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Abstract  The problem of finding consistent estimator of spectral density function represents one of the important 
scientific subject in spectrum theory. There is a problem inside the above problem, which is the determination of the 
truncation point of the stochastic process (or equivalently, the spectral bandwidth determination). In this paper we 
proposed another procedure for small series sizes, since the problem is solved by Abid's method for moderate and 
large series sizes. We will support our results by two empirical experiments, the first one for truncation point 
determination of Poisson process, while the second experiments for empirical data generated from AR(2) Process. 
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1. Introduction 
It is well known that the consistent estimate of the 

spectral density function from observations taken from 
stationary stochastic process {𝑋𝑋𝑡𝑡}  is {Priestley(1983) 
[10]}, 

 𝑓𝑓𝑇𝑇� (w) = 1
2π

 ∑ ρ�v  kT(v) e−ivwT
v=−T  (1) 

Where, (T) is called the truncation point of the stochastic 
process which is also called the weight parameter or 
smooth parameter or bandwidth parameter, ρ�v =
R�v  / R�0  is the estimated autocorrelation function from the 
sample where, 

 R�v = 1
𝑁𝑁

 ∑ (𝑥𝑥𝑡𝑡 − 𝑥𝑥 )(𝑥𝑥𝑡𝑡−|𝑣𝑣| − 𝑥𝑥𝑁𝑁−|𝑣𝑣|
𝑡𝑡=1 ) 

is the Auto covariance function estimated from the sample, 
and  k𝑇𝑇(𝑣𝑣) is the weight function called lag window 
function works as weighting function of autocorrelations 
in the time domain. The Fourier transform of the lag 
window function results the spectral window function as, 

 KT (u) = 1
2π

 ∑  kT(v) e−iv𝑢𝑢T
v=−T . 

Let K(b) be a scale parameter spectral window whose 
corresponding lag  window has characteristic exponent r 
and let 

 𝑘𝑘(𝑟𝑟) = lim𝑢𝑢→0 �
1−𝑘𝑘(𝑢𝑢)

|𝑢𝑢 |𝑟𝑟
�, 

Priestley (1983) [10] defined the spectral window 
bandwidth is  B𝑝𝑝 = C �𝑘𝑘(𝑟𝑟)/ 𝑇𝑇𝑟𝑟�

1/𝑟𝑟
, Where C is a constant 

to be determined. Priestley take the regular window on (-
𝜋/𝑇𝑇,𝜋/𝑇𝑇) and determined C is 2 √6.  

Based on the relationship between the truncation point 
of the stochastic process (T) and the spectral window 

bandwidth which is stated previously, for the purpose of 
separating the values of spectral density function f(w) at 
𝑤𝑤1  and 𝑤𝑤2  for example, it must be chosen (T) large 
enough to make spectral window bandwidth K(b) less 
than the distance between 𝑤𝑤1  and 𝑤𝑤2 , if (T) small so as to 
make spectral window bandwidth is greater than the 
distance between 𝑤𝑤1and 𝑤𝑤2, the two values at 𝑤𝑤1  and 𝑤𝑤2  
will appear compact together, then Priestly concludes that 
this means that if we want to show all the peaks and lows 
in the spectrum density function f(w) it must choose (T), 
so do not make spectral window bandwidth k(b) is greater 
than the bandwidth of narrower peak or low" for f(w), i.e. 
 Bℎ  ≥ K(b). 

Priestley (1983) [10] summarizes the importance of our 
problem follows, "The design relations which we have 
discussed previously, all require a knowledge of the 
spectral bandwidth before they can be applied in practice. 
So, if one ask, why not estimate the spectral bandwidth 
from the data ? Unfortunately, no completely satisfactory 
method of estimated the spectral bandwidth has been 
discovered ". 

Wei (1990) [13] stated the following about the 
importance of the problem under consideration, "This 
issue is a more crucial difficult problem in time series 
analysis because for a given window, there is no single 
criterion for choosing the optimal bandwidth ".  

Abid (1994) [1,2] suggested the choice validation 
technique to get traditional and local bandwidth for 
spectral density function. The choice validation technique 
was based on new definition of the truncation point 
presented by Abid [1,2]. Abid constructed a test to 
determine the truncation point and derived the power of 
the test. A lot of simulation experiments were conducted 
describe the performance of his technique comparing with 
some other famous techniques. Araveeporn (2011) [2] 
presents the bandwidth selection methods for local 
polynomial regression with normal, epanechnikov, and 
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uniform kernel function. Comaniciu (2013) [5] present a 
mean shift-based approach for local bandwidth selection 
in the multimodal, multivariate case. Slaoui (2014) [12] 
propose an automatic selection of the bandwidth of the 
recursive kernel estimators of probability density function 
defined by the stochastic approximation algorithm. 

2. Methods of Truncation Point 
Determination 

Following some famous methods to solve the problem 
of Truncation Point Determination according to different 
bases, 

2.1. On the Basis of Preliminary Information 
about the Spectral Bandwidth 

De Jong (1988) [6] stated that the possess of some 
information prior to estimate f(w) about the spectral 
bandwidth is rare. Actually, there is some of 
dissatisfaction here, because of the trial and error beside 
the lost time of the repetition process. There are two cases 
of the preliminary information exist about the spectral 
bandwidth, (a) when the number of observations is infinite. 
(b) when the number of observations is finite. 

