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• What exactly is Big Data? 
• What are the issues associated with it?  
• What role should NIST play with regard to Big Data? 

 
 
• What is the relationship between Big Data and IT 

Security? 
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What is Big Data? 

• You know it when you see it ….. 
• NIST  

– Astronomical Image data from ALMA ~1Tb / day 
– Border Gateway Protocol (BGP) Data ~ 10 Tb 

• Government 
– Census 
– NIH/ NCI 

• Industry 
– Amazon 
– Google 



What are the issues associated with Big Data? 
 

 

•  Taxonomies, ontologies, schemas, workflow 
•         Perspectives – backgrounds, use cases 

 
•  Bits – raw data formats and storage methods 
•  Cycles – algorithms and analysis 
•  Screws – infrastructure to support Big Data 



IT Security and Big Data 

• Big data sources become rich targets 
• Composition of data in one large source as well as 

across sources 
• Security data becoming the source for big data 

repositories 
– Log/event aggregation and correlation 
– IDS/IPS databases  



NIST ITL Big Data Planned Activities 

• ITL/SSD Big Data Workshop – 13 – 14 June 
• NIST Internal workshop this summer 
• Government/ industry / academia conference this 

fall 
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An Overview of Big Data 
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Implications 
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The ideas herein represent the author’s notional views on 
big data technology and do not necessarily represent the 
official opinion of NIST. 
 
Any mention of commercial and not-for-profit entities, 
products, and technology is for informational purposes 
only; it does not imply recommendation or endorsement 
by NIST or usability for any specific purpose. 

 

Disclaimer 
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Section 1: Introduction and Definitions 



• The world is creating ever more data  
– (and it’s a mainstream problem) 

 
• Mankind created data 

– 150 exabytes in 2005  
• (exabyte is a billion gigabytes) 

– 1200 exabytes in 2010 
– 35000 exabytes in 2020 (expected by IBM) 

 
• Examples: 

– U.S. drone aircraft sent back 24 years worth of video footage in 2009 
– Large Hadron Collider generates 40 terabytes/second 
– Bin Laden’s death: 5106 tweets/second 
– Around 30 billion RFID tags produced/year 
– Oil drilling platforms have 20k to 40k sensors 
– Our world has 1 billion transistors/human 

 
 
 

Big Data – the Data Deluge 
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Credit: The data deluge, Economist; Understanding Big Data, Eaton et al. 



A Quick Primer on Data Sizes 
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• Data is the new “raw material of 
business” – Economist 

• Challenges to achieving the 
revolution 
– It is not possible to store all the 

data we produce 
– 95% of created information was 

unstructured in 2010 

• Key observation 
– Relational database management 

systems (RDBMS) will be 
challenged to scale up or out to 
meet the demand 

 

Predictions of the “Industrial Revolution 
of Data” – Tim O’Reilly 

13 
Credit: Data data everywhere, Economist; Extracting Value from Chaos, Gantz et al. 



• O’Reilly Radar definition: 
– Big data is when the size of the data itself becomes part of 

the problem 

• EMC/IDC definition of big data: 
– Big data technologies describe a new generation of technologies 

and architectures, designed to economically extract value from 
very large volumes of a wide variety of data, by enabling high-
velocity capture, discovery, and/or analysis. 

• IBM says that ”three characteristics define big data:” 
– Volume (Terabytes -> Zettabytes) 
– Variety (Structured -> Semi-structured -> Unstructured) 
– Velocity (Batch -> Streaming Data) 

• Microsoft researchers use the same tuple 

Industry Views on Big Data 

14 
Credit: Big Data Now, Current Perspectives from O’Reilly Radar (O’Reilly definition);  Extracting Value from Chaos, Gantz et al. (IDC definition);  
Understanding Big Data, Eaton et al. (IBM definition) ; The World According to LINQ, Meijer (Microsoft research)   



• Big Data 
– Big data is where the data volume, acquisition velocity, or 

data representation limits the ability to perform effective 
analysis using traditional relational approaches or requires 
the use of significant horizontal scaling for efficient 
processing. 
 

Notional Definition for Big Data 

Big Data 

Big Data 
Science 

Big Data 
Framework 

Big Data 
Infrastructure 
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• Big Data Science 
– Big data science is the study of techniques covering the acquisition, 

conditioning, and evaluation of big data. These techniques are a 
synthesis of both information technology and mathematical 
approaches. 

