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An interdisciplinary multilaboratory effort to develop an im-
plantable neural prosthetic that can coexist and bidirectionally
communicate with living brain tissue is described. Although the final
achievement of such a goal is many years in the future, it is proposed
that the path to an implantable prosthetic is now definable, allowing
the problem to be solved in a rational, incremental manner. Outlined
in this report is our collective progress in developing the underlying
science and technology that will enable the functions of specific
brain damaged regions to be replaced by multichip modules con-
sisting of novel hybrid analog/digital microchips. The component
microchips are “neurocomputational” incorporating experimen-
tally based mathematical models of the nonlinear dynamic and
adaptive properties of biological neurons and neural networks.
The hardware developed to date, although limited in capacity,
can perform computations supporting cognitive functions such
as pattern recognition, but more generally will support any brain
function for which there is sufficient experimental information. To
allow the “neurocomputational” multichip module to communicate
with existing brain tissue, another novel microcircuitry element
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has been developed—silicon-based multielectrode arrays that are
“neuromorphic,” i.e., designed to conform to the region-specific
cytoarchitecture of the brain. When the “neurocomputational” and
“neuromorphic” components are fully integrated, our vision is that
the resulting prosthetic, after intracranial implantation, will receive
electrical impulses from targeted subregions of the brain, process
the information using the hardware model of that brain region, and
communicate back to the functioning brain. The proposed prosthetic
microchips also have been designed with parameters that can be
optimized after implantation, allowing each prosthetic to adapt to a
particular user/patient.

Keywords—Biomimetic signal processing, hippocampus, mixed
signal, multisite electrode array, neural engineering, neural net-
work, neural prosthetic, neuron-silicon interface, pattern recogni-
tion, VLSI.

I. INTRODUCTION

One of the true frontiers in the biomedical sciences is
repair of the human brain: developing prosthetics for the
central nervous system to replace higher thought processes
that have been lost due to damage or disease. The type
of neural prosthetic that performs or assists a cognitive
function is qualitatively different than the cochlear implant
or artificial retina, which transduce physical energy from
the environment into electrical stimulation of nerve fibers
[1], [2], and qualitatively different than functional electrical
stimulation (FES), in which preprogrammed electrical stim-
ulation protocols are used to activate muscular movement
[3]. Instead, we consider here a neural prosthetic designed
to replace damaged neurons in central regions of the brain
with silicon neurons that are permanently implanted into the
damaged region. The replacement silicon neurons would
have functional properties specific to those of the damaged
neurons, and would both receive as inputs and send as
outputs electrical activity to regions of the brain with which
the damaged region previously communicated. Thus, the
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prosthetic being proposed is one that would replace the
computational function of damaged brain, and restore the
transmission of that computational result to other regions
of the nervous system. Such a new generation of neural
prosthetic would have a profound impact on the quality
of life throughout society, as it would offer a biomedical
remedy for the cognitive and memory loss that accompanies
Alzheimer’s disease, the speech and language deficits that
result from stroke, and the impaired ability to execute skilled
movements following trauma to brain regions responsible
for motor control.

Although the barriers to creating intracranial, electronic
neural prosthetics have seemed insurmountable in the past,
the biological and engineering sciences are on the threshold
of a unique opportunity to achieve such a goal. The tremen-
dous growth in the field of neuroscience has allowed a much
more detailed understanding of neurons and their physiology,
particularly with respect to the dynamic and adaptive cel-
lular and molecular mechanisms that are the basis for in-
formation processing in the brain. Likewise, there have been
major breakthroughs in the mathematical modeling of non-
linear and nonstationary systems that are allowing quanti-
tative representations of neuron and neural system function
to include the very complexity that is the basis of the re-
markable computational abilities of the brain. The contin-
uing breakthroughs in electronics and photonics offer op-
portunities to develop hardware implementations of biolog-
ically based models of neural systems that allow simulation
of neural dynamics with true parallel processing, a funda-
mental characteristic of the brain, and real-time computa-
tional speed. Fundamental advances in low-power designs
have provided the essential technology to minimize semicon-
ductor circuit heat generation, thus increasing compatibility
with temperature-sensitive mechanisms of the brain. Finally,
the complementary achievements in materials science and
molecular biology offer the possibility of designing compat-
ible neuron-silicon interfaces to facilitate communication be-
tween silicon computational devices and the living brain.

II. ESSENTIAL REQUIREMENTS FOR ANIMPLANTABLE

NEURAL PROSTHETIC

In general terms, there are six essential requirements for an
implantable microchip to serve as a neural prosthetic. First,
if the microchip is to replace the function of a given brain
tissue, it must be truly biomimetic, i.e., the neuron models in-
corporated in the prosthetic must have properties of real bio-
logical neurons. This demands a fundamental understanding
of the information processing capabilities of neurons that is
experimentally based. Second, a neural prosthetic is desired
only when a physiological or cognitive function is detectably
impaired (according to neurological or psychiatric criteria).
Physiological/cognitive functions are the expression, not of
single nerve cells, but of populations of neurons interacting
in the context of a network of interconnections. Thus, bio-
logically realistic neuron models must be capable of being
concatenated into network models that can simulate phys-
iological/psychological phenomena. Third, the neuron and

neural network models in question must be miniaturized suf-
ficiently to be implantable, which demands their implemen-
tation in at least microchip circuitry. Given the known sig-
naling characteristics of neurons, such an implementation
will most likely involve hybrid analog/digital device designs.
Fourth, the resulting microchip or multichip module must
communicate with existing, living neural tissue in a bidi-
rectional manner. Given that both electronic and neural sys-
tems generate and respond to electrical signals, this is fea-
sible, though the region-specific, nonuniform distribution of
neurons within the brain places substantial constraints on
the architecture of neuron-silicon interfaces. Fifth, the vari-
ability in phenotypic and developmental expression of both
structural and functional characteristics of the brain will ne-
cessitate adaptation of each prosthetic device to the indi-
vidual patient. Some provision for “personalizing” an im-
plantable prosthetic must be anticipated and included in the
neuron/network model and the device design. Finally, there
is the critical issue of power required for the prosthetic de-
vice. Not only will supplying power be difficult given im-
plantation of a set of microchips into the depths of the brain
(versus the periphery as with a cochlear implant), but cellular
and molecular mechanisms found in the brain are highly tem-
perature sensitive, so that any solution must minimize heat
generation to remain biocompatible.