2.2. On the Basis of the Absence of 
Preliminary Information about the 
Bandwidth Spectrum 

Priestley (1983) [10] stated three methods accordingly, 
(a) by using autocorrelation function. (b) the window 
closing method. (c) choosing T as a fixed percentage of N. 
(d) Cross–Validation Procedure(CVP) based on the 
likelihood function. 

The CV Procedure has been suggested by Beltrao and 
Bloomfield (1987) [4]. They are based on the relative mean 
square error criterion, MSE = E  [(f̂(w) – f(w))/ f(w) ]2. 
For the purpose of obtaining a criterion reflects all the 
properties of f(w) on the interval (o, 𝜋), to get the mean 
integrated square error (MISE) as,  

 ( )
( )

2

0

,
MISE E(2 / ( 1)) / ( )

–

j h
j

w j j

f w B
f w

f wπ< <

  
  = −   
    

∑


 (2) 

Beltrao and Bloomfield proved that, if one had a large 
size, stationary random sample {𝑋𝑋𝑡𝑡}, then 

 
( )

0
( ( ) / ( ))

(( 1) / 4) (( 1/ 2) ( )

TT j j T j
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P

CVLF Ln f w h w f w

N MISE N O MISE
π< <

 
= + 

 

+ − + −

∑
  

 (3) 

Thus, the choice of (𝐵𝐵ℎ ), which makes CVLFin a 
minimum will make MISE in a minimum also. This 
method is based on the use of CVLF to estimate the 
differences in the values of MISE for different values of 
𝐵𝐵ℎ , and then we select the optimum value of 𝐵𝐵ℎ  for which 
makes CVLF in a minimum value (or equivalently MISE). 

Following some disadvantages to the previous methods, 
1- In some methods, the value of T (or equivalently 𝐵𝐵ℎ) 

depends on the spectral window and not on the real 

behavior of stochastic process or at least on the a available 
data. The spectral window may be chosen incorrectly.  

2- Some methods assume existence of preliminary 
information on the spectral bandwidth to determine the 
value of (T) and therefore, it requires a prior estimate of 
the spectral density function f(w), and then continued 
estimation of f(w) several times until reaching to the value 
of the spectral bandwidth. Optimal 

3 - Some methods assume using some values of T and 
estimate f(w) at each value of T repeatedly to get the best 
estimation of f(w). These methods are called the methods 
of all possible solutions. 

4- Some methods assumed that the real f (w) is known, 
but it is actually unknown and also essential parameters 
are unknowns. The appropriate lag window and truncation 
point are unknown. It is impossible actually to get what is 
unknown from other unknown. 

5-The formulas which are used to calculate the biased 
and variance of the estimated values of the spectral 
density function are approximate formulas, so the 
determination of T and N by using these formulas will be 
approximately also, and so all the tests which are 
conducted and confidence intervals which are estimated.  

6- Priestley (1972) [9] noticed that to reduce the 
relative error then the exponent of the exact estimation of 
the spectral density function will lead us to a condition 
that the number of observations must be large (N→ ∞) 
which is not unavailable in many cases. 

7- If the bandwidth of the spectral window is large 
(equivalently the truncation point is small) then the 
smooth is better, since we move away from the target, so 
the details will be not clear. If the bandwidth of the 
spectral window reduced gradually, then the details will 
appear gradually but we will lost the smoothness 
gradually too. 

Anyway, the choice of T must be conformable with 
objective of the case study available. 

3. The Choice Validation Procedure 
(CHVP) Abid [1.2] 

In the previous methods we noticed that there is no one 
of them based on mathematical logic to determine the 
truncation point of the stochastic process. Priestly (1983) 
[10] stated that the truncation point must be determined 
from real data of the stochastic process. Abid (1991) [1] 
suggested a procedure based on some properties of the 
stochastic process which is controlled on the phenomenon 
under consideration. The idea of this procedure could be 
clarified through his definition of the truncation point of 
the stochastic process, since he defined it as a separating 
point between keeping the stochastic process a way from 
its essential properties which are distinguish it from other 
process and non-away. By using the above principle, this 
procedure can be explained as follows, Let {𝑋𝑋𝑡𝑡  ; 𝑡𝑡 =
0, ±1, … … } be a stochastic process, then 

 𝑋𝑋𝑖𝑖 ,𝑗𝑗  = 𝜇𝜇𝑗𝑗  + 𝑒𝑒𝑖𝑖,𝑗𝑗 , i = j, j+1, ……., n 

 j = 1, 2, …….., 
Where, Var  𝑒𝑒𝑖𝑖 ,1 = 𝜎𝜎1

2 and 𝐸𝐸𝑒𝑒𝑖𝑖 ,1  = 0. Then the steps of 
Abid's procedure are, 
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a- When j=1 then 𝑥𝑥𝑖𝑖 ,1 (i= 1,2, ….,n) is a set of all 
observations with mean 𝜇𝜇1 and variance 𝜎𝜎1

