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Summary

In many cases, crucial genes show relatively slight changes between groups of samples
(e.g. normal vs. disease), and many genes selected from microarray differential analysis
by measuring the expression level statistically are also poorly annotated and lack of
biological significance. In this paper, we present an innovative approach - network
expansion and pathway enrichment analysis (NEPEA) for integrative microarray analysis.
We assume that organized knowledge will help microarray data analysis in significant
ways, and the organized knowledge could be represented as molecular interaction
networks or biological pathways. Based on this hypothesis, we develop the NEPEA
framework based on network expansion from the human annotated and predicted protein
interaction (HAPPI) database, and pathway enrichment from the human pathway database
(HPD). We use a recently-published microarray dataset (GSE24215) related to insulin
resistance and type 2 diabetes (T2D) as case study, since this study provided a thorough
experimental validation for both genes and pathways identified computationally from
classical microarray analysis and pathway analysis. We perform our NEPEA analysis for
this dataset based on the results from the classical microarray analysis to identify
biologically significant genes and pathways. Our findings are not only consistent with the
original findings mostly, but also obtained more supports from other literatures.

1 Background

Microarrays make possible the discovery of new functions and pathways of known genes, as
they measure all the transcriptional activity in a biological sample [1]. This high-throughput
procedure can be used in medical diagnostics, in biomarker discovery, and in investigating the
ways a drug, disease, polymorphism or environmental condition affects gene expression and
function [2, 3]. However, one challenge has arisen because microarray technology generates a
large amount of transcriptional data, which is hard to interpret for the results to gain insights
into biological mechanisms [4]. As a result, researchers have sought to analyze microarray
data through the use of modern computational tools and statistical methods.

In many cases, crucial genes show relatively slight changes, and many genes selected from
differential analysis between groups of samples (e.g. normal vs. disease) by measuring the
expression level statistically are also poorly annotated [2]. From a biological perspective,
functionally related genes often display a coordinated expression to accomplish their roles in
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the cell [5]. Hence, to translate such lists of differentially expressed genes into a functional
profile able to understand the underlying biological phenomena, one approach to aid
interpretation is to look for changes in a group of genes with a common function [2].

Gene set enrichment analysis (GSEA) is one of the most widely used methods for identifying
both statistically and biologically significant genes from high-throughput data such as gene-
expression assays [4]. GSEA relies on pre-defined gene sets, while neglect gene/protein
interaction, pathway upstream or downstream information. Furthermore, GSEA still assumes
that more differentially expressed genes are more crucial to the biology, which is not always
true [6]. Currently, gene expression signature analysis and pathway analysis remain two
separate processes.

From a view of network biology [7], cancer genes and proteins do not function in isolation;
instead, they work in interconnected pathways and molecular networks at multiple levels [8],
one study re-characterized them in a molecular interaction network for BRCA, and identified
HMMR as a new susceptibility locus [9]. Another study integrated protein interaction network
and gene expression data to improve the prediction of BRCA metastasis [10]. These works
suggest that protein interaction networks and pathways, although noisy, incomplete and static,
can serve as a molecular-level conceptual roadmap to guide future microarray analysis [11].

In this paper, we present an innovative approach - network expansion and pathway
enrichment analysis (NEPEA) for integrative microarray analysis. We assume that organized
knowledge will help microarray data analysis in significant ways, and the organized
knowledge could be represented as molecular interaction networks or biological pathways.
Based on this hypothesis, we develop the NEPEA framework based on network expansion
[12] from the human annotated and predicted protein interaction (HAPPI) database [13], and
pathway enrichment from the human pathway database (HPD) [14].

We use a recently-published microarray dataset (GSE24215) related to insulin resistance and
type 2 diabetes (T2D) as case study, since this study provided a thorough experimental
validation for both genes and pathways identified computationally from classical microarray
analysis and pathway analysis [15]. In this study, skeletal muscle samples were collected in
all participants (n = 20) in both the basal and insulin-stimulated state before and after bed rest.
We perform our NEPEA analysis for this dataset based on the results from the classical
microarray analysis to identify biologically significant genes and pathways. Our findings are
not only consistent with the original findings mostly, but also obtained more supports from
other literatures.

