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Abstract

In this paper, we consider the problem of compressed semsiage the goal is to recover almask
sparse vectors using a small numbefieédlinear measurements. For this problem, we propose a
novel partial hard-thresholding operator that leads toreegg family of iterative algorithms. While
one extreme of the family yields well known hard threshaidatgorithms like ITI and HTPR[17,10],
the other end of the spectrum leads to a novel algorithm tleatall Orthogonal Matching Pursuit
with Replacement (OMPR). OMPR, like the classic greedy rtigm OMP, adds exactly one coor-
dinate to the support at each iteration, based on the cboelaith the current residual. However,
unlike OMP, OMPR also removes one coordinate from the supgdis simple change allows us
to prove that OMPR has the best known guarantees for spargeeny in terms of the Restricted
Isometry Property (a condition on the measurement matmgontrast, OMP is known to have very
weak performance guarantees under RIP. Given its simpletate, we are able to extend OMPR
using locality sensitive hashing to get OMPR-Hash, the fiirsvably sub-linear (in dimensionality)
algorithm for sparse recovery. Our proof techniques arelheand flexible enough to also permit the
tightest known analysis of popular iterative algorithmsisas CoSaMP and Subspace Pursuit. We
provide experimental results on large problems providewpvery for vectors of size up to million
dimensions. We demonstrate that for large-scale problamgmposed methods are more robust
and faster than existing methods.

1 Introduction

We nowadays routinely face high-dimensional datasets/grsie application areas such as biology, astronomy, finance
and the web. The associated curse of dimensionality is afliemiated by prior knowledge that the object being
estimated has some structure. One of the most natural atdtweled structural assumption for vectors is sparsity.
Accordingly, a huge amount of recent work in machine leagnstatistics and signal processing has been devoted
to finding better ways to leverage sparse structures. Caspdesensing, a new and active branch of modern signal
processing, deals with the problem of designing measurematrices and recovery algorithms, such that alnadist
sparse signals can be recovered from a small number of negasats. It has important applications in imaging,
computer vision and machine learning (see, for examgl@4914]).

In this paper, we focus on the compressed sensing setiing] Bhere we want to design a measurement matrix
A € R™*™ such that a sparse vector € R"™ with [|z*||o := |supp(z*)| < k < n can be efficiently recovered from
the measurements= Axz* € R™. Initial work focused on various random ensembles of mesrit such that, ifA

was chosen randomly from that ensemble, one would be abéztwer all or almost all sparse vectarsfrom Axz*.
Candes and Tad[3] isolated a key property called the réstiisometry property (RIP) and proved that, as long as the
measurement matrid satisfies RIP, the true sparse vector can be obtained byigawi¢, -optimization problem,

min ||z|[; s.t. Az =b.

The above problem can be easily formulated as a linear prograd is hence efficiently solvable. We recall for the
reader that a matrixd is said to satisfy RIP of ordek if there is soméj;, € [0, 1) such that, for allz with ||z, < &,
we have

(1= d)lll® < lAz|® < (1 + o)1=l -



Several random matrix ensembles are known to safigfy< 6 with high probability provided one chooses =

0] (g—’§ log %) measurements. It was shovin [2] tiatminimization recovers alt-sparse vectors provided satisfies
Sor < 0.414 although the condition has been recently improvedbto< 0.473 [11]. Note that, in compressed sensing,
the goal is to recover all, or mogt;sparse signals using tlsamemeasurement matrid. Hence, weaker conditions
such as restricted convexity [20] studied in the statistitarature (where the aim is to recovesiglesparse vector
from noisy linear measurements) typically do not sufficefalet, if RIP is not satisfied then multiple sparse vectors
can lead to the same observatiginence making recovery of the true sparse vector impossible

Based on its RIP guaranteés;minimization can guarantee recovery using jost log(n/k)) measurements, but it
has been observed in practice thaiminimization is too expensive in large scale applicatifjsfor example, when
the dimensionality is in the millions. This has sparked aehirgerest in iterative methods for sparse recovery. An
early classic iterative method is Orthogonal Matching Bii®©MP) [21,[6] that greedily chooses elements to add to
the support. It is a natural, easy-to-implement and fashotebut unfortunately lacks strong theoretical guarantees
Indeed, it is known that, if run fok iterations, OMP cannot uniformly recover @lisparse vectors assuming RIP
condition of the form,;, < 0 [22,[18]. However, Zhang [26] showed that OMP, if run 80K iterations, recovers the
optimal solution whems;;, < 1/3; a significantly more restrictive condition than the oneguiged by other methods
like /1-minimization.

Several other iterative approaches have been proposeththade Iterative Soft Thresholding (IST)_[17], Iterative
Hard Thresholding (IHT)J1], Compressive Sampling MatghPursuit (CoSaMP) [19], Subspace Pursuit ($P) [4],
Iterative Thresholding with Inversion (ITI) [16], Hard Tésholding Pursuit (HTP).[10] and many others. In the family
of iterative hard thresholding algorithms, we can identifp major subfamilies [17]: one- and two-stage algorithms.
As their names suggest, the distinction is based on the nuofilséages in each iteration of the algorithm. One-stage
algorithms such as IHT, ITI and HTP, decide on the choice efribxt support set and then usually solve a least
squares problem on the updated support. The one-stage dsedlveays set the support set to have dizevherek

is the target sparsity level. On the other hand, two-stagerihms, notable examples being CoSaMP and SP, first
enlargethe support set, solve a least squares on it, andréucethe support set back again to the desired size. A
second least squares problem is then solved on the reduppdrsuThese algorithms typically enlarge and reduce
the support set by or 2k elements. An exception is the two-stage algorithm FoBa {2&] adds and removes single
elements from the support. However, it differs from our megd methods as its analysis requires very restrictive RIP
conditions g, < 0.1 as quoted in[[14]) and the connection to locality sensitigshing (see below) is not made.
Another algorithm with replacement steps was studied byeSkahwartz et al[[23]. However, the algorithm and the
setting under which it is analyzed are different from ours.

In this paper, we present, and provide a unified analysisaféamily of one-stage iterative hard thresholding algo-
rithms. The family is parameterized by a positive intelger k. At the extreme valué = k, we recover the algorithm
ITI/HTP. At the other extremé& = 1, we get a novel algorithm that we call Orthogonal Matchingshii with Re-
placement (OMPR). OMPR can be thought of as a simple modditaf the classic greedy algorithm OMP: instead
of simply addingan element to the existing supportréplacesan existing support element with a new one. Surpris-
ingly, this change allows us to prove sparse recovery urfteconditionds, < 0.499. This is the besbs;, based
RIP condition under whiclany method, including/;-minimization, is (currently) known to provably performasge
recovery.

OMPR also lends itself to a faster implementation usinglibcaensitive hashing (LSH). This allows us to provide
recovery guarantees using an algorithm whose run-timeogapty sub-linear im, the number of dimensions. An
added advantage of OMPR, unlike many iterative methoddasrio careful tuning of the step-size parameter is
required even under noisy settings or even when RIP doesfeht The default step-size dfis always guaranteed to
converge to at least a local optimum.

