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Abstract

Software developers often duplicate source code to replicate
functionality. This practice can hinder the maintenance
of a software project: bugs may arise when two identical
code segments are edited inconsistently. This paper presents
DejaVu, a highly scalable system for detecting these general
syntactic inconsistency bugs. DejaVu operates in two phases.
Given a target code base, a parallel inconsistent clone analysis
first enumerates all groups of source code fragments that
are similar but not identical. Next, an extensible buggy
change analysis framework refines these results, separating
each group of inconsistent fragments into a fine-grained set
of inconsistent changes and classifying each as benign or
buggy. On a 75+ million line pre-production commercial
code base, DejaVu executed in under five hours and produced
areport of over 8,000 potential bugs. Our analysis of a sizable
random sample suggests with high likelihood that at this
report contains at least 2,000 true bugs and 1,000 code smells.
These bugs draw from a diverse class of software defects and
are often simple to correct: syntactic inconsistencies both
indicate problems and suggest solutions.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging; D.2.7 [Software En-
gineering]: Distribution, Maintenance, and Enhancement—
restructuring, reverse engineering, and reengineering

General Terms Languages, Reliability, Algorithms, Exper-
imentation
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1. Introduction

Software developers often duplicate source code to replicate
functionality. This duplication may be performed simply for
convenience, or it may represent more thoughtful solutions
to difficult engineering problems. In either case, copied
code can be difficult to maintain. Identical code is often
expected to evolve in sync, with feature additions and bug
fixes applied consistently across copies. In practice, this can
be quite challenging. For instance, copied code may lack
annotations that point a would-be editor to all other identical
code segments, so consistent updates become dependent
on a developer’s memory and/or diligence. Large systems
with multiple authors further complicate the situation. For
example, a new developer of an operating system may use
a copy of an existing device driver as a template—without
informing the original author. Lacking communication, a bug
in the shared portions of the code would not likely be fixed
consistently.

Researchers have recognized these difficulties and have
studied the duplicate code problem extensively. Examples
of technical work include the formalization of the notion of
similar code fragments, referred to as code clones, and the de-
velopment of efficient algorithms for enumerating all copied
code in a software system, implemented as clone detection
tools [2, 3, 15, 18, 21]. Other, more empirical work has stud-
ied the incidence of code cloning both qualitatively [19, 20]
and quantitatively [22, 25].

Most of the research on code clones advocates some form
of proactive solution to the clone maintenance problem; that
is, the research introduces solutions that aim to prevent the
introduction of bugs to copied code. For example, much of
clone-related research makes the explicit or tacit suggestion
that cloning code should be avoided and that cloned code
itself should be factored out into a single, parameterized copy
whenever possible: Baker’s seminal paper on the topic [2] dis-
cusses the total reduction of a program’s size given a complete
factorization of all cloned code, putting the code in a certain
‘normal form.” Other research provides support for managing
existing code clones, providing tools to track copied portions
of code [6, 23] and update them consistently [27].



Comparatively few projects have provided support for
some form of retroactive detection and repair of clone-
related bugs, the two notable examples being Li ef al.’s
CP-Miner [21] and Jiang et al.’s context-based clone bug
detector [16]. Though effective, these bug finding tools have
fundamental limitations.

Recall: Quantity and Variety of Bugs Both of these tools
focus on a specific class of clone-related bugs we call copy-
time bugs. These bugs are introduced when code is copied:
they are a result of improperly adapting copied code into its
new environment. Each tool is further restricted to a spe-
cific subclass of copy-time bugs: CP-Miner finds instances
of copied code with inconsistently renamed identifiers, while
Jiang et al.’s tool extends that approach by additionally locat-
ing code clones with conflicting surrounding contexts (e.g.
an if statement versus a standard code block), which may
indicate that the preconditions for execution of the code were
not understood when copying.

These tools do not sufficiently address the general—and
likely much more common—case of bugs in inconsistent
edits to clones, which usually occur after the initial copy.
The editing of code clones, be it bug fixes other evolutionary
edits, involves the insertion, deletion, and/or replacement
of arbitrary code. As these specialized tools are based on
an analysis of exact code clones, only the rare instances
of inconsistent edits that fit their respective models will be
detected—the majority will likely be missed.

Precision: Quality of Bug Reports Despite their focus on
specific classes of bugs, existing tools suffer from a large
number of false bug reports: both Li ef al. and Jiang et al.
report the precision of their tools as approximately 10%, i.e.,
90% of their output consists of false alarms. While one must
grant a certain amount of latitude to tools based solely on the
analysis of syntax, the signal to noise ratio of these tools is
likely at or below many developers’ thresholds for tolerance.

Scalability While existing clone bug detection tools are
sufficiently scalable to moderately large (e.g. several million
lines of code) software systems, none have been demonstrated
to scale to very large projects (e.g. tens to hundreds of
millions of lines). This level of scale would hardly be a
purely academic exercise: commercial code bases can grow
to this size for a single large project.

DejaVu In this paper, we address all of these limitations
with DejaVu, a highly scalable and precise system for a
detecting buggy inconsistencies in source code. DejaVu
implements a static source code analysis that captures both
the class of copy-time clone bugs—those found in poorly-
adapted copies of source code—and the more general class
of inconsistent edits to clones. Our work is inspired by and
builds on previous work on the detection of near-miss clones
in software: a limited number of existing clone detection
tools [15, 21] are able to boost recall (the amount of copied
code found) by allowing for minor differences in clones, e.g.
clones differing by a few tokens. At a high level, DejaVu

functions quite similarly: we also search for ‘near miss’
clones, but we treat the inconsistencies as potential bugs.
Though conceptually straightforward, this approach presents
several key challenges:

* Focusing on ‘near’ misses is too restrictive. In order to
detect a broad class of inconsistent edits, we must push the
concept of ‘near miss’ clones to its logical limit and allow
for highly divergent clones. Discrepancies between pairs
of code fragments may exceed a ‘few’ tokens: inconsistent
edits may involve several entire code blocks, and the
changes need not necessarily be contiguous.

Precision is paramount. Relaxing the definition of ‘simi-
larity’ creates a natural precision problem by potentially
admitting many spurious, non-copied ‘clones.” There is
a more subtle issue as well: a pair of inconsistent code
fragments makes for a rather crude bug report, as any
given pair of fragments may contain several classes of
changes: some will be intentional and adaptive, others
will be unintentional but innocuous, and only a fraction
of them, if any, will be buggy.

No clone detection tool capable of finding divergent clones
has been demonstrated to scale beyond inputs of a few to
several million lines of code. DejaVu’s primary target is
a 75+ million line pre-production commercial code base
that is anecdotally believed to contain a significant amount
of copied code.

DejaVu contains two principal components. While each is
separable as a unique contribution, we believe our most impor-
tant contribution is our demonstration of their effectiveness
as a practical, integrated system.

Large-scale Inconsistent Clone Analysis We implement an
inconsistent clone detection tool for C and C++ programs. It
is both parallel and distributed, taking advantage of both local
and network computing power. Using four quad-core systems,
DejaVu’s clone detection component is able to enumerate all
clones in a 75+ million line system—using a quite liberal def-
inition of similarity—in just a few hours. The system is based
on a significant reworking and an independent implementa-
tion of the current state-of-the-art algorithm, Jiang ef al.’s
DECKARD [15]. Our extensions, among other things, add the
aforementioned parallelization and a guarantee of maximal-
ity of the returned clone sets: we report the largest possible
clones without reporting any redundant constituent compo-
nents, greatly improving the precision and completeness of
the bug reports.

