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Abstract

In this paper, we consider the problem of compressed sensingwhere the goal is to recover almostall
sparse vectors using a small number offixedlinear measurements. For this problem, we propose a
novel partial hard-thresholding operator that leads to a general family of iterative algorithms. While
one extreme of the family yields well known hard thresholding algorithms like ITI and HTP[17, 10],
the other end of the spectrum leads to a novel algorithm that we call Orthogonal Matching Pursuit
with Replacement (OMPR). OMPR, like the classic greedy algorithm OMP, adds exactly one coor-
dinate to the support at each iteration, based on the correlation with the current residual. However,
unlike OMP, OMPR also removes one coordinate from the support. This simple change allows us
to prove that OMPR has the best known guarantees for sparse recovery in terms of the Restricted
Isometry Property (a condition on the measurement matrix).In contrast, OMP is known to have very
weak performance guarantees under RIP. Given its simple structure, we are able to extend OMPR
using locality sensitive hashing to get OMPR-Hash, the firstprovably sub-linear (in dimensionality)
algorithm for sparse recovery. Our proof techniques are novel and flexible enough to also permit the
tightest known analysis of popular iterative algorithms such as CoSaMP and Subspace Pursuit. We
provide experimental results on large problems providing recovery for vectors of size up to million
dimensions. We demonstrate that for large-scale problems our proposed methods are more robust
and faster than existing methods.

1 Introduction

We nowadays routinely face high-dimensional datasets in diverse application areas such as biology, astronomy, finance
and the web. The associated curse of dimensionality is oftenalleviated by prior knowledge that the object being
estimated has some structure. One of the most natural and well-studied structural assumption for vectors is sparsity.
Accordingly, a huge amount of recent work in machine learning, statistics and signal processing has been devoted
to finding better ways to leverage sparse structures. Compressed sensing, a new and active branch of modern signal
processing, deals with the problem of designing measurement matrices and recovery algorithms, such that almostall
sparse signals can be recovered from a small number of measurements. It has important applications in imaging,
computer vision and machine learning (see, for example, [9,24, 14]).

In this paper, we focus on the compressed sensing setting [3,7] where we want to design a measurement matrix
A ∈ R

m×n such that a sparse vectorx⋆ ∈ R
n with ‖x⋆‖0 := | supp(x⋆)| ≤ k < n can be efficiently recovered from

the measurementsb = Ax⋆ ∈ R
m. Initial work focused on various random ensembles of matricesA such that, ifA

was chosen randomly from that ensemble, one would be able to recover all or almost all sparse vectorsx⋆ from Ax⋆.
Candes and Tao[3] isolated a key property called the restricted Isometry property (RIP) and proved that, as long as the
measurement matrixA satisfies RIP, the true sparse vector can be obtained by solving anℓ1-optimization problem,

min ‖x‖1 s.t.Ax = b .

The above problem can be easily formulated as a linear program and is hence efficiently solvable. We recall for the
reader that a matrixA is said to satisfy RIP of orderk if there is someδk ∈ [0, 1) such that, for allx with ‖x‖0 ≤ k,
we have

(1 − δk)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δk)‖x‖2 .
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Several random matrix ensembles are known to satisfyδck < θ with high probability provided one choosesm =
O

(

ck
θ2 log n

k

)

measurements. It was shown [2] thatℓ1-minimization recovers allk-sparse vectors providedA satisfies
δ2k < 0.414 although the condition has been recently improved toδ2k < 0.473 [11]. Note that, in compressed sensing,
the goal is to recover all, or most,k-sparse signals using thesamemeasurement matrixA. Hence, weaker conditions
such as restricted convexity [20] studied in the statistical literature (where the aim is to recover asinglesparse vector
from noisy linear measurements) typically do not suffice. Infact, if RIP is not satisfied then multiple sparse vectorsx
can lead to the same observationb, hence making recovery of the true sparse vector impossible.

Based on its RIP guarantees,ℓ1-minimization can guarantee recovery using justO(k log(n/k)) measurements, but it
has been observed in practice thatℓ1-minimization is too expensive in large scale applications[8], for example, when
the dimensionality is in the millions. This has sparked a huge interest in iterative methods for sparse recovery. An
early classic iterative method is Orthogonal Matching Pursuit (OMP) [21, 6] that greedily chooses elements to add to
the support. It is a natural, easy-to-implement and fast method but unfortunately lacks strong theoretical guarantees.
Indeed, it is known that, if run fork iterations, OMP cannot uniformly recover allk-sparse vectors assuming RIP
condition of the formδ2k ≤ θ [22, 18]. However, Zhang [26] showed that OMP, if run for30k iterations, recovers the
optimal solution whenδ31k ≤ 1/3; a significantly more restrictive condition than the ones required by other methods
like ℓ1-minimization.

Several other iterative approaches have been proposed thatinclude Iterative Soft Thresholding (IST) [17], Iterative
Hard Thresholding (IHT) [1], Compressive Sampling Matching Pursuit (CoSaMP) [19], Subspace Pursuit (SP) [4],
Iterative Thresholding with Inversion (ITI) [16], Hard Thresholding Pursuit (HTP) [10] and many others. In the family
of iterative hard thresholding algorithms, we can identifytwo major subfamilies [17]: one- and two-stage algorithms.
As their names suggest, the distinction is based on the number of stages in each iteration of the algorithm. One-stage
algorithms such as IHT, ITI and HTP, decide on the choice of the next support set and then usually solve a least
squares problem on the updated support. The one-stage methods always set the support set to have sizek, wherek
is the target sparsity level. On the other hand, two-stage algorithms, notable examples being CoSaMP and SP, first
enlargethe support set, solve a least squares on it, and thenreducethe support set back again to the desired size. A
second least squares problem is then solved on the reduced support. These algorithms typically enlarge and reduce
the support set byk or 2k elements. An exception is the two-stage algorithm FoBa [25]that adds and removes single
elements from the support. However, it differs from our proposed methods as its analysis requires very restrictive RIP
conditions (δ8k < 0.1 as quoted in [14]) and the connection to locality sensitive hashing (see below) is not made.
Another algorithm with replacement steps was studied by Shalev-Shwartz et al. [23]. However, the algorithm and the
setting under which it is analyzed are different from ours.

In this paper, we present, and provide a unified analysis for,a family of one-stage iterative hard thresholding algo-
rithms. The family is parameterized by a positive integerl ≤ k. At the extreme valuel = k, we recover the algorithm
ITI/HTP. At the other extremek = 1, we get a novel algorithm that we call Orthogonal Matching Pursuit with Re-
placement (OMPR). OMPR can be thought of as a simple modification of the classic greedy algorithm OMP: instead
of simply addingan element to the existing support, itreplacesan existing support element with a new one. Surpris-
ingly, this change allows us to prove sparse recovery under the conditionδ2k < 0.499. This is the bestδ2k based
RIP condition under whichanymethod, includingℓ1-minimization, is (currently) known to provably perform sparse
recovery.

OMPR also lends itself to a faster implementation using locality sensitive hashing (LSH). This allows us to provide
recovery guarantees using an algorithm whose run-time is provably sub-linear inn, the number of dimensions. An
added advantage of OMPR, unlike many iterative methods, is that no careful tuning of the step-size parameter is
required even under noisy settings or even when RIP does not hold. The default step-size of1 is always guaranteed to
converge to at least a local optimum.

Finally, we show that our proof techniques used in the analysis of the OMPR family are useful in tightening the
analysis of two-stage algorithms, such as CoSaMP and SP, as well. As a result, we are able to prove better recovery
guarantees for these algorithms —δ4k < 0.35 for CoSaMP, andδ3k < 0.35 for SP. We hope that this unified analysis
sheds more light on the interrelationships between the various kinds of iterative hard thresholding algorithms.

In summary, the contributions of this paper are as follows.