2. so, we 
normalized the values of observations without lost the 
generality as follows, 

𝑋𝑋𝑖𝑖,𝑗𝑗− 𝜇𝜇1

𝜎𝜎1
 =  

𝜇𝜇𝑗𝑗−𝜇𝜇1+𝑒𝑒𝑖𝑖,𝑗𝑗
𝜎𝜎1

, Then, one can 
write, 

 𝑍𝑍𝑖𝑖 ,𝑗𝑗  = 𝑚𝑚𝑗𝑗  + 𝑉𝑉𝑖𝑖 ,𝑗𝑗 , i = j, j+1, ……., n 

 j= 1, 2, …….., n, 

Where, 𝑚𝑚�𝑗𝑗 = �𝜇𝜇 𝑗𝑗 − 𝜇𝜇1�/𝜎𝜎1,𝑍𝑍𝑖𝑖 ,𝑗𝑗 =
 𝑋𝑋 𝑖𝑖,𝑗𝑗 −𝜇𝜇1

𝜎𝜎1
,𝑉𝑉𝑖𝑖 ,𝑗𝑗 =  𝑒𝑒𝑖𝑖,𝑗𝑗 /𝜎𝜎1. 

Actually, when j = 1 then the normalized values will 
formed a Gaussian stochastic process with mean zero and 
variance one. Also, when j=2, 3,…,n, then  𝑍𝑍𝑖𝑖,𝑗𝑗   will 
formed the lags of process 𝑍𝑍𝑖𝑖 ,1.  
b- Abid used theorem (15 ) which is stated in Mood, 
Graybill and Boes (1987) [8] to test whether the stochastic 
process  𝑍𝑍𝑡𝑡  and it's lagged process 𝑍𝑍𝑡𝑡−𝑠𝑠  will formed a 
Bivariate Gaussian process or not. if  𝑍𝑍𝑡𝑡  and  𝑍𝑍𝑡𝑡−𝑠𝑠  
represent a Bivariate Gaussian process, then  𝑍𝑍𝑡𝑡   will be a 
Univariate Gaussian Process and also  𝑍𝑍𝑡𝑡−𝑠𝑠 . 

The idea behind the mention of this theorem is for as 
long as  𝑍𝑍𝑡𝑡  and  𝑍𝑍𝑡𝑡−𝑠𝑠  obey to Bivariate Gaussian Process, 
then we ensure that the process did not go away from it's 
properties distinguish it accurately.  
c- Test whether (  𝑍𝑍𝑡𝑡 ,𝑍𝑍𝑡𝑡−𝑠𝑠 ) (s = 1, 2, ……, n-1) are 
Bivariate Gaussian Process or not 

 𝐻𝐻𝑂𝑂  : 𝑚𝑚 = 𝑚𝑚0,  

where, 𝑚𝑚0 =  �00�, 𝑚𝑚 = �
𝑚𝑚1
𝑚𝑚𝜏𝜏

� = � 0
𝑚𝑚𝜏𝜏

�, 𝜏𝜏 = 2, 3, … . ,𝑛𝑛. 

If 𝐻𝐻𝑂𝑂  is rejected at a certain value of 𝜏𝜏, let it be (𝜏𝜏= T) 
then T is the truncation point for the stochastic process. 
d –To test hypothesis in c, Abid [1] used modified 
Hotelling test with the following test statistic under 𝐻𝐻𝑂𝑂,  
𝑁𝑁(𝑁𝑁−𝑇𝑇)

2𝑁𝑁−𝑇𝑇
 (𝑚𝑚�−𝑚𝑚𝑂𝑂)′ Ψ

−1
(𝑚𝑚�−𝑚𝑚𝑂𝑂) ~ 2𝑁𝑁−𝑇𝑇−2

2𝑁𝑁−𝑇𝑇−3
 2𝐹𝐹2,2𝑁𝑁−𝑇𝑇−2(4)  

Where, S is the estimated standard deviation, 𝝭𝝭 = Q / (2N 
–T -2) and  

 Q = � 
1 𝜌𝜌� 𝑆𝑆 [𝑍𝑍𝑡𝑡−𝑟𝑟  ]
𝑆𝑆 2[𝑍𝑍𝑡𝑡−𝑟𝑟

�.  