Buggy Change Analysis Framework Our clone analysis
is tuned for extreme recall; at its most aggressive settings,
the raw clones are barely usable on their own. In spite of
this, our system maintains a high degree of precision through
our buggy change analysis framework. This framework—
which can be ‘bolted on’ to any clone detection tool—uses
a combination of flexible lexical analysis, sequence differ-
encing and similarity algorithms, and the extraction of other



int status = OK;

int *resdi = NULL;

int res = NULL;
AnsiString resourcePath;
RESOURCEINFO resinfo;
FRE fre;

bool isReady = false;
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Check(resourcePath.Set (paramPath, CP_UTF8));
10 CheckTrue(res = RsrcOpen(resourcePath, BINARY | RDONLY
| SEQUENTIAL, 0), E_FAIL);

12 // Bug Ver 17, Bug #12743: We no longer need to wrap
malloc and free.
13 CheckTrue(resdi = RsrcCreate(malloc, free, RsrcOpen,
RsrcRead, RsrclWrite, RsrcClose, RsrcSeek, UNKNWN,
&fre), E_FAIL);
14 isReady = RsrcIsReady(resdi, res, &resinfo);

16 Error:

17 if (resdi)

18 RsrcCleanup(resdi) ;
19 if (res)

20 RsrcClose(res);

21 return isReady;

1 int status = OK;

2 int *resdi = NULL;

3 int res = -1; // Invalid resource handle
4+ AnsiString resourcePath;

s RESOURCEINFO resinfo;

s FRE fre;

7 bool isReady = false;

8

9

Check(resourcePath.Set (paramPath, CP_UTF8));
19 res = RsrcOpen(resourcePath, BINARY | RDONLY |
SEQUENTIAL, 0);

12 // Bug Ver 19, Bug #256: Invalid return; crashes.
13 CheckTrue(res != -1, E_FAIL);

1 if (res == -1)

15 // it is safe to return directly here.

16 return false;

18 // Bug Ver 17, Bug #12743: We no longer need to wrap
malloc and free.
19 CheckTrue(resdi = RsrcCreate(malloc, free, RsrcOpen,
RsrcRead, RsrcWrite, RsrcClose, RsrcSeek, UNKNWN,
&fre), E_FAIL);
20 isReady = RsrcIsReady(resdi, res, &resinfo);

22 Error:

23 1f (resdi)

24 RsrcCleanup(resdi) ;
25 if (res != -1)

26 RsrcClose(res);
27 return isReady;

Figure 1: Motivating Example. A clearly annotated example of an inconsistent fix to a pair of copied code segments.

clone-related features to provide a configurable framework
for refining the inconsistent clones and isolating the buggy
changes. This step is computationally expensive: executing it
in a brute force manner over the entire target code base would
be intractable; it is only in linking it with the inconsistent
clone analysis—which serves to massively prune the search
space—that it becomes efficient.

Our experiments indicate that DejaVu is an effective bug
finding system: on our 75+ million line pre-production code
base, DejaVu produced 8,103 bug reports. We sampled
and verified a random sample of 500 of these reports and
found 149 very likely bugs and 109 other code smells. Using
standard techniques, we estimate with high confidence that
DejaVu has found 2,070-2,760 new bugs in this code base.
These bugs are varied in nature, often difficult to detect using
other techniques, and, given that the fixes are often embedded
in the bug reports, simple to repair.

This paper is organized as follows. In the next section
(Section 2), we provide a motivating example and a high-level
overview of DejaVu. In the following two sections (Sections 3
and 4) we describe our system’s two main components in
detail. Section 5 describes our experimental results, and
Sections 6 and 7 discuss related work and our plans for
continuing this research, respectively.

2. System Overview

Our presentation of DejaVu begins with a motivating example
that highlights the advantages of our approach and provides
insight into our design decisions. We continue with a high-
level architectural view of the system.

2.1 Motivating Example

Consider the code fragments in Figure 1. These fragments
are clones! that perform the same function: they are part
of separate modules that provide object-oriented wrappers
around the same system resource. The left fragment contains
a critical bug: on line 10, the programmer mistakenly checks
the return value of RsrcOpen as a Boolean, assuming “true’
indicates a successful return. (The Check and CheckTrue
identifiers refer to control flow macros that jump to the
Error: label, commonly used for cleanup code, if a condition
is false.) However, this particular system function returns
a negative nonzero value on error, which is incorrectly
interpreted as success. This is a real bug that was located by
our system. It exhibits several interesting properties:

>

! All “bug” examples in this paper are taken directly from a snapshot of our
commercial code base. They have been anonymized, but we have made an
effort to guide the anonymization such that the apparent semantics of each
code fragment remains clear.
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Figure 2: DejaVu system architecture.

* On line 12 of the right fragment, a comment clearly shows
that this programming error had actually caused a runtime
crash and had been entered into an issue tracking database
as a numbered bug. The programmer corrected the con-
dition of the CheckTrue call (and added an unnecessary
second check) but neglected to propagate the change to
the fragment’s twin. This is congruent with the intuitive
notion of a copy-paste bug.

The presence of other identical comments (lines 12 and 18
of the left and right fragments, respectively) suggests that
the fragments either were at one point edited consistently
or were duplicated after the comment was added.

The fragments exhibit both inter-line and intra-line struc-
tural differences, including the insertion of complete state-
ments and the modification of a condition, an initializer,
and a function call. DejaVu handles these general differ-
ences while still maintaining a high degree of precision.

The fragments contain both buggy and irrelevant changes.
The initializations on line 3 of both fragments are both
redundant dead stores and are not relevant to the bug.

Though not depicted in the figure, these code fragments
currently have different “owners” and are separated by
several levels in the project directory structure. This
pattern of copying code across large “distances” is not
uncommon and necessitates DejaVu’s global analysis.

This example clearly motivates our technique: a scalable,
global static analysis that enumerates divergent copies of
otherwise duplicate code and isolates and classifies their
essential differences.

2.2 System Architecture

This section provides a high-level overview of each of De-
jaVu’s components in the context of the implemented system;
we will later present each component’s design and implemen-
tation in detail in Sections 3 and 4. DejaVu’s architecture
appears in Figure 2. At a high level, DejaVu consists of two

components: the inconsistent clone detector and the buggy
change analysis framework.

Clone Detection ‘Front End’ The front end of our clone
analysis is responsible for reading the input source code and
producing a set of clone candidates, abstractions of code
fragments that can be potentially grouped together as clones.
It is implemented within the front end of a commercial C++
compiler and thus easily integrates with a variety of build
systems. Aside from simplicity of execution, the integration
with build systems also allows incremental clone detection.

Clone Detection ‘Back End’ After DejaVu produces a set of
candidate code fragments, the back end of our clone analysis
clusters the candidates to form a set of clones. This step is
the dominant computation—especially when we increase the
computational cost by tuning the analysis for recall—and it
is parallelized on a compute cluster. Though omitted from
the Figure 2 for brevity, a single master node coordinates the
computation and handles data distribution and aggregation.
Each node in our compute cluster is equipped with a multicore
processor, which we also fully utilize.

Buggy Change Analysis Framework Upon completion,
the clone analysis yields a large, but potentially noisy, set of
inconsistent clones. We refine this set and distill the essential
buggy changes with an extensible framework. Briefly, our
change analysis framework operates in three steps.

1. We first provide a mechanism for applying filters to
the input clones. In our default implementation, we
implement a single main filter: a check based on a
document similarity algorithm that ensures (with high
probability) that each clone is the product of an intentional
copy and paste action.

2. Next, we use a sequence differencing algorithm in a
series of iterations to align the clones and trim their
potentially spuriously-matching prologues and epilogues.
This focuses our analysis on the essential differences.

3. Using the results of the previous step, we distill the
difference between the two clones into a set of fine-grained



changes, which we then categorize and filter based on their
characteristics. If essential, likely-buggy changes remain
after this step, we output a bug report consisting of a) the
pair’s source code fragments along with b) a concise ‘dift,
highlighting just the changes DejaVu finds suspicious.

These steps are potentially quite computationally expensive,
and attempting to use this framework in isolation by feeding
an entire project through it would be cost-prohibitive. When
acting as part of the complete DejaVu system, however,
the clone analysis handles the scalability problem in stride,
transforming a large quadratic-time problem—a similarity
search over a large code base—into a much smaller (by orders
of magnitude, but still large), linear-time one—the refinement
and classification of a set of syntactic inconsistencies.