• We present a family of iterative hard thresholding algorithms that on one end of the spectrum includes ex-
isting methods such as ITI/HTP while on the other end gives OMPR. OMPR is an improvement over the
classical OMP method as it enjoys better theoretical guarantees and is also better in practice as shown in our
experiments.
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Algorithm 1 OMPR
1: Input: matrixA, vectorb, sparsity levelk
2: Parameter: step sizeη > 0
3: Initialize x1 s.t. | supp(x1)| = k, I1 = supp(x1)
4: for t = 1 to T do
5: zt+1 ← xt + ηAT (b − Axt)
6: jt+1 ← argmaxj /∈It

|zt+1
j |

7: Jt+1 ← It ∪ {jt+1}
8: yt+1 ← Hk

(

zt+1
Jt+1

)

9: It+1 ← supp(yt+1)
10: xt+1

It+1
← AIt+1

\b, xt+1
Īt+1

← 0

11: end for

Algorithm 2 OMPR (l)
1: Input: matrixA, vectorb, sparsity levelk
2: Parameter: step sizeη > 0
3: Initialize x1 s.t. | supp(x1)| = k, I1 = supp(x1)
4: for t = 1 to T do
5: zt+1 ← xt + ηAT (b − Axt)
6: topt+1 ← indices of topl elements of|zt+1

Īt
|

7: Jt+1 ← It ∪ topt+1

8: yt+1 ← Hk

(

zt+1
Jt+1

)

9: It+1 ← supp(yt+1)
10: xt+1

It+1
← AIt+1

\b, xt+1
Īt+1

← 0

11: end for

• Unlike other improvements over OMP, such as CoSaMP or SP, OMPR changes only one element of the
support at a time. This allows us to use Locality Sensitive Hashing (LSH) to speed it up resulting in the first
provably sub-linear (in the ambient dimensionalityn) time sparse recovery algorithm.

• We provide a general proof for all the algorithms in our partial hard thresholding based family. In particular,
we can guarantee recovery using OMPR, under both noiseless and noisy settings, providedδ2k < 0.499.
This is the least restrictiveδ2k condition under whichanyefficient sparse recovery method is known to work.
Furthermore, our proof technique can be used to provide a general theorem that provides the least restrictive
known guarantees for all the two-stage algorithms such as CoSamp and SP (see Appendix D).

All proofs omitted from the main body of the paper can be foundin the appendix.

2 Orthogonal Matching Pursuit with Replacement
Orthogonal matching pursuit (OMP), is a classic iterative algorithm for sparse recovery. At every stage, it selects a
coordinate to include in the current support set by maximizing the inner product between columns of the measurement
matrixA and the current residualb−Axt. Once the new coordinate has been added, it solves a least squares problem
to fully minimize the error on the current support set. As a result, the residual becomes orthogonal to the columns of
A that correspond to the current support set. Thus, the least squares step is also referred to asorthogonalizationby
some authors [5].

Let us briefly explain some of our notation. We use the MATLAB notation:

A\b := argmin
x

‖Ax − b‖2 .

The hard thresholding operatorHk(·) sorts its argument vector in decreasing order (in absolute value) and retains
only the topk entries. It is defined formally in the next section. Also, we use subscripts to denote sub-vectors and
submatrices, e.g. ifI ⊆ [n] is a set of cardinalityk andx ∈ R

n, xI ∈ R
k denotes the sub-vector ofx indexed byI.

Similarly,AI for a matrixA ∈ R
m×n denotes a sub-matrix of sizem×k with columns indexed byI. The complement

of setI is denoted bȳI andxĪ denotes the subvector not indexed byI. The support (indices of non-zero entries) of a
vectorx is denoted bysupp(x).

Our new algorithm called Orthogonal Matching Pursuit with Replacement (OMPR ), shown as Algorithm 1, differs
from OMP in two respects. First, the selection of the coordinate to include is based not just on the magnitude of entries
in AT (b−Axt) but instead on a weighted combinationxt +ηAT (b−Axt) with the step-sizeη controlling the relative
importance of the two addends. Second, the selected coordinatereplacesone of the existing elements in the support,
namely the one corresponding to the minimum magnitude entryin the weighted combination mentioned above.

Once the supportIt+1 of the next iterate has been determined, the actual iteratext+1 is obtained by solving the least
squares problem:

xt+1 = argmin
x : supp(x)=It+1

‖Ax − b‖2 .

Note that if the matrixA satisfies RIP of orderk or larger, the above problem will be well conditioned and canbe
solved quickly and reliably using an iterative least squares solver. We will show that OMPR, unlike OMP, recovers any
k-sparse vector under the RIP based conditionδ2k ≤ 0.499. This appears to be the least restrictive recovery condition
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(i.e., best known condition) under whichanymethod, be it basis pursuit (ℓ1-minimization) or some iterative algorithm,
is guaranteed to recoverall k-sparse vectors.

In the literature on sparse recovery, RIP based conditions of a different order other than2k are often provided. It is
seldom possible to directly compare two conditions, say, one based onδ2k and the other based onδ3k. Foucart [10] has
given a heuristic to compare such RIP conditions based on thenumber of samples it takes in the Gaussian ensemble
to satisfy a given RIP condition. This heuristic says that anRIP condition of the formδck < θ is less restrictive if the
ratio c/θ2 is smaller. For the OMPR conditionδ2k < 0.499, this ratio is2/0.4992 ≈ 8 which makes it heuristically
the least restrictive RIP condition for sparse recovery.
Theorem 1 (Noiseless Case). Suppose the vectorx⋆ ∈ R

n, ‖x⋆‖2 ≤ 1 is k-sparse and the matrixA satisfiesδ2k <
0.499 and δ2 < 0.002. Then OMPR recoversǫ approximation tox⋆ from measurementsb = Ax⋆ in O(k log k/ǫ)
iterations.
Theorem 2 (Noisy Case). Suppose the vectorx⋆ ∈ R

n, ‖x⋆‖2 ≤ 1 is k-sparse and the matrixA satisfiesδ2k < .499
and δ2 < 0.002. Then, in O(k log k/ǫ) iterations OMPR converges toC + ǫ approximate solution, i.e.,f(x) =
1/2‖A(x − x∗) + e‖2 ≤ C+ǫ

2 ‖e‖2 from measurementsb = Ax⋆ + e. C > 0 is a universal constant and is dependent
only onδ2k.
The above theorems are actually special cases of our convergence results for a family of algorithms that contains
OMPR as a special case. We now turn our attention to this family. We note that the conditionδ2 < 0.002 is very mild
and will typically hold for standard random matrix ensembles as soon as the number of rows sampled is larger than a
fixed universal constant.

3 A New Family of Iterative Algorithms
In this section we show that OMPR is one particular member of afamily of algorithms parameterized by a single
integerl ∈ {1, . . . , k}. Thel-th member of this family, OMPR (l), shown in Algorithm 2, replaces at mostl elements
of the current support with new elements. OMPR corresponds to the choicel = 1. Hence, OMPR and OMPR (1)
refer to the same algorithm.

Our first result in this section connects the OMPR family to hard thresholding. Given a setI of cardinalityk, define
the partial hard thresholding operator

Hk (z; I, l) := argmin
‖y‖0≤k

| supp(y)\I|≤l

‖y − z‖ . (1)

As is clear from the definition, the operator tries to find a vector y close to a given vectorz under two constraints: (i)
the vectory should have bounded support (‖y‖0 ≤ k), and (ii) its support should not include more thanl new elements
outside a given supportI.

The name partial hard thresholding operator is justified because of the following reasoning. Whenl = k, the constraint
| supp(y)\I| ≤ l is trivially implied by‖y‖0 ≤ k and hence the operator becomes independent ofI. In fact, it becomes
identical to the standard hard thresholding operator

Hk (z; I, k) = Hk (z) := argmin
‖y‖0≤k

‖y − z‖ . (2)

Even though the definition ofHk (z) seems to involve searching through
(

n
k

)

subsets, it can in fact be computed
efficiently by simply sorting the vectorz by decreasing absolute value and retaining the topk entries.

The following result shows that even the partial hard thresholding operator is easy to compute. In fact, lines 6–8 in
Algorithm 2 precisely computeHk

(

zt+1; It, l
)

.

Proposition 3. Let |I| = k andz be given. Theny = Hk (z; I, l) can be computed using the sequence of operations

top = indices of topl elements of|zĪ |, J = I ∪ top, y = Hk (zJ) .