Finally, we show that our proof techniques used in the amalgsthe OMPR family are useful in tightening the
analysis of two-stage algorithms, such as CoSaMP and SRelasAg a result, we are able to prove better recovery
guarantees for these algorithmséy; < 0.35 for CoSaMP, ands;, < 0.35 for SP. We hope that this unified analysis
sheds more light on the interrelationships between thewarkinds of iterative hard thresholding algorithms.

In summary, the contributions of this paper are as follows.

e \We present a family of iterative hard thresholding alganighthat on one end of the spectrum includes ex-
isting methods such as ITI/HTP while on the other end givesPFRMOMPR is an improvement over the
classical OMP method as it enjoys better theoretical giaesrand is also better in practice as shown in our
experiments.



Algorithm 1 OMPR Algorithm 2 OMPR ()

1: Input: matrix A, vectorb, sparsity levek 1: Input: matrix A, vectorbd, sparsity levek
2: Parameter: step size; > 0 2: Parameter: step size; > 0
3: Initialize ! s.t.| supp(a!)| = k, I = supp(x?) 3: Initialize ! s.t.| supp(a!)| = k, I} = supp(x?)
4: fort=1toT do 4: fort=1toT do
5. 2l at 4 nAT(b— Axt) 5. 2l at 4 nAT(b— Axt)
6:  jiy1 < argmax;gq |20 6:  top,; — indices of topl elements ofz "
7. Jt+1 — It U {jt+1} 7. Jt+1 — It ] tOpt+1
t+1 .
8 yt+1 — H;. (ZJH—l 8: yt+1 — H;. (Zt]:_ll>
9: Iy < supp(y'th) 90 Ipyq < supp(y'™)
: t+1 t+1 .
10: Ty e A1t+1\b7 LCI—H_l —0 10: xtlirll — AIt+l\b7 xtl_::—ll —0
11: end for 11: end for

e Unlike other improvements over OMP, such as CoSaMP or SP, ®ltanges only one element of the
support at a time. This allows us to use Locality Sensitivettiteg (LSH) to speed it up resulting in the first
provably sub-linear (in the ambient dimensionalifytime sparse recovery algorithm.

e \We provide a general proof for all the algorithms in our @dttiard thresholding based family. In particular,
we can guarantee recovery using OMPR, under both noisehekadisy settings, providedh, < 0.499.
This is the least restrictivé;, condition under whickanyefficient sparse recovery method is known to work.
Furthermore, our proof technique can be used to provide aergktheorem that provides the least restrictive
known guarantees for all the two-stage algorithms such &@p and SP (see Appenfik D).

All proofs omitted from the main body of the paper can be foumthe appendix.

2 Orthogonal Matching Pursuit with Replacement

Orthogonal matching pursuit (OMP), is a classic iteratilgodathm for sparse recovery. At every stage, it selects a
coordinate to include in the current support set by maxingjizhe inner product between columns of the measurement
matrix A and the current residual- Azt. Once the new coordinate has been added, it solves a leasesqroblem

to fully minimize the error on the current support set. Assuit the residual becomes orthogonal to the columns of
A that correspond to the current support set. Thus, the lgastrss step is also referred to@shogonalizationby
some authors [5].

Let us briefly explain some of our notation. We use the MATLA@ation:

A\b := argmin || Az — bl|5 .

The hard thresholding operatéfy () sorts its argument vector in decreasing order (in absolalkeey and retains
only the topk entries. It is defined formally in the next section. Also, v subscripts to denote sub-vectors and
submatrices, e.g. if C [n] is a set of cardinality: andz € R", z; € R* denotes the sub-vector ofindexed byI.
Similarly, Ay for amatrixA € R™*" denotes a sub-matrix of size x k& with columns indexed by. The complement

of set! is denoted by andz; denotes the subvector not indexed/bylhe support (indices of non-zero entries) of a
vectorz is denoted byupp(z).

Our new algorithm called Orthogonal Matching Pursuit witbpRacement (OMPR ), shown as Algoritfiin 1, differs
from OMP in two respects. First, the selection of the coatdro include is based not just on the magnitude of entries
in AT (b— Ax') but instead on a weighted combinatieht-nA” (b — Ax*) with the step-sizeg controlling the relative
importance of the two addends. Second, the selected cabedaplacesone of the existing elements in the support,
namely the one corresponding to the minimum magnitude émtitye weighted combination mentioned above.

Once the suppott;, ; of the next iterate has been determined, the actual itefdteis obtained by solving the least
squares problem:
1 = argmin |Az — b2 .
x :supp(z)=Ii41
Note that if the matrix4 satisfies RIP of ordek or larger, the above problem will be well conditioned and ban
solved quickly and reliably using an iterative least sqea@ver. We will show that OMPR, unlike OMP, recovers any
k-sparse vector under the RIP based conditign< 0.499. This appears to be the least restrictive recovery conmditio



(i.e., best known condition) under whieimymethod, be it basis pursuit;¢minimization) or some iterative algorithm,
is guaranteed to recoval k-sparse vectors.

In the literature on sparse recovery, RIP based conditibasdifferent order other tha2k are often provided. It is
seldom possible to directly compare two conditions, sag,lmsed o#,;, and the other based @p,. Foucart/[10] has
given a heuristic to compare such RIP conditions based onuh#er of samples it takes in the Gaussian ensemble
to satisfy a given RIP condition. This heuristic says thaR#ia condition of the formi., < 6 is less restrictive if the
ratio ¢/6? is smaller. For the OMPR conditiafy, < 0.499, this ratio is2/0.499% ~ 8 which makes it heuristically
the least restrictive RIP condition for sparse recovery.

Theorem 1 (Noiseless Case)Suppose the vectar: € R"™, ||z*||2 < 1 is k-sparse and the matri¥ satisfiesis;, <
0.499 andd, < 0.002. Then OMPR recoversapproximation tar* from measurements= Axz* in O(klogk/¢)
iterations.

Theorem 2 (Noisy Case) Suppose the vector € R™, ||z*||2 < 1is k-sparse and the matrid satisfiesiy, < .499
andds < 0.002. Then, in Oklog k/¢) iterations OMPR converges 10 + e approximate solution, i.ef(x) =
1/2||A(z — z*) + €]|? < €F<|le||> from measurements= Az* + e. C > 0 is a universal constant and is dependent
only ondag.

The above theorems are actually special cases of our can@gesults for a family of algorithms that contains
OMPR as a special case. We now turn our attention to this yaiié note that the conditiof, < 0.002 is very mild
and will typically hold for standard random matrix ensenstéds soon as the number of rows sampled is larger than a
fixed universal constant.

3 A New Family of Iterative Algorithms

In this section we show that OMPR is one particular member fafnaily of algorithms parameterized by a single
integerl € {1,...,k}. Thel-th member of this family, OMPRI), shown in Algorithni®2, replaces at mdstlements
of the current support with new elements. OMPR correspondiset choicd = 1. Hence, OMPR and OMPR)
refer to the same algorithm.

Ouir first result in this section connects the OMPR family tadithresholding. Given a sétof cardinalityk, define
the partial hard thresholding operator

Hy (z;1,1):= argmin ||y — z]| . Q)
lyllo<k
| supp(y)\7|<!