Abid(1994) [2] proved in Theorem (3-1) that the 
Choice Validation Criterion to determine the truncation 
point for the stochastic process T is, C [𝐶𝐶.𝑉𝑉. ]−2 / (1 – 𝜌𝜌�2) 
≥  𝐹𝐹2,2𝑁𝑁−𝑇𝑇−2,𝛼𝛼 , Where, C = N(N-T) (2N-T-3) / (2 (2N-T)) 
and 𝜌𝜌� is the autocorrelation function between 𝑍𝑍𝑡𝑡  𝑎𝑎𝑛𝑛𝑎𝑎 𝑍𝑍𝑡𝑡−𝑟𝑟  
and C.V. is the coefficient of variation. He also proved in 
Theorem (3-2) that The power of the test at a certain value 
for the noncentrality parameter λ and the significant level 
𝛼𝛼 is, 

 Po(λ) = 1 − 𝜃𝜃 /𝜋 − ∑ 𝑏𝑏𝑗𝑗 sin(𝑗𝑗𝜃𝜃)∞
𝑗𝑗=0   (5) 

Where, 𝜃𝜃 = 𝐶𝐶𝐶𝐶𝑠𝑠−1[ 2(1− 2𝐿𝐿𝑛𝑛𝛼𝛼 / ((λ + 1) −1 λ  + 1) 
(2𝑁𝑁 − 𝑇𝑇 − 3))−1 − 1] 
𝑏𝑏1 = 2 𝜋−1(a – b) (𝑎𝑎 +  𝑏𝑏)−1  
𝑏𝑏2 = 𝜋−1(𝑎𝑎 +  𝑏𝑏)−1  (𝑎𝑎 +  𝑏𝑏 + 1)−1 [ 2(𝑎𝑎 − 𝑏𝑏)2 −
(𝑎𝑎 + 𝑏𝑏)(𝑎𝑎 + 𝑏𝑏 −  1 )] 
𝑏𝑏 𝑗𝑗+2 = (𝑎𝑎 + 𝑏𝑏 + 𝑗𝑗 + 1)−1 [ 2(a- b) (j+1)  𝑏𝑏𝑗𝑗+1 +
( j + 1 − a −  b) j bj]/(j + 2)  
j= 1, 2, …, and, a = (1 / 2) (2N-T -2), b = (λ+ 1)2 / (2 λ 
+1) 

In Corollary (3-1) Abid (1994) [2] proved that The 
power of the test is monotonic, non-decreasing in λ with 
fixed 𝛼𝛼 and 2N –T-2 and Monotonic, non-decreasing in 𝛼𝛼 
with fixed λ and 2N-T-2.  

There is an equivalence between CVP and CHVP, since 
De Jong (1988) [6] stated that, according to the cross 
validation procedure (CVP), every time one observation 
excluded from the sample which is containing n of 
observations and then build a model based on the (n-1) 
remaining of observations. Based on that model, we 
forecast for the observation which is excluded in the 
beginning. Then repeat this process for all observations. 
So, if we have n of observations 𝑦𝑦1,𝑦𝑦2, … … . , 𝑦𝑦𝑛𝑛  represent 
the elements of vector  𝑦𝑦 with mean E 𝑦𝑦 = 𝜇𝜇 = X 𝑏𝑏𝐶𝐶  and 
variance covariance matrix Var(  𝑦𝑦 ) =P, then 𝑍𝑍 =

 𝑃𝑃−1/2(𝑌𝑌 – 𝜇𝜇 ) will be a vector of normalized observations. 
Dejong (1988) [6] proved that the cross validation 
criterion is, 

 [
�𝑌𝑌 – 𝜇𝜇 �

′ 𝑃𝑃−2
�𝑌𝑌 – 𝜇𝜇 �

[ tr  (𝑃𝑃−1)]

2

= 𝑍𝑍′𝑃𝑃−1 𝑍𝑍 / [ tr (𝑃𝑃−1)]2 (6) 

Where tr is the trace of a matrix. Now, let we have n of 
means of samples, 𝑚𝑚�1,𝑚𝑚�2, … . ,𝑚𝑚�𝑛𝑛  represent the elements 
of vector 𝑚𝑚�  with mean  𝐸𝐸 𝑚𝑚�  = 𝑚𝑚0 = 0  and variance 
covariance matrix Var (𝑚𝑚� ) = Ψ , then according to (3. 21) 
we will get the cross validation criterion to be,  

 �𝑚𝑚��
′ Ψ

−2
(𝑚𝑚�)/[𝑡𝑡𝑟𝑟Ψ

−1
]2 (7) 

The formula in (7) is equivalent {Abid (1994) [2]} with 
the choice validation criterion in (4) if,  

1. 𝑚𝑚� = Ψ
−1/2

𝑚𝑚� . 
2. n = 2. 

3. ( ) ( ) ( )
( )

21 2 2
tr /

2 3(2 2)

N N TN T
N TN T

− −  −   =        − −
Ψ

− −  
 

Based on the choice validation criterion, Abid (1994) [2] 
concluded that the distribution of the truncation point of 
the stochastic process is doubly truncated geometric in 
zero and N from left and right respectively. This is 
because of that variable comes from the fail event (reject 
the hypothesis) after T of success events (accept the 
hypothesis), with the fact that there is no fail in zero since 
there is no test Basically and that the maximum value for 
the variable is N-1 which is the last lag for the stochastic 
process. The distribution of the truncation point of the 
stochastic process is, 