The proof of this proposition is straightforward and elementary. However, using it, we can now see that the OMPR (l)
algorithm has a simple conceptual structure. In each iteration (with current iteratext having supportIt = supp(xt)),
we do the following:

1. (Gradient Descent) Formzt+1 = xt − ηAT (Axt − b). Note thatAT (Axt − b) is the gradient of the objective
function 1

2‖Ax − b‖2 atxt.
2. (Partial Hard Thresholding) Formyt+1 by partially hard thresholdingzt+1 using the operatorHk (·; It, l).
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3. (Least Squares) Form the next iteratext+1 by solving a least squares problem on the supportIt+1 of yt+1.
A nice property enjoyed by the entire OMPR family is guaranteed sparse recovery under RIP based conditions. Note
that the condition under which OMPR (l) recovers sparse vectors becomes more restrictive asl increases. This could
be an artifact of our analysis, as in experiments, we do not see any degradation in recovery ability asl is increased.
Theorem 4 (Noiseless Case). Suppose the vectorx⋆ ∈ R

n, ‖x⋆‖2 ≤ 1 is k-sparse. Then OMPR (l) recovers anǫ
approximation tox⋆ from measurementsb = Ax⋆ in O(k

l log(1/ǫ)) iterations provided we choose a step sizeη that
satisfiesη(1 + δ2l) < 1 andη(1 − δ2k) > 1/2.
Theorem 5 (Noisy Case). Suppose the vectorx⋆ ∈ R

n, ‖x⋆‖2 ≤ 1 is k-sparse. Then OMPR (l) converges to aC + ǫ-
approximate solution, i.e.,f(x) = 1/2‖Ax − b‖2 ≤ C+ǫ

2 ‖e‖2 from measurementsb = Ax⋆ + e in O(k
l log((k +

‖e‖2)/ǫ)) iterations provided we choose a step sizeη that satisfiesη(1 + δ2l) < 1 and δ2k < 1 − 1
2Dη , where

D = C−
√

C
(
√

C+1)2
.

Proof. Here we provide a rough sketch of the proof of Theorem 4; the complete proof is given in Appendix A.

Our proof uses the following crucial observation regardingthe structure of the vectorzt+1 = xt − ηAT (Axt − b) .
Due to the least squares step of the previous iteration, the current residualAxt − b is orthogonal to columns ofAIt

.
This means that

zt+1
It

= xt
It

, zt+1
Īt

= −ηAT
Īt

(Axt − b) . (3)

As the algorithm proceeds, elements come in and move out of the current setIt. Let us give names to the set of found
and lost elements as we move fromIt to It+1:

(found) : Ft = It+1\It, (lost) : Lt = It\It+1.

Hence, using (3) and updates foryt+1: yt+1
Ft

= zt+1
Ft

= −ηAT
Ft

A(xt − x⋆), andzt+1
Lt

= xt
Lt

. Now let f(x) =

1/2‖Ax− b‖2, then usingupperRIP and the fact that| supp(yt+1 − xt)| = |Ft ∪Lt| ≤ 2l, we can show that (details
are in the Appendix A):

f(yt+1) − f(xt) ≤
(

1 + δ2l

2
− 1

η

)

‖yt+1
Ft

‖2 +
1 + δ2l

2
‖xt

Lt
‖2. (4)

Furthermore, sinceyt+1 is chosen based on thek largest entries inzt+1
Jt+1

, we have:‖yt+1
Ft

‖2 = ‖zt+1
Ft

‖2 ≥ ‖zt+1
Lt

‖2 =

‖xt
Lt
‖2 . Plugging this into (4), we get:

f(yt+1) − f(xt) ≤
(

1 + δ2l −
1

η

)

‖yt+1
Ft

‖2 . (5)

The above expression shows that ifη < 1
1+δ2l

then our method monotonically decreases the objective function and
converges to a local optimum even if RIP is not satisfied (notethat upper RIP bound is independent of lower RIP
bound, and can always be satisfied by normalizing the matrix appropriately).

However, to prove convergence to the global optimum, we needto show that at least one new element is added at each
step, i.e.,|Ft| ≥ 1. Furthermore, we need to show sufficient decrease, i.e,‖yt+1

Ft
‖2 ≥ c l

kf(xt). We show both these
conditions for global convergence in Lemma 6, whose proof isgiven in Appendix A.

Assuming Lemma 6, (5) shows that at each iteration OMPR (l) reduces the objective function value by at least a
constant fraction. Furthermore, ifx0 is chosen to have entries bounded by1, thenf(x0) ≤ (1 + δ2k)k. Hence, after
O(k/l log(k/ǫ)) iterations, the optimal solutionx⋆ would be obtained withinǫ error.

Lemma 6. Let δ2k < 1 − 1
2η and1/2 < η < 1. Then assumingf(xt) > 0, at least one new element is found i.e.

Ft 6= ∅. Furthermore,‖yt+1
Ft

‖ > l
k cf(xt), wherec = min(4η(1 − η)2, 2(2η − 1

1−δ2k
)) > 0 is a constant.

Special Cases: We have already observed that the OMPR algorithm of the previous section is simply OMPR (1).
Also note that Theorem 1 immediately follows from Theorem 4.

The algorithm at the other extreme ofl = k has appeared at least three times in the recent literature: as Iterative (hard)
Thresholding with Inversion (ITI) in [16], as SVP-Newton (in its matrix avatar) in [15], and as Hard Thresholding
Pursuit (HTP) in [10]). Let us call it IHT-Newton as the leastsquares step can be viewed as a Newton step for the
quadratic objective. The above general result for the OMPR family immediately implies that it recovers sparse vectors
as soon as the measurement matrixA satisfiesδ2k < 1/3.
Corollary 7. Suppose the vectorx⋆ ∈ R

n is k-sparse and the matrixA satisfiesδ2k < 1/3. Then IHT-Newton
recoversx⋆ from measurementsb = Ax⋆ in O(log(k)) iterations.
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4 Tighter Analysis of Two Stage Hard Thresholding Algorithms

Recently, Maleki and Donoho [17] proposed a novel family of algorithms, namely two-stage hard thresholding algo-
rithms. During each iteration, these algorithms add a fixed number (sayl) of elements to the current iterate’s support
set. A least squares problem is solved over the larger support set and thenl elements with smallest magnitude are
dropped to form next iterate’s support set. Next iterate is then obtained by again solving the least squares over next
iterate’s support set. See Appendix D for a more detailed description of the algorithm.

Using proof techniques developed for our proof of Theorem 4,we can obtain a simple proof for the entire spectrum of
algorithms in the two-stage hard thresholding family.
Theorem 8. Suppose the vectorx⋆ ∈ {−1, 0, 1}n is k-sparse. Then the Two-stage Hard Thresholding algorithm with
replacement sizel recoversx⋆ from measurementsb = Ax⋆ in O(k) iterations provided:δ2k+l ≤ .35.
Note that CoSaMP [19] and Subspace Pursuit(SP) [4] are popular special cases of the two-stage family. Using our
general analysis, we are able to provide significantly less restrictive RIP conditions for recovery.
Corollary 9. CoSaMP[19] recoversk-sparsex⋆ ∈ {−1, 0, 1}n from measurementsb = Ax⋆ providedδ4k ≤ 0.35.
Corollary 10. Subspace Pursuit[4] recoversk-sparsex⋆ ∈ {−1, 0, 1}n from measurementsb = Ax⋆ provided
δ3k ≤ 0.35.
Note that CoSaMP’s analysis given by [19] requiresδ4k ≤ 0.1 while Subspace Pursuit’s analysis given by [4] requires
δ3k ≤ 0.205. See Appendix D in the supplementary material for proofs of the above theorem and corollaries.

5 Fast Implementation Using Hashing

In this section, we discuss a fast implementation of the OMPRmethod using locality-sensitive hashing. The
main intuition behind our approach is that the OMPR method selects at most one element at each step (given by
argmaxi |AT

i (Axt − b)|); hence, selection of the top most element is equivalent to finding the columnAi that is most
“similar” (in magnitude) tort = Axt − b, i.e., this may be viewed as the similarity search task for queries of the form
rt and−rt from a database ofN vectors[A1, . . . AN ].

To this end, we use locality sensitive hashing (LSH) [12], a well known data-structure for approximate nearest-
neighbor retrieval. Note that while LSH is designed for nearest neighbor search (in terms of Euclidean distances) and
in general might not have any guarantees for the similar neighbor search task, we are still able to apply it to our task
because we can lower-bound the similarity of the most similar neighbor.

We first briefly describe the LSH scheme that we use. LSH generates hash bits for a vector using randomized hash
functions that have the property that the probability of collision between two vectors is proportional to the similarity
between them. For our problem, we use the following hash function: hu(a) = sign(uT

a), whereu ∼ N(0, I) is a
random hyper-plane generated from the standard multivariate Gaussian distribution. It can be shown that [13]

Pr[hu(a1) = hu(a2)] = 1 − 1

π
cos−1

(

a
T
1 a2

‖a1‖‖a2‖

)

.