As is clear from the definition, the operator tries to find atgeg close to a given vector under two constraints: (i)
the vectory should have bounded suppalfy(o < k), and (ii) its support should not include more tHarew elements
outside a given suppofrt

The name partial hard thresholding operator is justifiecdbee of the following reasoning. Whég- k, the constraint
| supp(y)\I| < lis trivially implied by ||y||o < k and hence the operator becomes independehtlaffact, it becomes
identical to the standard hard thresholding operator

Hy (z;1,k) = Hg (2) := argmin ||y — 2] . )
llyllo<k

Even though the definition off;, (z) seems to involve searching througf) subsets, it can in fact be computed
efficiently by simply sorting the vectar by decreasing absolute value and retaining thekteptries.

The following result shows that even the partial hard thoédihg operator is easy to compute. In fact, lines 6-8 in
Algorithm[2 precisely computél;, (z'1; I, 1).
Proposition 3. Let|/| = k andz be given. Thewy = Hy, (z;1,1) can be computed using the sequence of operations

top = indices of tog elements ofz7|, J=1Utop, y= Hy(zs) .

The proof of this proposition is straightforward and eletaen However, using it, we can now see that the OMBR (
algorithm has a simple conceptual structure. In each itrdtvith current iterater’ having support; = supp(z?)),
we do the following:
1. (Gradient Descent) Forai™! = 2t —nAT (Ax! —b). Note thatA” (Az* —b) is the gradient of the objective
function 1 || Az — b||? ata’.
2. (Partial Hard Thresholding) Forgi*! by partially hard thresholding’** using the operatoH;, (-; I;, ).



3. (Least Squares) Form the next iteraté' by solving a least squares problem on the suppart of y*1.

A nice property enjoyed by the entire OMPR family is guaradtsparse recovery under RIP based conditions. Note
that the condition under which OMPR) fecovers sparse vectors becomes more restrictivénaseases. This could
be an artifact of our analysis, as in experiments, we do reasg degradation in recovery ability &is increased.

Theorem 4 (Noiseless Case)Suppose the vectar* € R”, ||z*||2 < 1 is k-sparse. Then OMPR)(recovers are
approximation taz* from measurements= Az* in O(% log(1/e)) iterations provided we choose a step sizthat
satisfies)(1 + dy;) < 1 andn(1 — z;,) > 1/2.

Theorem 5 (Noisy Case) Suppose the vectar € R", ||z*||2 < 1is k-sparse. Then OMPR)(converges to &' +e-
approximate solution, i.ef(z) = 1/2||Az — b||? < &F<|le||*> from measurements = Az* + e in O( log((k +
llel|?)/€)) iterations provided we choose a step sigéhat satisfies)(1 + d;) < 1 anddar < 1 — where

2D77
(VC+1)2” . L .
Proof. Here we provide a rough sketch of the proof of Theokém 4; timeptete proof is given in Appendix A.

Our proof uses the following crucial observation regarding structure of the vectar ! = 2t — nAT (Azt —b) .
Due to the least squares step of the previous iteration,uhemt residualdz® — b is orthogonal to columns of ;, .
This means that

ZZH = :172 , szH nAT (Ax' —b) . 3)
As the algorithm proceeds, elements come in and move ougdfittrent sef;. Let us give names to the set of found
and lost elements as we move frdpto 7, 4:
(found): F; = I;41\14, (lost): L; = I;\Ij41.
Hence, using[{3) and updates for,1: yii' = 27! = —nAL A(a! — 2*), and 2]t = 2% . Now let f(z) =

1/2||Ax — b||?, then usingupperRIP and the fact thatsupp(y* ! — 2t)| = |F, U L,| < 21, we can show that (details
are in the Appendix A):

1409 1 14 g
t+1y t _ 12
£t - 1) < (F5 - DY+ 1

Furthermore, sincg!*! is chosen based on tthdargest entries n;x“r

—5 Il 1% (4)

1

,we haver|y;|* = |21 > |20 1P =
|27, ]|* . Plugging this into[(#), we get:
P = st < (146 2 1P ©)

The above expression shows that ik 1+5 then our method monotonically decreases the objectivetibmand

converges to a local optimum even if RIP is not satisfied (tloée upper RIP bound is independent of lower RIP
bound, and can always be satisfied by normalizing the mappxapriately).

However, to prove convergence to the global optimum, we t@stow that at least one new element is added at each
step, i.e.|F;| > 1. Furthermore, we need to show sufficient decrease|4y§1||2 > ckf( 2'). We show both these
conditions for global convergence in Lemia 6, whose progfisn in Appendlﬂ

Assuming Lemmal6[{5) shows that at each iteration OMPReduces the objective function value by at least a
constant fraction. Furthermore,if is chosen to have entries boundedibyhen f(z°) < (1 + d2)k. Hence, after
O(k/llog(k/e€)) iterations, the optimal solution* would be obtained withim error.

Lemma6. Letdo, < 1 — i and1/2 < n < 1. Then assuming(z*) > 0, at least one new element is found i.e.
Fy # 0. Furthermore||yFt1H > fcf (x"), wherec = min(45(1 — n)2,2(2n — =5—)) > Ois a constant,

Special Cases. We have already observed that the OMPR algorithm of theiguevsection is simply OMPRUJ.
Also note that Theorefd 1 immediately follows from Theofdm 4.

The algorithm at the other extremelof £ has appeared at least three times in the recent literatsiteerative (hard)
Thresholding with Inversion (IT1) in([16], as SVP-Newtom (its matrix avatar) in[[15], and as Hard Thresholding
Pursuit (HTP) in[[10]). Let us call it IHT-Newton as the leasfuares step can be viewed as a Newton step for the
guadratic objective. The above general result for the OM&Rilfy immediately implies that it recovers sparse vectors
as soon as the measurement matrigatisfiesio, < 1/3.

Corollary 7. Suppose the vectar* € R"™ is k-sparse and the matrid satisfiesdo, < 1/3. Then IHT-Newton
recoversz* from measurements= Az* in O(log(k)) iterations.
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4 Tighter Analysisof Two Stage Hard Thresholding Algorithms

Recently, Maleki and Donoh6 [[17] proposed a novel family lgbathms, namely two-stage hard thresholding algo-
rithms. During each iteration, these algorithms add a fixadlmer (say) of elements to the current iterate’s support
set. A least squares problem is solved over the larger suppband theri elements with smallest magnitude are
dropped to form next iterate’s support set. Next iteratdé&ntobtained by again solving the least squares over next
iterate’s support set. See Appendix D for a more detailedrg®on of the algorithm.

Using proof techniques developed for our proof of Thedrémelcan obtain a simple proof for the entire spectrum of
algorithms in the two-stage hard thresholding family.

Theorem 8. Suppose the vectar* € {—1,0,1}" is k-sparse. Then the Two-stage Hard Thresholding algorithth wi
replacement sizérecoverse* from measurements= Ax* in O(k) iterations provided:dax4; < .35.

Note that CoSaMF_[19] and Subspace Pursuit(SP) [4] are poppkcial cases of the two-stage family. Using our
general analysis, we are able to provide significantly lesgictive RIP conditions for recovery.