 ( ) ( ) ( )
ˆ ˆT T 1

ˆ ˆF T ,T 1,2, .., 1
11 NN

Pq Pq N
qq q

−
= = = …… −

−−
 (8) 

where P is the fail probability (the probability of the 
hypothesis rejection), which is equal to the power of the 
test stated in (5). 𝐵𝐵�𝑝𝑝𝑟𝑟= η  𝐵𝐵�ℎ , 0 < 𝜂𝜂 < 1.Where 𝐵𝐵�𝑝𝑝𝑟𝑟  is the 
spectral bandwidth and 𝐵𝐵�ℎ is the spectral window 
bandwidth, then 

 𝐵𝐵�ℎ = (2 √6  /η T�) � 𝑘𝑘(𝑢𝑢)�
1
𝑢𝑢  = 𝐴𝐴∗ / T�,  

where, 𝐴𝐴∗  = (2 √6  / η ) � 𝑘𝑘(𝑢𝑢)�1/u 
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Then Abid (1994) [2] concluded that the distribution of 
the spectral bandwidth is, 

 f (𝐵𝐵�ℎ) = 𝑃𝑃𝑞𝑞
(𝐴𝐴∗/𝐵𝐵�ℎ )−1 

1− 𝑞𝑞𝑁𝑁
,𝐵𝐵�ℎ = 𝐴𝐴∗,𝐴𝐴∗/2, … ,𝐴𝐴∗/(𝑁𝑁− 1) (9) 

If one divided the total number of observations N to d 
of blocks, where (N= d N'), then Abid (1994) [2] derived 
the distribution of observations number in each block N' 
for using the Fast Fourier Transform (FFT) is, 

 f (𝑁𝑁′�) = 𝑃𝑃 𝑞𝑞𝐴𝐴
∗𝑁𝑁′� −1

1− 𝑞𝑞𝑁𝑁
,𝑁𝑁′� = 𝐶𝐶

𝐴𝐴∗
, 2𝐶𝐶
𝐴𝐴∗

, … , 2(𝑁𝑁−1)
𝐴𝐴∗

 (10) 

where 𝐵𝐵ℎ = 𝐶𝐶 / 𝑁𝑁′ and C is a scalar 
By using the test criterion which rewritten below, 𝐿𝐿𝑖𝑖 = 

1
1−Pi

2 (𝑐𝑐. 𝑣𝑣𝑖𝑖) −2 ~  𝐹𝐹2,2𝑁𝑁−𝑇𝑇−2 , i = 1,2,………, (n-1), Abid 

(1994) [2] estimated T through the data of the random 
variable 𝐿𝐿𝑖𝑖  by using moments methods to be, 

 T� =  
(2𝑁𝑁−4) 𝜇𝜇�𝑓𝑓  −2𝑁𝑁+2

 𝜇𝜇�𝑓𝑓  −1
 (11) 

Actually, one can get different estimates of T by 
substituting �̂�𝜇𝑓𝑓  by each value observation entered in the 
calculation of 𝐿𝐿𝑖𝑖 , since we get from that the local 
estimation for the truncation point at every test we 
conducted, as follows 

 T𝑖𝑖� =  (2𝑁𝑁−4) 𝐿𝐿𝑖𝑖  −2𝑁𝑁+2
 𝐿𝐿𝑖𝑖  −1

 i =  1,2, … … … , (N − 1) 

The local estimation of the truncation point T of the 
stochastic process will indicate to the effective importance 
of the information which included in the spectral density 
function calculation at a certain point, this is actually best. 
Abid (1994) [2] noted that,  

1-we can get the local estimation of the spectral 
bandwidth as 

 B�ℎ𝑖𝑖 =  𝐴𝐴∗(𝐿𝐿𝑖𝑖  −1)
(2𝑁𝑁−4) 𝐿𝐿𝑖𝑖  −2𝑁𝑁+2

, i =1,2,……..(N-1), 

where, 𝐴𝐴∗  = (2 √6  / η ) � 𝑘𝑘(𝑢𝑢)�
1
𝑢𝑢 , 0 <  η < 1. 

2-From equation (10) we can get the local estimation of 
the number of observations for each block to conduct FFT 
as follows 

  𝑁𝑁�𝑖𝑖′  =  𝐶𝐶[(2𝑁𝑁−4) 𝐿𝐿𝑖𝑖  −2𝑁𝑁+2]
𝐴𝐴∗(𝐿𝐿𝑖𝑖  −1)

, i =  1,2, … … … , (N − 1) 

Now, if the stochastic process at a point v get away 
from its essential properties, consequently, this leads to 
take T=v according to CHVP. The question that imposes 
itself on us now, is there possibility for v > T that the 
stochastic process will returned to its essential properties. 
If the answer is yes, we will necessarily lost amount of 
information. Through this question, one can establish new 
class of spectral density functions based on terms from 
(N-1) to - (N-1) on the basis of effective importance, and 
then calculate local estimates for the truncation point 
parameter T. This new class will be discontinuous Abid 
(1994) [2], 

 f*(w) = ∑ 𝛿𝛿𝑣𝑣  𝜌𝜌�𝑣𝑣  𝐾𝐾(𝑣𝑣/(𝑁𝑁 − 1))𝑒𝑒−𝑖𝑖𝑣𝑣𝑤𝑤𝑁𝑁−1
𝑣𝑣=−(𝑁𝑁−1)   (12) 

where, 𝛿𝛿𝑣𝑣 =  � 𝐶𝐶 if the hypothesis is rejected at lag v
1 if the hypothesis is accepted at lag v

