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1Department of Computer Science, University of California, Irvine, CA 92697-3435, USA
2Department of Computing, Imperial College London, London, SW7 2AZ, UK

∗Corresponding author (e-mail: natasha@imperial.ac.uk)

Summary

Traditional approaches for homology detection rely on finding sufficient similarities be-
tween protein sequences. Motivated by studies demonstrating that from non-sequence
based sources of biological information, such as the secondary or tertiary molecular struc-
ture, we can extract certain types of biological knowledge when sequence-based approaches
fail, we hypothesize that protein-protein interaction (PPI) network topology and protein se-
quence might give insights into different slices of biological information. Since proteins
aggregate to perform a function instead of acting in isolation, analyzing complex wirings
around a protein in a PPI network could give deeper insights into the protein’s role in the
inner working of the cell than analyzing sequences of individual genes. Hence, we believe
that one could lose much information by focusing on sequence information alone.
We examine whether the information about homologous proteins captured by PPI network
topology differs and to what extent from the information captured by their sequences. We
measure how similar the topology around homologous proteins in a PPI network is and
show that such proteins have statistically significantly higher network similarity than non-
homologous proteins. We compare these network similarity trends of homologous proteins
with the trends in their sequence identity and find that network similarities uncover almost
as much homology as sequence identities. Although none of the two methods, network
topology and sequence identity, seems to capture homology information in its entirety, we
demonstrate that the two might give insights into somewhat different types of biological
information, as the overlap of the homology information that they uncover is relatively
low. Therefore, we conclude that similarities of proteins’ topological neighborhoods in
a PPI network could be used as a complementary method to sequence-based approaches
for identifying homologs, as well as for analyzing evolutionary distance and functional
divergence of homologous proteins.

1 Introduction

Homology detection is an important problem in computational biology [1], as it can be used
to estimate the closeness of genomes of different species. Proteins are “homologs” if they
descend from a common ancestor, i.e., if they are related by evolutionary process of divergence.
Homologs are a superset of paralogs and orthologs. “Paralogs” are genes in a same species that
evolve from a common ancestor through gene duplication events. “Orthologs” are genes in
different species that evolve from a common ancestor through speciation events. The notions
of paralogy and orthology are closely linked. If, for example, a gene duplication occurred after
the speciation event that separated species of interest, then orthology becomes a relationship
between sets of paralogs (or “co-orthologs”) resulting from the duplication, rather than between
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individual genes[2]. Furthermore, one needs to distinguish between “in-paralogs” i.e., paralogs
within the same species, as defined above, and “out-paralogs,” i.e., paralogs that result from a
duplication event prior to the last speciation event [3].

Traditional approaches identify homologs by finding sufficient similarities between their se-
quences.Sequence alignment[4, 5] is a way of arranging protein sequences to identify regions
of similarity between them. Sequence alignment generates an alignment by starting at the ends
of two protein sequences, attempting to match all possible pairs of amino acids between the
sequences.Globalalignments attempt to align every amino acid in two sequences and are gen-
erally useful for similar sequences of roughly equal size. On the other hand,local alignments
attempt to find regions of local similarity between sequences and are generally useful for less
similar sequences. Clearly, there could be a large number of ways to align two sequences.
To find the best alignment, one needs to use a scoring scheme to evaluate the goodness of the
alignment; the scoring scheme takes into consideration matches, mismatches, and gaps between
the aligned sequences. The alignment with the highest sequence similarity score amongst all
alignments is chosen, and the resultingsequence similarity scoredescribes the extent to which
two sequences are related. Since, for example, longer sequences are more likely to produce
higher sequence similarity scores than shorter sequences, one needs to evaluate the statistical
significance of the observed sequence alignment score, by measuring how likely it is to obtain
the score at random.

The extent of similarity between two sequences can also be expressed in terms of their percent
sequence identity. Given an alignment of two sequences, sequence identity is the percentage
of amino acids in the shorter sequence that are matched to exactly the same amino acids in the
longer sequence. The degree to which sequences differ is qualitatively related to their evolu-
tionary distance. Roughly, high identity between two sequences suggests that the sequences
have a comparatively young most recent common ancestor, while low identity suggests that the
divergence is more ancient.