We will describe here an interdisciplinary multilabora-
tory effort to develop such an implantable, computational
prosthetic that can coexist and bidirectionally communicate
with living neural tissue. We will deal with five of the above
requirements; only the issue of power will not be addressed
here. Although the final achievement of an implantable
prosthetic remains years in the future, it is nonetheless
our position that the path to such a goal is now definable,
allowing a solution path to be defined and followed in an
incremental manner. Outlined in this report is our collective
progress to date in developing the underlying science and
technology that will enable the functions of specific brain
regions to be replaced by multichip modules consisting of
novel hybrid analog/digital microchips. The component
microchips are “neurocomputational,” incorporating ex-
perimentally based mathematical models of the nonlinear
dynamic and adaptive properties of real brain neurons
and neural networks. The resulting hardware can perform
computations supporting cognitive functions such as pattern
recognition, but more generally will support any brain
function for which there is sufficient experimental informa-
tion. To allow the “neurocomputational” multichip module
to communicate with existing brain tissue, another novel
microcircuitry element has been developed —silicon-based
multielectrode arrays that are “neuromorphic,” i.e., designed
to conform to the region-specific cytoarchitecture of the
brain. When the “neurocomputational” and “neuromorphic”
components are fully integrated, our vision is that the
resulting prosthetic, after intracranial implantation, will
receive electrical impulses from targeted subregions of the
brain, process the information using the hardware model of
that brain region, and communicate back to the functioning
brain. The proposed prosthetic microchips also have been
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Fig. 1. Left panel: Diagrammatic representation of the rat brain (lower left), showing the relative
location of the hippocampal formation on the left side of the brain (white); diagrammatic
representation of the left hippocampus after isolation from the brain (center), and slices of
the hippocampus for sections transverse to the longitudinal axis. Right panel: Diagrammatic
representation of one transverse slice of hippocampus, illustrating its intrinsic organization: fibers
from the entorhinal cortex (ENTO) project through perforant path (pp) to the dentate gyrus (DG);
granule cells of the dentate gyrus project to the CA3 region, which in turn projects to the CA1
region; CA1 cells project to the subiculum (SUB), which in the intact brain then projects back to
the entorhinal cortex. In a slice preparation, return connections from CA1 and the subiculum are
transected, creating an open-loop condition for experimental study of hippocampal neurons.

designed with parameters that can be optimized after im-
plantation, allowing each prosthetic to adapt to a particular
user/patient.

III. T HE SYSTEM: HIPPOCAMPUS

The computational properties of the prosthetic being devel-
oped are based on the hippocampus, a cortical region of the
brain involved in the formation of new long-term memories.
The hippocampus lies beneath the phylogenetically more re-
cent neocortex, and is composed of several different subsys-
tems that form a closed feedback loop (see Fig. 1), with input
from the neocortex entering via the entorhinal cortex, propa-
gating through the intrinsic subregions of hippocampus, and
then returning to neocortex. The intrinsic pathways consist of
a cascade of excitatory connections organized roughly trans-
verse to the longitudinal axis of the hippocampus. As such,
the hippocampus can be conceived of as a set of intercon-
nected, parallel circuits [4], [5]. The significance of this or-
ganizational feature is that, after removing the hippocampus
from the brain, transverse “slices” (approximately 500m
thick) of the structure may be maintainedin vitro that preserve
a substantial portion of the intrinsic circuitry, and thus allow
detailed experimental study of its principal neurons in their
open-loop condition [6], [7].

The hippocampus is responsible for what have been
termed long-term “declarative” or “recognition” memories

[8]–[11]: the formation of mnemonic labels that identify
a unifying collection of features (e.g., those comprising
a person’s face), and to form relations between multiple
collections of features (e.g., associating the visual features
of a face with the auditory features of the name for that
face). In lower species not having verbal capacity, an
analogous hippocampal function is evidenced by an ability,
for example, to learn and remember spatial relations among
multiple, complex environmental cues to navigate and
forage for food [12]. Major inputs to the hippocampus arise
from virtually all other cortical brain regions, and transmit
to hippocampus high-level features extracted by each of the
sensory systems subserved by these cortical areas. Thus, the
hippocampus processes both unimodal and multimodal fea-
tures for virtually all classes of sensory input, and modifies
these neural representations so that they can be associated
(as in the case of forming a link between a face and a name)
and stored in long-term memory in a manner that allows
appropriate additional associations with previously learned
information (the same face may have context-dependent
names, e.g., first-name basis in an informal social setting
versus position title in a formal business setting), and that
minimizes interference (the same name may be associated
with several faces). After processing by the hippocampal
system, new representations for important patterns are trans-
mitted back to other cortical regions for long-term storage;
thus, long-term memories are not stored in hippocampus, but
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propagation of neural representations through its circuitry is
required for a re-encoding essential for the effective transfer
of short-term memory into long-term memory.

Although developing a neural model for long-term
memory formation (or any other cognitive function) may
initially appear somewhat daunting, there is a rational
approach to the problem. Information in the hippocampus
and all other parts of the brain is coded in terms of variation
in the sequence of all-or-none, point-process (spike) events,
or temporal pattern (for multiple neurons, variation in the
spatio-temporal pattern). The essential signal processing
capability of a neuron is derived from its capacity to change
an input sequence of interspike intervals into a different
output sequence of interspike intervals. The resulting
input–output (I/O) transformations in all brain regions are
strongly nonlinear, due to the nonlinear dynamics inherent
in the molecular mechanisms comprising neurons and their
synaptic connections [13]. As a consequence, the output
of virtually all neurons in the brain is highly dependent on
temporal properties of the input. The I/O transformations
of neurons in hippocampus and neocortex—the regions
of the brain subserving pattern recognition—are the only
“features” that the nervous system has to work with in
constructing representations at the cortical level. Identifying
the nonlinear I/O properties of neurons involved in pattern
recognition is equivalent to identifying the feature models
that endow the brain with its superior feature extraction
capability. I/O properties of synapses and neurons are not
static, but are altered by biological learning mechanisms to
achieve an optimal feature set during memory formation
for a new pattern. Identifying activity-dependent forms of
synaptic plasticity of neurons involved in pattern recognition
is equivalent to identifying the biological “learning rules”
used in optimizing feature sets.