2 Methods

The NEPEA method has three main components: 1) classical microarray analysis for data
preprocessing consisting of quality control, normalization and differential analysis, 2)
network expansion analysis for significant gene identification consisting of disease gene
curation, network construction and significance score calculation, and 3) pathway enrichment
analysis consisting of pathway search, pathway differential analysis and ranking. Using the
microarray dataset - GSE24215 as an example, we introduce the detailed steps below:

2.1 Microarray data preprocessing
2.1.1  Quality Control

We use AffyQCReport (applicable for Affymetrix platform) and ArrayQualityMetrics
(applicable for Agilent platform) packages in Bioconductor to generate three plots to detect
bad chips for each microarray dataset as: 1) examine a heat map that shows array-array
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Spearman rank correlation coefficients. The map enabled us to plot outliers, failed
hybridizations, and mis-tracked samples; 2) make a box plot of all perfect match intensities.
The plot enabled us to detect outliers in terms of average intensity; and 3) make a distribution
plot of kernel density estimates for perfect match intensities, which enables us to detect
outliers in terms of shaped density. After applying ArrayQualityMetrics packages into quality
control for microarray dataset - GSE24215, total 3 suspects out of 48 samples are flagged,
which are kicked off as bad chips.

2.1.2 Normalization

We use Quantile normalization to normalize all the four qualified microarray datasets; MAS5
for Affymetric platform and normexp for Agilent platform on background correction. We also
perform the steps background correction, normalization, probe fispegirrection, and
summary value computation as following: 1) bgcorrect. method: mas; 2)
normalize.method:quantiles; 3) pmcorrect.method:pmonly; and 4) summary.method:mas.

2.1.3 Differential analysis

We use Limma (Linear Models for Microarray Data) package [16] in Bioconductor to identify
differentially-expressed genes for each clinical group comparison from the qualified and
normalized microarray datasets as 1) The package Limma uses an approach called linear
models to analyze designed microarray experiments; 2) For statistical analysis and assessing
deferential expression, Limma uses an empirical Bayes method for more stable inference and
improved power, especially for experiments with small numbers of arrays; and 3) Differential
genes are obtained by using the filters with p-Value <= 0.05, Fold Change (FC) >= 1.3, and
Average Expression Level (AEL) >= 40% after applying Limma package in Bioconductor.
Average expression levels (AEL>=40%) have been checked to ensure the presences of the
differential genes in the tissue - muscle. Duplicated genes with lower fold changes are
eliminated, which implies that only the highest fold change for one gene will be kept. For
microarray dataset - GSE24215, we get 495 differential genes from insulin before-bed (IBB)
group, and 930 differential genes from insulin after-bed (IAB) group

2.2 Network expansion analysis
2.2.1 Disease gene curation

The network expansion analysis is knowledge-guided approach, which relies on the disease-
associated genes. Here we use T2D as an example to demonstrate how to curate disease-
associated genes, but our method can be applied to any other disease phenotypes.

We curate T2D-associated genes from OMIM (http://www.ncbi.nlm.nih.gov/omim) manually,
evaluates them semi-automatically through searching in PubMed
(http://www.ncbi.nlm.nih.gov/pubmed/) as following: 1) Query: (“Type Il Diabetes"[All
Fields] OR "Type 2 Diabetes"[All Fields]) AND (prefix star[prop] OR prefix plus[prop]); 2)
Results: Records (Entries) -> Genes (Gene Symbol) -> Proteins (Uniprot ID); 3) GENE: Gene
name, linked to GeneCards.org; 4) UNIPROT: Uniprot ID, linked to UniProt.org; 5)
PUBMED: Count number of references where both term ("Type Il Diabetes” OR "Type 2
Diabetes”) AND "GENE" appeared in PubMed, linked to PubMed; and 6) Obtain interactions
from HAPPI 1.31 for these T2D-associated genes (seed genes) curated from OMIM.
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2.2.2 Network reconstruction

We construct a T2D-specific protein-protein interaction (PPI) network by using Oracle SQL
Developer with high-quality interaction data in HAPPI version 1.31 and map differentially-
expressed genes onto the T2D-specific PPl network by using Cytoscape as following: 1)
Expand 39 seed genes (PUBMED >=50) in HAPPI 1.31 (4-Star, h-Score >=0.75), and obtain
702 genes (including 32 seed genes); 2) The left 7 seed genes are also added into the network
in order to show their expressions; and 3) Construct a T2D-specific PPl network with 709
nodes and 944 edges, by using Nearest Neighbor Expansion (NNE) approach [12].