Corollary 9. CoSaMP[1B] recoverg-sparser* € {—1,0,1}" from measurements= Ax* providedd,; < 0.35.
Corollary 10. Subspace Pursuit[4] recovers-sparsez* € {—1,0,1}" from measurements = Ax* provided
d3r < 0.35.

Note that CoSaMP’s analysis given byl[19] requifgs < 0.1 while Subspace Pursuit’s analysis given By [4] requires
03 < 0.205. See Appendix D in the supplementary material for prooffiefabove theorem and corollaries.

5 Fast Implementation Using Hashing

In this section, we discuss a fast implementation of the OMR&hod using locality-sensitive hashing. The
main intuition behind our approach is that the OMPR methddcse at most one element at each step (given by
argmax; | AT (Ax? — b)|); hence, selection of the top most element is equivalenhtbirfg the columm; that is most
“similar” (in magnitude) tor, = Ax* — b, i.e., this may be viewed as the similarity search task ferigs of the form

r; and—r; from a database oV vectors[A, ... Ax].

To this end, we use locality sensitive hashing (LSH) ! [12], ellwknown data-structure for approximate nearest-
neighbor retrieval. Note that while LSH is designed for esaneighbor search (in terms of Euclidean distances) and
in general might not have any guarantees for the similarhimigsearch task, we are still able to apply it to our task
because we can lower-bound the similarity of the most simiégghbor.

We first briefly describe the LSH scheme that we use. LSH g&getash bits for a vector using randomized hash
functions that have the property that the probability ofismn between two vectors is proportional to the similarit
between them. For our problem, we use the following hashtiomch., (a) = signu”’a), whereu ~ N(0,1) is a
random hyper-plane generated from the standard multiee@aussian distribution. It can be shown that [13]

1 ala
Prihy(ay) = hy(as)] =1 — = cos™ <12)
Pruloa) = haulaa)] =1 = 2008 g aa]

Now, an s-bit hash key is created by randomly sampling hash functidns, ie., g(a) =
[h, (@), hayy (@), . .., hay (@)], Where eachu; is sampled randomly from the standard multivariate Gaussia
distribution. Nexty hash tables are constructed during the pre-processing stagg independently constructed hash
key functionsgs, g2, . . . , g4 During the query stage, a query is indexed into each ha$ tiaing hash-key functions
91,92, - - -, gq and then the nearest neighbors are retrieved by doing amstiesearch over the indexed elements.

Below we state the following theorem froim [12] that guarasteub-linear time nearest neighbor retrieval for LSH.

Theorem 11. Lets = O(logn) andq = O(log 1/5)n1*i5 then with probabilityl — §, LSH recoverg1 + ¢)-nearest
neighbors, i.e.|la’ — r|* < (1 + ¢)||la* — r||?, wherea* is the nearest neighbor to anda’ is a point retrieved by
LSH.

However, we cannot directly use the above theorem to gusgainvergence of our hashing based OMPR algorithm
as our algorithm requires finding the most similar point imrte of magnitude of the inner product. Below, we provide
appropriate settings of the LSH parameters to guarantediredr time convergence of our method under a slightly
weaker condition on the RIP constant. A detailed proof ofttie®rem below can be found in Appenflik B.

Theorem 12. Letds, < 1/4 —~ andn = 1 —~, wherey > 0 is a small constant, then with probability— §, OMPR
with hashing converges to the optimal solutiorikmn'/ (1 +2(1/k) 1og k /§) computational steps.

The above theorem shows that the time complexity is suladimen. However, currently our guarantees are not
particularly strong as for largk the exponent of. will be close tol. We believe that the exponent can be improved
by more careful analysis and our empirical results inditiaé¢ LSH does speed up the OMPR method significantly.
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OMPR Phase Diagram (m=400)

OMP Phase Diagram (m=400

1
08 }
0.8
0.6 }
0.6 c
=
1
(=8
0.2
0.2 = - .
N =———

0.4 0.6 0.4 0.6 0.4 0.6
d=m/n &=m/n 5=m/n

(a) OMPR (b) OMP (c) IHT-Newton

Figure 1: Phase Transition Diagrams for different methd@ed represents high probability of success while blue
represents low probability of success. Clearly, OMPR rec®eorrect solution for a much larger region of the plot
than OMP and is comparable to IHT-Newton. (Best viewed imqol

IHT-Newton Phase Diagram (m=400
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6 Experimental Results

In this section we present empirical results to demonséetarate and fast recovery by our OMPR method. In the first
set of experiments, we present a phase transition diagra@NB°R and compare it to the phase transition diagrams
of OMP and IHT-Newton with step size For the second set of experiments, we demonstrate rolssstfi®©® MPR
compared to many existing methods when measurements asear@maller in number than what is required for exact
recovery. For the third set of experiments, we demonstiffitéemcy of our LSH based implementation by comparing
recovery error and time required for our method with OMP dd@-Newton (with step-sizé and1/2). We do not
present results for th@ /basis pursuit methods, as it has already been shown inasegeent papers [10, [17] that the
¢y relaxation based methods are relatively inefficient foyJarge scale recovery problems.

In all the experiments we generate the measurement matgaimpling each entry independently from the standard
normal distribution\V'(0, 1) and then normalize each column to have unit norm. The unidegrkssparse vectors are
generated by randomly selecting a support set offsered then each entry in the support set is sampled uniforroiy fr
{+1,—1}. We use our own optimized implementation of OMP and IHT-NewtAll the methods are implemented in
MATLAB and our hashing routine uses mex files.

6.1 Phase Transition Diagrams

We first compare different methods using phase transitiagrdims which are commonly used in compressed sensing
literature to compare different methodsl|[17]. We first fix thanber of measurements to he= 400 and generate
different problem sizes by varying = k/m andd = m/n. For each problem sizen,n, k), we generate random

m x n Gaussian measurement matrices argparse random vectors. We then estimate the probabilgyafess of
each of the method by applying the method to 100 randomlyrgéee instances. A method is considered successful
for a particular instance if it recovers the underlyigparse vector with at mosf relative error.

In Figure[d, we show the phase transition diagram of our OMREhod as well as that of OMP and IHT-Newton (with
step size 1). The plots shows probability of successfulweigoas a function op = m/n andé = k/m. Figurell (a)
shows color coding of different success probabilities;negatesents high probability of success while blue repitssen
low probability of success. Note that for Gaussian measarematrices, the RIP constady is less than a fixed
constant if and only ifn. = Ck log(n/k), whereC'is a universal constant. This implies thgat: C'log p and hence a
method that recovers for high, will have a large fraction in the phase transition diagraneretsuccessful recovery
probability is high. We observe this phenomenon for both G\véidd IHT-Newton method which is consistent with
their respective theoretical guarantees (see Thelfemni)héother hand, as expected, the phase transition diagram
of OMP has a negligible fraction of the plot that shows higtokery probability.