IV. BIOMIMETIC MODELS OFHIPPOCAMPAL NEURON

PROPERTIES

A. Quantifying I/O Nonlinearities of Hippocampal Neurons

In order to incorporate the nonlinear dynamics of biolog-
ical neurons into neuron models for the purposes of devel-
oping a prosthetic, it is first necessary to measure them ac-
curately. We have developed and applied methods for quan-
tifying the nonlinear dynamics of hippocampal neurons [6],
[7], [14]–[18] using principles of nonlinear systems theory
[19]–[23]. In this approach, properties of neurons are as-
sessed experimentally by applying a random interval train
of electrical impulses as an input and electrophysiologically
recording evoked output of the target neuron during stimu-
lation (Fig. 2, upper left). The input train consists of a se-
ries of impulses (as many as 4064), with interimpulse inter-
vals varying according to a Poisson process having a mean
of 500 ms and a range of 0.2–5,000 ms. Thus, the input is
“broad-band” and stimulates the neuron over the majority
of its operating range, i.e., the statistical properties of the
random train are highly consistent with the known physiolog-
ical properties of hippocampal neurons. Nonlinear response

properties are expressed in terms of the relation between pro-
gressively higher order temporal properties of the sequence
of input events and the probability of neuronal output, and
are modeled as the kernels of a functional power series. In
the case of a third-order estimation

where
output;
set of functionals;
set of kernels which characterize the relationship
between the input and output

The train of discrete input events defined by is a set of
-functions. The first-, second-, and third-order kernels of the

series are obtained using a variety of estimation procedures
[22]–[24].

To clarify the interpretation of the kernels in the context
of results for a typical granule cell of the hippocampus, the
first-order kernel, , is the average probability of an ac-
tion potential output occurring [with a latency of ] to
any input event in the train. The intensity of stimulation was
chosen so that the first-order kernel had a probability value
of 0.4–0.5 (Fig. 2, bottom left). The second-order kernel,

, represents the modulatory effect of any preceding
input occurring ms earlier on the most current impulse
in the train (Fig. 2, top right). Second-order nonlinearities
are strong: intervals in the range of 10–30 ms result in fa-
cilitation as great as 0.3–0.4 (summing the first and second-
order values, the probability of an output event is 0.8–1.0 for
this range of intervals). The magnitude of second-order fa-
cilitation decreases as interstimulus interval lengthens, with
values of greater than 100 ms leading to suppression,
e.g., interstimulus intervals in the range of 200–300 ms de-
crease the average probability of an output event by approxi-
mately 0.2. The third-order kernel, , represents
the modulatory effects of any two preceding input events oc-
curring ms and ms earlier on the most current impulse
that are not accounted for by the first- and second-order ker-
nels (Fig. 2, bottom right). The example third-order kernel
shown is typical for hippocampal granule cells, and reveals
that combinations of intervals less than approximately 150
ms leads to additional suppression of granule cell output by
as much as 0.5. This third-order nonlinearity represents in
part saturation of second-order facilitative effects.
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Fig. 2. Left upper panel: Sample electrophysiological recording from a hippocampal granule
cell during random impulse train stimulation. Each arrow indicates when an electrical impulse is
applied to perforant path inputs (see Fig. 1). Large, positive-going, unitary (action potential) events
indicate when an input generated an output response from the granule cell; smaller, positive-going
events (e.g., to first impulse and last two impulses) indicate when an input generated only a
subthreshold response (no output). The time delay (latency) from the input event (arrow) to the
granule cell response is equivalent to the parameter� in the equations in the text (all latencies
are less than 10 ms); the intervals between input events is equivalent to the parameter� in the
equations in the text. Left lower panel: First-order kernel,h (�), which represents the average
probability of an action potential output occurring [with a latency of(�)] to any input event in the
train. Right upper panel: Second-order kernel,h (�;�), which represents the modulatory effect of
any preceding input occurring(�) ms earlier on the most current impulse in the train. Right lower
panel: Third-order kernel,h (�;� ;� ), which represents the modulatory effects of any two
preceding input events occurring� and� ms earlier on the most current impulse that are not
accounted for by the first and second-order kernels.

B. Improved Kernel Estimation Methods

The output of hippocampal and other cortical neurons ex-
hibits a dependence on input temporal pattern that is among
the greatest of any class of neuron in the brain, because of
a wide variety of voltage-dependent conductances found
throughout their dendritic and somatic membrane. Despite
this, I/O models of the type described here provide excellent
predictivemodels of cortical neuron behavior. Depending on
the circumstances, kernels to the third order, and sometimes
even to the second order alone, can account for 80%–90% of
the variance of hippocampal neuron output. Until recently,
high-order nonlinearities have been difficult to estimate
accurately: traditional kernel estimation methods (e.g.,
cross-correlation) are highly sensitivity to noise and, thus,
require long data sequences. To circumvent this problem,
we have developed several novel methods for estimating
nonlinearities that are significantly more efficient and
result in substantially improved kernel estimates [24]–[31].
Several of the new methods involve the use of feedforward

artificial neural networks (ANN). We have compared the
Volterra–Wiener (cross-correlation) and ANN models in
terms of their prediction ability on test data. Results showed
two major advantages of the new-generation methodologies:
1) a significant reduction in the required data length (by a
factor of at least ten) to achieve similar or better levels of
prediction accuracy and 2) an ability to model higher order
nonlinearities that could not be detected using traditional
kernel estimation methods. In addition, we have recently
developed methods capable of estimating nonstationary
processes, and demonstrated their efficacy with long-term
forms of hippocampal cellular plasticity [32]–[35]. The
ability to accurately characterize nonstationarities provides
the opportunity for extending the applicability of this ap-
proach to modeling adaptive properties of hippocampal and
other cortical neural systems as well.

In total, the kernel functions represent an experimentally
based model that is highly accurate in describing the func-
tional dynamics of the neuron in terms of the probability of
neuron output as a function of the recent history of the input.
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As such, the kernels provide a mathematically “compact” rep-
resentation of the resulting composite dynamics, as each of
the many contributing biological processes need not be repre-
sented individually, or for that matter, even be known. In addi-
tion, because of the broad-band nature of the test stimulus, the
model generalizes to a wide range of input conditions, even
to input patterns that are not explicitly included in the random
impulse train. As such, the kernels not only provide the basis
for a biologically realistic neural network model, but also per-
haps an ideal basis for an implantable neural prosthetic: an
I/O model can be substituted for a neuron on which the model
is experimentally based, without regard to the variability in
neural representations that must exist from individual to in-
dividual, or the nearly infinite range of environmental stimuli
that would give rise to those representations.