Now, an s-bit hash key is created by randomly sampling hash functionshu, i.e., g(a) =
[hu1

(a), hu2
(a), . . . , hus

(a)], where eachui is sampled randomly from the standard multivariate Gaussian
distribution. Next,q hash tables are constructed during the pre-processing stage using independently constructed hash
key functionsg1, g2, . . . , gq. During the query stage, a query is indexed into each hash table using hash-key functions
g1, g2, . . . , gq and then the nearest neighbors are retrieved by doing an exhaustive search over the indexed elements.

Below we state the following theorem from [12] that guarantees sub-linear time nearest neighbor retrieval for LSH.

Theorem 11. Let s = O(log n) andq = O(log 1/δ)n
1

1+ǫ , then with probability1 − δ, LSH recovers(1 + ǫ)-nearest
neighbors, i.e.,‖a′ − r‖2 ≤ (1 + ǫ)‖a∗ − r‖2, wherea

∗ is the nearest neighbor tor anda
′ is a point retrieved by

LSH.
However, we cannot directly use the above theorem to guarantee convergence of our hashing based OMPR algorithm
as our algorithm requires finding the most similar point in terms of magnitude of the inner product. Below, we provide
appropriate settings of the LSH parameters to guarantee sub-linear time convergence of our method under a slightly
weaker condition on the RIP constant. A detailed proof of thetheorem below can be found in Appendix B.
Theorem 12. Letδ2k < 1/4− γ andη = 1− γ, whereγ > 0 is a small constant, then with probability1− δ, OMPR
with hashing converges to the optimal solution inO(kmn1/(1+Ω(1/k)) log k/δ) computational steps.
The above theorem shows that the time complexity is sub-linear in n. However, currently our guarantees are not
particularly strong as for largek the exponent ofn will be close to1. We believe that the exponent can be improved
by more careful analysis and our empirical results indicatethat LSH does speed up the OMPR method significantly.
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Figure 1: Phase Transition Diagrams for different methods.Red represents high probability of success while blue
represents low probability of success. Clearly, OMPR recovers correct solution for a much larger region of the plot
than OMP and is comparable to IHT-Newton. (Best viewed in color)

6 Experimental Results
In this section we present empirical results to demonstrateaccurate and fast recovery by our OMPR method. In the first
set of experiments, we present a phase transition diagram for OMPR and compare it to the phase transition diagrams
of OMP and IHT-Newton with step size1. For the second set of experiments, we demonstrate robustness of OMPR
compared to many existing methods when measurements are noisy or smaller in number than what is required for exact
recovery. For the third set of experiments, we demonstrate efficiency of our LSH based implementation by comparing
recovery error and time required for our method with OMP and IHT-Newton (with step-size1 and1/2). We do not
present results for theℓ1/basis pursuit methods, as it has already been shown in several recent papers [10, 17] that the
ℓ1 relaxation based methods are relatively inefficient for very large scale recovery problems.

In all the experiments we generate the measurement matrix bysampling each entry independently from the standard
normal distributionN (0, 1) and then normalize each column to have unit norm. The underlying k-sparse vectors are
generated by randomly selecting a support set of sizek and then each entry in the support set is sampled uniformly from
{+1,−1}. We use our own optimized implementation of OMP and IHT-Newton. All the methods are implemented in
MATLAB and our hashing routine uses mex files.

6.1 Phase Transition Diagrams
We first compare different methods using phase transition diagrams which are commonly used in compressed sensing
literature to compare different methods [17]. We first fix thenumber of measurements to bem = 400 and generate
different problem sizes by varyingρ = k/m andδ = m/n. For each problem size(m,n, k), we generate random
m × n Gaussian measurement matrices andk-sparse random vectors. We then estimate the probability ofsuccess of
each of the method by applying the method to 100 randomly generated instances. A method is considered successful
for a particular instance if it recovers the underlyingk-sparse vector with at most1% relative error.

In Figure 1, we show the phase transition diagram of our OMPR method as well as that of OMP and IHT-Newton (with
step size 1). The plots shows probability of successful recovery as a function ofρ = m/n andδ = k/m. Figure 1 (a)
shows color coding of different success probabilities; redrepresents high probability of success while blue represents
low probability of success. Note that for Gaussian measurement matrices, the RIP constantδ2k is less than a fixed
constant if and only ifm = Ck log(n/k), whereC is a universal constant. This implies that1

δ = C log ρ and hence a
method that recovers for highδ2k will have a large fraction in the phase transition diagram where successful recovery
probability is high. We observe this phenomenon for both OMPR and IHT-Newton method which is consistent with
their respective theoretical guarantees (see Theorem 4). On the other hand, as expected, the phase transition diagram
of OMP has a negligible fraction of the plot that shows high recovery probability.

6.2 Performance for Noisy or Under-sampled Observations
Next, we empirically compare performance of OMPR to variousexisting compressed sensing methods. As shown
in the phase transition diagrams in Figure 1, OMPR provides comparable recovery to the IHT-Newton method for
noiseless cases. Here, we show that OMPR is fairly robust under the noisy setting as well as in the case of under-
sampled observations, where the number of observations is much smaller than what is required for exact recovery.

For this experiment, we generate random Gaussian measurement matrix of sizem = 200, n = 3000. We then generate
random binary vectorx of sparsityk and add Gaussian noise to it. Figure 2 (a) shows recovery error (‖Ax − b‖)
incurred by various methods for increasingk and noise level of10%. Clearly, our method outperforms the existing
methods, perhaps a consequence of guaranteed convergence to a local minimum forfixedstep sizeη = 1. Similarly,
Figure 2 (b) shows recovery error incurred by various methods for fixedk = 50 and varying noise level. Here again,
our method outperforms existing methods and is more robust to noise. Finally, in Figure 2 (c) we show difference in
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Figure 2: Error in recovery (‖Ax − b‖) of n = 3000 dimensional vectors fromm = 200 measurements. (a): Error
incurred by various methods as the sparsity levelk increases. Note that OMPR incurs the least error as it provably
converges to at least a local minimum forfixedstep sizeη = 1. (b): Error incurred by various methods as the noise
level increases. Here again OMPR performs significantly better than the existing methods. (c): Difference in error
incurred by IHT-Newton and OMPR , i.e., Error(IHT-Newton)-Error(OMPR ). Numbers in bracket denote confidence
interval at 95% significance level.
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Figure 3: (a): Error (‖Ax− b‖) incurred by various methods ask increases. The measurementsb = Ax are computing
by generatingx with support sizem/10. (b),(c): Error incurred and time required by various methods to recover
vectors of support size0.1m asn increases. IHT-Newton(1/2) refers to the IHT-Newton method with step sizeη = 1/2.

error incurred along with confidence interval (at95% signficance level) by IHT-Newton and OMPR for varying levels
of noises andk. Our method is better than IHT-Newton (at95% signficance level) in terms of recovery error in around
30 cells of the table, and is not worse in any of the cells but one.

6.3 Performance of LSH based implementation
Next, we empirically study recovery properties of our LSH based implementation of OMPR ( OMPR-Hash ) in the
following real-time setup: Generate a random measurement matrix from the Gaussian ensemble and construct hash
tables offline using hash functions specified in Section 5. Next, during the reconstruction stage, measurements arrive
one at a time and the goal is to recover the underlying signal accurately in real-time.For our experiments, we generate
measurements using random sparse vectors and then report recovery error‖Ax − b‖ and computational time required
by each of the method averaged over20 runs.

In our first set of experiments, we empirically study the performance of different methods ask increases. Here, we fix
m = 500, n = 500, 000 and generate measurements usingn-dimensional random vectors of support set sizem/10.
We then run different methods to estimate vectorsx of support sizek that minimize‖Ax − b‖. For our OMPR-Hash
method, we uses = 20 bits hash-keys and generateq =

√
n hash-tables. Figure 3 (a) shows the error incurred by

OMPR , OMPR-Hash , and IHT-Newton for differentk (recall thatk is an input to both OMPR and IHT-Newton).
Note that although OMPR-Hash performs an approximation at each step, it is still able to achieve error similar to
OMPR and IHT-Newton. Also, note that since the number of measurements are not enough for exact recovery by the
IHT-Newton method, it typically diverges after a few steps.As a result, we use IHT-Newton with step sizeη = 1/2
which is always guaranteed to monotonically converge to at least a local minimum (see Theorem 4). In contrast, in
OMPR and OMPR-Hash can always set step sizeη aggressively to be1.