 
• Big Data Frameworks 

– Big data frameworks are software libraries along with their 
associated algorithms that enable distributed processing and 
analysis of big data problems across clusters of compute units (e.g., 
servers, CPUs, or GPUs).  

 
• Big Data Infrastructure 

– Big data infrastructure is an instantiation of one or more big data 
frameworks that includes management interfaces, actual servers 
(physical or virtual), storage facilities, networking, and possibly 
back-up systems. Big data infrastructure can be instantiated to 
solve specific big data problems or to serve as a general purpose 
analysis and processing engine. 

More Notional Definitions 
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• NoSQL Origins 
– First used in 1998 to mean “No to SQL” 
– Reused in 2009 when it came to mean “Not Only SQL” 
– Groups non-relational approaches under a single term 

• The power of SQL is not needed in all problems 
– Specialized solutions may be faster or more scalable 
– NoSQL generally has less querying power than SQL 

• Common reasons to use NoSQL 
– Ability to handle semi-structured and unstructured data 
– Horizontal scalability 

• NoSQL may complement RDBMS (but sometimes 
replaces) 
– RDBMS may hold smaller amounts of high-value structured data 
– NoSQL may hold vast amounts of less valued and less structured 

data 
 

Big Data Frameworks are often 
associated with the term NoSQL 

Structured 
Storage 

RDBMS NoSQL 

17 
Credit: NoSQL Databases, Strauch; Understanding Big Data, Eaton et al.  



• Relational implementations provide ACID guarantees 
– Atomicity: transaction treated an all or nothing operation 
– Consistency: database values correct before and after 
– Isolation: events within transaction hidden from others 
– Durability: results will survive subsequent malfunction 

• NoSQL often provides BASE 
– Basically available: Allowance for parts of a system to fail 
– Soft state: An object may have multiple simultaneous values 
– Eventually consistent: Consistency achieved over time 

• CAP Theorem 
– It is impossible to have consistency, availability, and 

partition tolerance in a distributed system  
– the actual theorem is more complicated (see CAP slide in 

appendix A) 

Common Tradeoffs Between Relational and NoSQL 
Approaches 

18 

Credit: Principles of Transaction-Oriented Database Recovery, Haerder and Reuter, 1983; Base: An ACID Alternative, Pritchett, 2008;  
Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web Services, Gilbert and Lynch   
 



CAP Theorem with ACID and BASE Visualized 

Partition 
Tolerance 

Availability Consistency 

Small data sets can be both 
consistent and available 

BASE with  
eventual consistency 

ACID with 
eventual availability 
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Section 2: Big Data Taxonomies 



Big Data Characteristics and  
Derivation of a Notional Taxonomy 

Volume Velocity Variety 

(semi-structured 

or unstructured) 

Requires 

Horizontal 

Scalability 

Relational 

Limitation 

Big Data 

No No No No No No 

No No Yes No Yes Yes, Type 1 

No Yes No Yes Maybe Yes, Type 2 

No Yes Yes Yes Yes Yes, Type 3 

Yes No No Yes Maybe Yes, Type 2 

Yes No Yes Yes Yes Yes, Type3 

Yes Yes No Yes Maybe Yes, Type 2 

Yes Yes Yes Yes Yes Yes, Type 3 

Types of Big Data: 
Type 1: This is where a non-relational data representation required for effective analysis. 
Type 2: This is where horizontal scalability is required for efficient processing. 
Type 3: This is where a non-relational data representation processed with a horizontally 
scalable solution is required for both effective analysis and efficient processing. 
In other words, the data representation is not conducive to a relational algebraic analysis. 
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• Remember that big data frameworks and NoSQL are 
related but not necessarily the same 
– some big data problems may be solved relationally 

 
• Scofield: Key/value, column, document, graph 
• Cattel: Key/value, extensible record (e.g., column), document 
• Strauch: Key/value, column, document (mentions graph separately) 
• Others exist with very different categories 

 
• Consensus taxonomy for NoSQL:  

– Key/value, column, document, graph 

• Notional big data framework taxonomy: 
– Key/value, column, document, graph, sharded RDBMSs 

 
 

NoSQL Taxonomies 

22 Credit: NoSQL Databases, Strauch; NoSQL Death to Relational Databases(?), Scofield; Scalable SQL and NoSQL Data Stores, Cattel  