6.2 Performancefor Noisy or Under-sampled Observations

Next, we empirically compare performance of OMPR to variexsting compressed sensing methods. As shown
in the phase transition diagrams in Figlite 1, OMPR provideaparable recovery to the IHT-Newton method for
noiseless cases. Here, we show that OMPR is fairly robustruting noisy setting as well as in the case of under-
sampled observations, where the number of observationadh smaller than what is required for exact recovery.

For this experiment, we generate random Gaussian measutreratix of sizem = 200, n = 3000. We then generate
random binary vectox: of sparsityk and add Gaussian noise to it. Figlite 2 (a) shows recovery @iroc — bl|)
incurred by various methods for increasih@nd noise level 010%. Clearly, our method outperforms the existing
methods, perhaps a consequence of guaranteed convergentmal minimum foffixedstep sizey = 1. Similarly,
Figure[2 (b) shows recovery error incurred by various metHodfixedk = 50 and varying noise level. Here again,
our method outperforms existing methods and is more robusbise. Finally, in Figurgl2 (c) we show difference in



Error vs k (Noise=10%)

Error vs Noise (k=50)

*[omer 4:8msg(k/2) Noise/ k 10 30 50
OMPRG2). 35| IHT-Newto 0.00 | 0.00(0.0)| -0.21(0.6) | 0.25(0.3)
28] —-casawp = Ta 0.05 | 0.00(0.0)[ 0.13(0.3) | 0.37(0.3)
Z*SF’ 5° 0.10 | 0.00(0.0)| 0.28(0.3) | 0.63(0.4)
525 0.20 | 0.03(0.0)| 0.62(0.2) | 0.58(0.5)
L & 0.30 | 0.18(0.1)| 0.92(0.3) | 0.92(0.6)
' 0.40 | 0.31(0.1)| 1.19(0.3) | 0.84(0.5)
L 050 | 0.37(0.1)| 1.48(0.3) | 1.24(0.6)
]O 10 20 30 40 50 0 0.1 0.2 0.3 0.4 0.5
Sparsity (k) Noise Iiet\;eil (C)

Figure 2: Error in recovery|[Az — bl|) of n = 3000 dimensional vectors fromm = 200 measurements. (a): Error
incurred by various methods as the sparsity léveicreases. Note that OMPR incurs the least error as it ptpvab
converges to at least a local minimum fotedstep size; = 1. (b): Error incurred by various methods as the noise
level increases. Here again OMPR performs significantlyebéban the existing methods. (c): Difference in error
incurred by IHT-Newton and OMPR , i.e., Error(IHT-NewtoBjror(OMPR ). Numbers in bracket denote confidence
interval at 95% significance level.
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Figure 3: (a): Error|(Az — b||) incurred by various methods &sncreases. The measurements Az are computing

by generatinge with support sizen/10. (b),(c): Error incurred and time required by various mefhéo recover
vectors of support siz& 1m asn increases. IHT-Newton(1/2) refers to the IHT-Newton meithdth step size) = 1/2.

0.02,
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error incurred along with confidence interval $at% signficance level) by IHT-Newton and OMPR for varying levels
of noises and:. Our method is better than IHT-Newton &% signficance level) in terms of recovery error in around
30 cells of the table, and is not worse in any of the cells bet on

6.3 Performance of L SH based implementation

Next, we empirically study recovery properties of our LSHéd implementation of OMPR ( OMPR-Hash ) in the
following real-time setup: Generate a random measurematrixrfrom the Gaussian ensemble and construct hash
tables offline using hash functions specified in Sedfion 5tN#&iring the reconstruction stage, measurements arrive
one at a time and the goal is to recover the underlying sigg@lrately in real-time.For our experiments, we generate
measurements using random sparse vectors and then regareéng errorf| Az — b|| and computational time required
by each of the method averaged ogermruns.

In our first set of experiments, we empirically study the perfance of different methods &sncreases. Here, we fix
m = 500, n = 500,000 and generate measurements usirdimensional random vectors of support set sizél0.

We then run different methods to estimate vectors support sizé: that minimize|| Az — b||. For our OMPR-Hash
method, we use = 20 bits hash-keys and generate= /n hash-tables. Figuld 3 (a) shows the error incurred by
OMPR , OMPR-Hash , and IHT-Newton for differeht(recall thatk is an input to both OMPR and IHT-Newton).
Note that although OMPR-Hash performs an approximatioraah estep, it is still able to achieve error similar to
OMPR and IHT-Newton. Also, note that since the number of mesments are not enough for exact recovery by the
IHT-Newton method, it typically diverges after a few steps a result, we use IHT-Newton with step size= 1/2
which is always guaranteed to monotonically converge teastla local minimum (see Theor&in 4). In contrast, in
OMPR and OMPR-Hash can always set step siaggressively to bé.

Next, we evaluate OMPR-Hash as dimensionality of the datacreases. For OMPR-Hash , we use- log,(n)
hash-keys and = \/n hash-tables. Figurés 3(b) and (c) compare error incurrddiere required by OMPR-Hash
with OMPR and IHT-Newton. Here again we use step gize 1/2 for IHT-Newton as it does not converge fpr= 1.
Note that OMPR-Hash is an order of magnitude faster than OMRIR incurring slightly higher error. OMPR-Hash
is also nearly2 times faster than IHT-Newton.
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A Proofsrelated to OMPR: Exact Recovery Case

Let us denote the objective function ifyx) = 3|| Az — b||. Let I, denote the support set of and* be the support
set ofz*. Define the sets

FA, =T\I" (false alarms)
MD; =I"\I (missed detections)
CO,=I;inI* (correct detections)

As the algorithms proceed, elements move in and out of thecuset/;. Let us give names to the set of found and
lost elements as we move frofpto I, 4:

Fy = L\ I (found)
Ly = It\I111 (lost).

We first state two technical lemmas that we will need. Thesebesfound in[[19].
Lemma 13. For anyS C [n], we have,
1T — ASAs| < 4)5).

Lemma14. ForanyS,T C [n] such thatS N T = (, we have,
|AS A2 < 6jsur)-

Proof of Theorem 4
Lemma 15. Letdy, < 1 — ﬁ f(x) > 0. Then, in OMPRI,

0<2(2n—

1
T ) S 1T~ e, I

Proof. Sincez}, is the solution to the least squares probleim,, || A7,z — b||?,
AT (A2}, —b)=0. (6)
Now, note that
Fat) = Sl Anal, — Arah P,
1 t

= 5((%)TA£ (Apaf, — Apat.) — (a7)TAL (A ah, — Apal),
1 *
= _§($MDt)TA£IDt (Altxi — Ap-xl.), by @)
1 *
= %(mMDt)TZ}:\E), by @) (7)
Hence,
|23, — Z}&\}rzl),,||2 = ||x?wD,,||2 + ||Z§vjrr11),||2 - Q(CUMDJTZ;\}_}),,
= [lz5p, 1P + 1255 5, II7 = 4 f(2"). (8)
That s,

dnf(2') < lladsp, I + 230 p, 1%,

<|lwhp, |12+ llzba, I + b0, — 280,117 = llz%a, I” + 1255, 17,
= [la* — 2*|] + |24 5, 117 = llzFa,II%,
1
STz Bon [A@z" — 2|1 + |25 b, 17 = llzfa, 1%, by RIP
2
=1_ 52kf(wt) + ||Z§\}r117,,||2 — [lztoa, II%,

10



where the third line follows from the fact thaf D,, F'A,, andCO; are disjoint sets.