Next, we evaluate OMPR-Hash as dimensionality of the datan increases. For OMPR-Hash , we uses = log2(n)
hash-keys andq =

√
n hash-tables. Figures 3(b) and (c) compare error incurred and time required by OMPR-Hash

with OMPR and IHT-Newton. Here again we use step sizeη = 1/2 for IHT-Newton as it does not converge forη = 1.
Note that OMPR-Hash is an order of magnitude faster than OMPRwhile incurring slightly higher error. OMPR-Hash
is also nearly2 times faster than IHT-Newton.
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A Proofs related to OMPR: Exact Recovery Case

Let us denote the objective function byf(x) = 1
2‖Ax− b‖2. Let It denote the support set ofxt andI⋆ be the support

set ofx⋆. Define the sets
FAt = It\I⋆ (false alarms)

MDt = I⋆\It (missed detections)
COt = It ∩ I⋆ (correct detections).

As the algorithms proceed, elements move in and out of the current setIt. Let us give names to the set of found and
lost elements as we move fromIt to It+1:

Ft = It+1\It (found)

Lt = It\It+1 (lost) .

We first state two technical lemmas that we will need. These can be found in [19].
Lemma 13. For anyS ⊂ [n], we have,

‖I − AT
SAS‖ ≤ δ|S|.

Lemma 14. For anyS, T ⊂ [n] such thatS ∩ T = ∅, we have,

‖AT
SAT ‖2 ≤ δ|S∪T |.

Proof of Theorem 4

Lemma 15. Let δ2k < 1 − 1
2η , f(xt) > 0. Then, in OMPR (l),

0 < 2(2η − 1

1 − δ2k
)f(xt) ≤ ‖zt+1

MDt
‖2 − ‖xt

FAt
‖2.

Proof. Sincext
It

is the solution to the least squares problemminx ‖AIt
x − b‖2,

AT
It

(AIt
xt

It
− b) = 0. (6)

Now, note that

f(xt) =
1

2
‖AIt

xt
It
− AI⋆x⋆

I⋆‖2,

=
1

2
((xt

It
)T AT

It
(AIt

xt
It
− AI⋆x⋆

I⋆) − (x⋆
I⋆)T AT

I⋆(AIt
xt

It
− AI⋆x⋆

I⋆)),

= −1

2
(x⋆

MDt
)T AT

MDt
(AIt

xt
It
− AI⋆x⋆

I⋆), by (6)

=
1

2η
(x⋆

MDt
)T zt+1

MDt
. by (3) (7)

Hence,
‖x⋆

MDt
− zt+1

MDt
‖2 = ‖x⋆

MDt
‖2 + ‖zt+1

MDt
‖2 − 2(x⋆

MDt
)T zt+1

MDt

= ‖x⋆
MDt

‖2 + ‖zt+1
MDt

‖2 − 4ηf(xt). (8)

That is,
4ηf(xt) ≤ ‖x⋆

MDt
‖2 + ‖zt+1

MDt
‖2,

≤ ‖x⋆
MDt

‖2 + ‖xt
FAt

‖2 + ‖xt
COt

− x⋆
COt

‖2 − ‖xt
FAt

‖2 + ‖zt+1
MDt

‖2,

= ‖xt − x⋆‖2 + ‖zt+1
MDt

‖2 − ‖xt
FAt

‖2,

≤ 1

1 − δ2k
‖A(xt − x⋆)‖2 + ‖zt+1

MDt
‖2 − ‖xt

FAt
‖2, by RIP

=
2

1 − δ2k
f(xt) + ‖zt+1

MDt
‖2 − ‖xt

FAt
‖2,
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where the third line follows from the fact thatMDt, FAt, andCOt are disjoint sets.

As f(xt) > 0 andδ2k < 1 − 1
2η , the above inequality implies

0 < 2(2η − 1

1 − δ2k
)f(xt) ≤ ‖zt+1

MDt
‖2 − ‖xt

FAt
‖2.

Next, we provide a lemma that bounds the function valuef(xt) in terms of missed detectionsMDt and alsozt+1
MDt

.

Lemma 16. Letf(xt) = 1
2‖Axt − b‖2, b = Ax∗, δ2k < 1 − 1

2η andη < 1. Then, at each step,

(1 − η)2

η
‖x⋆

MDt
‖2 ≤ f(xt) ≤ 1

4η(1 − η)2
‖zt+1

MDt
‖2 (9)

Proof. Now, using Lemma 2 of [4] withI = MDt, J = It, y = AMDt
x⋆

MDt
we get

f(xt) = 1
2‖Axt − b‖2

= 1
2‖AIt

(xt − x⋆)It
− AMDt

x⋆
MDt

‖2 (10)

≥ 1
2

(

1 − δ2k

1 − δk

)2

‖AMDt
x⋆

MDt
‖2

≥ 1
2

(

1 − δ2k

1 − δk

)2

(1 − δk)‖x⋆
MDt

‖2 by RIP

≥ 1
2

(

1 − δ2k

1 − δ2k

)2

(1 − δ2k)‖x⋆
MDt

‖2

≥ (1 − 2δ2k)2

2(1 − δ2k)
‖x⋆

MDt
‖2 (11)

The assumption thatδ2k < 1− 1
2η andη < 1 implies thatδ2k < 1− 1

2η < 1/2. The functionα 7→ (1−2α)2/(2(1−α))

is decreasing on[0, 1/2] and hence (11) implies

f(xt) ≥

(

1 − 2(1 − 1
2η )

)2

2(1 − 1 + 1
2η )

‖x⋆
MDt

‖2 =
(1 − η)2

η
‖x⋆

MDt
‖2. (12)

Next, using (7) and Cauchy-Schwarz inequality:

‖zt+1
MDt

‖2 ≥ 4η2 f(xt)2

‖x⋆
MDt

‖2
. (13)

The result now follows using the above equation with (12).

Lemma 17. Let δ2k < 1 − 1
2η and1/2 < η < 1. Then assumingf(xt) > 0, at least one new element is found i.e.

Ft 6= ∅. Furthermore,‖yt+1
Ft

‖2 > l
k cf(xt), wherec = min(4η(1 − η)2, 2(2η − 1

1−δ2k
)) > 0 is a constant.

Proof. We consider the following three exhaustive cases:

1. |Ft| < l and|Ft| < |MDt|: Here, we first argue thatFt 6= ∅. Assumingδ2k < 1 − 1/2η, f(xt) > 0 and
using Lemma 15,

||zt+1
MDt

|| > ||xt
FAt

||.
Also, |MDt| = |FAt|. Using (3),zt+1

FAt
= xt

FAt
. Now partial hard-thresholding selects topl elements from

zt+1, hence at least one element ofxt
FAt

must not have been selected inIt+1(asMDt should have at least
one larger element). HenceFt andLt cannot be empty.
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Let S ⊆ |MDt\Ft|, s.t.,|S| = |Ft| − |MDt ∩ Ft|. Now,

|S ∪ (MDt ∩ Ft)| = |Ft|, |(MDt\Ft)\S| = |MDt| − |Ft|.
Now, asyFt

consists of topFt elements ofzt+1
MDt

:

‖zt+1
S∪(MDt∩Ft)

‖2 ≤ ‖yFt
‖2. (14)

Furthermore, since|Ft| < l, hence every element ofzt+1
MDt\Ft

is smaller in magnitude than every element of

xt
FAt\Lt

, otherwise that element should have been included inFt. Furthermore,|MDt| − |Ft| = |FAt| −
|Lt| ≤ |FAt\Lt|. Hence,

‖zt+1
(MDt\Ft)\S‖2 ≤ ‖xt

FAt\Lt
‖2 ≤ ‖xt

FAt
‖2, (15)

Adding (14) and (15), we get:
‖zt+1

MDt
‖2 ≤ ‖yt+1

Ft
‖2 + ‖xt

FAt
‖2. (16)

Using above equation along with Lemma 15, we get:

‖yt+1
Ft

‖2 ≥ 2

(

2η − 1

1 − δ2k

)

f(xt). (17)

Now, note that if|Ft| = 0, thenyt+1
Ft

= 0 implying thatf(xt) = 0. Hence, at least one new element is added,
i.e.,yt+1

Ft
6= ∅.

2. |Ft| = l < |MDt|: By definition ofyt+1
Ft

:

‖yt+1
Ft

‖2

|Ft|
≥

‖zt+1
MDt

‖2

|MDt|
.