Analogous to sequence-based comparisons, network comparisons across species have also been
used to identify proteins with similar functions and detect orthologs [1, 6, 7, 8, 9, 10, 11, 12].
However, almost all of these network comparison methods rely mostly on sequence information
and use only limited network topological information. The challenge is to identify functional
orthologs solely from network topology.

We hypothesize that network topology and protein sequence might give insights into differ-
ent slices of biological information and thus, one could lose much information by focusing
on sequence alone. It has already been shown that non-sequence based sources of biological
information might be more appropriate to extract certain types of biological knowledge than
sequence-based ones [13, 14, 15]. For example, it has been argued that the primary structure
(i.e., sequence) information may give only limited insights into RNA, and that the use of in-
formation on the secondary and tertiary structure of RNA is essential; this is especially true
because these higher-order structures play the dominant role in RNA function [13]. Addition-
ally, it has been demonstrated that it is not the primary sequences, but the well conserved sec-
ondary structural patterns across species that are the relevant property of ribosomal RNAs [14].
Moreover, a secondary structure-based approach has been found to be more effective at finding
new functional RNAs than sequence-based alignments [15]. Similarly, in the context of dupli-
cated proteins, patterns of their interactions in PPI networks may provide new insights into the
evolutionary fate and functional role of each protein, complementing the knowledge learned
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from their genomicsequences[16]. Furthermore, wiring patterns of duplicated proteins in a
PPI network are expected to give insights into their evolutionary distances, since the number
of interacting partners shared by yeast paralogs has been shown to decrease rapidly over evolu-
tionary time scales [17, 18], even when their coding sequences are almost perfectly conserved
[16]. Thus, PPI networks present opportunity to systematically study the evolutionary distance
and functional divergence of retained gene duplicates with respect to their interaction patterns
[16]. Furthermore, we hypothesize that, since proteins aggregate to perform a function instead
of acting in isolation, analyzing complex wirings around a protein in a PPI network could give
deeper insights into the inner working of the cell than analyzing sequences of individual genes.
For these reasons, we examine whether the information about homologous proteins captured
by their network topology differs and to what extent from the information captured by their
sequences.

2 Methods

2.1 Our approach

We analyze the high-confidence physical PPI network of yeastS. cerevisiae[19], containing
1,621 proteins and 9,074 interactions. To assess topological properties of proteins in the PPI
network, we rely on their “graphlet degree signatures” (or just “signatures”, for brevity), topo-
logical descriptors of proteins’ extended PPI network neighborhoods that capture their inter-
connectivities out to a distance of 4 (see Section 2.2 for details). We also rely on our “signature
similarity” measure that compares signatures of two proteins and thus measures the topological
resemblance of their network neighborhoods, where a higher signature similarity between two
proteins corresponds to a higher topological similarity between their extended network neigh-
borhoods (see Section 2.2 for details). When protein signatures are computed, all proteins and
interactions from the network are taken into consideration. However, in all of our subsequent
analyzes, we focus only on proteins with more than three interacting partners, since poorly
connected proteins are more likely to be in incomplete parts of a PPI network [20, 21]. In the
yeast PPI network, 920 out of 1,621 proteins have degrees higher than 3.

We analyze the data sets available in Clusters of Orthologous Groups (COGs) of Proteins Sys-
tem [22] and KEGG Orthology (KO) System [23]. These databases contain groups of proteins
from different organisms that consist of orthologs and in-paralogs, as explained below. For
simplicity, henceforth we refer to these groups as “groups of orthologous proteins.”

The groups of orthologous proteins in COGs System were formed as follows [22]. All pairwise
sequence comparisons among proteins encoded in different genomes were performed, and for
each protein, the best hit (“BeT”) in each of the other genomes was detected. The identification
of an orthology group was based on consistent patterns, such as a triangle, in the graph of BeTs.
If a gene from one of the compared genomes had BeTs in two other genomes, it was highly
unlikely that the respective genes were also BeTs for one another unless they were indeed
orthologs. Thus, the consistency between BeTs resulting in triangles didnot depend on the
absolute level of similarity between the compared proteins. The groups were then produced
by merging adjacent triangles that had a common side, and thus, the resulting groups typically
contained both orthologs from different species and paralogs from the same species.
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Thegroups oforthologousproteins in KO System were formed as follows [23]. The bit scores
were defined for each gene against all other genes in KEGG, which were 1 if thep-value of
the sequence alignment score was lower than1.0−8, and 0, otherwise. Then, the similarity
profile of each gene was defined with a vector of bit scores with respect to all other genes.
Next, a graph was constructed in which nodes corresponded to protein sequences and edges
were labeled with correlation coefficients of above profiles for the corresponding sequences.
Similar to COGs, groups in KEGG were then constructed automatically by searching in the
graph for cliques with an appropriate definition for the profiles of similarity scores. Thus,
again, the memberships in groups didnot depend on the absolute level of similarity between
the compared proteins.