3. Detecting Inconsistent Clones

Our clone analysis is based on a reworking—and an entirely
independent, from scratch implementation—of Jiang et al.’s
DECKARD algorithm [15]. DECKARD is a general algorithm
that operates over tree structures: given a tree model, it scal-
ably enumerates all pairs of similar subtrees and/or subforests,
where similarity is defined by tree edit distance. When ap-
plied to trees of source code (either concrete or abstract syn-
tax) it functions as a highly effective clone detection algo-
rithm. The algorithm operates in two high level phases. It
first enumerates all possible clone candidates and abstracts
them into characteristic vectors. It then uses locality sensitive
hashing [12] to scalably group the vectors by similarity and
enumerate the similar sets.

This separation of concerns allows a great deal of flexi-
bility. In our case, this design allowed us to readily adapt
the algorithm to our requirements: DejaVu implements an
entirely new front end, which generates a complete set of
candidates, allowing us to find maximal clones (Section 3.1).
We were then able to independently optimize and rework
the back end (Section 3.2) to allow for parallel execution, a
more principled treatment of inconsistent clones, and several
performance optimizations.

3.1 Front End: Candidate Selection and Abstraction

Candidate Selection Our algorithm operates over abstract
syntax trees. A natural choice for candidate code fragments
are those contained by subtrees, the most relevant of which are
function definitions, blocks, and control flow constructs (e.g.
loops and conditionals). This is a sound first step; DejaVu
does include all subtree-delineated candidates. However,
this set is rather coarse grained and likely to miss important
instances of copying.

Consider again the code fragments in Figure 1. While
these fragments comprise complete function definitions, it is
conceivable—perhaps even likely—that a third similar code
fragment might exist in a form like Figure 3. Note that
this code fragment contains at least a portion of the same
bug: res should be checked against -1 on line 8, not as a

1 // ... Several lines of unrelated code ...
2 CheckTrue(resdi = RsrcCreate(malloc, free, RsrcOpen,
RsrcRead, RsrcWrite, RsrcClose, RsrcSeek, UNKNWN,
&fre), E_FAIL);
isSEOF = RsrcIsEQOF (resdi, res, &resinfo);

3

4

s Error:

¢ if (resdi)
7 RsrcCleanup(resdi) ;
s if (res)

9 RsrcClose(res);

19 return isEOF;

Figure 3: A fragment exhibiting a similar bug.

simple Boolean test. As it is a subsequence of a much larger
flat list of statements, this code fragment has no minimal
surrounding construct; i.e., it does not represent a subtree.
With the use of subtree-only candidates, this bug would likely
remain undiscovered.

Jiang et al. provide a strategy for mitigating this risk in
the original implementation of DECKARD [15] by serializing
the syntax tree, effectively creating an unstructured token se-
quence, and using a small (30 to 50 token), fixed-size sliding
window to generate additional candidates. For our bugfind-
ing application, this strategy is unsatisfactory. It biases the
algorithm toward finding many small clones, possibly with
many repeated lines. We require maximal clones: around
each potentially bug-inducing inconsistency, we must find as
much consistent context as possible to be able to state with
confidence that two code fragments are “nearly identical.”
Our system’s output must also be as free of duplicate bug
reports as possible.

Our solution to this problem is a somewhat brute force
approach: for each node (equivalently, subtree) in the abstract
syntax tree, we generate additional “merged” candidates
for all (;) subsequences of the node’s children. Put more
concretely, for each block, control structure, or function
definition, we generate a candidate for each contiguous
subsequence of top-level statements.

Example Consider this artificial code snippet:

int main(Q) {

1

2 int i = 0;

3 for (; 1 < 10; ++i) {

4 cout << "Hello_World!";
5 if (1 >= 10)

6 i=2;

7 global =

8 }

9 return 0;

0 }

and its associated (simplified) abstract syntax tree:

1:FUNCDEFN
3:FOR 9:RETURN

(4 FUNCALL )( 7:ASGN )

6:ASGN




Assuming we set a minimum candidate size of two state-
ments, we would first generate candidates for the subtrees
rooted at nodes (eq. lines) 1, the enclosing function and 3,
the loop. We would then generate “merged” candidates for
all subsequences of each node with at least two children. For
the enclosing function definition, we would generate the addi-
tional candidates consisting of nodes (2 3), (3 9), and (23 9).
Similarly, we recursively apply the same procedure to the
loop (node 3) and generate sequences (4 5), (5 7), and (4 5 7).
We are, in effect, enumerating every syntactically valid code
fragment that a developer could have copied and pasted.

DejaVu’s front end theoretically runs the risk of producing
an inordinately large number of candidates: at each “level”
of the abstract syntax tree, we are enumerating a quadratic
number ((3) = "("; 1)y of candidates. In practice, this is not
a problem: for our 75+ million line code base, we generate
fewer than 50 million potential candidates. There are several
reasons for this.

* Minimum Size We set our minimum candidate size at 6
statements or statement-expressions. Thus, many small
blocks are never merged, and there are fewer (but still an
asymptotically quadratic number of) subsequences.

Canonicalization We implemented the ability to canon-
icalize the abstract syntax tree with configurable trans-
formations. At present, DejaVu only performs a single
transformation: contiguous sequences of simple declara-
tions, usually found at the top of a given code block, are
collapsed into a single logical subtree, rooted with an arti-
ficial ‘null’ node. In our early experiments, considering
all subsequences of simple declarations caused a blowup
in the number of candidates with little quantitative (e.g.,
clone coverage metrics) impact on the result set.

Configuration of Merging We have also implemented
the ability to disable merging on certain parent node
types. As implemented, we only add this restriction to a
single case: we do not generate candidates for all possible
subsequences of cases of a switch. Note, though,
that we still generate candidates for the subsequences
of statements within the blocks delineated by the case
labels.

Abstraction We have described our enumeration strategy for
a complete set of clone candidates. Following DECKARD, we
abstract each candidate into a characteristic vector, to be later
clustered by the back end with respect to a similarity measure.
Briefly, a characteristic vector is a point in n-dimensional
space, where n is the number of tree node types.” In a given
point, the value of each coordinate counts the number of
occurrences of a given node type in the clone candidate. In
our small example earlier, the following vector characterizes
the entire fragment:

< 1FUNCDEFN7 lDECL7 lFOR7 lFUNCALL? lIF) 2ASGN 9 lRETURN>

2 Our C++ abstract syntax trees have 124 different node types.

Cluster Nodes Exact Hashing 1( 2 ] Local Post
. e“LSH X
Filter Processing
Exact_Hashmg 2LSH Local P(_)st
Filter Processing
c —\ r N\
xact‘Hashlng ’LSH Local Pc‘:st
Filter Processing

Vector
Grouping,
Coordination

Subsumption
Filter

Master Node

Figure 4: Clone detection back end.

Note that this characterization necessarily involves the full
abstraction of all constant values and identifier names. An
important property of these vectors is that despite their heavy
abstraction, the Euclidean distance between any two points
correlates strongly with the tree edit distance between the
two clone candidates [28]; thus, clustering with respect to
Euclidean distance yields similar clones. For a more detailed
presentation of this abstraction, see Jiang et al.’s paper [15].
It is important to note that both layers of abstraction—
abstract syntax trees and characteristic vectors—are sound:
two identical (syntactically complete) code fragments will
always correspond to identical abstract syntax trees, and
two identical abstract syntax trees will always correspond
to identical characteristic vectors. Each layer of abstraction
provides us with an opportunity to find more clones (i.e.,
increase recall) in a more scalable manner (with a reduction
in the problem space) at the possible expense of precision.

3.2 Back End: Grouping

The back end of our clone analysis clusters the abstracted
clone candidates (i.e., the vectors) into sets of clones. The key
enabling technology that allows this to be performed scalably
is locality sensitive hashing [12]. Briefly, LSH is a highly
scalable probabilistic technique for hashing similar items to
the same bucket, thus transforming a linear search for similar
objects into simple collision detection (which takes constant
time). The DECKARD approach involves using an instance
of LSH to solve a near neighbor problem with the candidate
clones, thus grouping similar code fragments. Jiang et al. use
Andoni’s ¢’LSH package [1] to implement this solver; we
also use Andoni’s implementation in binary form.