As f(z) > 0anddg, < 1 — % the above inequality implies

0<2(2n—

g ) < DI = e, I

Next, we provide a lemma that bounds the function val(e) in terms of missed detectiodd D; and alsoz}}, .
Lemmal6. Let f(2!) = 1||Aa! — b||2, b= Az*, 6o < 1 — 3 andn < 1. Then, at each step,

(1 B 77)2 * 1
ek P < S6Y < sl ©)

Proof. Now, using Lemma 2 of [4] with = M D,, J = I,,y = AMDJCR/[Dt we get
ﬂﬁ)=%wﬁﬁ—wﬁ
= 5145 (=" — 21, — Anp, @iy p, |12 (10)

2
>
—(5
>1 (

02k
1 2
> (1 - 15%) (1= 520, |

= 2(1—52) Ty,

I

| Axp, T3 p,

) 84,2 byRIP

12 (11)

The assumption thab, < 1—% andn < 1implies thats, < 1—% < 1/2. The functiony — (1—2a)?/(2(1—a))
is decreasing oft), 1/2] and hence (11) implies

2
(1fﬂ1fgg) (1)
77) * 2

f(zb) > ! Typ, 2= Uz . 12
)2 gy g I = = i 12)

Next, using[[¥) and Cauchy-Schwarz inequality:
It I 2 4 LE0 13)

! 23,

The result now follows using the above equation Wit (12). O

Lemma 1l7. Letdg, < 1 — i and1/2 < n < 1. Then assuming(z?) > 0, at Ieast one new element is found i.e.
Fy # 0. Furthermore||yt+1H2 > tcf ('), wherec = min(4n(1 — n)?,2(2n — 1=5—)) > 0 is a constant.

Proof. We consider the following three exhaustive cases:

1. |Fy| < land|F| < [MD,|: Here, we first argue thaf; # 0. Assumingda, < 1 —1/2n, f(x;) > 0 and
using Lemmalls,
|| t+1

21|l > 12w, |-
Also, |M D;| = |F A|. Using B),z}ﬁt = x4, Now partial hard-thresholding selects toglements from

zt+1 hence at least one eIementaq;At must not have been selectedlin ; (as M D, should have at least
one larger element). Hendg and L, cannot be empty.

11



LetS g |MDt\Ft‘, St,|S| = |Ft| - |MDt N Ft| NOW,
ISU(MD, N F)| = [, [(MDA\F)\S| = |MD:| - |Fil.
Now, asy, consists of topF; elements of}7}, :

t+1 ||2

HZSU(MDtht < llyrII?- (14)

Furthermore, sincé}| < I, hence every element of w \Fy
“"FAt\Lt' otherwise that element should have been includel, inFurthermore|M D;| — |F;| = |F A:| —
|L:| < |FA;\L|. Hence,

lettonmonsl® < letban zI? < llztoa, 12, (15)
Adding (12) and[(Ib), we get:
Iz5ip, 12 < & 1P + llafa, |12 (16)
Using above equation along with Lemind 15, we get:
1
o5 = 2 (20 - =5 ) £ (17)
Now, note that if 7| = 0, thenyt+1 = 0 implying thatf(z') = 0. Hence, at least one new element is added,
ie. y}“ £ ().
2. |Fy| =1 < |MD,|: By definition ofy}":
lyz 117 =, 117
[Fel — IMDyf
Hence, using Lemn{all6 and the fact thaf = I
l
lyztI* > Dy - n)*f(z") = a1 —n)*f(), (18)

as|MDy| < k.
3. |Fy| > |[M Dy Since,yt;rl is the top most elements of 1. Hence, assuming+;| > |M D],

lyz 1% > llz5ip, 12
Now, using Lemm&16:

lyz 1P > 4n(1 —n)*f(2"). (29)
We get the lemma by combining bounds for all the three cases[1T), [18),[(19). O
Now we give a complete proof of Theorém 4.

Proof. We have,
FTh) = fah) = (" —a)TAT A — 2%) + 1/2| Ay — 2%,

144
Q) e 4 s, 1) (20)

= . 7, and using RIP of orde2! (since

< (yt+1 o .%‘t)TATA(.’L‘t o .13*) +

where the second inequality follows by using the fact
|supp(y'™t — 2t)| = |Fy U Ly| < 21).
Sincex}t is obtained using least squares,

i1 ﬁft

AT A(z' —z*) =0.
Thus,A7 A(z' — 2*) = 0, becausd., C I;. Next, note that

thfl —nAT A" — a*).

12

is smaller in magnitude than every element of



Hence,

1+ 9y 1+ 9y
Pt = sty < (5 - ) R+ S el (21)
Furthermore, sincg’*! is chosen based on tidargest entries mt“ we have,
1 +1 1
lys 1% = 2 P 2 Ml P =l 1P -

Plugging this into[(21), we get:

P = 1 < (14 6= )
Now, using Lemma&Zl 7|y Y12 > Lef(2t) and therefore,

fa)

P~ Fat) < P — fat) < —ar

wherea = ¢ (1 + 09 — 7) > 0 sincen(1 + dy;) < 1. Hence,

FE) < (- ap)f) < e fat).

The above inequality shows that at each iteration OMBReduces the objective function value by a fixed multi-
plicative factor. Furthermore, if® is chosen to have entries boundedigythen f(2°) < (1 + 621)k. Hence, after

O(% log((1 + dax )k /€)) iterations, the function value reducesto.e., f(z') < e. O

B Proofsrelated tothe LSH Section

Lemma 18. Let|z|| = 1 for all pointsz in our database. Let* be the nearest neighbor tin L, distance metric,
and IetrTa:* > ¢ > 0. Then, a(1 + «e)-nearest neighbor to is also a(1 — ¢)-similar neighbor tor, where

a< 1+rTr 2¢”

Proof. Let2’ be a(1 + ae)-nearest neighbor te, then:
2" =7l < (1 + ae)a” — ||
Using||z’|| = ||=*|] = 1 and simplifying, we get:
rTe > (1 —erfe* + (a+ Derfa* — %(1 +7rTr),
> (1 —erfa* + ((a+1)ec— %(1 +7Tr))e.
Hencex’ is a(1 — e)-approximate similar neighbor toif:
g(1 +rlr).

2
The result follows after simplification. O

(a+1)c>

We now provide a proof of Theorem 7.