V. NEURAL NETWORK MODELS WITH BIOLOGICALLY

REALISTIC DYNAMICS

A. Conventional Artificial Neural Networks

Brain-like processing is often modeled mathematically
as “artificial neural networks,” or networks of processing
elements that interact through “connections.” In artificial
neural network models, a connection between processing
elements—despite the complexity of the synaptic nonlinear
dynamicsdescribed above—is represented asasinglenumber
to scale the amplitude of the output signal of a processing
element. The parameters of an artificial neural network can be
optimized to perform a desired task by changing the strengths
of connections according to what are termed “learning rules,”
i.e., algorithms for when and by how much the connection
strengths are changed during optimization. This simplifi-
cation of a synapse as a number results in two fundamental
limitations. First, although a processing element can be
connected to a large number of other processing elements, it
can transmit only one identical signal to all other elements.
Second, only the connection strength can be changed during
the optimization process, which amounts to merely changing
the gain of the output signal of a processing element.

B. The “Dynamic Synapse” Neural Network Architecture

In an effort to develop more biologically realistic neural
network models that include some of the temporal nonlinear
signal processing properties of neurons, we have developed
the “Dynamic Synapse” neural network architecture [36]. In
this scheme, processing elements are assumed to transmit
information by variation in a series of point-process (i.e.,
all-or-none) events, and connections between processing el-
ements are modeled as a set of linear and nonlinear processes
such that the output becomes a function of the time since
past input events [Fig. 3(a)]. By including these dynamic
processes, each network connection transforms a sequence
of input events into another sequence of output events. In
the brain, it has been demonstrated that the functional prop-
erties of multiple synaptic outputs that arise from a given
neuron are not identical. This characteristic of the brain also
has been incorporated as a second fundamental property of

Dynamic Synapse neural networks: although the same es-
sential dynamics are included in each synapse originating
from a given processing unit, the precise values of time
constants governing those dynamics are varied. The con-
sequence arising from this second property is that each pro-
cessing element transmits a spatio-temporal output signal,
which, in principle, gives rise to an exponential growth in
coding capacity. Furthermore, we have developed a “dy-
namic learning algorithm” to train each dynamic synapse to
perform an optimized transformation function such that the
neural network can achieve highly complex tasks. Like the
nonlinear dynamics described above and included in the Dy-
namic Synapse network models, this learning algorithm also
is based on experimentally determined, adaptive properties
of hippocampal cortical neurons (which cannot be reviewed
here; see [32]–[35]), and is unique with respect to neural net-
work modeling in that the transformation function extracts
invariant features embedded in the input signal of each dy-
namic synapse. The combination of nonlinear dynamics and
dynamic learning algorithm provides a high degree of ro-
bustness against noise, which is a major issue in processing
real biological signals in the brain, as well as real-world
signals, as demonstrated in our case studies of speaker-inde-
pendent speech recognition described below.

C. Application to Speech Recognition

Current state-of-the-art speech recognition technology is
based on complex multistage processing that is not biologi-
cally based. Although commercial systems can demonstrate
impressive performance, they are still far from performing
at the level of human listeners. To test the computational ca-
pability of the dynamic synapse neural network, two strong
constraints were imposed: the network must be simple and
small, and it must accomplish speech recognition in a single
step, i.e., with no preprocessing stages. Our system not only
achieved this goal, but as will be described below, also per-
formed better than human listeners when tested with speech
signals corrupted by noise, marking the first time ever that a
physical device has outperformed humans in a speech recog-
nition task [37]–[39].

1) Invariant Feature Extraction:Two characteristics of
speech signals, variability and noise, make its recognition a
difficult task. Variability refers to the fact that the same word
is spoken in different ways by different speakers. Yet, there
exist invariant features in the speech signal, allowing the con-
stant perception of a given word, regardless of the speaker
or the manner of speaking. Our first application of the Dy-
namic Synapse neural network model to speech recognition
aimed at extracting those invariant features for a word set
with very difficult discriminability, e.g., “hat” versus “hut”
versus “hit” (14 words in total), spoken by eight different
speakers. The variability of two signals can be measured by
how well they correlate with each other. As seen in Fig. 3(b)
(lower left), the speech waveforms of the same word spoken
by two speakers typically show a low degree of correlation,
i.e., they are quite different from each other. However, the
dynamic synapse neural network can be trained to produce
highly correlated signals for a given word [Fig. 3(b), lower
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(a)

(b)

Fig. 3. (a) Properties of a processing element of a traditional artificial neural network versus
properties of a processing element of a biologically realistic Dynamic Synapse neural network.
(b) Conceptual representation of speaker-independent word recognition identification by a Dynamic
Synapse neural network. Inputs to the network are digitized speech waveforms from different
speakers for the same word, which have little similarity (low cross-correlation) because of differences
in speaker vocalization. The two networks shown are intended to represent the same network on
two different training or testing trials; in a real case, one network is trained with both (or more)
speech waveforms. On any given trial, each speech waveform constitutes the input for all five of the
input units shown in the first layer. Each unit in the first layer of the network generates a different
pulse-train encoding of the speech waveform (“integrate and fire neurons” with different parameter
values). The output of each synapse (arrows) to the second layer of the network is governed by four
dynamic processes [see (a)], with two of those processes representing second-order nonlinearities;
thus, the output to the second layer neurons depends on the time since prior input events. A “dynamic
learning rule” modifies the relative contribution of each dynamic process until the output neurons
converge on a common temporal pattern in response to different input speech signals (i.e., high
cross-correlation between the output patterns).

right]. Thus, the dynamic synapse neural network can extract
invariant features embedded in speech signals that are inher-
ently very difficult to discriminate, and can do so with no
preprocessing of the data (only the output from a microphone
was used) using a core signal processing system that is ex-
tremely small and compact.

2) Robustness with Respect to White Noise:To test the
robustness of the invariant features extracted by the dynamic
synapse neural network, the network was first trained to rec-
ognize the words [yes, no] randomly drawn from a data-
base containing utterances by some 7000 speakers with no
added noise. We then evaluated the performance of the model
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Fig. 4. Comparison of recognition rates by the Dynamic Synapse neural network system (dark
bars) and human listeners (gray bars) for speaker-independent identification of the words “yes”
and “no” when increasing amounts of white noise are added to the speech waveforms. Note that a
50% recognition rate is equivalent to chance.

when the speech signals not used during training were cor-
rupted with progressively increasing amount of white noise
[measured by the signal-to-noise- ratio (SNR) in decibels].
Results showed that our model is extremely robust against
noise, performing better than human listeners tested with the
same speech data set (Fig. 4). This is first time ever that
a speech recognition system has outperformed human lis-
teners, and the dynamic synapse system did so by a consid-
erable margin.