Name Height Eye Color 

Bob 6’2” Brown 

Nancy 5’3” Hazel 

Data Data 

Relationships 

Notional Big Data  
Framework Taxonomy 

Value Key 

Structured 
Document 

Key 

Structured 
Document 

Key 

Conceptual Structures: 

23 RDBMS RDBMS RDBMS 
Sharded RDBMS 

Document Oriented Database 
Stores documents that are semi-structured 
Includes XML databases 

 

Graph Databases 
Uses nodes and edges to represent data 
Often used for Semantic Web 

 

Column-oriented databases 
Storage by column, not row 

 

Key Value Stores 
Schema-less system 

 



Comparison of NoSQL and Relational Approaches 
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Performance 
Horizontal 

Scalability 

Flexibility in 

Data Variety 

Complexity 

of Operation 
Functionality 

Key-Value 

stores 
high high high none 

variable 

(none) 

Column 

stores 
high high moderate low minimal 

Document 

stores 
high variable (high) high low variable (low) 

Graph 

databases 
variable variable high high graph theory 

Relational 

databases 
variable variable low moderate 

relational 

algebra 

Credit: NoSQL Death to Relational Databases(?), Scofield (column headings modified from original data for clarity) 

Matches columns on the big data taxonomy 



Notional Suitability of Big Data Frameworks 
for types of Big Data Problems 

25 

Horizontal 

Scalability 

Flexibility in 

Data Variety 

Appropriate  

Big Data Types 

Key-Value 

stores 
high high 1, 2, 3 

Column stores high moderate 
1 (partially), 2,  

3 (partially)  

Document 

stores 
variable (high) high 

1, 2 (likely),  

3 (likely) 

Graph 

databases 
variable high 

1, 2 (maybe),  

3 (maybe) 

Sharded 

Database 
variable (high) low 2 (likely) 
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Section 3: Security Implications and Areas of 
Research 



• “Revolutions in science have often been 
preceded by revolutions in measurement,” - 
Sinan Aral, New York University 
 

• Arthur Coviello, Chairman RSA 
– “Security must adopt a big data view… The age of 

big data has arrived in security management.”  
– We must collect data throughout the enterprise, 

not just logs 
– We must provide context and perform real time 

analysis 
 

• There is precious little information on how to 
do this 

Hypothesis: Big Data approaches will open up new 
avenues of IT security metrology 

27 
Credit: Data, data everywhere, Economist; http://searchcloudsecurity.techtarget.com/news/2240111123/Coviello-talks-about-building-a-trusted-cloud-resilient-security   



• Several years ago, some security companies had an 
epiphany:  
– Traditional relational implementations were not always 

keeping up with data demands 

• A changed industry: 
– Some were able to stick with traditional relational approaches 
– Some partitioned their data and used multiple relational silos 
– Some quietly switched over to NoSQL approaches 
– Some adopted a hybrid approach, putting high value data in a 

relational store and lower value data in NoSQL stores 
 

Big Data is Moving into IT Security Products 

Credit: This is based on my discussions with IT security companies in 12/2011 at the Government Technology Research Alliance Security Council 2011 



• Many big data systems were not designed with security 
in mind – Tim Mather, KPMG 

• There are far more security controls for relational 
systems than for NoSQL systems 
– SQL security: secure configuration management, multifactor 

authentication, data classification, data encryption, 
consolidated auditing/reporting, database firewalls, 
vulnerability assessment scanners 

– NoSQL security: cell-level access labels, kerberos-based 
authentication, access control lists for tables/column families 

Security Features are Slowly Moving into 
Big Data Implementations 

29 
Credit: Securing Big Data, Cloud Security Alliance Congress 2011, Tim Mather KPMG 



• Accumulo 
– Accumulo is a distributed key/value store that provides 

expressive, cell-level access labels. 
– Allows fine grained access control in a NoSQL 

implementation 
– Based on Google BigTable 
– 200,000 lines of Java code 
– Submitted by the NSA to the Apache Foundation 

 

Public Government Big Data 
Security Research Exists 

30 
Credit: http://wiki.apache.org/incubator/AccumuloProposal, http://www.informationweek.com/news/government/enterprise-apps/231600835 



• Enhancing IT security metrology 
• Enabling secure implementations 
• Privacy concerns on use of big 

data technology 

What further research needs to be conducted on big 
data security and privacy? 