LSH forms the basis for the scalability of our approach,
but several challenges remain in attempting to scale the
analysis up to 75+ million lines of code while continuing to
produce accurate results that are meaningful for bug detection.
Figure 4 displays the interaction of these components, which
are described in detail in the following sections.

Parallelization A very large code fragment is never a clone
of a very small code fragment, and larger code fragments
should tolerate proportionally more edits (inconsistencies)
than smaller ones. Jiang et al. formalize this notion and pro-



vide a formula for dispatching the vectors into overlapping
subgroups based on their magnitude, which closely corre-
sponds to code size. Each subgroup has a progressively larger
average magnitude and is assigned increasingly more relaxed
clustering parameters (i.e., allowing for more inconsistency).

We adapt and implement a similar formula. In addition,
we take the novel step of dispatching the subgroups to nodes
in a compute cluster and processing them in parallel. For
moderately large target projects (around 5 million lines of
code), this clustering step completes in around 10 to 20
minutes and does not dominate the overall process. However,
for our very large code base, clustering can take tens of hours.
Partitioning the work allows a near linear speedup in the
number of nodes. With the use of a cluster of four quad
core servers, our entire clone analysis completes in a few
hours—rather than (up to) several days.

Coordination is handled on a single master node. We
schedule the clustering of the subgroups in decreasing order
of size to minimize overall latency. In addition, we have
implemented basic fault tolerance; the master node detects
and retries any failed or incomplete clustering jobs.

Filtering of Identical Vectors As a performance optimiza-
tion, we preprocess each clustering task by condensing all
fragments with identical vectors (i.e., the exact clones) into
sets of fragments mapping to a single vector. We implement
this in linear time using standard hashing. In practice, this
yields a 20 to 30% reduction in the number of vectors that
the LSH library must consider. As this optimization is local
to a given task (vector group), we distribute this work to the
cluster as well.

Local Post-Processing A given set of similar clone can-
didates is unlikely to be succinct and meaningful without
further processing. Consider a pair of exactly duplicate code
fragments, surrounded by inconsistent context:

1 RSLT result = *gResult;
2 if (result.op == ADJ]) {

1 object->get(&result,0);
2 if (result.op == ADJ]) {

3 min = result.xMin; 3 min = result.xMin;

4 max = result.xMax; 4 max = result.xMax;
s} s}

¢ else { ¢ else {

7 min = result.yMin; 7 min = result.yMin;

8 max = result.yMax; 8 max = result.yMax;

9 %} 9 }

10 int mid = min/2+max/2; 10 printf("min=%d\n",min) ;

Lines 2-9 of each fragment are clearly exact clones. However,
when allowing for an inconsistency of approximately one
statement, lines 2-9 of the first fragment are also duplicates
of a) lines 1-9 and 2-10 of the right fragment and b) lines
1-9 and 2-10 of the same (left) segment. Intuitively, we see
a pair of exact clones, but using this relaxed definition of
similarity, the tool incorrectly detects a group of 6 similar
code fragments. This highlights a major problem with a
very common case: nearly every exact clone can be trivially
expanded to form an inexact clone, albeit not in a meaningful
way that finds inconsistent edits.

In general, we would like to extract from each group
the most alike, non-overlapping subset of code fragments.
We implement a fast, approximate solution to this problem
that makes use of each fragment’s characteristic vectors: we
favor the “most alike” code fragments by prioritizing those
whose vectors appear most tightly clustered in the Euclidean
space. For a given clone set, we first calculate the geometric
centroid point of its characteristic vectors. Next, we calculate
the distance between the centroid and each individual code
fragment’s point. After sorting by this distance, ascending,
we greedily prune overlapping code fragments. In general,
exact clones—if they exist—fall naturally toward the center
of the cluster and are listed first. The ‘trivial’ inconsistent
clones are sorted later in the sequence and are pruned due to
overlap.

In our experience, this refinement tremendously improved
the quality of the results. With ad-hoc random pruning of
the overlapping portion of groups, over half (extrapolating
from random samples) of the inconsistent clones were trivial
extensions of exact clones. When using this technique, this
proportion dropped to below one percent.

Global Post-Processing: Maximal Clones As a final step,
we prune all fully subsumed clone groups from the result
set. For example, if two functions are complete clones, the
subsumed “sub-clones” consist of all pairs of their constituent
blocks. These subsumed groups are quite common: because
we generate a complete set of candidates, the presence of a
larger clone group in the result set implies the existence of
many smaller, subsumed clones. We accomplish this pruning
in amortized O(nlogn) time by maintaining a priority heap of
clone groups, sorted lexicographically (after grouping those
with equivalent cardinality) first ascending by their members’
starting lines and then descending by their members’ ending
lines. Sorting in this way ensures that subsumed groups are
adjacent, so pruning them is a linear time operation. To
minimize memory overhead, we implemented an immutable
string library with internalization. Note that because we
generate a complete set of candidates, this pruning phase
yields a minimal set of maximal clones—ideal for bug finding.

4. Buggy Change Analysis

DejaVu’s buggy change analysis framework takes a large,
potentially noisy set of inconsistent clones and extracts from
it a set of bug reports in the form of specific, likely-buggy
inconsistent changes. Though this component is an integral
part of our system as a whole, it is separable and usable with
any clone detection tool, albeit less effectively if provided
with fewer potential clones than our own recall-tuned clone
analysis is able to detect.

The first stage of this process (Section 4.1) provides an
interface for the coarse-grained filtering of clones, which
we utilize sparingly. The second stage (Section 4.2) refines
each clone pair by performing a series of abstraction and
sequence alignment operations. The final, most important



if (cd !'= cdNone) goto Error;
if (cdDEF != cdNone) { cd = cdDEF; goto Error; }

1
2
3
4+ // read data

s cd = ReadData(stream, false, &cnt, &data);
6 if (cd != cdNone) goto Error;

7

8

9

// hand back results.

*pcnt_output = cnt;
10 *pdata_output = data;
11 data = NULL;

13 Error:

14 if (data != NULL)

15 free(&data);

16 Release(stream);

17 Release(requestData);

if (cd !'= cdNone) goto Error;
if (cdDEF != cdNone) { cd = cdDEF; goto Error; }

1
2
3
4+ // read data types

s cd = ReadTypes(stream, &ntypes, &buffer);
6 if (cd != cdNone) goto Error;

7

8

9

// hand back results.
*pntypes = ntypes;

10 *pbuffer = buffer;

11 buffer = NULL;

13 Error:

14 if (buffer != NULL)
15 free(buffer);

16 Release(stream);

17 Release(requestData);

(a) A bug: the accidental freeing of a stack address. Though they contain several differences, the fragments’ textual similarity is > 0.5.

if (flags & BORDER)
obj->0OptBorder = true;

if (flags & SHADING) if (flags & LastBit)
obj->OptShading = true; obj->OptLast = true;

1 1 if (flags & RowsBit)
2 2
3 3
4 4
s if (flags & FONT) s if (flags & ColsBit)
6 6
7 7
8 8
9 9

obj->0OptRows = true;

obj->OptFont = true; obj->0ptCols = true;
if (flags & COLOR) if (flags & FirstBit)
obj->0OptColor = true; obj->0OptFirst = true;
if (flags & SCROLL) if (!(flags & NoTabs))
10 obj->0ptScroll = true; 10 obj->0OptTabs = true;

(b) A false clone with text similarity < 0.5

1 if ID & ID 1 if ID & ID

2 ID -> ID = BOOL 2 ID -> ID = BOOL
3 if ID & ID 3 if ID & ID

4 ID -> ID = BOOL 4 ID -> ID = BOOL
s if ID & ID s if ID & ID

6 ID -> ID = BOOL 6 ID -> ID = BOOL
7 if ID & ID 7 if ID & ID

8 ID -> ID = BOOL 8 ID -> ID = BOOL
9 if ID & ID 9 if ! ID & ID

10 ID -> ID = BOOL 10 ID -> ID = BOOL

(c) The abstraction that led to the false clone.