In our study, we focus on yeast genes only. For each of the COGs and KO groups, we extract
all possible pairs of yeast proteins in the group. For simplicity, henceforth we call all of the
extracted protein pairs “orthologous pairs.” COGs System contains 4,004 yeast genes divided
into 4,852 COGs. These 4,004 genes result in 8,014 pairs of yeast orthologs, where proteins in
each protein pair belong to a same COG. KO System contains 2,123 yeast genes divided into
1,540 KO groups. These 2,123 genes result in 2,354 pairs of yeast orthologs, where proteins in
each protein pair belong to a same KO group. (Note that a protein can have multiple orthologs,
and thus, it can belong to more than one pair; this is why there are more pairs than genes in
each of the COGs and KO Systems.) There are 9,643 unique orthologous pairs in COGs and
KO Systems together, of which 175 pairs are found in the yeast PPI network and have degrees
higher than 3. These 175 pairs are composed of 181 unique proteins.

We analyze topological signatures of these 175 orthologous protein pairs in the yeast PPI net-
work with the hypothesis that their connectivity patterns in the PPI network are more similar
than those of non-orthologous proteins. In addition, we compute their sequence identities; we
do so by using Smith-Waterman local alignment algorithm with BLOSUM50 substitution ma-
trix as the scoring scheme. Then, we compare signature similarity trends of these orthologous
protein pairs with their sequence identity trends to find out if more information about their
orthology can be captured by sequence identities or by signature similarities.

2.2 Graphlet degree signatures and signature similarities

To determine topological similarity between two proteins in the PPI network, we use the sim-
ilarity measure of nodes’ local neighborhoods, as described by Milenković and Přzulj [21].
This measure generalizes the degree of a node, which counts the number of edges that the node
touches, into the vector ofgraphlet degrees, that counts the number of graphlets that the node
touches, for all 2-5-node graphlets (see Supplementary Figure S1). Since it is topologically rel-
evant to distinguish between, for example, nodes touching graphletG1 (Supplementary Figure
S1) at an end or at the middle, the notion ofautomorphism orbits(or justorbits, for brevity) is
used. By taking into account the “symmetries” between nodes of a graphlet, there are 73 differ-
ent orbits across all 2-5-node graphlets [24]. The full vector of 73 coordinates is thesignature
of a node that describes the topology of its neighborhood and captures its interconnectivities
out to distance 4 (see [21] for details).

The signature of a node is a highly constraining measure of local topology in the node’s vicinity
in the network and comparing the signatures of two nodes is a demanding measure of their
network similarity. The node signature similarities are computed as follows. For a nodeu,
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ui denotesthe ith coordinate ofits signature vector, i.e.,ui is the number of times nodeu
touches an orbiti. The distanceDi(u, v) between theith orbits of nodesu andv is defined as:
Di(u, v) = wi × |log(ui+1)−log(vi+1)|

log(max{ui,vi}+2)
, wherewi is a weight of orbiti signifying its “importance”

(see [21] for details). The total distanceD(u, v) between nodesu andv is defined as:D(u, v) =∑72

i=0
Di∑72

i=0
wi

. The distanceD(u, v) is in [0, 1), where distance 0 means that signatures of nodes

u and v are identical. Finally, thesignature similarity, S(u, v), between nodesu and v is:
S(u, v) = 1−D(u, v) (see [21] for details). Clearly, a higher signature similarity between two
nodes corresponds to a higher topological similarity between their extended neighborhoods (out
to distance 4).

3 Results

Orthologous proteins are assumed to perform the same or similar biological function. Since we
hypothesize that network topology could give insights into orthology, we examine whether pro-
teins with a higher signature similarity are more likely to share a common biological function
(Figure 1).