� 
Thus, it is clear that the harmful behavior of the spectral 

density function is not only from the autocorrelation 

function at largest values of v (|𝑣𝑣| → (𝑁𝑁 − 1)), but the 
biggest part is due to that the stochastic process at 
different values of v. Being away from its essential 
properties. Indeed, here there are harmful behavior, so if 
one included 𝛿𝛿𝑣𝑣 in the formula of the consistent estimator 
of the spectral density function to remove the harmful 
terms, then he can get another class of spectral density 
functions. This is mean that, we should not stop test if  𝐻𝐻0 
is rejected at a certain v, but continue to test the 
hypothesis at each value of v=1,2, ……, (N-1), and give 
each rejection the value zero and each accept the value 
one in terms of the consistent estimator formula of the 
spectral density function. Now, let x be the number of 
terms of the equation (12), which is mean that x represents 
the number of successes (accept the hypothesis) before 
getting r of failures (reject the hypothesis), So, since we 
have (N-1) of hypothesis tests, then X + r = N -1. Based 
on the above argument, Abid (1994) [2] concluded that the 
distribution of x as a truncated negative Binomial 
distribution at the upper value N with a mass function,  

 f(x) = 
�𝑥𝑥+𝑟𝑟−1
𝑟𝑟−1

�𝑞𝑞𝑥𝑥

∑ �𝑢𝑢+𝑟𝑟−1
𝑟𝑟−1 � 𝑞𝑞𝑢𝑢𝑁𝑁

𝑢𝑢=0
, x = 0,1,……., (N-1), 

Where, q = 1- p = 1- Po ( λ ) is the probability of 
hypothesis acceptance.  

4. A Practical Suggestion for Small 
Samples Sizes 

The CHVP which is suggested by Abid (1991,1994) 
[1,2] is very important procedure for large and median 
sample sizes since this procedure is based on parametric 
test. If the samples sizes are small or nearly small, then the 
procedure results becomes questionable. To solve this 
problem, we will suggest Wilcoxon signed- rank test 
instead of the parametric test which is exists in Abid's 
studies. It is well known that the Wilcoxon matched-pairs 
signed- rank test(WM PS-R)is a non-parametric statistical 
hypothesis test used to compare between two related 
samples, so it is very appropriate for our problem since we 
are comparing every time between the original series and 
one of its lags. The test procedure [ 11 ] is as follows, let 
𝑁𝑁∗=N- i, (i=1,2,……,N-1) be the series size (the number 
of pairs). Thus there are a total of 2𝑁𝑁∗  points. For 
k=1,2,…., 𝑁𝑁∗, let 𝑦𝑦1,𝑘𝑘  and 𝑦𝑦2,𝑘𝑘  denote the measurements, 
so the hypothesis can be written as 𝐻𝐻0 = the series and its 
lag represent the same population 
𝐻𝐻1 = the series and its lag represent two different 

population. The steps of (WM-PS-R) test are,  
1) For k=1,2,…..,  𝑁𝑁∗ , calculate �𝑦𝑦2,𝑘𝑘 − 𝑦𝑦1,𝑘𝑘�  and 

sgn(𝑦𝑦2,𝑘𝑘 − 𝑦𝑦1,𝑘𝑘), where sgn is the sgn function.  
2) Exclude pairs with �𝑦𝑦2,𝑘𝑘 − 𝑦𝑦1,𝑘𝑘�=0. let 𝑁𝑁∗

𝑟𝑟  be the 
reduced sample size. 

3)Order the remaining 𝑁𝑁∗
𝑟𝑟  pairs from smallest absolute 

difference to largest absolute difference.  
4) Rank the Paris, starting with the smallest as 1. Ties 

receive a rank equal to the average of the ranks they span. 
Let 𝑅𝑅𝑘𝑘  denote the rank. 

5) Sum all positive values 𝑊𝑊+ and all negative values 
𝑊𝑊−.  

6) The sum with the smaller absolute becomes the test 
statistic W.  
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7) If W < 𝑊𝑊𝛼𝛼 ,𝑁𝑁∗𝑟𝑟  we reject 𝐻𝐻0 , where 𝑊𝑊𝛼𝛼 ,𝑁𝑁∗𝑟𝑟  is the 
critical value of W for significant level 𝛼𝛼 and 𝑁𝑁∗

𝑟𝑟 .  

5. Some Empirical Studies 
To support our suggestion, two empirical studies were 

performed. The first study related with Poisson process 
while the other study with AR(2) process.. 

