
Application-level Benchmarking with Synthetic Aperture Radar
Chris Conger, Adam Jacobs, and Alan D. George

{conger, jacobs, george}@hcs.ufl.edu
High-performance Computing and Simulation (HCS) Research Laboratory
Department of Electrical and Computer Engineering, University of Florida

Abstract
Space-based radar applications continue to receive
increasing interest from the research community, and new
technologies are emerging that will help to make the vision
of real-time, on-board, high-volume data processing a
reality for next-generation space platforms. Isolated kernel
benchmarks may not accurately capture true system
performance in the context of a full application, and so
application-level benchmarking is needed to measure true
system performance. This research presents a full Synthetic
Aperture Radar (SAR) application benchmark, written in
ANSI-C and using only the Gnu Science Library (GSL) and
Message Passing Interface (MPI) libraries. The SAR
application forms high-resolution images from raw radar
data, and incorporates many computational kernels of
interest to the HPEC community. We present performance
results from two different parallelizations of the
application, executed on a cluster of PowerPC processors
connected via Gigabit Ethernet. In addition to presenting
the performance results on our system, the benchmark
source code and example data is made publicly available.

Introduction
The HPEC Challenge benchmark suite was created to give
developers a rigorous set of tests that can be used to
evaluate different embedded architectures [1]. The kernel
benchmarks in the suite are intended to represent a wide
range of common applications, such as radar processing and
hyper-spectral imaging. The SAR application benchmark
that is included with the HPEC Challenge suite implements
one fixed parallelization, though it may be desirable to
explore the performance of alternate decompositions. The
SAR benchmark presented in this work offers unique
features and configurability, as well as multiple parallel
decompositions. With newer embedded systems for space,
such as the Dependable Multiprocessor [2], featuring a
more traditional cluster architecture, accurate parallel
performance evaluation will play an important role in
system design.

This application-level benchmark implements strip-map
SAR, where the radar platform is moving over the Earth
while the radar itself remains pointed downward in a fixed
direction. As the platform moves, an image is formed of
the strip of ground underneath the satellite. Additional
details on the mathematics of the SAR algorithm itself can
be found in [3]. The processing flow of strip-map SAR is
amenable to parallelization on multiple levels of
granularity, and the benchmark presented in this research is
capable of taking advantage of this multi-level parallelism.
The basis of SAR used for this benchmark was derived
from sequential reference code provided by the Scripps

Institute of Oceanography. Along with the source code, a
genuine ERS-2 satellite image file was provided to serve as
an example input data set for the application. Figure 1
shows the output image produced by the parallel SAR
benchmark using the ERS-2 satellite file as input.

Figure 1: Image formed by benchmark using real ERS-2 data

Benchmark Description
The benchmark consists of a sequential baseline and two
different parallel algorithms for the SAR application. Each
design is parameterizable, providing control over numerical
precision, image size, and radar/satellite characteristics.
For each parallel design, there is also an optional “control
thread” that may be enabled to cause small messages to be
passed between nodes, a feature inspired by simulative
research performed at the University of Florida in [4].
These small messages are intended to imitate latency-
sensitive control traffic that must share the network with
data traffic from the SAR processing. Latency statistics for
these small messages are gathered and reported to help
characterize the effect of SAR data movement on critical
control traffic for a given system. Additionally, there are
utility programs associated with the benchmark, including a
data generation utility to generate arbitrary-sized images for
input, and a bitmap generation utility to generate viewable
image files from the benchmark output.

The SAR application consists of four processing stages, and
requires a transpose of the 2-dimensional image between
each stage. This benchmark processes the input image in
patches, with overlapping patch boundaries and each patch
being processed independently. By keeping only a portion
of the fully processed data from each patch, the output of
consecutive patches can be appended together seamlessly to
form the complete output image. All parallel versions of
the benchmark reserve one node to serve as the I/O node,

which is solely responsible for reading the input data from
file and sending it out to nodes for processing as well as
receiving processing results from nodes and writing them to
an output file. The first parallel version of the SAR
application takes the simplistic approach of assigning one
node to each patch to be processed, and letting all patches
be processed in parallel. The second parallel version of the
benchmark organizes all of the nodes in the system into a
selectable number of groups. Each group of nodes receives
a patch from the I/O node in a round-robin fashion, and
processes it in a data-parallel manner. By choosing the
number of groups to be one, this parallelization reduces to a
true system-wide, data-parallel decomposition. Figure 2
illustrates the processing flow of the SAR application.