31 



1. What is a definition of big data? 
– What computer science properties are we trying to instantiate? 

2. What types of big data frameworks exist? 
– Can we identify a taxonomy that relates them hierarchically? 

3. What are the strengths, weaknesses, and appropriateness of 
big data frameworks for specific classes of problems? 

– What are the mathematical foundations for big data frameworks? 

4. How can we measure the consistency provided by a big data 
solution? 

5. Can we define standard for querying big data solutions? 
 
 

Research Area 1: The Computer 
Science of Big Data 

With an understanding of the capabilities available and their 
suitability for types of problems, we can then apply this 
knowledge to computer security. 

32 



Research Area 2: Furthering IT Security 
Metrology through Big Data Technology 

1. Determine how IT security metrology is limited by traditional 
data representations (i.e., highly structured relational 
storage) 

2. Investigate how big data frameworks can benefit IT security 
measurement 
• What new metrics could be available? 

3. Identify specific security problems that can benefit from big 
data approaches 
• Conduct experiments to test solving identified problems 

4. Explore the use of big data frameworks within existing 
security products 
• What new capabilities are available? 
• How has this changed processing capacity? 

33 



1. Evaluate the security capabilities of big data 
infrastructure 
– Do the available tools provide needed security features? 
– What security models can be used when implementing big 

data infrastructure? 

2. Identify techniques to enhance security in big data 
frameworks (e.g., data tagging approaches, sHadoop) 
– Conduct experiments on enhanced security framework 

implementations 

 

Research Area 3: The Security of 
Big Data Infrastructure 

34 



• Big data technology enables massive data aggregation 
beyond what has been previously possible 

• Inferencing concerns with non-sensitive data 
• Legal foundations for privacy in data aggregation 
• Application of NIST Special Publication 800-53 privacy 

controls 

Research Area 4: The Privacy of Big Data 
Implementations 

35 



• Area 1 (not security specific) 
– Publication on harnessing big data technology 

• Definitions, taxonomies, and appropriateness for classes 
of problems 

• Area 2 (security specific) 
– Publication on furthering IT security metrology through big 

data technology 
– Research papers on solving specific security problems using 

big data approaches 
• Area 3 (security specific) 

– Publication on approaches for the secure use of big data 
platforms 

• Area 4 (privacy specific) 
– Not yet identified 

Needed Research Deliverables 

36 
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Section 4: MapReduce and Hadoop 



• Seminal paper published by Google in 2004 
– Simple concurrent programming model and associated implementation 

• Model handles the parallel processing and message passing 
details 

– Simplified coding model compared to general purpose parallel languages 
(e.g., MPI) 

• Three functions: Map -> Parallel sort -> Reduce 
– Map: Processes a set of key/value pairs to produce an intermediate set of 

key/value pairs 
– Parallel sort: a distributed sort on intermediate results feeds the reduce 

nodes 
– Reduce: for each resultant key, it processes each key/value pair and 

produces the result set of values for each key 
• Approachable programming model 

– Handles concurrency complexities for the user 
– Limited functionality 
– Appears to provide a sweet spot for solving a vast number of important 

problems with an easy to use programming model 
 
 

MapReduce –  
Dean, et al. 

38 
Credit: MapReduce: Simplified Data Processing on Large Clusters, Dean et al. 



MapReduce Diagram from Google’s 
2004 Seminal Paper 

e 39 



Storage, MapReduce, and Query 
(SMAQ) Stacks 

• Efficient way of defining computation 

• Platform for user friendly analytical 
systems 

Query 

• Distributes computation over many 
servers 

• Batch processing model 

Map 
Reduce 

• Distributed and non-relational Storage 

40 Credit: 2011 O’Reilly Radar, Edd Dumbill 



• Widely used MapReduce framework 
 

• “The Apache Hadoop software library is a framework 
that allows for the distributed processing of large data 
sets across clusters of computers using a simple 
programming model” – hadoop.apache.org 
 

• Open source project with an ecosystem of products 
• Core Hadoop:  

– Hadoop MapReduce implementation 
– Hadoop Distributed File System (HDFS) 

• Non-core: Many related projects 
 

Hadoop 

41 
Credit: http://hadoop.apache.org 



Hadoop SMAQ Stack (select components) 

