,m)| = |Em(ρiτ,m; ρnτ )− Em(ρiτ,m; ρkh)| =
∣∣∣∣∫

Rd
N(ψ1/m ∗ ρiτ,m)d(ρnτ − ρkh)

∣∣∣∣
≤ C ′‖∇f‖∞

[
σ
(
(nτ − kh)2

)
+ σ

(
τ | log τ |2

)]
.

Finally, ‖∇f‖∞ is bounded uniformly in m, i, and τ , since for B = B1(0), there exists c
depending only on the dimension (and which we allow to change from line to line) so that, for
all m ≥ d+ 1,

‖∇f‖∞ ≤ ‖∇N‖L∞(Rd\B) + ‖∇N‖Lm′ (B)‖ρiτ,m‖Lm(Rd) ≤ c+ (1/αd)
(m−1)/(m)‖ρiτ,m‖Lm(Rd)

≤ c
(

1 + ‖ρ‖m +
(
(m− 1)TC2

d/2
)1/m) ≤ c

where the fourth inequality uses Lemma 2.14.
Thus, [20, Assumption A.2] is satisfied, so by [20, Theorem A.3], we conclude that for all

0 ≤ t ≤ T , there exists C = C(E∞(ρ), T, d) (which we allow to change from line to line) so

F2t

(
W 2

2 (ρnt/n,m, ρm(t))
)
≤ C

[
t/
√
n+ tω

(√
t/n
)

+ σ(t2/n) + σ(t/n| log(t/n)|2)
]
.

Hence, using again that Ft(x) is decreasing in t,

F2T

(
W 2

2 (ρnt/n,m, ρm(t))
)
≤ C

[
n−1/2 log n+

√
F−1

2T (t/
√
n) +

√
F−1

2T (
√
t/n| log(t/n)|)

]
.
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For 0 ≤ x ≤ e−1−
√

2, Ft(x) = xe
Cdt and n−1/2 log n = O(n−1/4), so for n sufficiently large,(

W2(ρnt/n,m, ρm(t))
)2e2CdT

≤ C(n−1/8)1/e2CdT =⇒ W2(ρnt/n,m, ρm(t)) ≤ Cn−1/16e4CdT .

Finally, it remains to show that the limit ρm is the unique solution of (PME-D)m. Following
a parallel argument as in Jordan, Kinderlehrer, and Otto’s original work on the convergence of
the discrete gradient flow to solutions of the Fokker-Planck equation [27], one can show that
for all ζ ∈ C∞0 (Rd × [0,+∞)),

0 =

∫
Rd
ρm(x, 0)ζ(x, 0)dx+

∫ +∞

0

∫
Rd
ρm(x, s)(∂sζ(x, s)−∇Φ1/m(x, s)∇ζ(x, s))dxds(5.8)

+

∫ +∞

0

∫
Rd
ρm(x, s)m∆ζ(x, s)dxds.

To conclude that ρm(x, t) is the unique weak solution of (PME-D)m, it remains to show that
for all 0 < t < +∞, ∫ t

0

∫
Rd
|ρm(x, s)|mdxds < +∞,(5.9)

∫ t

0

(∫
Rd

∣∣∣∣∇ρm(x, s)m

ρm(x, s)
+∇Φ1/m(x, s)

∣∣∣∣2 ρm(x, s)dx

)1/2

ds < +∞.(5.10)

(See, for example, [15, Theorem 6.1] and [34, Theorem 7.1]. While these references do not
consider the case of a time-dependent drift, an identical argument applies to the present case.)

To show (5.9) and (5.10), we define the following piecewise constant interpolations:

ρ̄t/n,m(x, s) := ρit/n,m(x) and ρ̄t/n(x, s) := ρit/n for s ∈ ((i− 1)t/n, it/n].

Using [20, Theorem 3.6] (see [20, Appendix A.3] for the adaptation to “time dependent” gra-
dient flows), one can show that

ρ̄t/n,m(x, s)
n→+∞−−−−−→
W2

ρm(x, s) and ρ̄t/n(x, s)
n→+∞−−−−−→
W2

ρ∞(x, s).

We begin with (5.9). By the lower semicontinuity of ‖ · ‖mm with respect to Wasserstein
convergence [43, Lemma 3.4], Fatou’s Lemma, and Lemma 2.14, which bounds ‖ρit/n,m‖mm
uniformly in i and n,∫ t

0

∫
Rd
|ρm(x, s)|mdxds ≤ lim inf

n→+∞

∫ t

0

∫
Rd
|ρ̄t/n,m(x, s)|mdxds = lim inf

n→+∞

n∑
i=1

t

n

∫
Rd
|ρit/n,m(x)|mdx < +∞.