5.1. Truncation Point Determination of 
Poisson Processes 

Let {𝑋𝑋𝑡𝑡  ;  𝑡𝑡 ≥ 0}  be a Poisson process which satisfies 
the following properties, 

(i) X(0) = 0. (ii) for 0 ≤ 𝑡𝑡1  ≤ ⋯… . .≤ 𝑡𝑡𝑛𝑛,𝑋𝑋𝑡𝑡2 −
𝑋𝑋𝑡𝑡1 , ……,𝑋𝑋𝑡𝑡𝑛𝑛 − 𝑋𝑋𝑡𝑡𝑛𝑛−1 are independent of each other's. (iii) 
For t, h > 0, the distribution of 𝑋𝑋𝑡𝑡+ℎ − 𝑋𝑋𝑡𝑡  is independent 
of t. (iv)The number of arrival events in time interval of 
length h, will distributed as Poisson with mean qh is equal 
to its variance, and pmf,  

  𝑃𝑃𝑛𝑛(ℎ) = 𝑃𝑃 (𝑋𝑋𝑡𝑡+ℎ − 𝑋𝑋𝑡𝑡 = 𝑛𝑛) = 𝑒𝑒−𝑞𝑞ℎ (𝑞𝑞ℎ)𝑛𝑛

𝑛𝑛 !
, 𝑛𝑛 = 0,1, …  

The covariance function of Poisson process for 0 ≤ s ≤ t, 
can be derived as, 𝑅𝑅𝑥𝑥(𝑡𝑡, 𝑠𝑠) = 𝐶𝐶𝑂𝑂𝑉𝑉(𝑋𝑋𝑠𝑠 ,𝑋𝑋𝑡𝑡  ) =
𝐶𝐶𝑂𝑂𝑉𝑉(𝑋𝑋𝑠𝑠 ,𝑋𝑋𝑠𝑠  ) + 𝐶𝐶𝑂𝑂𝑉𝑉(𝑋𝑋𝑠𝑠 ,𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑠𝑠) = 𝑞𝑞𝑠𝑠 . In general, one 
can write (Hoel et al. 1972) [7], 
𝑅𝑅𝑥𝑥(𝑡𝑡, 𝑠𝑠) = 𝑞𝑞 𝑀𝑀𝑖𝑖𝑛𝑛 (𝑠𝑠, 𝑡𝑡), 𝑡𝑡, 𝑠𝑠 ≥ 0 . It is clear that the 
Poisson process is not stationary from the second order 
(weakly stationary).  

Actually, Poisson process can be transformed to be 
weakly stationary by taking the first order differences 𝑌𝑌𝑡𝑡  

=  𝑋𝑋𝑡𝑡+1 − 𝑋𝑋𝑡𝑡 , then the process  {𝑦𝑦𝑡𝑡  ;  𝑡𝑡 ≥ 0}  is weakly 
stationary with mean q and covariance function 

 𝑅𝑅𝑦𝑦(𝑟𝑟) = �𝑞𝑞(1 −  |𝑟𝑟|), |𝑟𝑟| < 1 
0,                  |𝑟𝑟|  ≥ 1

� 

Now, let us simulate a stationary Poisson process with 
q= 0.5, q=1.5 and sample sizes n=7,15,20,25 with run size 
k=1000, to study the truncation point determination by 
using the choice validation method and compare it with 
T=1, which is the value of theoretical truncation point of 
Poisson process. The power of the test is also studied for 
the choice validation method under 𝛼𝛼 = 0.01,0.05 
significant levels and q =1.2 with T=2 as second order 
pure moving average Poisson model,𝑋𝑋𝑡𝑡 = 𝛼𝛼𝑡𝑡 − 𝛼𝛼𝑡𝑡−1 −
Υ 𝛼𝛼𝑡𝑡−2. The explanation of the results is as follows, 

1) In Table 1 we recorded the results of applying the 
choice validation method to determine the truncation point, 

Table 1. 
n  

25 20 15 7 q 
1 1.02 1.08 1.13 o.5 
1 1.04 1.11 1.24 1.5 

It is clear from Table 1 above that the method is very 
powerful to determine the truncation point (T).When q 
decreases, the method powerful will increases, this is due 
to the homogeneity increases, which is increased clarity of 
the essential properties of the process. 

2) The power of the test is calculated according to the 
following fact, 

 Power of the test = 1 − # 𝑎𝑎𝑐𝑐𝑐𝑐𝑒𝑒𝑝𝑝𝑡𝑡  𝐻𝐻𝐶𝐶  𝑤𝑤ℎ𝑒𝑒𝑛𝑛  𝑖𝑖𝑡𝑡  𝑖𝑖𝑠𝑠  𝑓𝑓𝑎𝑎𝑓𝑓𝑠𝑠𝑒𝑒  
1000

 
The results recorded in the following Table 2. 