• Pig (simply query language) 

• Hive (SQL like queries) 

• Cascading (workflows) 

• Mahout (machine learning) 

• Zookeeper (coordination service) 

• Hama (scientific computation) 

Query 

• Hadoop Map Reduce implementation Map Reduce 

• HBase (column oriented database) 

• Hadoop Distributed File System 
(HDFS, core Hadoop file system) 

Storage 
42 



• BashReduce 
• Disco Project 
• Spark 
• GraphLab Carnegie-Mellon 
• Storm 
• HPCC (LexisNexis) 

Alternate MapReduce Frameworks 

43 
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Section 5: Notable Implementations  
(both frameworks and infrastructure) 



• Design requirements: “performance, scalability, 
reliability, and availability” 

• Design assumptions: 
– Huge files 
– Expected component failures 
– File mutation is primarily by appending 
– Relaxed consistency <- think of the CAP theorem here 

• Master has all its data in memory (consistent and 
available!!) 

• All reads and writes occur directly between client and 
chunkservers 

• For writes, control flow is decoupled from pipelined 
data flow 

Google File System –  
Ghemawat, et al. 

45 
Credit: The Google File System, Ghemawat et al. 



Google File System Architecture 

46 



Google File System Write Control and Data Flow 

• Master assigned a 
primary replica 

• Client pipelines data 
through replicas 

• Client contacts 
primary to instantiate 
the write 

47 



• “Big table is a sparse, distributed, persistent multi-
dimensional sorted map” 
– It is a non-relational key-value store / column-oriented database 

• Row keys- table data is stored in row order 
– Model supports atomic row manipulation 

• Tablets- subsets of tables (a range of the rows) 
– Unit of distribution/load balancing 

• Column families group column keys 
– Access control done on column families 

• Each cell can contain multiple time stamped versions 
• Uses Google File System (GFS) for file storage 
• Distributed lock service- Chubby 
• Implementation- Lightly loaded master plus tablet servers 
• Internal Google tool 

 
 

Big Table –  
Chang, Dean, Ghemawat, et al. 

48 Credit: Bigtable: A Distributed Storage System for Structured Data, Chang et. al. 



Big Table Storage Paradigm 

Row key 

Timestamp 

Column family 

Column family 

Column key 
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• Open source Apache project 
– Modeled after the Big Table research paper 
– Implemented on top of the Hadoop Distributed File System 

 
• “Use HBase when you need random, realtime 

read/write access to your Big Data… hosting of very 
large tables -- billions of rows X millions of columns -- 
atop clusters of commodity hardware. HBase is an 
open-source, distributed, versioned, column-oriented 
store modeled after Google's Bigtable” 

Hbase 

50 
Credit: http://hbase.apache.org 



• 2007 paper describing Amazon’s implementation that had 
been in production use for one year 

• Dynamo is a key-value eventually consistent database 
designed for scalability and high availability 
– Key lookup only (no relational schema or hierarchical namespace) 
– No central point of failure (i.e., nodes are symmetric)  
– Handles nodes of differing capability (i.e., heterogeneity) 
– Offers incremental scalability (i.e., you can add one node at a 

time) 
– Writes rarely rejected, reads may return multiple versions 

• Strong focus on SLA performance guarantees (for 99.9% 
of operations) 
 
 

Dynamo – 
DeCandia, Hastorun,… , Vogels 

Werner 
Vogels, 
Amazon 
CTO 

51 
Credit: Dynamo: Amazon’s Highly Available Key-value Store, DeCandia et al. 



Dynamo Techniques and Advantages 
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• “the primary advantage of Dynamo is that it provides the 
necessary knobs… to tune their instances” – Dynamo paper 

• Users controls three variables:  
– N, number of hosts on which to replicate data 
– R, minimum number of hosts that must participate in a read 

• low value could increase inconsistency 
– W, minimum number of hosts that must participate in a write 

• low value could decrease durability 
 

• Amazon Dynamo infrastructure 
– Dial-in the desired requests per second (elasticity) 
– Data stored in solid state drives for low latency access 
– Automatic replication across availability zones 
– Zero administration burden or even features 
– Developers choose between eventually consistent and strongly 

consistent reads 

Dynamo Configurability and 
Production Implementation 
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• Described as a “big table model running on an Amazon 
dynamo-like infrastructure” 