3) Comparison with a State-of-the-Art Commercial
Product and Robustness with Respect to Conversational
Noise: The objective of this study was to compare the
performance of the dynamic synapse neural network and
one of the best state-of-the-art commercially available
systems, namely, the Dragon Naturally Speaking speech
recognition system. Since the Dragon system operates in
a speaker-specific mode (the system is trained specifically
for the one user), the speech signals consist of the words
[“yes,” “no,” “fire,” “stop”] spoken by a single speaker. The
training of the Dragon system was done in two stages. In the
first stage, the system was fully trained using the material
provided by the manufacturer. In the second stage, it was
further trained using the four target words.

Once the training was complete, both the dynamic
synapse neural network and the Dragon system were tested
with noise-added speech signals at various SNRs. A realistic
“conversational” type of noise was used: a recording of
one female speaker and one male speaker voice-reading
newspapers simultaneously, along with the broadcast of a
news program on the radio. The same noise-added speech
signals were used to test human performance (average of five
subjects). The results (Fig. 5) show that the Dragon system
is extremely sensitive to noise and performs poorly under
noisy conditions. Its performance degrades to 50% correct
when the SNR was 20 dB, whereas both the dynamic
synapse neural network and human listeners retained 100%
recognition rate. The Dragon system failed to recognize
any word when the SNR was 10 dB while the Dynamic
Synapse neural network and human listeners performed at
100% and 90% recognition rates, respectively. Furthermore,
the Dynamic Synapse neural network was highly robust and
performed significantly better than human listeners when
the SNR dropped below 2.5 dB. For example, for SNR
ranging from 0 to 5 dB, human performance varied from
30% to 15% correct rate, while the Dynamic Synapse neural
network retained a 75% correct rate. These findings show
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Fig. 5. Comparison of recognition rates by the Dynamic Synapse neural network system (dark
bars), human listeners (gray bars), and the Dragon Naturally Speaking System for speaker-specific
identification of the words “yes” and “no” when increasing amounts of conversational noise (see text)
are added to the speech waveforms. Note that a 25% recognition rate is equivalent to chance.

that human listeners perform far better than the Dragon
system in terms of robustness against noise. Performance
degradation under noisy conditions is well-documented
for all speech recognition systems based on conventional
technology, like that used in the Dragon system. In contrast,
the Dynamic Synapse neural network significantly out-
performed the Dragon system, demonstrating a robustness
superior to human listeners under highly noisy conditions.

The significance of these findings with respect to devel-
oping a neural prosthetic for replacing cognitive functions
is several-fold. First, the Dynamic Synapse neural network
used in the above studies is remarkably small: only 11
processing units and 30 synapses. The computational power
of such a small network suggests that extremely large neural
networks will not be required for developing replacement
silicon-based circuitry for the brain. Second, the speaker-in-
dependent applications of the Dynamic Synapse technology
were performed using an unsupervised learning algorithm,
meaning that the features of the variable speech signals
upon which successful word recognition were based were
not identifieda priori; the network was allowed to find an
optimized feature set independently. In the context of an im-
plantable prosthetic, this is obviously a desirable advantage
in the sense that it may be reasonable to consider devices

that adapt to the host brain by optimizing a set of initial
parameters. Given that we know so little about the features
used in pattern recognition for many parts of the brain,
depending on theira priori identification would represent
a substantial impediment to progress. Third, the robustness
of the trained Dynamic Synapse system clearly suggests
that combining biologically based nonlinear dynamics
with biologically based learning rules may provide a new
paradigm for identifying algorithms of the brain for feature
extraction and pattern recognition, and opens the possibility
for studying radically novel feature sets not predictable on
the basis of current theoretical frameworks.

VI. A NALOG VLSI IMPLEMENTATIONS OFBIOLOGICALLY

REALISTIC NEURAL NETWORK MODELS

To this point, we have addressed issues concerning the first
two essential requirements for an implantable neural pros-
thetic. We have shown that it is possible to obtain experi-
mentally based, biologically realistic models that accurately
predict hippocampal neuron behavior for a wide range of
input conditions, including those known to be physiologi-
cally relevant. In addition, we have shown that the funda-
mental nonlinear dynamic properties of hippocampal neu-
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rons can provide the basis for a neural network model which
can be trained, according to biologically realistic learning
rules, to respond selectively to temporal and spatio-temporal
patterns coded in the form of point-process spike trains as
are found in the brain. Moreover, pattern recognition by the
network model can be accomplished even when input sig-
nals are embedded in substantial amounts of noise, a charac-
teristic both of real-world conditions and of signaling in the
brain. Below we will address the third essential requirement,
namely, the need to implement neuron and neural network
models in silicon, so that miniaturization will allow intracra-
nial implantation.

A. Design and Fabrication of Programmable Second-Order
Nonlinear Neuron Models

We have designed and fabricated several generations
of hardware implementations of our biologically realistic
models of hippocampal neural network nonlinear dynamics
using analog VLSI technology [40]–[42]. The model ex-
pressions of the first- and second-order kernel functions
describing those dynamics are computed in analog cur-
rent-mode instead of digital format in order to fully exploit
massively parallel processing capability. The particular
objective of the design described here was to incorporate
programmable second-order nonlinear model-based pa-
rameters so that a flexible, generally applicable hardware
model of hippocampal nonlinearities could be developed. A
fabricated and tested 3 3 neural network chip is shown in
Fig. 6.

The information transmitted among neurons is encoded
in the interpulse intervals of pulse trains. Different synaptic
weights can be applied to the input pulse trains. Each neuron
executes the convolution of a model-based second-order
kernel function as

The parameters , , , , and an offset are pro-
grammable not only so that the same design can accommo-
date nonlinearities characteristic of different subpopulations
of hippocampal neurons, but also so that training-induced
modification of nonlinearities can be accommodated.

The programmable pulse-coded neural processor for
hippocampal region was fabricated by a double-polysilicon
triple-metal process with linear capacitor option through
the MOSIS service. Each neuron contains two input stages
connected to two outputs of other neurons in the network.
The exponential decay in the above expression is imple-
mented by a modified wide-range Gilbert multiplier and a
capacitor. During initialization of the chip, the initial state
potentials are loaded to the state capacitors. The parameter
values are stored on capacitors. These analog values are
refreshed regularly by off-chip circuitry and can be changed
by controlling software. Bias voltages to set the multipliers
and variable resistors in the correct operational modes also
are required.