Figure 1: The relationship between topological graphlet degree signature similarities (GDSS) and
the level of biological similarities of orthologous protein pairs in the baker’s yeast PPI network.
For each signature similarity interval illustrated on x-axis (0%-9%, 10%-19%, ..., 90%-94%,
and 95%-100%), we show the percentage of protein pairs having signature similarities within the
interval that share a common function.

We analyze GO annotation data [25] downloaded in September 2009. We show that with in-
creased signature similarity, a protein pair is more likely to share a common GO term (Figure
1). For example, out of all protein pairs in the yeast PPI network with signature similarities
below 10%, only about 15% of the pairs share a common GO term, whereas the same is true
for more than 25% of protein pairs with signature similarities of between 50% and 59%, and
for more than 75% of protein pairs with signature similarities of above 95%. Thus, we further
demonstrate that proteins’ topological signatures in the PPI network are closely related to their
biological function [21]. Moreover, our result is encouraging, given that the GO data that we
consider is the “complete” annotation data, containing all GO annotations, independent of GO
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evidence code,in which most of the annotations were obtained computationally by sequence-
based analyses [25]. Thus, since proteins’ topological similarities within the PPI network can
recover the biological information obtained by analyzing their sequence similarities, next we
examine whether they can give insights into their homology relationships as well.

We demonstrate that proteins’ graphlet degree signature similarities are capable of capturing
homology. 175 pairs of orthologous proteins have very different signature similarity distri-
bution, with higher signature similarities than all protein pairs in the PPI network (Figure 2
A).

By “approximating” the distribution of signature similarities between all protein pairs in the
network presented in Figure 2 A with the normal distribution having the same average and
standard deviation as the data, and by finding Z-scores and their corresponding p-values for
different signature similarity thresholds, we find that the statistically significant signature sim-
ilarity threshold is 85%, with p-value lower than 0.05. That is, the probability that a protein
pair randomly selected among all pairs in the PPI network would have a signature similarity of
above 85% is lower than 0.05. We find that a large percentage of orthologous pairs, i.e., more
than 20% of them, have statistically significant signature similarities of above 85%.

We examine how likely it is to observe at random such high signature similarities that we ob-
serve for orthologous proteins. We select randomly 175 protein pairs from the PPI network and
compare their signature similarities to those of the orthologous pairs, repeating the procedure
of random pair selection 30 times (Figure 2 A). Clearly, signature similarity distribution for the
175 orthologous pairs is different than that for 175 random pairs. Moreover, the distribution
for random pairs is very similar to the distribution for all protein pairs in the network. This
suggests that the signature similarity measure indeed successfully captures homology.

To test the robustness of the signature similarity measure to noise in PPI networks, we randomly
add, delete, and rewire 10%, 20%, and 30% of edges in the PPI network, repeating each ran-
domization procedure 30 times. Then, we recompute in these randomly perturbed PPI networks
the signatures for all proteins in the 175 orthologous pairs and we find the signature similarity
distributions for the orthologous pairs in such randomized networks (see Supplementary Figure
S2). None of the random perturbations introduces a big change to the distribution of signa-
ture similarities of orthologous pairs, demonstrating that our approach is robust to noise. It is
interesting that random edge additions and rewirings slightly increase the percentage of pairs
with high signature similarities (Supplementary Figure S2). Explaining why this happens is a
subject of future research.

Next, we calculate sequence identities for 175 orthologous protein pairs, all protein pairs from
the PPI network, and 175 protein pairs randomly selected from the PPI network, where the
procedure of random pair selection is repeated 30 times. About 70% of our orthologous pairs
have sequence identities under 35% (Figure 2 B). Our result is consistent to that of Rost [26]
establishing that the vast majority of homologs has such low sequence identities. Somewhat
similar distribution is observed for all protein pairs in the network (Figure 2 B), as well for 175
protein pairs randomly selected from the network. For all three distributions, almost all pairs
have low sequence identities, below 40%; the only exception are 20% of orthologous pairs that
have very high sequence identities of above 90%. These observations could be explained as
follows. In the context of sequence alignments, the region of sequence identity between 20%
and 35% is referred to as the “twilight zone” [27, 26]. Sequence identities above 35% imply
that the sequences of interest are highly similar, evolutionary close, and probably homologous.
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Figure 2: (A) Signature similarity distributions and (B) sequence identity distributions for 175
orthologous protein pairs (blue), all protein pairs in the PPI network with degrees higher than 3
(red), and 175 protein pairs randomly selected from the network (green). On the horizontal axis,
signature similarities and sequence identities are binned as follows: 0%-9%, 10%-19%, ..., 80%-
89%, and 90%-100%. The procedure of random pair selection (green) was repeated 30 times, and
the signature similarities and sequence identities for a given bin were averaged over the 30 runs;
green points represent these averages, and bars around the points represent the corresponding
standard deviations.