• Distributed database management system 
– No single point of failure 
– Designed for use with commodity servers 
– Key-value with column indexing system 

• “Rows” are keys that are randomly partitioned among 
servers 

• Keys maps to multiple values 
• Values from multiple keys may be grouped into “column 

families” 
• Each key’s values are stored together (like a row oriented 

RDBMS and yet the data has a column orientation) 
– Cassandra Query Language (SQL like querying) 

• Initially developed by Facebook and then open sourced 

Apache Cassandra 

54 
Credit: http://cassandra.apache.org  

http://en.wikipedia.org/wiki/File:Cassandra_logo.png
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Questions and Comments 
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Appendix A: Seminal Research Results 



• CAP: Consistency, Availability, Partition-tolerance 
• It is impossible to have all three CAP properties in an 

asynchronous distributed read/write system 
– Asynchronous nature is key (i.e., no clocks) 
– Any two properties can be achieved 

• Delayed-t consistency possible for partially synchronous 
systems (i.e., independent timers) 

– All three properties can be guaranteed if the requests are separated 
by a defined period of lossless messaging. 

• ‘most real world systems are forced to settle with returning 
“most of the data most of the time.”’ 
 

• Take away: Distributed read/write systems are limited by 
intersystem messaging and may have to relax their CAP 
requirements 

CAP Theorem –  
Brewer, 2000 

57 
Credit: Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant Web Services, Gilbert and Lynch   



• CAP: Consistency, Availability, Partition Tolerance 
• For distributed systems, we must have partitioning 
• ACID (atomicity, consistency, isolation, durability) 

– Focuses on consistency, not availability 
– Properties are transparently provided by the database 

• BASE (basically available, soft state, eventually consistent) 
– Focuses on availability, not consistency 
– Requires independent analysis of each application to achieve 

these properties (i.e., this is harder than ACID) 
– Promotes availability by avoiding two phase commits over the 

network 
– Application code may provide idempotence to avoid 2 phase 

commits 

 

BASE vs. ACID –  
Pritchett 2008 

58 
Credit: BASE: An Acid Alternative, Pritchett 



• Invented by Edgar F. Codd, IBM Fellow 
• “A Relational Model of Data for Large Shared Data 

Banks” published in 1970 
• Relational algebra provides a mathematical basis for 

database query languages (i.e. SQL) 
• Based on first order logic 

 
• “[His] basic idea was that relationships between data 

items should be based on the item's values, and not on 
separately specified linking or nesting. This notion 
greatly simplified the specification of queries and allowed 
unprecedented flexibility to exploit existing data sets in 
new ways“ - Don Chamberlin, SQL co-inventor 

Origin of SQL –  
Codd 1970 

59 
Credit: A Relational Model of Data for Large Shared Data Banks, Codd 



• SQL and key-value NoSQL (called coSQL) are 
mathematical duals based on category theory 

• SQL and CoSQL can transmute into each other 
• Duality between synchronous ACID and asynchronous 

BASE 
– Transmute data to take advantage of either ACID or BASE 

• “monads and monad comprehensions provide a 
common query mechanism for both SQL and coSQL” 

• Microsoft’s Languge-Integrated Query (LINQ) 
implements this query abstraction 

• There could be a single language, analogous to SQL, 
used for all coSQL databases!! 
 

 

The Notion of CoSQL –  
Meijer, et al. 2011 

60 
Credit: A co-Relational Model of Data for Large Shared Data Banks, Meijer 



Notional Big Data Taxonomy w/ 
Mappings to Mathematical Systems 

Predicate 
Logic 

Relational 
Algebra 

SQL 

Category 
Theory 

Big Data 

Big Data 
Science 

Big Data 
Platforms 

NoSQL 

Key Value 
Document 

Stores 
Graph 

Databases 
Column 

Oriented 

Codd 

ACID BASE 

Pritchett 

CAP Theorem 
Brewer 

Meijer 
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Appendix B: Overview of Big Data Framework 
Types 



• Key value stores are distributed associative arrays 
(collections of key/value pairs) 
– Implementing maps or dictionaries 

• Enables storage of schema-less data 
• Simple operations:  

– add(key,value), set(key,value), get(key), delete(key) 

• Values may be complex and unstructured  objects 
• Indexed on keys for searching 