Hence, using Lemma 16 and the fact that|Ft| = l:

‖yt+1
Ft

‖2 ≥ l

|MDt|
4η(1 − η)2f(xt) ≥ l

k
4η(1 − η)2f(xt), (18)

as|MDt| ≤ k.

3. |Ft| ≥ |MDt|: Since,yt+1
Ft

is the top most elements ofzt+1. Hence, assuming|Ft| ≥ |MDt|,

‖yt+1
Ft

‖2 ≥ ‖zt+1
MDt

‖2.

Now, using Lemma 16:
‖yt+1

Ft
‖2 ≥ 4η(1 − η)2f(xt). (19)

We get the lemma by combining bounds for all the three cases, i.e., (17), (18), (19).

Now we give a complete proof of Theorem 4.

Proof. We have,

f(yt+1) − f(xt) = (yt+1 − xt)T AT A(xt − x⋆) + 1/2‖A(yt+1 − xt)‖2,

≤ (yt+1 − xt)T AT A(xt − x⋆) +
(1 + δ2l)

2
(‖yt+1

Ft
‖2 + ‖xt

Lt
‖2). (20)

where the second inequality follows by using the fact thatyt+1
It+1∩It

= xt
It+1∩It

and using RIP of order2l (since
| supp(yt+1 − xt)| = |Ft ∪ Lt| ≤ 2l).

Sincext
It

is obtained using least squares,
AT

It
A(xt − x⋆) = 0.

Thus,AT
Lt

A(xt − x⋆) = 0, becauseLt ⊆ It. Next, note that

yt+1
Ft

= −ηAT
Ft

A(xt − x⋆).
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Hence,

f(yt+1) − f(xt) ≤
(

1 + δ2l

2
− 1

η

)

‖yt+1
Ft

‖2 +
1 + δ2l

2
‖xt

Lt
‖2. (21)

Furthermore, sinceyt+1 is chosen based on thek largest entries inzt+1
Jt+1

, we have,

‖yt+1
Ft

‖2 = ‖zt+1
Ft

‖2 ≥ ‖zt+1
Lt

‖2 = ‖xt
Lt
‖2 .

Plugging this into (21), we get:

f(yt+1) − f(xt) ≤
(

1 + δ2l −
1

η

)

‖yt+1
Ft

‖2 .

Now, using Lemma 17,‖yt+1
Ft

‖2 ≥ l
k cf(xt) and therefore,

f(xt+1) − f(xt) ≤ f(yt+1) − f(xt) ≤ −α
l

k
f(xt)

whereα = c
(

1 + δ2l − 1
η

)

> 0 sinceη(1 + δ2l) < 1. Hence,

f(xt+1) ≤ (1 − α
l

k
)f(xt) ≤ e−α l

k f(xt).

The above inequality shows that at each iteration OMPR (l) reduces the objective function value by a fixed multi-
plicative factor. Furthermore, ifx0 is chosen to have entries bounded by1, thenf(x0) ≤ (1 + δ2k)k. Hence, after
O(k

l log((1 + δ2k)k/ǫ)) iterations, the function value reduces toǫ, i.e.,f(xt) ≤ ǫ.

B Proofs related to the LSH Section

Lemma 18. Let ‖x‖ = 1 for all pointsx in our database. Letx∗ be the nearest neighbor tor in L2 distance metric,
and letrT x∗ ≥ c > 0. Then, a(1 + αǫ)-nearest neighbor tor is also a(1 − ǫ)-similar neighbor tor, where
α ≤ 2c

1+r
T

r−2c
.

Proof. Let x′ be a(1 + αǫ)-nearest neighbor tor, then:

‖x′ − r‖2 ≤ (1 + αǫ)‖x∗ − r‖2.

Using‖x′‖ = ‖x∗‖ = 1 and simplifying, we get:

r
T x′ ≥ (1 − ǫ)rT x∗ + (α + 1)ǫrT x∗ − αǫ

2
(1 + r

T
r),

≥ (1 − ǫ)rT x∗ + ((α + 1)c − α

2
(1 + r

T
r))ǫ.

Hence,x′ is a(1 − ǫ)-approximate similar neighbor tor if:

(α + 1)c ≥ α

2
(1 + r

T
r).

The result follows after simplification.

We now provide a proof of Theorem 7.

Proof. Let us first consider a single step of OMPR . Now, similar to Lemma 15, we can show that ifδ2k < 1/4−γ and

η = 1− γ, γ > 0, then‖zt+1
MDt

‖2 > 3
2‖xt

FAt
‖2. Settingǫ = 1−

√

2
3 , implies that(1− ǫ)max |zt+1

MDt
| ≥ min |xt

FAt
|,

i.e., a(1 − ǫ)-similar neighbor tomax |zt+1
MDt

| will still lead to a constant decrease in the objective function.
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So, the goal is to ensure that with probability1− δ, δ > 0, for all theO(k) iterations, our LSH method returns at least

a (1 − ǫ)-similar neighbor tomax |zt+1
MDt

| whereǫ = 1−
√

2
3 . To this end, we need to ensure that at each stept, LSH

finds at least a(1 − ǫ)-similar neighbor tomax |zt+1
MDt

| with probability at least1 − δ/k. Using Lemma 18, we need
to find a(1 + αǫ)-nearest neighbor tomax |zt+1

MDt
|, where

α ≤ 2c

1 + r
T
r − 2c

,

andr
T x∗ ≥ c. Using Lemma 17,α = O(1/k). Hence the result now follows using Theorem 6 (main text).

C Extension to Noisy Case

In this section, we consider the noisy case in which our objective function isf(x) = 1
2‖Ax− b‖2, whereb = Ax∗ + e

ande ∈ R
m is the “noise” vector.

Let It denote the support set ofxt andI⋆ be the support set ofx⋆. Define the sets

FAt = It\I⋆ (false alarms)

MDt = I⋆\It (missed detections)
COt = It ∩ I⋆ (correct detections).

Lemma 19. Letf(xt) ≥ C
2 ‖e‖2 andδ2k < 1 − 1

2Dη , whereD = C−
√

C
(
√

C+1)2
. Then,

‖zt+1
MDt

‖2 − ‖xt
FAt

‖2 ≥ cf(xt),

wherec = 2 (
√

C+1)2

C (2ηD − 1
1−δ2k

) > 0.

Proof. Sincext
It

is the solution to the least squares problemminx ‖AIt
x − b‖2,

AT
It

(AIt
xt

It
− b) = 0. (22)

Now, note that

f(xt) =
1

2
‖AIt

xt
It
− b‖2,

=
1

2
((xt

It
)T AT

It
(AIt

xt
It
− b) − bT (AIt

xt
It
− b)),

= −1

2
bT (AIt

xt
It
− b),

= −1

2
(x∗

MDt
)T AT

MDt
(AIt

xt
It
− b) − 1

2
eT (AIt

xt
It
− b),

=
1

2η
(x⋆

MDt
)T zt+1

MDt
− 1

2
eT (AIt

xt
It
− b), (23)

where the third equality follows from (22).

Now,

‖x⋆
MDt

− zt+1
MDt

‖2 = ‖x⋆
MDt

‖2 + ‖zt+1
MDt

‖2 − 2(x⋆
MDt

)T zt+1
MDt

= ‖x⋆
MDt

‖2 + ‖zt+1
MDt

‖2 − 4η(f(xt) +
1

2
eT (AIt

xt
It
− b)) (24)
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So,

0 ≤ ‖x⋆
MDt

‖2 + ‖xt
FAt

‖2 − ‖xt
FAt

‖2 + ‖zt+1
MDt

‖2 − 4η(f(xt) +
1

2
eT (AIt

xt
It
− b)),

≤ ‖x⋆
MDt

‖2 + ‖xt
FAt

‖2 + ‖xt
COt

− x⋆
COt

‖2 − ‖xt
FAt

‖2 + ‖zt+1
MDt

‖2 − 4η(f(xt) +
1

2
eT (AIt

xt
It
− b)),

≤ ‖xt − x∗‖2 − ‖xt
FAt

‖2 + ‖zt+1
MDt

‖2 − 4η(f(xt) +
1

2
eT (AIt

xt
It
− b)),

≤ 1

1 − δ2k
‖A(xt − x∗)‖2 − ‖xt

FAt
‖2 + ‖zt+1

MDt
‖2 − 4η(f(xt) +

1

2
eT (AIt

xt
It
− b)),

=
1

1 − δ2k
‖A(xt − x∗)‖2 − ‖xt

FAt
‖2 + ‖zt+1

MDt
‖2 − 4η(1 − 1√

C
)f(xt).