2.2.3 Significant gene identification

We measure and rank all the differential genes in a T2D-specific protein-protein interaction
(PPI) network by considering both differential expressions and network properties.
Differential genes are obtained by applying filters with p-Value <= 0.05, Average Expression
Level (AEL) >= 40%, and Absolute Fold Change (ABS_FC) >= 1.3. Duplicated genes with
lower fold changes have been eliminated, which implies that only the highest fold change for
one gene will be kept. The T2D-specific PPI network is reconstructed by expanding all the
seed genes curated from OMIM (PUBMED >=0), in HAPPI_1.31 (3-Star) (Confidence: h-
Score >=0.45)

We define Gene Significance Score (integrating both gene expression fold change - FC and
network connectivity - NC) here as:

Sig_Score = (a; + logl™") x log, (@, + NC), |[FC| = ABS_FC, absolute fold change.

Constant parameters a; and o, here are for the balance between differential expressions and
network properties. In the implementation, «;=3 and a,=1 have best performance to rank
known significant genes in the front. Network connectivity (for un-weighted networks) NC:
Weight_1 = Number of direct neighbors for each node. Network connectivity (for weighted
networks) NC: Weight_2 = Sum of connection strength values on all neighbored edges. In the
implementation, we use Weight_2 here. Connection strength here is the confidence for an
interaction: h-Score.

2.3 Pathway enrichment analysis
2.3.1 Pathway search

We search curated T2D-associated genes by using Oracle SQL Developer with
comprehensive integrated pathway data in HPD version 2.1 (including pathway data from
NCI-Nature curated, KEGG, BioCarta, and Protein Lounge), and map differentially-expressed
genes onto the pathways obtained. We obtain 92 pathways with (HITS/Pathway Scale) >=
3.5% AND HITS >=2 by querying 39 seed genes (PUBMED >=50) in HPD 2.1.

2.3.2 Pathway differential analysis

We provide average differential gene expressions in a pathway as:

AVG_ABS FC: The average of ABS_FC of all the available differential gene
expressions in a pathway.

We define pathway differential expressions here as:

NORM_ABS_FC: The p*-norm of ABS_FC of all the available differential gene
expressions in a pathway
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Usually, p-norm = (Zi“:l(xi)p)% = (SUM((x)P)*/P

For unification, we modify it as p*-norm = (% ?zl(xi)p)E = (AVG((x;)P)/P

In the implementation, p = 6 have best performance to emphasize highly differential
expressions in a pathway.

We also provide maximal differential gene expressions in a pathway as:

MAX_ABS_FC: The maximum value of ABS_FC of all the available differential gene
expressions in a pathway;

and count number of differentially expressed genes as:

CNT_DIFF: Count number of differentially expressed genes (FC >= 1.3 AND p-Value
<=0.05) in a pathway.

We rank all the pathways by their pathway differential expressions - NORM_ABS _FC
defined above.

3 Results
3.1 Findings on insulin before-bed (IBB) group
3.1.1  Top-20 differential genes

Totally 495 differential genes are obtained, which are differentially-expressed in Insulin
Before Bed (IBB) Group from the microarray dataset — GSE24215. Differential genes are
obtained by using filters with p-Value <= 0.05, Fold Change (FC) >= 1.3, and Average
Expression Level (AEL) >= 40% after applying Limma package in Bioconductor. Average
expression levels (AEL>=40%) have been checked to ensure the presences of the differential
genes in the tissue - muscle. Duplicated genes with lower fold changes are eliminated, which
implies that only the highest fold change for one gene will be kept. Top-20 differential genes
in IBB from GSE24215, ordered by absolute fold change (ABS_FC), are listed in Table 1.

3.1.2 Top-20 significant genes

Totally 130 significant genes in IBB from GSE24215 are obtained from all the differential
genes in a T2D-specific protein-protein interaction (PPI) network, measured by using
significant score (considering both differential expressions and network properties). The T2D-
specific PPI network is reconstructed by expanding all the seed genes curated from OMIM
(PubMed >=0), in HAPPI_1.31 (3-Star) (Confidence: h-Score >=0.45). Top-20 significant
genes in IBB from GSE24215, ordered by significant score (Sig_Score), are listed in Table 2.