This could explain why orthologous protein pairs have sequence identities above this threshold,
whereas all protein pairs and random pairs do not (Figure 2 B). However, high similarity and
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evolutionaryclosenesscan not be claimed with certainty for sequences with identities in the
twilight zone, since when considering all sequence pairs with identities between 20% and 35%,
the population of non-homologous protein pairs explodes [27, 26]; thus, any sequence-based
homology predictions on protein pairs with sequence identities below 35% would result in a
large number of false positives. This could explain why the sequence identity distributions for
orthologous protein pairs are similar to those of all and random pairs for sequence identities
below 35% (Figure 2 B). Since we show that sequence identity trends for orthologous protein
pairs do not differ much from those for randomly selected pairs and that about 70% of our or-
thologous pairs have sequence identities below the twilight zone threshold of 35%, we confirm
that sequence identities alone cannot be used to detect homology as they would fail to identify
the majority of homologous pairs.

This conclusion is consistent with the explanation given in Section 2.1 about how the orthology
relationships in COGs and KO groups do not depend on the absolute level of similarity be-
tween sequences of the compared proteins. Instead, they depend on identification of consistent
patterns, such as a triangle, in the graph of the best matches. It would be interesting to exam-
ine whether signature similarity measure could be used to identify orthologs in an equivalent
manner, by finding all-to-all pairwise signature similarities between proteins in PPI networks
of different species, identifying for each protein in a species the best hits in each of the other
species, and searching for triangles or larger cliques in the graph of best hits. This issue is a
subject of future research.

We compare signature similarity distribution (Figure 2 A) and sequence identity distribution
(Figure 2 B) for orthologous protein pairs. The statistically significant threshold for signature
similarities is at 85%. About 20% of orthologs have signature similarities above this threshold.
Sequence pairs are considered to have high levels of similarity if their identities are above the
twilight zone threshold of 35% [26]. About 30% of orthologs have sequence identities above
this threshold. Thus, sequence identities seem to uncover slightly higher level of homology
information than signature similarities. However, both measures fail to capture this information
in its entirety. Moreover, the overlap between the 20% of orthologous pairs with high signature
similarities and the 30% of orthologous pairs with high sequence identities is about 60% of
the smaller set, additionally verifying that signature similarities and sequence identities aim to
detect somewhat complementary slices of homology information.

4 Discussion

Non-sequence based sources of biological information have already been used to extract impor-
tant biological knowledge [13, 14, 15]. For example, secondary and tertiary structure-based ap-
proaches have been found to be more effective at functionally describing RNAs than sequence-
based approaches, as they were able to extract biological information that could not have been
discovered from pure sequences [13, 14, 15]. Similarly, it is possible that protein sequence
and network topological information give different biological insights. Protein’s 3-dimensional
structure is expected to closely relate with the number and type of its potential interacting part-
ners in the PPI network. Although high proteins’ sequence similarity correlates with their func-
tional and structural similarity, sequence-similar proteins can have functions and structures that
differ significantly from one another [28, 29, 30, 31]. Thus, restricting analysis to sequences
may mask important structural and functional information. On the other hand, sequence-similar
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but structurally-dissimilarproteinsare expected to have different PPI network topological char-
acteristics. Moreover, while the vast majority of protein pairs with sequence identity higher
than 30%-35% are found to be structurally similar, the most similar protein structure pairs ap-
pear to have less than 12% pairwise sequence identity; the average sequence identity between
all pairs of similar structures is between 8% and 10% [26]. Thus, entirely different protein
sequences can produce very similar structures [32, 30]. When such proteins are expected to
share a common function, a sequence-based function prediction would fail, where a network
topology-based one would not.