Figure 5: Examples that motivate our use of textual similarity as a filter.

stage (Section 4.3) extracts the syntactic differences between
each clone as a set of fine-grained change operations, which
we then classify as ‘benign’ or ‘buggy,” the latter of which
we present as bug reports.

4.1 Filtering

The most straightforward way of improving DejaVu’s pre-
cision is through coarse-grained filtering of the inconsistent
clones; that is, one can simply discard clones that do not
meet certain criteria. In terms of recall, however, reckless and
overly coarse filtering is antithetical to our goal of finding a
large number of general clone bugs; overly selective filters
are both difficult to generalize and often biased toward ‘low
hanging fruit.’

With this in mind, we limit DejaVu’s coarse filtering to
a single rule, a minimum textual similarity threshold that
allows us to establish an important foundational assumption:
that each clone pair we examine very likely originates from
an intentional copy and paste operation. Our intuition is
that inconsistent changes between incidentally similar code
fragments are far less likely to be buggy than those between
true deliberate clones. Concrete motivating examples for this
filter appear in Figure 5.

Textual Similarity On manual inspection, a developer may
be able to quickly dismiss false clones due to the (somewhat

nebulously defined) intuition that the fragments do not ‘look’
similar at all. We codify and automate this process using
a notion from the field of information retrieval: document
similarity.

A similarity index of two documents is a value in the
closed interval [0, 1] that describes their relative resemblance.
A variety of approaches exist, but many follow a similar pat-
tern: generate representative sets from each document and
compare them using a set similarity measure. To compute tex-
tual similarity of source code, DejaVu generates for each code
fragment a w-shingling [4], a set of contiguous, fixed-length
subsequences of tokens the program’s text, and compares the
sets using the Jaccard index:

XNy
J(X,Y) = !
XUY|

Example: Consider the following two lines of source code:

int res = NULL;

int res = 1;

These lines correspond to the following shinglings of length
three (‘trigrams’):

Fy ={[int, res, =], [res, =, NULL], [ = NULL, ; ] }
Fy={[int,res,=],[res,= 1], [=1,;1}



Their intersection consists of the first element of each, and
their union is of size five. The similarity of the two fragments

is:
1
J(F,F) = 5= 0.2

For our experiments, we use sequences of length five (5-
grams), a length near the median number of tokens per line,
and we set our threshold to the fairly permissive value of 0.5,
which we arrived at after a series of exploratory experiments.
There are more formal ways of fitting these thresholds: we
can treat them as parameters and then use methods from
statistics such as cross-validation and ROC curves to estimate
the effectiveness of a setting and make a decision on the
optimal values. For the purposes of our concrete dataset, the
values above were sufficient.

Though we only implement a single filter, this stage is
a natural extension point for project-specific tuning. For
example, we noted in our experiments that a disproportionate
number of false alarms came from a single large file: a
remote procedure call client interface completely comprised
of idiomatic marshaling and network code. Had the goal
of our experiments been to produce as precise a report as
possible rather than to evaluate our system, we could have
implemented a filter to exclude this file and others like it.

4.2 Refinement

The next stage of our buggy change analysis is the refinement
of individual clone pairs. The goal of this phase is twofold:
we prune inconsistent, but likely spuriously-matching pro-
logues and epilogues from each pair, and we simultaneously
establish a common abstraction over which to compare the
clones. We illustrate this process in Figure 6 and describe it
here.

We first establish an abstraction for each code fragment
using flexible lexical analysis, configured for the C++ lexicon
(with preprocessor directives) with the following options:

* We fully abstract literals by type. All Boolean literals
become a token marked ‘$BOOL, for example.

* We perform consistent mapping of identifiers to normal-
ized values. DejaVu greedily normalizes identifiers as
they occur: the first referenced identifier of each fragment
becomes ‘$0ID,” the second ‘$1ID,” and so on. For equal
but consistently renamed code fragments, this generaliza-
tion strategy produces a perfect substitution of identifier
names. However, this strategy performs poorly in the
presence of minor structural changes that introduce or ref-
erence new identifiers in otherwise equivalent fragments:
it incorrectly causes a cascading chain of differences. We
mitigate this effect by not normalizing the shared (i.e., not
renamed) identifiers and greedily renaming the remaining
set.

* Whitespace and comment tokens are discarded, and key-
words are left intact.

An example of this normalization appears in the lower row of
Figure 6: note the lack of abstraction on the shared identifier
free.

After abstraction, we align the two normalized sequences
using a sequence differencing algorithm (Ratcliff/Obershelp
[24]). If we find that a pair of inconsistent clones starts or ends
with an inconsistent prologue or epilogue, respectively, we
prune it: as described in Section 3, trivial extensions of clones
are usually uninteresting. Although our earlier-described
postprocessing solves this problem for the common case of
trivial extensions to exact clones, we find that these spurious
matches are quite common in highly divergent clones. Note
that we are not throwing out the entire clones, we are merely
refining— ‘trimming’—them to their essential core.

Figure 6 illustrates an additional subtlety: after prun-
ing, the abstraction—namely, the identifier renaming—is no
longer valid and must be repeated. We iterate this abstrac-
tion and alignment process until each clone is surrounded
by a user-configurable amount of exact context, which we
currently set to five tokens.

To evaluate our system’s general applicability, we limited
our configuration of the lexer to the three rules described
above. However, additional project-specific configuration is
possible. An embedded system project, for example, might
selectively choose to abstract all bit-manipulating operators
to a single value, while an enterprise system may prefer to
not abstract string literals so as to identify embedded SQL
bugs.

4.3 Buggy Change Isolation

At this step in the analysis, DejaVu has produced a set of
inconsistent code fragments that are 1) very likely deliberately
copied and 2) abstracted, aligned, and trimmed; that is, they
are focused on their essential differences.

The final, and arguably most important, phase of our
analysis takes these aligned, abstracted token sequences
and distills them into a sequence of fine-grained change
operations: insertions, deletions, and replacements that are
capable of transforming one fragment in the clone pair into
its inconsistent twin. DejaVu then classifies each of these
individual changes as ‘benign’ or ‘buggy.’

We perform this classification with a series of syntactic
filters. Each filtering function has access to a variety of infor-
mation: 1) the source text and abstracted tokens involved in
the change, 2) the complete source text of both fragments, and
3) the set of all changes (for making contextual judgments).
While we have implemented a small set of general default
filters, we expect this natural extension point to be commonly
utilized in practice: it provides a simple, intuitive, and fast
point at which users can ‘fit’ DejaVu to a specific project and
focus precisely on bugs of interest. Our three default filters
are defined as follows:



Fragment 1

Fragment 2

release(data)

if (data != NULL)
free(&data);

return true;

if (buffer != NULL)
free(buffer);

release(stream);

release(request);

First Round of Abstraction and

Prune spurious
prologue and
epilogue and

reiterate

Fragment 1

Fragment 2

if (data != NULL)
free(&data);

if (buffer != NULL)
free(buffer);

Second Round of Abstraction and

Alignment

if ($0ID != NULL)
free(&$0ID);

if ($0ID != NULL)
free($0ID);

Alignment
$0ID($1ID)
if ($1ID != NULL) if ($0ID != NULL)
free(&$1ID); free($0ID);
return true; $1ID($2ID);
$1ID($31ID);

Figure 6: An example of our refinement process. Matching fragments are typeset in black and differences are highlighted in grey.

Punctuation Our first filter is simple: we discard changes
that consist solely of punctuation (e.g. semicolons and
braces), as they are usually not semantics-affecting.

Parameter Additions This filter controls for a specific class
of adaptive change: the addition of new arguments to a
function. An example of this filter’s applicability appears
in Figure 5a: on line 5 of each fragment, note that
each calls a different function. This particular change is
adaptive and a result of differing functionality, while the
change at line 15 is the more relevant, suspicious change.