Proof. Let us first consider a single step of OMPR . Now, similar to besfil®, we can show thatd;, < 1/4—~ and
n=1-vv>0, 'thenHz]tJ]%,tH2 > %Hm%AJP. Settinge = 1 — \[ implies that(1 — ¢) max |thr1 | > min[z%, |,
i.e., a(1 — e)-similar neighbor tanax |z3},§t\ will still lead to a constant decrease in the objective figrct

13



So, the goal is to ensure that with probability- 5, § > 0, for all theO(k) iterations, our LSH method returns at least
a (1 — e)-similar neighbor tanax |2}/, | wheree =1 — \/g To this end, we need to ensure that at each &tefH

finds at least &1 — ¢)-similar neighbor tanax |z§\}’},t\ with probability at least — §/k. Using Lemma1B, we need
to find a(1 + «e)-nearest neighbor tmax |z§\j},t |, where

- 2c
a<
“1+7rTr—2¢

andr”z* > ¢. Using Lemm& 7o = O(1/k). Hence the result now follows using Theorem 6 (main text). [
C Extension to Noisy Case
In this section, we consider the noisy case in which our dgieéunction isf(z) = || Az — b||?, whereb = Az* + ¢

ande € R™ is the “noise” vector.
Let I; denote the support set of and7* be the support set af*. Define the sets

FA, = L\I" (false alarms)
MD; = I*"\I; (missed detections)
CO=L;NnI" (correct detections)

Lemma19. Let f(z') > §|le[|* anddzy, < 1 — 57, whereD = (%XF)Q. Then,

125D, 17 = lwha, I > cf (),

VC+1)?
wherec = 2 Y (9D — =) > 0.

Proof. Sincez’, is the solution to the least squares probiein,, || A7,z — b||?,

Af (Apzh, —b) =0. (22)
Now, note that

1
flah) = 5\\Aztw§t —b|1?,
1
- 5(%)%{ (Ar, @, —b) — b (Agah, — b)),

1
= (A, ),

1, ., 1
= —*(afz\ux)TA{/IDt (Altxfrt —b) - §eT(AItJU§, —b),

2
= 5-(@iun, " hih, = 3¢ (Anal, —b) (23
where the third equality follows fronh (22).
Now,
130, — 585,17 = 123, 12 + 12555, 12 — 223 p) 255D,
— @bl 2555, I — 4n(F(a) + 2T (Ag, 2, — b)) (24)

2
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So,

1
0 < |25, I* + 1, I* = 1%, I* + [124ip, |* = 4n(f(2") + 5e” (Araf, b)),
1
< l@hp, I + 1254, 1 + 200, = &0, I* = 12%a,I1* + 20D, I* = 40(f(2") + SeT (Ar27, = b)),

. 1
l* = @2 = Nafoa, I + 157D, I* = 4n(f (") + 5e” (Araf, — b)),

2

IN

1 § 1
< At =) = ek, 1P+ 247D, 1P = 4070 + 57 (A, — )
1 1
_ Aa:t—x* 2 xt 2+ thrl 2_4 1— — SL‘t.
1A )P = b, P + 287, I — 4n(1 = —2) /(@)

Now, by assumptionf(z*) > £ |le||%. Hence,

A" — 27| < A" — 2%) — el + |lell,

1
Azt — 292 < 2(1 + —)? f(z).
[ A( = <2( \FC) f(z")
Hence,
2 (277(1 S S 1)?) Fat) < 1550, 1P — a1
VO 1= 0o Ve = 1"MD Fe
Now, by assumptiofs, < 1 — 2D , whereD = (*CF;Q Hencec = 2@(27@ —1=5.)>0. O

Next, we provide a lemma that bounds the function val(e’) in terms of missed detectiol D; and alsaz}/}, .
Lemma 20. Let f(a") = || Az’ —b]> > §lle[® b= Ax* +¢, 2 < 1— 55 andD = C_vVC_ Then, at each

207 (VC+1)2
step,
(1=n)?C ., o t 1 (\F+ ) L2
————— ||z}, [I° < fla') < (25)
Proof. First we lower boundf (z!):
fat —||Axt — Az* — ¢,
(z) = \fH |
T(HAHC — Az = le]l) ,
> — Az — Ax™|| — >
5 (i) I = lel
—202k) |
> — —|le s
> f< sl - ||)
where last equality follows from Lemniall6. Using the aboemjinality with f (z*) > %||e|\2, we get:
(1 —252;)%C 9
flat) > Typ, |7 (26)
(@) 2 i
The assumption thaby, < 1 — 575 and Dy < 1 implies thatdzx < 1 — ﬁ < 1/2. The functiona +— (1 —
20)?/(2(1 — «)) is decreasing 0{0, 1/2] and hence the above equation implies
1- DU 2 *
10 2 S et P (@)

15



Now, we upper bound (z*). Using definition off (z?):
1, 1
%(CCMDJTZREI = fz') + §€T(Alt$t1t — D).

Now;, using Cauchy-Schwarz arfdz?) > < |le||?,

2
" (Ar,z], = b)| < llelll Ar,2f, —bll < —= f(a").

Ve

Hence,

1 * t+1 1 * T _t+1 1 t

%HIMD,,””ZMDtH > %(zMD,,) Zyp, = (1= ﬁ)f(l’ )-
That is, ,

1 fa')? (VC —1)?
1 )12 5 42 o > - 2 t

where the second inequality follows from{27). O

Next, we present the following lemma that shows “enough’gpess at each step:

Lemma2l. Letf(z!) > $lel|?,n < 1anddy, < 1 — ﬁ, whereD =1 — \/51_1. Then at least one new element

is found i.e. F; # 0. Furthermore |y > Laf(zt), wherea = min(4n(1 — D)2 CDE 9 WCED (9D

=5—)) > Ois a constant.

Proof. As for the exact case, we analyse the following three exhausases:

1. |Fy| < land|F;| < |M D,|: Here we use the exactly similar argument as the exact cadgam the following
inequality (see[(16)):
12355, 1% < lyw 1P + llfa, |- (29)
Using Lemma 19, we get:
e 112 > ef (), (30)
wherec is as defined in Lemnfa]l9. Now, note that#f| = 0, thenyj;fr1 = 0 implying that f(z') = 0.
Hence, at least one new element is added,y’%.l, £ . /

2. |Fy| =1 < |MD,|: By definition ofy} "

Iy 1% l57p, 1P
[Fl - [MDyf
Hence, using Lemn{a®0 and the fact thag = I:
2 2
+112 5 _ 2(@—1) t >£ _ 2(\@_1) t
I 2 (= D) e @) 2 pan( = DR, @Y
as|MD,| < k.

3. |Fi| > |[M Dy Since,yf{1 is the top most elements of 1. Hence, assuming?;| > |M Dy,

lyz HI* = Nl=47p, 17

MD,
Now, using Lemm&20:
VC —1)?
I 2 = a1 — DY g, (32
CD
We get the lemma by combining bounds for all the three cases[30), [31),[(32). O

Now, we provide a proof of Theoreln 2.
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Proof. We have,

FY) = @) = (g = )T AT (Axt — )+ 1/2) Al - 2],

(1+621) +521)

<y = a)TAT (A" = b) + =y 1P + 2L, 7). (33)

where the second inequality follows by using the fact tfat!
[supp(y* ™t — a')| = [Fy U Ly| < 21).
Sincex}t is obtained using least squares,

— et i i
at 7, = ,,,~s, @nd using RIP of orde?! (since

Al (Az' —b) =
Thatis, A7 (Az' —b) = 0, becausd.; C I;. Next, note that

y}fl = —nAgt (Az' —b).