We further support our argument by demonstrating that sequence identity of 100% does not
necessarily imply signature similarity of 100%. That is, some of our orthologous protein pairs
with 100% identical sequences do not have the same set of interacting partners in the PPI
network. In Figure 3 A and B, we show two such orthologous protein pairs, RPL12A and
RPL12B, and RPS18A and RPS18B, respectively, and their direct network neighbors.

Both pairs of proteins have sequence identities of 100%. However, the topologies around pro-
teins in each orthologous pair are different, with signature similarities of 65% and 50% respec-
tively. The two orthologous protein pairs (RPL12A and RPL12B, and RPS18A and RPS18B)
are ribosomal proteins. 59 of the yeast ribosomal proteins, including these two orthologous pro-
tein pairs, retained two genomic copies. Prior studies have suggested that duplicated proteins
are functionally redundant [28]. However, it has been shown that paralogous ribosomal pro-
teins have different genetic requirements for their assembly and localization, and that they are
functionally distinct [28]. Our analysis suggests that such functional distinction of these pro-
teins is possible (perhaps even likely), since we show that their topological similarities in the
PPI network are low (Figure 3), as well as that network topology is closely related to biological
function (Figure 1).

Furthermore, it has been shown that after gene duplication, the number of interacting partners
in a PPI network that are shared by the resulting yeast homologs appears to decrease rapidly
as a function of their evolutionary distance [17, 18]. Thus, signature similarities between du-
plicated proteins may provide new insights into their evolutionary and functional divergence,
complementing the knowledge that can be extracted from their sequences [16]. Therefore, the
PPI network topology might present a novel and independent source of biological information,
as well as an opportunity to systematically study the evolutionary distance and functional di-
vergence of duplicated proteins; this will especially be true once PPI data becomes entirely
accurate and complete [16].

5 Conclusion

We examine whether homology information captured by PPI network topology differs and
to what extent from the information captured by protein sequences. We analyze topological
signatures of homologous protein pairs in the yeast PPI network and show that they have statis-
tically significantly higher signature similarities than non-homologous protein pairs. We show
that their signature similarities are robust to noise in the PPI network. We compare signature
similarity trends of homologous protein pairs with their sequence identity trends and find that
sequence identities and signature similarities uncover similar levels of homology information.
Although none of the two methods, network topology or sequence identity, seems to capture ho-
mology information in its entirety, we demonstrate that they might give insights into somewhat
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Figure 3: (A) Subnetwork containing orthologous proteins RPL12B and RPL12A (blue), their
direct neighbors (pink), and all interactions in the yeast PPI network that exist between these
nodes. The subnetwork contains 59 nodes and 1,262 interactions. RPL12B interacts with 54
proteins, while RPL12A interacts with 9 proteins. Proteins RPL12B and RPL12A have identical
sequences, but graphlet degree signature similarity in the PPI network of 65%. (B) Subnetwork
containing orthologous proteins RPS18A and RPS18B (blue), their direct neighbors (pink), and
all interactions in the yeast PPI network that exist between these nodes. The subnetwork contains
30 nodes and 346 interactions. RPS18A interacts with 25 proteins, while RPS18B interacts with 5
proteins. Proteins RPS18A and RPS18B have identical sequences, but graphlet degree signature
similarity in the PPI network of 50%.

different types of biological information. Therefore, we conclude that similarities of proteins’
topological signatures in the PPI network could potentially be used as a complementary method
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to sequence-based approachesfor identifying homologs.
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Figure S1:     All 30 connected graphs on 2 to 5 nodes. When appearingas an induced subgraph of
a larger graph, we call themgraphlets. They contain 73 topologically unique node types, called
“automorphism orbits,” numerated from 0 to 72. In a particular graphlet, nodes belonging to the
same orbit are of the same shade. GraphletG0 is just an edge, and the degree of a node historically
defines how many edges it touches. We generalize the degree to a 73-component “graphlet degree”
vector that counts how many times a node is touched by each particular automorphism orbit. The
figure is taken from Pržulj et al. (2007).
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(A)

(B)
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Figure S2:     Comparison of signature similarity distribution of 175 orthologous protein pairs in the
network (blue) and their signature similarity distributions computed from randomized networks,
obtained by randomly (A) adding, (B) deleting, and (C) rewiring 10% (red), 20% (green), and
30% (purple) of edges in the PPI network.
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