When operating with a 3.3-V power supply, simulation re-
sults show a 60-dB dynamic range. Depending on the com-

(a)

(b)

Fig. 6. Hybrid analog/digital VLSI implementation of a 3� 3
network of hippocampal neuron models with second-order
nonlinear properties. (b) shows a second-order kernel function
generated by on-chip circuitry (compare with the second-order
kernel shown in Fig. 2). The first-order kernel value and the
second-order nonlinear function are programmable from off-chip
circuitry.

plexity of the multiplier design, the resistance can vary from
300 to 300 k . If the state potential is larger than the
threshold when an input pulse arrives, an output pulse is
generated. Testing of fabricated chips shows reproducibility
of experimentally determined I/O behavior of hippocampal
neurons with a mean square error of less than 3%.

B. Design of A High-Density Hippocampal Neuron
Network Processor

Although it is not yet known how many silicon neurons
will be needed for an effective prosthetic, the number is
likely to be in the hundreds or thousands. This demands a
capability to scale up the type of fundamental design de-
scribed above. To accomplish this goal, we have utilized
concepts of neuron sharing and asynchronized processing
to complete design of a high-density neuroprocessor array
consisting of 128 128 second-order nonlinear processing
elements on a single microchip [43]. Each single processor
is composed of four data buffers, four indium bump flip-chip
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Fig. 7. Schematic diagram for a scalable version of the programmable second-order nonlinear
neuron neural processor shown in Fig. 6. This layout is scalable to a 128�128 neuron model network.

bonding pads (see below), and one shared-neuron model
with second-order nonlinear properties (Fig. 7). The pro-
cessing procedure is as follows: 1) the input data are held
in an input memory as the data arrive; 2) the input array is
divided in 16 parts, with each part a 3232 array; 3) each
part of the input data is sent to the processor array, with each
neuron processing four buffered data, one at a time; 4) all
parameters of the kernel function are updated; and 5) after
all 16 data parts have been processed, results are stored in
an output buffer array.

This design provides not only for programmable kernel
parameters, but also incorporates indium bumps (four per
processor) for flip-chip bonding to a second connectivity
matrix chip. This design (see Fig. 8) allows for considerable

connection flexibility by separating circuitry dedicated to
processor dynamics from circuitry dedicated to connection
architecture. With the additional technology for flip-chip
bonding, the combined multichip module (not yet fabri-
cated) will function much like a multilayer cellular neural
network (CNN) structure [44].

C. VLSI Implementation of a Dynamic Synapse Neural
Network

The VLSI implementation of a limited capacity dynamic
synapse neural network has been designed and fabricated
using TSMC 0.35 m technology, as shown in Fig. 9 [45].
The dynamic synapse neural network chip includes six input
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Fig. 8. Hybrid analog/digital VLSI implementation of a 4� 4 network of hippocampal neuron
models with second-order nonlinear properties designed using the layout scheme shown in Fig. 7.
Also shown in the inset is an indium bump (two are included for each neuron model; one for input,
one for output) that allows flip-chip bonding of this neuron processing microchip to a second
connectivity microchip (not shown) so that nonlinear processor properties and network connectivity
properties are incorporated in different microchips of a multichip module.

neurons, two output neurons, one inhibitory neuron, 18 dy-
namic synapses, and 24 I/O pads. Each synapse consists
of seven differential processing blocks, two hysteresis com-
parators, one AND gate, two transmission gates, and biasing
circuitry. As described in the previous section, the functional
properties of each synapse are determined by four dynamic
processes, each having different time courses. Three of the
processes are excitatory, one is inhibitory; two of the pro-
cesses represent different second-order nonlinearities

The resistor-capacitor exponential decay circuit for the dy-
namic processes was implemented using poly (poly1/poly2)
capacitance and NMOS active registers to save chip area.
The voltage-controlled active NMOS channel resistance and
current source were used to achieve the programmability of
parameter values of the dynamic synaptic neural network
by controlling biases. Each differential equation processing
block was implemented with fully programmable voltage
controlled active resistors, poly capacitors and a current
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(a)

(b)

Fig. 9. (a) Hybrid analog/digital VLSI implementation of a six-input, two-output unit Dynamic
Synapse neural network. The circuit design also includes one additional processing unit as part of
the output layer that functions to provide feedback to the dynamic synapses. In total, there are
18 dynamic synapses. Network connectivity is fixed. (b) Results of a circuit simulation showing
input and output pulse events, and analog potentials equivalent to excitatory and inhibitory synaptic
events generated in the network connections.

source. Each differential processing circuit consists of two
MOSFETs for active resistors, one poly capacitor, three
control MOSFETs, two transmission gates, and one inverter.
A novel, efficient low-power analog summation circuit was

developed without using op-amps, which require significant
silicon area and higher power consumption.

The capacity of this prototype Dynamic Synapse mi-
crochip is limited (because of the small number of output
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neurons), and not yet fully determined because the upper
capacity depends in large part on the decoding scheme
used for distinguishing different temporal patterns, an issue
which is currently still under investigation. Nonetheless,
the successful implementation of this neural network model
demonstrates that biologically realistic nonlinear dynamics
that perform a high-level pattern recognition function can
be realized in hardware. We are currently working on an
expanded design that will provide for 400 dynamic synapses
and on-chip implementation of the dynamic learning rule
used to optimize feature extraction by the network.

What we have attempted to clarify in this section are sev-
eral points relevant to a hardware implementation of biolog-
ically realistic neural network models. First, nonlinear dy-
namics (at least to the second order) characteristic of hip-
pocampal and other cortical neurons can be efficiently imple-
mented in mixed analog/digital VLSI. The designs not only
can be programmable, to accommodate adaptive alterations
in the dynamics of the microchip neuron models, but also
are scalable to substantial numbers of processing elements.
Considerable flexibility can be realized by separating the cir-
cuitry implementing processing element nonlinearities from
the circuitry implementing the connectivity among the ele-
ments. Processing element and connectivity microchips then
can be integrated as a multichip module. Finally, a proto-
type of a dynamic synapse neural network capable of limited
speech recognition function has been designed, fabricated,
and tested, demonstrating that a biomimetic neural network
performing a cognitive function of neurological interest is
feasible. Although the capacity of dynamic synapse neural
network microchips fabricated to date is admittedly not large,
it is critical to distinguish between functionality that signifi-
cantly alleviates clinical symptomatology and a functionality
that reproduces capabilities of an intact brain. A stroke pa-
tient that has lost all capability for speech need not be pro-
vided with a 5000-word vocabulary to substantially improve
their quality of life; a vocabulary of even 20 words would
constitute a marked recovery of function. Even the next-gen-
eration microchip neural networks will have a capacity that
warrants considering their future clinical use, provided other
technical barriers, such as interfacing with the living brain,
can be overcome.