Table 2. 
25 20 15 7 n 

𝛼𝛼 = 0.01 𝛼𝛼 = 0.01 𝛼𝛼 = 0.01 𝛼𝛼 = 0.01 𝛼𝛼 = 0.01 𝛼𝛼 = 0.01 𝛼𝛼 = 0.05 𝛼𝛼 = 0.01 𝜸𝜸 
0.052 0.011 0.051 0.01 0.05 0.01 0.05 0.01 0.01 
0.255 0.103 0.120 0.033 0.081 0.021 0.062 0.014 0.10 
0.896 0.718 0.432 0.191 0.215 0.081 0.111 0.033 0.20 

1 0.997 0.846 0.578 0.456 0.224 0205 0.076 0.30 
1 1 1 0.998 0.957 0.884 0.520 0.250 0.40 
1 1 1 1 0.979 0.960 0.815 0.640 0.5 
1 1 1 1 1 0.989 0.976 0.906 0.7 
1 1 1 1 1 1 0.993 0.958 0.9 
1 1 1 1 1 1 1 0.991 1.1 

It is clear from the above table that 
1) If 𝛼𝛼 and 𝛾𝛾 are fixed, then the power of the test is 

increased if n is increased. 
2) If n and 𝛾𝛾 are fixed, then the power of the test is 

increased if 𝛼𝛼 is increased.  
3) If n and 𝛼𝛼 are fixed, then the power of the test is 

increased if 𝛾𝛾 is increased. 
4) If we have two different samples such as n=7,15 then 

the power of the test for n=7 and 𝛼𝛼 =0.05 is smaller than 
the power of the test for n=15 and 𝛼𝛼 = 0.01 at the small 
values of 𝛾𝛾 and vice versa.  

5.2 AR(2) Model 
21 observations were generated by using simulation 

according to the following AR(2) model, 𝑍𝑍𝑡𝑡 = 𝑎𝑎1𝑍𝑍𝑡𝑡−1 +
𝑎𝑎2𝑍𝑍𝑡𝑡−2 + 𝑒𝑒1 , Where 𝑎𝑎1 = 0.3 𝑎𝑎𝑛𝑛𝑎𝑎 𝑎𝑎2 = 0.5  and et 

distributed as standard normal distribution. These 
Observations are in Table 3 below, 

Table 3. 21 Observations generated based on above AR(2) Model 
1 0.707945 8 0.334274 15 1.29915 
2 0.080243 9 2.1533 16 2.92652 
3 -0.12145 10 0.28238 17 1.53618 
4 -0.5926 11 1.78571 18 0.744128 
5 -0.73577 12 0.953411 19 0.891331 
6 0.594315 13 0.882954 20 0.397791 
7 1.76534 14 2.10628 21 0.182253 

Figure 1 below represents series in Table 3. The essential 
moments of the series were as follows, the coverage is 
0.865413, the standard deviation is 0.9341, the Skewness 
is 0.356 and the Kurtosis is -0.167. The estimated overall 
Kolmogorov statistic is 0.13 and the approximate 
significance level is 0.999997, so under α =0.01, 0.05, 0.1 
< 0.999997, the series distributed normally. 
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Figure 1. graph of the series in Table 3 

By using the nonlinear estimation method, one can 
estimate the parameters 𝑎𝑎1 𝑎𝑎𝑛𝑛𝑎𝑎 𝑎𝑎2  as 
𝑎𝑎�1 = 0.32 𝑎𝑎𝑛𝑛𝑎𝑎 𝑎𝑎�2 = 0.504, with estimated white noise 
standard deviation (SE) = 0.876 and Chi-square test 
statistic (Portmanteau  𝜒𝜒2 ) on first 10 residual 
autocorrelation =5.3084 with probability of a large value 
given white noise = 0.724, so the model is crossed over 
the diagnostic checking test since 𝛼𝛼 = 0.01, 0.05, 0.1 is 
less than 0.724. According to the above results, one can 
use the following formula (Priestley p. 241), of the 
spectral density function of AR (2) Process 

f(w) = (1−𝑎𝑎2 )� (1−𝑎𝑎2)2−𝑎𝑎1
2 �

2𝜋  ( 1+𝑎𝑎2 )� (1−𝑎𝑎2 )2+𝑎𝑎1
2+2𝑎𝑎1 (1+𝑎𝑎2 )cos⁡(𝑤𝑤)+4𝑎𝑎2 cos 2(𝑤𝑤)�

,  

 −𝜋 ≤ 𝑤𝑤 ≤ 𝜋 
Where, 𝑎𝑎1 = 0.32 and 𝑎𝑎2 = 0.504. Then we used our 

method to determine the truncation point T under 
significant levels 0.01 and 0.05 where the truncation 
points were 2 and 3 respectively. Based on the results 
above, we estimate the spectral density function according 
to formula in (3.1) and calculate the mean square error 
(MSE) twice, the first one between the estimates based on 
the formula in (3.1) and the estimates based on the 
formula in (3.36), while the second MSE was between the 
estimates based on the formula in (3.1) (with local 
truncation point determination) and estimates based on the 
formula in (3.36). The results are recorded in the 
following table 

Table 4. 
0.05 0.01 Significant level 𝛼𝛼 

2 3 T 
0.0981 0.0834 MSE (traditional T) 

0.0964 0.0799 MSE (local T) 

From Table 4 one can stated that, (1) MSE decreases 
when 𝛼𝛼 decreases. This is may be due to that an 

information will be more since T is increasing. (2) The 
estimation of the spectral density function based on local 
truncation points is better than the estimation based on the 
traditional truncation point. This fact is clear from the 
MSE values. 
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