We now turn to (5.10). To ease notation, we recall the definition of the Rényi entropy and
its metric slope [2, Theorem 10.4.6],

Sm(µ) :=
1

m− 1

∫
µ(x)mdx, |∂Sm|(µ) =

(∫
Rd

∣∣∣∣∇µ(x)m

µ(x)

∣∣∣∣2 µ(x)dx

)1/2

.

By inequality (2.8),∫ t

0

(∫
Rd

∣∣∇Φ1/m(x, s)
∣∣2 ρm(x, s)dx

)1/2

ds ≤ Cdt < +∞.
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Thus, by the triangle inequality and Jensen’s inequality, it suffices to show(∫ t

0
|∂Sm|2(ρm(s))ds

)1/2

< +∞.(5.11)

By [2, Theorem 3.1.6, Theorem 10.4.13] and the fact that Em is λ-convex for λ = λ(m),

t

n

∫ ∣∣∣∣∣∇(ρit/n,m)m

ρit/n,m
+∇ψ1/m ∗Nρit/n

∣∣∣∣∣
2

dρit/n,m ≤
1

1 + λt/n

[
Em(ρi−1

t/n,m; ρit/n)− Em(ρit/n,m; ρit/n)
]
.

Summing both sides from i = 1, . . . , n and using the definition of ρ̄t/n,m, ρ̄t/n, and Em,∫ t

0

∫
Rd

∣∣∣∣∇(ρ̄t/n,m(x, s))m

ρ̄t/n,m(x, s)
+∇ψ1/m ∗Nρ̄t/n(x, s)

∣∣∣∣2 ρ̄t/n,m(x, s)dxds

≤ 1

1 + λt/n

[
Em(ρ; ρ1

t/n)− Em(ρnt/n,m; ρnt/n) +
n∑
i=1

∫
Rd

Nψ1/m ∗ ρit/n,m(x)
[
ρi+1
t/n (x)− ρit/n(x)

]
dx

]
,

≤ 1

1 + λt/n

[
Em(ρ; ρ1

t/n) + Cd + 2CmCdt
]
,

where in the last inequality we use Propositions 2.2, 2.3, and 2.14, for Cm chosen so that
‖∇Nψ1/m ∗ ρit/n,m‖∞ < Cm. Taking the square root of both sides and applying the reverse

triangle inequality for the L2(dρ̄t/n,m(·, s)) norm and Proposition 2.3,(∫ t

0
|∂Sm|2(ρ̄t/n,m(s))ds

)1/2

≤ 1√
1 + λt/n

[
Em(ρ; ρ1

t/n) + Cd + 2CmCdt
]1/2

+ Cd.

Taking the lim infn→+∞ and using that |∂Sm| is lower semicontinuous with respect to Wasser-
stein convergence [2, Corollary 2.4.10], we conclude the result.

�

Acknowledgements. The authors would like to thank José Antonio Carrillo, Alessio Figalli,
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(1963)

[29] Keller, E., Segel, L.: Initiation of slide mold aggregation viewed as an instability. J. Theoret. Biol. 26
(1970)

[30] Kim, I., Pozar, N.: Porous medium equation to Hele-Shaw flow with general initial density. preprint at
http://arxiv.org/abs/1509.06287

[31] Kim, I., Yao, Y.: The patlak-keller-segel model and its variations: properties of solutions via maximum
principle. SIAM Journal on Mathematical Analysis 44(2), 568–602 (2012)

[32] Kim, I.C.: Uniqueness and existence results on the Hele-Shaw and the Stefan problems. Arch. Ration.
Mech. Anal. 168(4), 299–328 (2003). DOI 10.1007/s00205-003-0251-z. URL http://dx.doi.org/10.1007/

s00205-003-0251-z

[33] Kim, I.C., Lei, H.K.: Degenerate diffusion with a drift potential: a viscosity solutions approach. Discrete
Contin. Dyn. Syst. 27(2), 767–786 (2010). DOI 10.3934/dcds.2010.27.767. URL http://dx.doi.org/10.

3934/dcds.2010.27.767

[34] Laborde, M.: On some non linear evolution systems which are perturbations of Wasserstein gradient flows.
preprint at http://arxiv.org/abs/1506.00126

[35] Lieb, E.H., Loss, M.: Analysis, Graduate Studies in Mathematics, vol. 14. American Mathematical Society,
Providence, RI (1997)

[36] Lieb, E.H., Yau, H.T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics.
Comm. Math. Phys. 112(1), 147–174 (1987). URL http://projecteuclid.org/euclid.cmp/1104159813

[37] Lin, F., Zhang, P.: On the hydrodynamic limit of Ginzburg-Landau vortices. Discrete Contin. Dynam.
Systems 6(1), 121–142 (2000). DOI 10.3934/dcds.2000.6.121. URL http://dx.doi.org/10.3934/dcds.

2000.6.121

[38] Lions, P.L.: The concentration-compactness principle in the calculus of variations. The locally compact
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