VII. N EURON-SILICON INTERFACE

The major issues with regard to an effective neuron-sil-
icon interface that supports bidirectional communication
between the brain and an implantable neural prosthetic
include: 1) density of interconnections; 2) specificity of
interconnections; and 3) biocompatibility and long-term
viability. The issue of density of interconnections refers to
the fact that virtually all brain functions are mediated to a
degree by a mass action of neural elements, i.e., changing
the activity of one neuron in a system is unlikely to have
any substantial influence on the system function, and, thus,
on the cognitive process that depends on that function.
The neuron-silicon interface must be designed so that a

(a)

(b)

Fig. 10. (a) Schematic layout of a conformal multisite electrode
array designed for electrical stimulation of CA3 inputs to the CA1
region of hippocampus. (b) Photomicrograph of a hippocampal
slice positioned on a conformal array fabricated on the basis of
the layout shown in (a). Bottom panel in (b): Two extracellular
field potential responses recorded from one of the electrode sites
in the rectangular array located in CA1 following two stimulation
impulses administered to two of the electrode sites (bipolar
stimulation) in the rectangular array located in CA3.

large number of neurons are affected by the implanted
microchip. The issue of specificity of interconnections
refers to the fact that neurons comprising a given brain
region are not randomly distributed throughout the structure:
the majority of brain systems have clear and definable
“cytoarchitecture.” For the hippocampus, the major fea-
tures of this cytoarchitecture are a dense grouping of cell
bodies into cell layers, with dendritic elements oriented
perpendicular to those layers (see Fig. 1). The issue of
specificity also extends to the organization of intrinsic
circuitry: in the case of the hippocampus, the entorhinal-to-
dentate-to-CA3-to-CA1-subiculum pathway is composed of
different cell populations that are spatially segregated from
one another. Any neuron-silicon interface must be designed
to be consistent with the cytoarchitectural constraints of the
target tissue. Finally, the issue of long-term viability refers
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Fig. 11. Left upper panel: Photomicrograph of a hippocampal slice placed over a conformal
multisite electrode array designed and fabricated for stimulation and recording of activity from
the dentate gyrus and CA3 regions. Right upper panel: Detailed visualization of the three sets of
electrodes included in the dentate-CA3 array: each consists of a 3� 6 electrode site rectangular
array, with the two vertically oriented arrays designed for stimulation/recording from the dentate
gyrus, and the horizontally oriented array designed for stimulation/recording from the CA3
region. Bottom panel: Schematic representation of a transverse section through the hippocampus
illustrating the relative locations of its subfields.

to the obvious problems of maintaining effective functional
interactions between a microchip and brain tissue on a
time-scale of years, as periodic replacement of an implant is
not likely to be a realistic option.

A. Density and Specificity

With regard to the first two issues of density and speci-
ficity, one can either attempt to integrate these design
considerations into that of the computational component of
the prosthetic, or separate the computational and interface
functions into different domains of the device and thus
deal with the design constraints of each domain indepen-
dently. We have opted for the latter strategy, developing
silicon-based multisite electrode arrays with the capability
to both electrophysiologically record and stimulate living
neural tissue. The fundamental technologies required for
multichannel bidirectional communication with brain
tissue already exist commercially and are being developed
further at a rapid rate [46], [47]. Silicon-based 64- and
128-electrode site recording/stimulating arrays having spa-
tial scales consistent with the hippocampus of mammalian
animal brain (significantly smaller than even that of the

human) are now routinely used in ours and several other
laboratories [46]–[56]. In the very near future, electrode
densities sufficient to influence the majority of neurons in
a two-dimensional plane of a targeted brain region will be
operational.

The majority of commercially available multisite electrode
arrays have a uniform geometry, however, leaving the issue
of specificity unresolved. For this reason, we have focused
the majority of our research with respect to neural-silicon
interfaces on designing multisite arrays for which the spatial
distribution of electrode sites conforms to the cytoarchitec-
ture of the target brain region, i.e., array geometries specific to
the hippocampus [57]. For example, one multisite electrode
array that we have fabricated and tested was designed for
CA3 inputs to the CA1 region of rat hippocampus. Two
rectangular arrays were constructed using silicon nitride
and indium-tin-oxide (ITO): one 2 8 array of electrodes
oriented for stimulation of CA3 axons that course through
the dendritic region of CA1, and a second 412 array
positioned and oriented for recording CA1 dendritic and
cell body responses evoked as a consequence of stimulation
through the first array (Fig. 10). This particular conformal
probe had sixty-four 40 40 m stimulating-recording pads,
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a 60- m center-to-center interelectrode distance within each
array. The silicon nitride layer was deposited over the ITO
electrodes, providing insulation both between the various
electrodes and between each electrode and the hippocampal
tissue. Silicon nitride layers were patterned to provide
apertures only at the electrode tips. Silicon nitride films
approximately 1500 thick were deposited using the plasma
enhanced chemical vapor deposition (PECVD) technique.
Electrical characterization using a VLSI electronic probing
station showed excellent insulation capability and electrical
isolation, with less than 1.8% crosstalk level on adjacent
recording pads on the SiNx-insulated probes, measured over
a frequency range from 100 Hz to 20 kHz with a sinusoidal
waveform and 50–1000 mV-rms signal amplitudes. Experi-
mental testing with acute rat hippocampal slices consistently
demonstrated evoked extracellular field potentials with
signal-to-noise ratios greater than 10 : 1.

Additional mask designs have been completed and
fabricated successfully that incorporate several key modi-
fications. First, the recording-stimulating pads have been
resized to 30 m diameters, a size approaching the diam-
eter of a single neuron cell body. Combined with smaller
center-to-center distances between pads, the smaller pad
feature size will enable higher density arrays for greater
spatial resolution for interfacing with a given brain region
and, thus, better monitoring and control of that region.
Second, several new layouts have included different dis-
tributions of stimulation-recording pads that geometrically
map several subregions of the hippocampus (Fig. 11). This
represents the beginnings of a library of interface devices
that will offer monitoring/control capabilities with respect to
different subregions of hippocampus, and ultimately other
brain structures as well. In addition, more recent designs
have utilized gold as the stimulation-recording electrode
material to allow for higher injection current densities during
stimulation. Electrical characterization of the most recent
generation conformal neural probe arrays indicate, despite
the higher density of electrodes, less than a 4.1% crosstalk
level on adjacent recording pads.