Identifier Scope This filter affects only changes that contain
identifiers; all others implicitly pass. For any change that
contains at least one identifier, at least one identifier must
be shared with the pair clone, and at most one identifier
can be unshared. Our intuition here is that divergent bug
fixes are most likely applicable when their referenced
variables are in scope. Note that we do not require all
variables to be in scope: a common form of bug is that of
a missing but necessary function call.

Our experiments were configured with exactly these three
change filters. However, throughout our evaluation of the bug
reports, we were without a shortage of ideas for additional
filters, and our extensible framework simplifies the process
of implementing and evaluating them.

Reporting Once the buggy changes have been identified,
DejaVu outputs each clone pair containing at least one suspi-
cious change as a bug report. Along with the source text, the
report entries include a rendered diff of the specific changes
DejaVu finds suspicious: DejaVu maps each change back to
the relevant source lines, displaying 1) any line in its entirety
that contains at least one structural difference and 2) between
lines, precise intra-line markers highlighting the locations of
relevant structural differences. Note that in our evaluation,
we only marked a bug as ‘true’ if DejaVu identified both the
relevant clone pair and the relevant buggy change(s).

These differences highlight the essence of the inconsistent
edit and facilitate inspection: in our evaluation (cf. Section 5),

each bug report took an average of 2.4 minutes to verify,
albeit with a somewhat high variance. Note that DejaVu often
finds bugs that have already been fixed at least once, so the
solution to the problem is often encoded in the bug report.

Overfitting and Generality A natural objection to the spe-
cific instances of the techniques described above is overfitting:
we may have developed filters and rules that are specific to
our current target. While the particular rules we present are
arguably general, we do not see generality as an absolute
requirement: our framework has several extension points,
and project-specific filters are simple to write and try. The
development of a purely syntactic bug finding analysis that
functions equally well on all projects is likely a futile exer-
cise: in its most practical setting, we envision DejaVu’s use
in a workflow in which aggressive, project-specific filters are
used and refined frequently.

Scalability These operations are potentially expensive to
compute: each involves numerous string and set operations
that are potentially quadratic in the size of the code fragments.
However, in practice, the buggy change analysis module
executes quickly. The key factor influencing its scalability is
the massive reduction in problem size afforded by the scalable
clone analysis. In our experiments, the clone detection front
end enumerates O(10%) source code fragments. Pairwise
analysis of these fragments for buggy changes would require
0(10'%) expensive executions of the buggy change analysis
framework. Instead, the clone analysis—despite being tuned
for recall—reduces this to a much more manageable set of
0(10%) clone pairs, each requiring only a single expensive
change analysis.

Nonetheless, this module has numerous opportunities for
optimization. First, it is implemented in Python and would
achieve a significant gain by moving to a more performance-
oriented language. Second, this task is easily parallelized, as
it involves only local comparisons between two code frag-
ments. Third, more scalable but less precise similarity tech-
niques like winnowing [26] may provide a further increase in
performance by quickly removing the least similar clones.



Parameter Value

Minimum code fragment size 6 statements
DECKARD ‘similarity’ value 0.8
Minimum textual similarity 0.5
Textual similarity n-gram length 5 tokens
Alignment: min. exact context 5 tokens

Table 1: DejaVu’s parameter settings.

5. Experimental Results

An execution of DejaVu on our large commercial code
base produced 8,103 bug reports in under five hours. We
estimate that 2,070-2,760 of these very likely represent
true, previously-unknown bugs. The following sections
provide a detailed presentation of this evaluation as well
as a quantitative and qualitative assessment of the results.

5.1 Methodology and Timing

We evaluated DejaVu on a code base with 100+ million lines
of C and C++ source code.? 75+ million lines are contained
in actively built source files and 25+ million lines reside in
header files. This code base comprises approximately 450
projects that form a single larger product family. Despite this
unifying relationship, the individual projects cover a diverse
range of functionality.

The front end of our tool resides within the compiler
and thus considers only actively compiled code. This is an
interesting property of DejaVu, which can be considered both
a strength and a weakness. On the positive side, errors in
uncompiled code are likely to be of low severity and may be
considered noise. However, should we need to process files
outside of a functional build system, the compiler that hosts
our front end does have the ability to run its parsing stage
in isolation (i.e., “syntax check only” mode), which does
not check dependencies and can be run with a minimum of
effort. In practice, we intend to use DejaVu only on actively
compiled code as part of the regular development process.

Timing We deployed DejaVu on a single master node
and four cluster nodes. The master node is equipped with a
dual core Intel processor and Windows Server 2008. Each
cluster node is equipped with two dual core AMD Opteron
processors and a 64 bit version of Windows Server 2003. The
experimental parameters used for DejaVu’s various compo-
nents are described throughout this paper; we consolidate
them for reference in Table 1.

We ran DejaVu’s front end separately, during a normal
build of the code base. The integration with the custom build
system rendered precise overhead measurements difficult,
but we observed that the generation of clone candidates
added a negligible amount of time to the overall build. In
addition, future executions of this step, which are executed

3 We have also performed an additional experiment on an open source code
base; it is included as Appendix A.

DejaVu Execution Time (Elapsed)

Component Time (hh:mm)
. Sequential Portion 0:45
Clone Detection Parallel Portion 2:05
Buggy Change Analysis Framework 1:30
Total 4:20

Table 2: Execution time on our 75+ million line code base.

incrementally through a build system, isolate this slight
amount of overhead to changed files only.

The rest of the process, which includes clone detection,
change analysis, and report generation, took a total of 4
hours and 20 minutes. A breakdown of the time spent
in individual components appears in Table 2. The clone
detection phase was configured with a fairly liberal similarity
setting: the mean edit distance between the clones in our
result set is 28 tokens, and controlled for size, the clone pairs
differ by approximately 14% on average (with a fairly high
variance). Despite this potential scalability trap, the clone
detection phase completes in under 3 hours and is dominated
by the parallel step, which we execute on all 16 available
cores (4 nodes x 2 CPUs/node x 2 cores/CPU). Adding
more nodes to the cluster is likely to improve performance
further, and as discussed in Section 4, the final refinement
step contains numerous opportunities for optimization.

5.2 Error Reports

DejaVu produced 8,103 bug reports, which were beyond
our resources to verify fully. We instead sampled 500 reports
uniformly at random—a significant sample size—and divided
the set into five categories:

Bugs Very likely bugs. Examples are found throughout this
paper.

Code Smells Suspicious but ultimately harmless differences
that are often inconsistently fixed. Example: a dead
store to a local variable that one programmer notices is
redundant and deletes from his or her copy.

Style Smells Changes in style that leave the semantics of
the code fragments unaffected but may hurt clarity. For
example, some code fragments contain clever uses of as-
signments as expressions. When copied, a programmer
may adapt the fragment for clarity using temporary vari-
ables.

Unknown There is nothing apparently false about these
reports, and the necessary conditions for their validity
are there; the changes apparently apply. However, we
could not confidently judge them as bugs without further
domain knowledge.

False False reports. These consist mainly of adaptive
changes we fail to account for and filter, but also occasion-



Category Count Rate Extrapolated Count
Bugs 149  30% 2,070 -2,760

Code Smells 49  10% 450 - 1,140
Style Smells 60 12% 630 - 1,320
Unknown 58 12% 600 - 1,280
False Reports 184 37% 2,640 — 3,330

Table 3: Categorization of sampled bug reports and estimates
of total counts with 95% confidence.

ally include pathological cases in which every inconsistent
edit is intentional.

The results of this evaluation appear in Table 3. Our sample
size of 500 allows us to estimate the rate of any one of these
parameters in our larger report with a +4.25% margin of error
with 95% confidence (equivalently, a £3.56% margin with
90% confidence). Conservatively assuming every ‘Unknown’
report is false, our overall ‘true-bug’ precision is very likely
between 26 and 34%: triple that of previous work, and our
set of bug reports very likely contains 2,070-2,760 true bugs.
Weakening our definition of ‘bug’ to include code smells—
but still conservatively assuming all ‘Unknown’ reports to be
false—raises our precision to between 48 and 56%.