Figure 2: SAR processing flow

Results
The benchmark was executed on an embedded systems
testbed of 10 PowerPC G4 servers connected via Gigabit
Ethernet, where size of the ERS-2 satellite image is 5616 by
27990 pixels. Execution times for the first parallelization
of SAR, with one patch per node, are shown in Table 1.
Recall that for all parallel cases, one node is used for disk
I/O and communication only, and thus the number of
processing nodes is one less than the total number of nodes.

Table 1: SAR Execution Times (in seconds)
Sequential 2 Nodes 4 Nodes 8 Nodes

640.2 670.9 254.4 185.2

Comparing the two-node case in Table 1 to the sequential
performance gives an idea of the overhead introduced
through parallelization. In the two-node case, one node is
used purely for disk-I/O and the other node is used for
processing. Figure 3 shows a graph of overall application
speedup vs. number of nodes used for processing. The first
parallelization has crippling limitations on maximum
attainable performance, and the lack of scalability of this
parallelization approach is illustrated by the plateau-like
shape of the speedup curve as the number of nodes
increases. Due to the round-robin distribution of image
patches from the I/O node, if the total number of patches is
not evenly divisible by the number of nodes in the system,
there may be little to no benefit in using more nodes until
reaching the next even factor. Also, since each patch is
processed by a single node, the maximum number of nodes
that can be used is limited by the number of patches
decomposed from the overall image. In order to squeeze
more performance out of a given system for this SAR
application, each patch can be processed in a data-parallel
fashion by a group of nodes, with different patches being
processed by different groups in parallel. Due to space
limitations, additional results are reserved for the full
presentation.

SAR Speedup

0

2

4

6

8

10

2 3 4 5 6 7 8 9 10
Number of Nodes

Sp
ee

du
p

actual
ideal

Figure 3: Speedup vs. system size

Conclusions
We have developed and studied a full application-level
benchmark using SAR. With several parallelization
approaches possible, we have found that a hybrid data-
parallel/patch-based decomposition can provide the best
speedup and parallel efficiency on our system. Another
interesting outcome of this benchmark is that it can be seen
that single-precision, floating-point format provides
sufficient precision, as no differences were observed
between output images created with single-precision vs.
double-precision arithmetic. By using single-precision
float, not only are the computational latencies decreased for
floating-point operations, but the amount of data that must
traverse the system interconnect is reduced by half. For the
implementations included in our benchmark, the I/O node
becomes a bottleneck as the system size increases, forcing
processing nodes to wait while the single I/O node passes
out data for processing one node at a time.

Acknowledgements
We wish to thank Honeywell Electronic Systems
Engineering and Applications - Space (ESEA-Space) in
Clearwater, FL for their support of this research. We would
also like to thank Dr. David Sandwell and the Scripps
Institute of Oceanography for graciously providing the
original SAR code that served as the basis for the
development of our benchmark.

References
[1] R. Haney, T. Meuse, J. Kepner and J. Lebak. The HPEC

Challenge Benchmark Suite, Proc. of the Ninth Annual High-
Performance Embedded Computing Workshop (HPEC 2005),
Lexington, MA, September 2005.

[2] J. Samson, J. Ramos, M. Patel, and A. George, Technology
Validation: NMP ST8 Dependable Multiprocessor Project,
Proc. of IEEE Aerospace Conference, Big Sky, MT, March
4-11, 2006.

[3] C. Miller, D. Payne, T. Phung, H. Siegel, and R. Williams,
Parallel Processing of Spaceborne Imaging Radar Data,
Proc. of IEEE/ACM Supercomputing Conference, San
Diego, CA, Aug. 14, 1995.

[4] D. Bueno, Performance and Dependability of RapidIO-based
Systems for Real-time Space Applications, Ph.D. Dissertation,
Dept. of Electrical and Computer Engineering, University of
Florida, Gainesville, FL, 2006.