B. Biocompatibility and Long-Term Viability

Many of the problems with respect to biocompatibility
and long-term viability cannot be fully identified until the
working prototypes of multielectrode arrays described above
have been developed to the point that they can be tested
through chronic implantation in animals. Nonetheless, we
have begun to consider these issues and to develop research
strategies to address them. One of the key obstacles will be
maintaining close contact between the electrode sites of the
interface device and the target neurons over time. We have
begun investigating organic compounds that potentially can
be used to coat the surface of the interface device to increase
its biocompatibility, and thus, promote outgrowth of neu-
ronal processes from the host tissue and increase their adhe-
sion to the interface materials. Poly-d-lysine and laminin are
known to be particularly effective in promoting adhesion of

Fig. 12. Photomicrograph of the larger, 4� 12 set of electrodes
of the conformal multisite array shown in Fig. 10, i.e., the set
designed for stimulation/recording from the CA1 region. This
figure shows the results of culturing dissociated hippocampal
neurons on the conformal array after its surface was coated with
poly-d-lysine and laminin. The poly-d-lysine and laminin were
applied in 40-�m-wide lines (same width as the electrode pads)
oriented parallel to the long axis of the rectangular array. Note
that cultured neuron cell bodies (phase-contrast bright) and their
dendritic and axonal processes adhered and grew primarily along
these linear paths, and for the region of the 4� 12 array, almost
directly over the electrode pads.

dissociated neuron cultures (cultures prepared from neonatal
brain; neurons are prepared as a suspension and then allowed
to adhere, redevelop processes, and reconnect into a network)
onto inorganic materials [55], [56], and we have investigated
their efficacy with regard to our hippocampal conformal mul-
tisite electrode arrays [57], [58]. Poly-d-lysine and laminin
were applied to the surface of the conformal arrays shown in
Fig. 10, but application was limited to linear tracks aligned
with the long axis of each column of electrode sites in the
rectangular array. When dissociated hippocampal neurons
were prepared on the surface of the array, the adhesion of
cells and the extension of their processes were restricted to
the treated regions, i.e., hippocampal neurons were attracted,
attached, and proliferated synaptic connections almost exclu-
sively in parallel, linear tracks over the columns of electrodes
(Fig. 12). Though this represents only an initial thrust into the
issues of biocompatibility, it is through approaches such as
these that we anticipate finding solutions to biocompatibility
problems.

Although much of the electrophysiological testing of
interfaces to date has been completed using acutely prepared
hippocampal slices (which remain physiologically viable
for 12–18 h), we also have begun using hippocampal slice
culturesfor testing the long-term viability of the neuron-sil-
icon interface [49]. The latter preparations involve slices of
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Fig. 13. Conceptual representation of an implantable neural prosthetic for replacing lost cognitive
function of higher cortical brain regions. The concept is illustrated here in the context of the specific
case of a prosthetic substituting for a portion of the hippocampus. The two essential components of
the prosthetic system are a “neurocomputational” multichip module that performs the computational
functions of the dysfunctional or lost region of hippocampus, and a “neuromorphic” multisite
electrode array that acts as a neuron-silicon interface to allow the neurocomputational microchips to
both receive input from, and send output to, the intact brain.

hippocampus placed onto a semipermeable membrane in
contact with tissue culture media, and maintained long-term
in a culture incubator [53]. Slice cultures can be prepared
directly onto multisite electrode arrays, which then can be
taken out of the incubator and tested periodically to examine
the robustness of the electrophysiological interaction with
the hippocampal tissue. Preliminary findings have revealed
that bidirectional communication remains viable for at
least several weeks, though we have yet to systematically
test long-term functionality. The main point to be made
here is that novel preparations like the slice culture will
provide highly useful platforms for identifying and resolving
viability issues.

VIII. C ONCLUSION

The goal of this paper was to bring into focus what we
believe will be one of the premier thrusts of the emerging
field of neural engineering: to develop implantable, neural
prosthetics that can coexist and bidirectionally communi-
cate with living brain tissue, and thus, substitute for the lost
cognitive function due to damage and/or disease (Fig. 13).
Because of a convergence of progress in the fields of neu-
roscience, molecular biology, biomedical engineering, com-
puter science, electrical engineering, and materials science,

it is now reasonable to begin defining the combined theo-
retical and experimental pathways required to achieve this
end. We have shown here major progress on four of the
essential requirements for an implantable neural prosthetic,
in the context of a series of experimental and modeling
studies concentrating on the hippocampus: biologically re-
alistic neuron models that can effectively replace the func-
tional properties of hippocampal cells, the concatenation
of the neuron model dynamics into neural networks that
can perform a pattern recognition problem of cognitive and
neurological relevance, the implementation of biologically
realistic neural network models in VLSI for miniaturiza-
tion, and the development of silicon-based multisite elec-
trode arrays that provide for bidirectional communication
with living neural tissue.

This progress does not constitute a set of final solutions
to these four requirements. Additional work is needed with
respect to nonlinear models of neuron dynamics, both with
respect to characterization of higher order nonlinearities and
particularly with respect to cross-input nonlinearities. All
neurons receive inputs from more than one other source, and
interactions between separate inputs most likely results in
nonlinearities specific to those interactions which cannot be
characterized by our present experiments or modeling. Like-
wise, the Dynamic Synapse neural network models must be
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expanded both in terms of number of processing elements
and numbers of network layers to begin approaching the
complexity and mass action of brain subsystems for which
a neural prosthetic will substitute. VLSI implementations
of neural network models must be scaled up as well, and
better incorporate efficient and novel interchip transmission
technologies to achieve the high densities required for
intracranial implantation. Critically, future generations of
biomimetic devices will require low-power designs to be
compatible with the many temperature-sensitive biological
mechanisms of the brain, an issue that our program has
yet to address. Finally, there remains much concerning or-
ganic-inorganic interactions that need to be investigated for
long-term compatibility between silicon-based technology
and neural tissue. Although these problems are formidable,
the rapid advances now occurring in the biological and
engineering sciences promise equally rapid progress on the
various elements of the global problem of intracranial im-
plantable neural prosthetics, particularly given the synergy
that should emerge from cooperative efforts between the
two sets of disciplines.
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