Now, by assumption:f(xt) ≥ C
2 ‖e‖2. Hence,

‖A(xt − x∗)‖ ≤ ‖A(xt − x∗) − e‖ + ‖e‖,

‖A(xt − x∗)‖2 ≤ 2(1 +
1√
C

)2f(xt).

Hence,

2

(

2η(1 − 1√
C

) − 1

1 − δ2k
(1 +

1√
C

)2
)

f(xt) ≤ ‖zt+1
MDt

‖2 − ‖xt
FAt

‖2

Now, by assumptionδ2k < 1 − 1
2Dη , whereD = (

√
C+1)2

C−
√

C
. Hence,c = 2 (

√
C+1)2

C (2ηD − 1
1−δ2k

) > 0.

Next, we provide a lemma that bounds the function valuef(xt) in terms of missed detectionMDt and alsozt+1
MDt

.

Lemma 20. Let f(xt) = 1
2‖Axt − b‖2 ≥ C

2 ‖e‖2, b = Ax∗ + e, δ2k < 1 − 1
2Dη andD = C−

√
C

(
√

C+1)2
. Then, at each

step,
(1 − η)2C

η(
√

C + 1)2
‖x⋆

MDt
‖2 ≤ f(xt) ≤ 1

4η(1 − η)2
(
√

C + 1)2

(
√

C − 1)2
‖zt+1

MDt
‖2 (25)

Proof. First we lower boundf(xt):

√

f(xt) =
1√
2
‖Axt − Ax∗ − e‖,

≥ 1√
2

(

‖Axt − Ax∗‖ − ‖e‖
)

,

≥ 1√
2

(

min
x : xĪt

=0
‖Ax − Ax∗‖ − ‖e‖

)

,

≥ 1√
2

(

(1 − 2δ2k)
√

(1 − δ2k)
‖x⋆

MDt
‖ − ‖e‖

)

,

where last equality follows from Lemma 16. Using the above inequality withf(xt) ≥ C
2 ‖e‖2, we get:

f(xt) ≥ (1 − 2δ2k)2C

2(1 − δ2k)(
√

C + 1)2
‖x⋆

MDt
‖2. (26)

The assumption thatδ2k < 1 − 1
2Dη andDη < 1 implies thatδ2k < 1 − 1

2Dη < 1/2. The functionα 7→ (1 −
2α)2/(2(1 − α)) is decreasing on[0, 1/2] and hence the above equation implies

f(xt) ≥ (1 − Dη)2

Dη
‖x⋆

MDt
‖2. (27)
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Now, we upper boundf(xt). Using definition off(xt):

1

2η
(x⋆

MDt
)T zt+1

MDt
= f(xt) +

1

2
eT (AIt

xt
It
− b).

Now, using Cauchy-Schwarz andf(xt) ≥ C
2 ‖e‖2,

∣

∣eT (AIt
xt

It
− b)

∣

∣ ≤ ‖e‖‖AIt
xt

It
− b‖ ≤ 2√

C
f(xt).

Hence,
1

2η
‖x⋆

MDt
‖‖zt+1

MDt
‖ ≥ 1

2η
(x⋆

MDt
)T zt+1

MDt
≥ (1 − 1√

C
)f(xt).

That is,

‖zt+1
MDt

‖2 ≥ 4η2

(

1 − 1√
C

)2
f(xt)2

‖x⋆
MDt

‖2
≥ 4η(1 − Dη)2

(
√

C − 1)2

CD
f(xt), (28)

where the second inequality follows from (27).

Next, we present the following lemma that shows “enough” progress at each step:

Lemma 21. Let f(xt) ≥ C
2 ‖e‖2, η < 1 andδ2k < 1 − 1

2Dη , whereD = 1 − 1√
C−1

. Then at least one new element

is found i.e.Ft 6= ∅. Furthermore,‖yt+1
Ft

‖ > l
kαf(xt), whereα = min(4η(1 − Dη)2 (

√
C−1)2

CD , 2 (
√

C+1)2

C (2ηD −
1

1−δ2k
)) > 0 is a constant.

Proof. As for the exact case, we analyse the following three exhaustive cases:

1. |Ft| < l and|Ft| < |MDt|: Here we use the exactly similar argument as the exact case toobtain the following
inequality (see (16)):

‖zt+1
MDt

‖2 ≤ ‖yt+1
Ft

‖2 + ‖xt
FAt

‖2. (29)

Using Lemma 19, we get:
‖yt+1

Ft
‖2 ≥ cf(xt), (30)

wherec is as defined in Lemma 19. Now, note that if|Ft| = 0, thenyt+1
Ft

= 0 implying thatf(xt) = 0.
Hence, at least one new element is added, i.e.,yt+1

Ft
6= ∅.

2. |Ft| = l < |MDt|: By definition ofyt+1
Ft

:

‖yt+1
Ft

‖2

|Ft|
≥

‖zt+1
MDt

‖2

|MDt|
.

Hence, using Lemma 20 and the fact that|Ft| = l:

‖yt+1
Ft

‖2 ≥ l

|MDt|
4η(1 − Dη)2

(
√

C − 1)2

CD
f(xt) ≥ l

k
4η(1 − Dη)2

(
√

C − 1)2

CD
f(xt), (31)

as|MDt| ≤ k.

3. |Ft| ≥ |MDt|: Since,yt+1
Ft

is the top most elements ofzt+1. Hence, assuming|Ft| ≥ |MDt|,

‖yt+1
Ft

‖2 ≥ ‖zt+1
MDt

‖2.

Now, using Lemma 20:

‖yt+1
Ft

‖2 ≥ 4η(1 − Dη)2
(
√

C − 1)2

CD
f(xt). (32)

We get the lemma by combining bounds for all the three cases, i.e., (30), (31), (32).

Now, we provide a proof of Theorem 2.

16



Proof. We have,

f(yt+1) − f(xt) = (yt+1 − xt)T AT (Axt − b) + 1/2‖A(yt+1 − xt)‖2,

≤ (yt+1 − xt)T AT (Axt − b) +
(1 + δ2l)

2
(‖yt+1

Ft
‖2 + ‖xt

Lt
‖2). (33)

where the second inequality follows by using the fact thatyt+1
It+1∩It

= xt
It+1∩It

and using RIP of order2l (since
| supp(yt+1 − xt)| = |Ft ∪ Lt| ≤ 2l).

Sincext
It

is obtained using least squares,

AT
It

(Axt − b) = 0.

That is,AT
Lt

(Axt − b) = 0, becauseLt ⊆ It. Next, note that

yt+1
Ft

= −ηAT
Ft

(Axt − b).

Hence,

f(yt+1) − f(xt) ≤
(

1 + δ2l

2
− 1

η

)

‖yt+1
Ft

‖2 +
1 + δ2l

2
‖xt

Lt
‖2. (34)

Furthermore, sinceyt+1 is chosen based on largest entries inzt+1
Jt+1

, we have,

‖yt+1
Ft

‖2 = ‖zt+1
Ft

‖2 ≥ ‖zt+1
Lt

‖2 = ‖xt
Lt
‖2 .

Plugging this into (34), we get:

f(yt+1) − f(xt) ≤
(

1 + δ2l −
1

η

)

‖yt+1
Ft

‖2 .

Now, using Lemma 21,‖yt+1
Ft

‖2 ≥ αf(xt) > 0 and therefore,

f(xt+1) − f(xt) ≤ f(yt+1) − f(xt)

≤ −c′
l

k
f(xt) ,

wherec′ = 1−η(1+δ2l)
η(1+δ2l)

α > 0 sinceη(1 + δ2l) < 1. The above inequality shows that at each iteration OMPR (l)

reduces the objective function value by a fixed multiplicative factor. Furthermore, ifx0 is chosen to have entries
bounded by1, thenf(x0) ≤ O((1 + δ2k)k + ‖e‖2). Hence, afterO(k

l log((k + ‖e‖2)/ǫ)) iterations, the function
value reduces toC‖e‖2/2 + ǫ.

D Analysis of 2-stage Algorithms

In this section, we consider the family of two-stage hard thresholding algorithms (see Algorithm 3) introduced by [17].