A T2D-significant protein-protein interaction (PPI) network (See Figure 1) is reconstructed a
by connecting Top-20 significant genes in IBB from GSE24215, with and within the T2D-
associated genes (seed genes) curated from OMIM (PubMed >= 50), in HAPPI_1.31 (3-Star)
(Confidence: h-Score >=0.75).
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Table 1: Top-20 differential genes in IBB from GSE24215, ordered by FC, (FC>=1.3, p-value
<=0.05 and AEL >=40% after applying Limma package in Bioconductor). Note: Gene names are
linked to GeneCards.org, UniProt IDs are linked to UniProt.org, and Evidences are linked to

PubMed.

Gene Symbol p-Value FDR Log2 FC ABS FC Evidences
SOCS3 0.00193 0.08858 2.54455 5.83426 28
PDK4 0.00000 0.00074 -2.34193 5.06980 16
THBD 0.00001 0.00243 2.25714 4.78043 0
CISH 0.00013 0.01380 2.19425 4.57651 0
G0S2 0.00000 0.00003 2.05403 4.15264 0
MYC 0.00064 0.04234 1.97513 3.93164 23
PDE4B 0.00000 0.00042 1.82895 3.55280 0
ADAMTS4 0.00061 0.04111 1.76371 3.39569 1
GADD45A 0.00002 0.00373 1.76132 3.39008 0
RGS16 0.00217 0.09630 1.72508 3.30598 1
EGR1 0.01342 0.29638 1.71863 3.29125 3
HES1 0.00000 0.00012 1.71837 3.29065 1
CCL2 0.00019 0.01796 1.71466 3.28219 111
KLF15 0.00000 0.00000 -1.66849 3.17882 3
PYCR1 0.00000 0.00000 1.66356 3.16797 0
CITED2 0.00000 0.00000 -1.65106 3.14064 0
OTuD1 0.00006 0.00778 -1.56650 2.96186 0
ARRDC4 0.00000 0.00000 1.51143 2.85092 0
NR1D1 0.00000 0.00003 -1.50730 2.84277 1
PIK3R1 0.00000 0.00000 1.50274 2.83379 9
————
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Figure 1: Top-20 significant genes in IBB from GSE24215, interacted with T2D-associated genes.
Node size represents Evidence for each gene, node color represents Log2 FC, red color implies
over-expressed and blue color implies under-expressed. Green circled nodes are seed genes
(T2D-associated genes curated from OMIM). Edge color represents Confidence (h-Score) for
each interaction.
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Table 2: Top-20 significant genes in IBB from GSE24215, ordered by Sig_Score, which is
measured in the T2D-specific PPI network (PubMed >=0, h-Score >=0.45) for all the differential
genes (FC>=1.3, p-value <=0.05 and AEL >=40% after applying Limma package in
Bioconductor) in IBB from GSE24215.

Gene Symbol | p-Value FDR Log2 FC | ABS FC | Weight_1 | Weight_2 | Sig_Score | Evidences

CCL2 0.00019 | 0.01796 1.71466 3.28219 98 75.2645 | 29.48048 111
1L6 0.00164 0.08069 0.96338 1.94987 140 112.808 27.07169 52
AKT2 0.00133 0.06955 -0.83609 1.7852 104 66.6378 23.32247 21
IRS2 0.00011 | 0.01276 | -0.78851 1.72729 60 49.3156 21.4162 124
VEGFA 0.01432 | 0.30888 0.52022 1.43417 57 44,6818 | 19.40888 28
PIK3R1 0 0 1.50274 2.83379 13 11.8228 | 16.57294 9
MYC 0.00064 0.04234 1.97513 3.93164 10 8.8236 16.39929 23
UCP3 0.00001 0.00147 -1.04039 2.05679 22 15.2626 16.25647 45
SOCS3 0.00193 | 0.08858 2.54455 5.83426 7 6.3574 | 15.96385 28
ucp2 0| 0.00093 | -0.80665 1.74915 22 15.7096 | 15.46493 78
SCARB1 0.00115 | 0.06287 | -0.38842 1.30896 30 19.9446 | 14.87011 11
HSD11B1 0.01673 0.33975 -0.46192 1.37737 24 17.478 14.56683 20
SORBS1 0 0 -1.13404 2.19472 13 10.08 14.34464 2
KLF11 0 0.00001 -0.5958 1.51131 20 14.1964 14.11588 8
AQP7 0.00023 | 0.02066 | -0.71786 1.64474 9 7.305 | 11.35427 8
RRAD 0.00018 0.01748 1.45449 2.7406 7 48134 11.31166 8
LPIN1 0.00898 0.23354 -0.49106 1.40548 13 7.849 10.98119 9
SMAD3 0.01644 0.33728 0.4402 1.35679 9 8.1113 10.96617 7
ICAM1 0.00219 | 0.09689 0.74517 1.67617 8 6.539 | 10.91482 4
TNFRSF1A 0.00039 | 0.02999 0.5936 1.509 8 6.6686 | 10.56144 0