– No joins, no SQL, no real queries  

• Often a speed advantage in storage and retrieval 
 
 
 

Overview – Key Value Stores 

63 Credit: Key-Value stores: a practical overview, Seeger 



• Key value is one of the most prominent NoSQL 
approaches 

• Used for a wide variety of big data problems 
• Most popular type is MapReduce 

– First used for indexing the Internet (Google) 

• Example:  
– Visa used Hadoop to process 36 terabytes of data 
– Traditional approach: one month 
– Key value approach: 13 minutes 

 
 

Example Uses- Key Value Stores 
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• Table data is stored by column NOT row 
– Efficient for calculating metrics on a particular set of columns 
– Efficient for updating all values in a single column 
– Inefficient for row operations effecting multiple columns 
– Inefficient for writing new rows 

• Key concern is gaining efficiency in hard disk accesses 
for particular types of jobs 

• Since column data is of the same type, some 
compression advantages can be achieved over row-
oriented databases 

• This concept is not new. It has been used since the 
1970s 

Overview – Column Oriented Databases 

65 
Credit: C-Store: A Column-oriented DBMS, Stonebraker 



Example – Column Oriented Databases 

2010 Car 0-30 mph (sec) Turning circle Horsepower 

Nissan Altima 2.5S 3.3 40 ft. 175 

Mini Cooper 
Clubman 

3.8 37 ft. 118 

Smart 5.1 30 ft. 71 

Column oriented storage: 
Nissan Altima 2.5S, Mini Cooper Clubman, Smart 
3.3, 3.8, 5.1 
40 ft., 37 ft., 30 ft. 
175, 118, 72 

Row oriented storage: 
Nissan Altima 2.5S, 3.3, 40 ft., 175 
Mini Cooper Clubman, 3.8, 37 ft., 118 
Smart, 5.1, 30 ft., 71 

66 
Credit: Consumer Reports New Car Preview 2011 



• Implement the “Associative Model of Data” 
– By definition: index free adjacency 
– Not record based and no global index 
– Nodes and edges 

• Graphs, Directed Graphs, Multi-graphs, Hyper-graphs 
• Compared to RDBMS, graph database: 

– Are slower for applying operations to large datasets 
– Have no join operations 
– Excellent for application of graph algorithms 
– Can be faster for associative data sets 
– Map well to object oriented structures 
– Can evolve to changing data types (there is no rigid schema) 

• Useful for semantic web implementations (RDF) 

Overview - Graph Databases 

67 
Credit: http://www.w3schools.com/web/web_semantic.asp 



• The semantic web gives meaning to data by defining 
relationships and properties 
– Entities and relationships are described using RDF 

• Subject -> Predicate -> Object 
– Ontologies are defined using RDFS/OWL 

• Enables inferences 
• Full use of OWL can produce NP-complete computations 

• RDF can be “naturally” represented using a labeled, 
directed, multi-graph 

• SPARQL enables RDF querying 
• Relational databases can store RDF triples easily but 

efficient SPARQL->SQL querying is difficult 
• Native graph databases may provide enhanced 

performance 
 

 
 

Example Use- Graph Databases for 
Semantic Web 
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• Focused on efficient management of semi-structured 
data 
– Focus on self-describing structures (e.g., YAML, JSON, PDF, 

MS Office, or XML) 

• Documents are like records in a RDBMS 
• Each document  

– may use a different schema 
– may populate different fields (there are no ‘empty’ fields) 

• Document may be accessed through 
– Unique keys 
– Metadata/tagging 
– Collections of documents / Directory structures 
– Query languages (varying by implementation) 

 
 

Overview - Document Oriented Database 
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• Native XML vs. XML-enabled  
• Rationale: If XML is used for communication, why not store 

the data natively in XML? 
• Definition: 

– Model based on XML document structure, not the data 
– Each “record” is an XML document (analogous to a row in an 

RDBMS) 
– There are no requirements on the storage technique (e.g., 

relational vs. non-relational) 
• Many provide “collections” of documents that may be 

arranged hierarchically like a file system 
• Querying Languages: Xpath, XQuery (extends Xpath) 
• Transformations for output may use XSLT 

 
• Hybrid databases have been developed that support 

querying with SQL and XQuery 

Example Use - Document Oriented 
Databases for XML 
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