We now provide a simple analysis for the general two-stage hard thresholding algorithms. We first present a few
technical lemmas that we will need for our proof.

Lemma 22. Let b = Ax⋆, whereI∗ = supp(x⋆). Also, letx = argminsupp(x)=I ‖Ax − b‖2. Then,

√

‖(x − x⋆)I∩I∗‖2 + ‖xI\I∗‖2 = ‖(x − x⋆)I‖ ≤ δ|I∪I∗|
√

1 − δ2
|I∪I∗|

‖x⋆
I∗\I‖

17



Algorithm 3 Two-stage(l)
1: Input: matrixA, vectorb, sparsity levelk
2: Initialize x1

3: for t = 1 to T do
4: topt+1 ← indices of topl elements of|AT (Axt − b)|
5: Jt+1 ← It ∪ topt+1

6: zt+1
Jt+1

← AJt+1
\b, zt+1

J̄t+1
← 0

7: yt+1 ← Hk

(

zt+1
)

8: It+1 ← supp(yt+1)
9: xt+1

It+1
← AIt+1

\b, xt+1
Īt+1

← 0

10: end for

Proof. A similar inequality appears in [10] and we rewrite the proofhere. SincexI is the solution tominu ‖AIu−b‖2,

AT
I (AIxI − b) = 0. (35)

In the exact case,b = Ax∗. Hence,

‖(x − x⋆)I‖2 = [(x − x⋆)I 0]
T

[

(x − x⋆)I

−x⋆
I∗\I

]

(36)

Now, using (35):

0 = [(x − x⋆)I 0]
T

AT
GAG

[

(x − x⋆)I

−x⋆
I∗\I

]

, (37)

whereG = [I I∗\I]. Subtracting (37) from (36) we get,

‖(x − x⋆)I‖2 = [(x − x⋆)I 0]
T

(I − AT
GAG)

[

(x − x⋆)I

−x⋆
I∗\I

]

,

≤ δ2k‖(x − x⋆)I‖
√

‖(x − x⋆)I‖2 + ‖x⋆
I∗\I‖2, (38)

where the second inequality follows using Lemma 13. Lemma follows by just rearranging terms now.

We now present our main theroem and its proof for two-stage thresholding algorithms.
Theorem 23. Suppose the vectorx⋆ ∈ R

n is k-sparse and binary. Then Two-stage(l) recoversx⋆ from measurements
b = Ax⋆ in O(k) iterations provided:

δ2k+l ≤ .35

Proof. As zt+1 is the least squares solution over support setJt+1, hence:

f(zt+1) − f(xt) ≤ f(st+1) − f(xt), (39)

wherest+1
Jt+1

= (xt − ηAT (Axt − b))Jt+1
, η = 1

1+δl
andst+1

J̄t+1
= 0.

Now,

f(st+1) − f(xt) = (st+1 − xt)T AT (Axt − b) +
1

2
‖Ast+1 − Axt‖2. (40)

Now, asxt is the least squares solution overIt. Hence,AT
It

(Axt − b) = 0. Hence,

(st+1 − xt)It
= 0, (st+1 − xt)topt+1

= −ηAT
topt+1

(Axt − b), (st+1 − xt)J̄t+1
= 0. (41)

Using (40) and (41):

f(st+1) − f(xt) = −η‖AT
topt+1

(Axt − b)‖2 +
η2

2
‖Atopt+1

AT
topt+1

(Axt − b)‖2,

≤ −η‖AT
topt+1

(Axt − b)‖2 +
η2(1 + δl)

2
‖AT

topt+1
(Axt − b)‖2,

= −η

2
‖AT

topt+1
(Axt − b)‖2. (42)
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Now, letMDt be the set of missed detections, i.e.,MDt = I∗\It. Then, by definition oftopt+1:

‖AT
topt+1

(Axt − b)‖2 ≥ min

(

1,
l

|MDt|

)

‖AT
MDt

(Axt − b)‖2. (43)

Furthermore,

‖AT
MDt

(Axt − b)‖ = ‖AT
MDt

AMDt
x∗

MDt
− AT

MDt
AIt

(xt − x∗)It
‖,

≥ ‖AT
MDt

AMDt
x∗

MDt
‖ − ‖AT

MDt
AIt

(xt − x∗)It
‖,

≥ (1 − δk)‖x∗
MDt

‖ − δ2
2k

√

1 − δ2
2k

‖x∗
MDt

‖, (44)

where last inequality follows using Lemma 14 and Lemma 22.

Hence, using (42), (43), and (44):

f(zt+1) − f(xt) ≤ f(st+1) − f(xt) ≤ − 1

2(1 + δl)
min

(

1,
l

|MDt|

)

(

1 − δk − δ2
2k

√

1 − δ2
2k

)2

‖x∗
MDt

‖2. (45)

Next, we upper bound increase in the objective function by removingl elements fromzt+1.

f(yt+1) − f(zt+1) = (yt+1 − zt+1)T AT (Azt+1 − b) +
1

2
‖Ayt+1 − Azt+1‖2,

=
1

2
‖Ayt+1 − Azt+1‖2,

≤ 1 + δl

2
‖zt+1

Jt+1\It+1
‖2, (46)

where the second equation follows aszt+1 is a least squares solution, and bothyt+1, zt+1’s support is a subset of
Jt+1. The third equation follows from RIP and the fact thatzt+1

It+1
= yt+1

It+1
.

Now, using Lemma 22:

‖zt+1
Jt+1\I∗‖2 ≤ δ2

2k+l

1 − δ2
2k+l

‖x∗
I∗\Jt+1

‖2. (47)

Furthermore,|Jt+1\It+1| = l ≤ |Jt+1\I∗|. Hence, by definition ofIt+1,

‖zt+1
Jt+1\It+1

‖2 ≤ l

|Jt+1\I∗|
‖zt+1

Jt+1\I∗‖2.

Using above equation and (47), we get:

‖zt+1
Jt+1\It+1

‖2 ≤ l

|Jt+1\I∗|
δ2
2k+l

1 − δ2
2k+l

‖x∗
I∗\Jt+1

‖2, (48)

Also, |Jt+1\I∗| = l + |I∗\Jt+1| ≤ l + |MDt|. Using (46), (48), and the fact thatf(xt+1) ≤ f(yt+1) and each
x∗

I∗ = 1:

f(xt+1) − f(zt+1) ≤ l

l + |I∗\Jt+1|
1 + δl

2

δ2
2k+l

1 − δ2
2k+l

|I∗\Jt+1|. (49)

Adding (45) and (49), we get:

f(xt+1) − f(xt) ≤ − 1

2(1 + δl)



min (|MDt|, l)
(

1 − δk − δ2
2k

√

1 − δ2
2k

)2

− l · |I∗\Jt+1|
l + |I∗\Jt+1|

(1 + δl)
2δ2

2k+l

1 − δ2
2k+l



 .

(50)
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Now, l·|I∗\Jt+1|
l+|I∗\Jt+1| ≤ min(l, |I∗\Jt+1|) ≤ min(l, |MDt|).

Hence,

f(xt+1) − f(xt) ≤ −min(l, |MDt|)
2(1 + δl)





(

1 − δk − δ2
2k

√

1 − δ2
2k

)2

− (1 + δl)
2δ2

2k+l

1 − δ2
2k+l



 . (51)

Now consider:




(

1 − δk − δ2
2k

√

1 − δ2
2k

)2

− (1 + δl)
2δ2

2k+l

1 − δ2
2k+l



 ≥ 1

1 − δ2
2k+l

(

((1 − δ2k+l)
√

1 − δ2
2k+l − δ2

2k+l)
2 − (1 + δ2k+l)

2δ2
2k+l

)

,

> 0.01, (52)

where the second inequality follows by substitutingδ2k+1 ≤ .35.

Hence, using (51) and (52), we have:

f(xt+1) ≤ f(xt) − min(l, |MDt|) · 0.0001. (53)

The above equation guarantees convergence to the optima in at leastO(k) steps although faster convergence can be
shown for largerk.

Corollary 24. Cosamp converges to the optima provided

δ4k ≤ 0.35.
Corollary 25. Subspace-Pursuit converges to the optima provided

δ3k ≤ 0.35.

Note that CoSamp’s analysis given by [19] requiresδ4k ≤ 0.1 while Subspace pursuit’s analysis given by [4] requires
δ3k ≤ 0.205. Note that our generic analysis provides significantly better guarantees for both the methods.
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