Qualitative Assessment  The potential bugs are quite
varied: Figures 7 and 8 contain two of the more interesting
examples. In the first example (Figure 7), locking around
accesses to a field are added to otherwise identical functions.
In the second example (Figure 8), a file resource is leaked
along an error path. The bugs presented earlier in this paper
(Figures 1 and 5a) are equally diverse. These examples
highlight particularly well DejaVu’s novelty: we are able
to detect a very general class of clone bugs.

Many of the bugs are more mundane. Figure 9 contains
three common classes of bugs that we observed repeatedly in
the result set. The first (Figure 9a) is a general error related to
input validation: the author mistakenly joined the two disjoint
error conditions with the logical ‘and’ operator. This example
is particularly obvious; line 2 of the first fragment simplifies
to false. The second example (Figure 9b) involves a com-
mon idiom: function error codes are commonly collected in a
single ‘result’ variable and returned upon exit. We observed
many cases where this was omitted—Ilikely by mistake—and
fixed inconsistently. The final example (Figure 9c) is the
ubiquitous null check: we found numerous examples where
inconsistent null checks were added to otherwise textually
identical code fragments—even within a single file.

Code Smells and Style Smells also comprised a significant
proportion of the results and are worth exploring in that they
can often lead to future bugs. Three common examples
appear in in Figure 10. Other examples include unnecessary
declarations, inconsistent type qualifiers (e.g.. const and
unsigned), and unnecessary explicit conversions from non-
Boolean types to Boolean values.

False Positives At present, about 50% of the potential bug
reports are either obviously false or unverifiable by us without
more extensive domain knowledge. As we noted in Section 4,
many of these could be filtered at the risk—or perhaps the
benefit—of overfitting DejaVu to our current target code
base. This number is quite manageable, and unlike in many
forms of traditional static analysis, these ‘false’ reports are
beneficial to investigate: duplicate code is a ‘code smell’ in
its own right. Our analysis framework ensures that all the
false positive bug reports are still almost certainly derived
from true clone reports, so the false positives are often viable
refactoring candidates.

Lastly, as reports are confirmed by the development teams,
we expect to implement several filters that provide more
relevant results; that is, we intend to tune DejaVu to not only
find true bugs, but to also focus on the bugs the developers
believe are severe. Such filters would act at the expense of
recall; we present only the most general results in this paper.

6. Discussion and Related Work

In this section, we provide a detailed comparison with other
copy-paste bug detection tools as well as a brief overview of
other related work.

6.1 Copy-Paste Bug Detection Tools

Despite a vast amount of research on clone detection, compar-
atively few tools actively detect clone-related bugs; Li ef al.’s
CP-Miner [21] and Jiang et al.’s context-based bug detection
tool [16] are the best-known examples.

CP-Miner CP-Miner [21] detects identifier renaming bugs.
Identifier renaming bugs occur when a developer copies a
code fragment and intends to rename one or more identifiers
consistently but omits a case. Though these bugs are often
caught by the compiler, they are quite difficult to trace when
they do occur. Our tool succinctly captures this class of bugs
as well: we start by fully abstracting identifier names, finding
both consistently and inconsistently renamed identifiers, and
later detect inconsistent renaming problems as structural
differences in the token streams. The method by which we
unify variable names is quite similar to that used by Li et al.,
though their more specific heuristics are likely much more
precise for this class of bugs.

For comparison, we conducted an additional simple study:
we excluded from our report clones who differ only in the
consistent naming of identifiers. We noted only an approxi-
mate 4% decrease in our report size, which suggests that our
general technique is finding a significantly larger new class
of bugs. Within that 4%, we noted many of the same types of
false positives reported by Li et al., including simple reorder-
ings. As part of our ongoing work, we intend to integrate
their heuristics for this class of bugs into our own tool.
Context-Based Jiang ef al. developed a tool [16] that looks

for exact clones that are used inconsistently. The intuition
is that duplicate code should be used in similar contexts, e.g.



CS.Enter();

request = m_request;
m_request = 0;
CS.Leave();

1

2

3

4

5

6 if (request) {
7 CloseRequest (request);
8 request = 0;

9

}
18 /* Body of method omitted for space (20 lines) */
11 CS.Enter();
12 if (IsTaskCancelled())
13 Log (USER_CANCEL) ;

15 m_request = request;
16 request = 0;
17 CS.Leave();

19 Error:
20 CS.Leave(); // Force leave here if still inside CS.

22 CloseRequest(request);
23 return res;

12 m_request =
13 request = 0;

1 request = m_request;
2 m_request = 0;

3
4+ if (request) {

5 CloseRequest (request);
6 request = 0;

7}

s /* Body of method omitted for space (20 lines) */

9 if (Cancelled())

10 Log(USER_CANCEL);

request;

15 Error:

16 CloseRequest(request);
17 return res;

Figure 7: A concurrency bug. Though in a different class, the right fragment contains the critical section field and guards other

accesses of m_request with it.

FILE file = Open(fName, WRITE, CREATE, NORMAL);
if(file == INVALID_FILE) return E_FAIL;

1

2

3

4+ int size = SizeofResource(mod, rsc);

s int written;

6 RESOURCE rGlobal = LoadResource(mod, rsc);
7

8

9

if(!rGlobal)
return E_FAIL;

19 void *data = AccResource(rGlobal);
20 if (data == NULL) {

21 res = E_FAIL;

22 goto exit;

23 }

24 1if (!WriteFile(file, data, size, &written, NULL)) {
25 res = E_FAIL;

26 goto exit;

27}

28 exit:

20 if(file != INVALID_FILE_VALUE)

30 Close(file);

FILE file = Open(fileName, WRITE, CREATE, NORMAL);
if(file == INVALID_FILE) return E_FAIL;

1
2
3
4+ int size = SizeofResource(mod, rsc);

s int written;

6 RESOURCE rsrc = LoadResource(mod, rsc);
7 if(rsrc == NULL) {

8 res = E_FAIL;

9 goto Cleanup;

10 }

11 void *data = AccResource(rsrc);

12 if (data == NULL) {

13 res = E_FAIL;

14 goto Cleanup;

15}

16 if (!WriteFile(file, data, size, &written, NULL)) {
17 res = E_FAIL;

18 goto Cleanup;

19 }

20 Cleanup:

21 if(file != INVALID_FILE_VALUE)

22 Close(file);

Figure 8: A resource leak. The file is not closed on all paths.

a null check surrounding one clone should also surround
another. The authors report about a 10% true positive rate
overall. Though we find many of the same kinds of bugs—
indeed, local instances of context inconsistencies are a special
case of our general inconsistencies—the tool is complemen-
tary to our own in general, as the surrounding context of a
clone can often be quite distant and thus undetectable as a
single inexact clone. Like this tool, DejaVu operates over
syntax trees, so we can integrate this technique with our own
by recording the enclosing syntactic context of each clone
and using it as a clone-related feature for filtering.

6.2 Other Related Work

Clone Detection Tools Many tools have been developed for
detecting similar code fragments, each with varying levels of
scalability, abstraction, and granularity; we briefly present a
sampling of the more scalable techniques for comparison.

Baker’s tool ‘dup’ [2] was one of the first clone detection
tools and it remains one of the most scalable. It operates at
line granularity and allows for consistent renaming of tokens
via parameterized string matching. It is incapable, however,
of finding clones with structural differences.



1 // Check ’level’ function argument
2 if( level < 1 &% level > NUM_LEVELS )
3 return INVALID_ARG;

1 // Check ’level’ function argument
2 if( level < 1 || level > NUM_LEVELS )
3 return INVALID_ARG;

(a) Poor argument checking. NUM_LEVELS is a positive integer
constant.

// Finally, submit the message !
SubmitMessage (msgStatus) ;
JE L

return result;

AW oN e

// Finally, submit the message !
result = SubmitMessage(msgRoute) ;
/:': . ;':/

return result;

AW oN e

(b) Not saving the result of an important function call.

1 if ('AddItem(psp, pspDest, *desc, AFTER))

2 return false;
1 if (!desc || 'AddItem(psp, pspDest, *desc, AFTER))
2 return false;

(c) An added null check to an otherwise identical pair of larger
functions.