Hence,
£ = 1) < (52 - 1) It + S5 e 12 (34)
Furthermore, sincg’*! is chosen based on largest entriesjﬁll, we have,
e 12 = l2pf 1P > Nl 12 = 2, )17 -
Plugging this into[(3K), we get:
POt = st < (14 6 2 P
Now, using Lemm&321jy%"||? > af(z") > 0 and therefore,
fE) = f2') < fy™) = f(2)
<~ I,
wherecd = % a > 0 sincen(l + d2) < 1. The above inequality shows that at each iteration OMBR (

reduces the objective function value by a fixed multiplieatiactor. Furthermore, i£" is chosen to have entries
bounded byl, then f(z°) < O((1 + dax)k + |le||?). Hence, afteO( log((k + ||e||?)/e)) iterations, the function
value reduces t@'||e||?/2 + e. O

D Analysisof 2-stage Algorithms

In this section, we consider the family of two-stage haréshiolding algorithms (see AlgoritHth 3) introduced by [17].

We now provide a simple analysis for the general two-stagd tt@esholding algorithms. We first present a few
technical lemmas that we will need for our proof.

Lemma22. Letb = Az*, wherel* = supp(z*). Also, letr = argming,,, () [|[4z — b||2. Then,

O\ g+
@ =+ lans [P = @ — %)) < —d

< ——|l27-\/|l
2
\/ 1- 5\Iul*|
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Algorithm 3 Two-stagel)

1: Input: matrix A, vectorb, sparsity levek

2: Initialize !

3 fort =1to7T do

top, ., < indices of topl elements of A” (Az" — b)|
Jt+1 — I;U tOpH_l

t+1 t+1
ZJt+1 AJt+1\b ZJt+1 —0

yt-',-l - ch( t+1)

Itf+11 — Supp(ytﬂ)t )
9: xlj_+1 A[t+1\b CC+ —0
10: end for

O N OO

Proof. A similar inequality appears in [10] and we rewrite the prbefe. Since:; is the solution tanin,, || A7u—b]|?,

AT(Apz; —b) =0. (35)
In the exact casé, = Az*. Hence,
o = a)al? = e =y o7 [ ] (30)
Now, using [3b):
0=[(x—a*); 0" ALAq [( _;If:l)’} : (37)

whereG = [I T*\I]. Subtracting[(37) fronT(36) we get,
o =il = [l =) O (1 = A e |57

—x] N\ 1
< Gor| (2 — x*)zll\/ll(x =) 1l? + a7 1% (38)
where the second inequality follows using Lenimh 13. Lemmtiavis by just rearranging terms now. O

We now present our main theroem and its proof for two-stagestiolding algorithms.
Theorem 23. Suppose the vectar* € R" is k-sparse and binary. Then Two-stagécoverse* from measurements
b = Az* in O(k) iterations provided:

Oopy1 < .35

Proof. As z!*1 is the least squares solution over supportket, hence:
f(zt“)ff( < f(sTh = fah), (39)

wheresf]ﬁ1 = (2t —nAT (At = b))y, ., 0 = 1+5 andsthl =0.

Now,
1
J(s™h) = flaf) = (s — )T AT (A = b) + ]| AsT - Adt|P. (40)
Now, asz’ is the least squares solution over Hence,AT (Az' — b) = 0. Hence,
(St+1 - mt)lt = O’ (8t+1 - xt)topt+1 = nAtop +1(A‘/Et - b)? (St+1 - xt)jt+1 = 0 (41)
Using [40) and[{41):
2
n
P = @) = =nll Ay, ,, (A2" = B)1” + [ Avop, ,, Alop, ,, (A" = D)%,
144
<AL, (axt b+ TEED ar - aat ),
n
= 5145, (A — D). (42)

18



Now, let M D, be the set of missed detections, i®.D; = I*\I*. Then, by definition ofop, ;:

l
AT Azt = 0)|?>min (1, — | |4 Azt —b)|]2. 43
4%, (Aa' = B)I 2 min (1, 7o ) 14T, (Ae! )] (43)
Furthermore,
1A% p, (Az' = b)|| = | A% p, AseD,@hrp, — Abip, A (2" — )1,
> HAZJQD,,AMD@MDJ\ ||AMDfAIt($t — "), 1],

‘ 551@

= (1 =d)lleyp || — =
V1-63,

where last inequality follows using Lemmal14 and Lenima 22.

Hence, usind(42)[(43), and (44):

[EaYSNk (44)

2
1 l 62
20 — fah) < f(stTY) — f(af <—min<1,> 1—6p — —=2k 3 2. (45
FE = 6 < 6T = 160 < — 5 D] o gy ) I @9
Next, we upper bound increase in the objective function nyaéng! elements fromy*+!,
1
F ) = ) = (= 2T AT (AT <) 4 Ay - A

1
= *llAyt+1 — A%,
1 + o

t+1
By (46)
where the second equation follows d§1 is a least squares solution, and bgth!, z**!'s support is a subset of

Ji+1. The third equation follows from RIP and the fact théfl = }:11

Now, using Lemm&322:

2

1580 P < T2 (@)

Furthermore|Ji 11\t 11| =1 < |J:41\I*|. Hence, by definition of; 1,
t+1 l t+1 2

[E Jt+1\[t+1H m||zjt+1\1*“

Using above equation and {47), we get:
t+1 2 o ! O3t . 2
155 P < G o e W P (48)

Also, |J; 1 \I*| = | + [I*\Js41| < 1+ |MDy|. Using [48), [4B), and the fact that{z!*!) < f(y**!) and each

7. =1

f(xtJrl) . f(zt+1) < l 1+ 51 65k+l

I\ J1]. 49
STVl 2 -, e )

Adding (43) and[(4B), we get:

2
f(xt+l) _ f(:L't) < — 1 (Sgk ) o L- |I*\Jt+1| (1 + 5l)25%k+l

—— | min (|MD|,]) | 1 — 6 —
2(1+5l)< (IMD )< S L+ TN\ Ji| 1-63,,,
(50)
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1T\ Je 41 . « .
Now, -l < min(l, |19\ Jy11]) < min(l, [M D))

Hence,
2
f(CEt-H) _ f(!)?t) < _M ((1 - 5k - 5§k > o (11—|—5l;25§k+l) ) (51)

2(1+ o)) Sh

Now consider:

2
52, (14 68,)262 1
1 -6, — —2k )} _ 2kt | 1—9§ 162 62 V2_ (146 252
(( ’ m> 1 =05, T 105, <(( %H)m 2k+)” = (14 02040) 2’““)’

> 0.01, (52)
where the second inequality follows by substitutiag, ; < .35.
Hence, using(31) anf{b2), we have:

f(z) < f(2") — min(l, [M Dy|) - 0.0001. (53)
The above equation guarantees convergence to the optintdeiaséO (k) steps although faster convergence can be
shown for largelk. O
Corollary 24. Cosamp converges to the optima provided
041, < 0.35.
Coroallary 25. Subspace-Pursuit converges to the optima provided
d3r < 0.35.

Note that CoSamp’s analysis given byl[19] requifgs < 0.1 while Subspace pursuit’s analysis given by [4] requires
03 < 0.205. Note that our generic analysis provides significantlydregtiarantees for both the methods.
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