Figure 9: Three examples of common classes of simple bugs.
Context is omitted for brevity.

As discussed throughout this paper, Deckard [15] forms
the basis of our approach. Gabel et al. later extended this
technique [11] to scalably find clones within subgraphs
of program dependence graphs [10], which encode data
and control flow information. The dataflow information
encoded in PDGs may improve the precision of DejaVu’s
bug reports by filtering non-semantics-affecting changes in a
more principled way.

Li’s CP-Miner [21], discussed earlier as a bug finding tool,
is also based on a novel clone detection algorithm. Like De-
jaVu, CP-Miner enumerates a set of possible clone candidates
and later groups them together. CP-Miner first enumerates
and abstracts the basic blocks of the target code base and then
uses a data mining technique, frequent subsequence mining,
to enumerate the possible clones. This approach allows for
the detection of clones with an inserted or removed statement
(referred to as a gap). To output maximal clones, CP-Miner
assembles the smaller basic block-level clones into larger,
more complete copied code segments.

CCFinder [18] uses a suffix tree-based algorithm to
find clones within token streams. Though asymptotically
quadratic, it scales well to software projects of a few million
lines of code, though it is incapable finding of any form of
structurally inconsistent clone. A later parallelized extension,
D-CCFinder [22], scales this approach to a 400 million line
code base, which takes 2 days to complete on 80 nodes. The

res = chunk->put_Context(chunkContext) ;
ON_ERR_RETURN(res);

res = chunk->put_Locale(chunkId);
ON_ERR_RETURN(res);

VO

res = ((Chunk*) chunk)->put_Context(chunkContext);
ON_ERR_RETURN(res);

res = chunk->put_Locale(chunkId);
ON_ERR_RETURN(res);

AW oN e

(a) A strange extraneous cast.

1 PSESSION pSession;
2 if (NULL == (pSession = GetActiveSession()))
3 return;

1 PSESSION pSession = NULL;
2 if (NULL == (pSession = GetActiveSession()))
3 return;

(b) A dead store to a local variable.

len = StringLen(bstr);

if (wz == NULL || *outlen < (len + 1))
{
*outlen = StringLen(bstr);
return wz == NULL;

¥

o v A W N e

len = StringLen(bstr);

if (wz == NULL || *outlen < (len + 1))
{
*outlen = len;
return wz == NULL;

3

o v oA W N e

(c) Redundant recomputation of a value.

Figure 10: Three code smells.

extension is straightforward: they divide the problem into n
smaller chunks and find clones within the (g) possible pair-
ings. Though on the same level of scale as DejaVu, it does
not find inconsistent clones or attempt to find clone bugs.

Schleimer et al.’s MOSS [26] is a highly scalable system
for detecting software plagiarism. It utilizes a document
similarity technique related to the algorithms we apply in our
inspection framework. However, it is quite coarse grained,
operating at the program or file level, and is thus unsuitable
for finding clone related bugs.

Studies of Cloning Each of the above tools reports that a
significant amount (5-30%) of their target systems consist
of copied code, which motivates well our technique. Kim
et al. [20] study the nature of code clone genealogies by
utilizing a project’s version control history to track the in-
troduction, evolution, and removal of clones over time. In a
portion of the work that is relevant to our own, they find that
a significant proportion of all code clones over the history of
two software projects evolved in sync and are thus prone to
the general class of errors that we detect.

In a concurrently developed study [17], Juergens et al.
extend a suffix tree-based clone detection algorithm to detect



clone pairs with a small number of edits. They report the
inconsistent clones in their entirety to the developers of
several proprietary software projects and study the fault
rate of the inconsistent clone fragments. They find that
these fragments are more failure-prone than non-copied code,
which validates our own approach. However, their algorithm
is asymptotically quadratic and appears to hit its scaling limit
around 5 million lines of code.

Lightweight Bug Finding Engler ez al. [8] introduced the
idea of using behavioral inconsistencies to find bugs. For
example, if a pointer is dereferenced unconditionally on one
program path but is checked for validity on another, their tool
outputs a warning: either the check is unnecessary or a bug
exists. This is quite similar in spirit to our own work: we
search for bugs using syntactic inconsistencies. Like Engler
et al.’s work, our work inherently exposes the nature of the
inconsistencies, greatly simplifying the repair of the defects.

Other tools, like the historical LCLint [9], FindBugs
for Java code [14], and Engler et al.’s Metal specification
language and checker for systems code [7, 13] are all capable
of using syntactic characteristics and/or a local static analysis
to find bugs in large software systems. (Interestingly, in a later
empirical study [5], Chou et al. note that a large proportion
of the errors found by their tool are propagated by copying
and pasting source code.) These tools are all alike in that they
require as input explicit specifications for specific classes of
bugs.

In our scenario, we expect copied code to form a type of
meta-level implicit specification: duplicate code is generally
intended to remain identical. We extract violations of this
‘implicit specification’ by leveraging an efficient, large scale
clone analysis, eliminating the need to specify and check
instances of duplication manually. Though this higher level
specification is weaker, admitting many false positives, it
captures a much more general category of bugs.

7. Conclusions and Future Work

In this paper, we have presented DejaVu, a system for locating
general copy-paste bugs. We demonstrated that DejaVu
is highly scalable: a full analysis completes in under five
hours on 75+ million lines of source code. Our system
located 2,070-2,760 very likely bugs and we have shown
that these bugs are general and varied, affecting resource
leakage, concurrency, memory safety, and other important
classes of software errors.

Our most immediate future work involves continued eval-
uation of our tool, the first aspect of which is continuing our
communication with the developers of our target system. We
are currently gathering confirmation of bug reports and so-
liciting feedback on the tool’s output. We also intend to run
DejaVu against several other large code bases, both commer-
cial and open source.
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A. Appendix: Experiment on Mozilla

To further demonstrate DejaVu’s general effectiveness as a
bug finding tool, we performed an additional experiment on

an open source code base owned by the Mozilla Foundation.

This appendix summarizes the results.
A.1 Setup

Code Base We gathered current Mercurial (a distributed
version control system) snapshots of the source code for
the Mozilla Firefox web browser (http://mozilla.com/

firefox), the Thunderbird email client (http://mozilla.

com/thunderbird), and their supporting libraries. Using a
naive methodology, we counted approximately two million
lines of non-header C and C++ source code.

Building After gathering the source code, we integrated
DejaVu’s front end into the Mozilla build process and ran two
standard builds, one each for Firefox and Thunderbird. In this
configuration, DejaVu only scanned code actively compiled
during a standard Windows platform build of each project.

Configuration We used the same experimental parameters
as those described in our formal evaluation (Section 5), with

one notable exception: due to the much smaller size of this
code base, we performed the entirety of the experiment on a

single node, a 2.4 GHz Core 2 Duo system with 4 GB of RAM
running Microsoft Windows 7. We configured DejaVu’s clone
analysis to use both available cores.

A.2 Results

Timing Running on a single, node, DejaVu’s clone detection
back end completed in 40 minutes and the buggy change
analysis framework completed completed in four minutes.
For a code base of this size, scalability is not an issue.

Results DejaVu produced 136 bug reports. We categorized
each report using the same methodology and classification
scheme as in our formal evaluation. (Any statistically signifi-
cant random sample of a population this small would include
nearly every report; we thus opted to verify them all.) The
results appear in the following table.

Category Count Rate
Bugs 45  33%

Code Smells 21 15%
Style Smells 11 8%
Unknown 33 24%
False 26 19%

Table 4: Categorization of Mozilla bug reports.

We note a comparable rate of true bugs and similar rates
for the other categories: DejaVu appears to be generally
effective on this code base as well. However, we tended
to annotate bugs as ‘Unknown’ at nearly twice the rate as in
our commercial code base. This is likely due to our lack of
previous exposure to the Mozilla source code.

The complete experimental results, including DejaVu’s
output and our classifications, can be found online at the fol-
lowing address: http://wwwcsif.cs.ucdavis.edu/~gabel/
research/dejavu_mozilla.zip