3.1.3 Top-20 significant pathways

Totally 51 significant pathways (p*-norm >= 1.2) in IBB from GSE24215 are obtained from
all the differential pathways, measured by using pathway differential expressions (p*-norm).
Top-20 significant pathways in IBB from GSE24215, ordered by pathway differential
expressions (p*-norm), are listed in Table 3.

3.2 Findings on insulin after-bed (IAB) group
3.2.1 Top-20 differential genes

Totally 930 differential genes are obtained, which are differentially-expressed After Bed
(IAB) Group from the microarray dataset — GSE24215. Differential genes are obtained by
using filters with p-Value <= 0.05, Fold Change (FC) >= 1.3, and Average Expression Level
(AEL) >= 40% after applying Limma package in Bioconductor. Average expression levels
(AEL>=40%) have been checked to ensure the presences of the differential genes in the tissue
- muscle. Duplicated genes with lower fold changes are eliminated, which implies that only
the highest fold change for one gene will be kept.

Top-20 differential genes in IAB from GSE24215, ordered by absolute fold change
(ABS_FC), are listed in Table 4.
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Table 3: Top-20 significant pathways in IBB from GSE24215, ordered by pathway differential
expressions (p*-norm), which is measured with all the available differential gene expressions in

IBB from GSE24215.

PATHWAY_NAME DB_SOURCE_ID NORM_ABS_FC MAX_ABS_FC

IL-9 Pathway KEGG 2.56782 3.97011
IL-10 Pathway KEGG 2.35238 3.97011
IL23-mediated signaling events NCI-Nature Curated 2.29305 3.97011
EPO signaling pathway NCI-Nature Curated 2.24041 3.97011
Murine MSP-STK Signaling KEGG 2.20505 3.28219
IL6-mediated signaling events NCI-Nature Curated 2.19750 3.97011
Type 1l diabetes mellitus KEGG 2.16107 3.97011
Signaling events mediated by PTP1B NCI-Nature Curated 2.13761 3.97011
growth hormone signaling pathway BioCarta 2.09285 3.31174
IL-4 Pathway KEGG 2.08410 3.97011
Growth Hormone Signaling KEGG 2.06889 3.97011
LDL Oxidation in Atherogenesis KEGG 2.05923 3.28219
IL4-mediated signaling events NCI-Nature Curated 2.02714 3.97011
Adipocytokine signaling pathway KEGG 1.97685 3.97011
FoxO family signaling NCI-Nature Curated 1.97503 3.39008
C. pneumoniae Infection in Atherosclerosis KEGG 1.89211 3.28219
Calcineurin-regulated NFAT-dependent NCI-Nature Curated 1.87618 3.29125
transcription in lymphocytes

Jak-STAT signaling pathway KEGG 1.85834 3.97011
MSP-RON Signaling KEGG 1.84756 3.28219
Insulin signaling pathway KEGG 1.80963 3.97011

3.2.2 Top-20 significant genes

Totally 237 significant genes in IAB from GSE24215 are obtained from all the differential
genes in a T2D-specific protein-protein interaction (PPI) network, measured by using
significant score (considering both differential expressions and network properties). The T2D-
specific PPI network is reconstructed by expanding all the seed genes curated from OMIM
(PubMed >=0), in HAPPI_1.31 (3-Star) (Confidence: h-Score >=0.45). Top-20 significant
genes in IAB from GSE24215, ordered by significant score (Sig_Score), are listed in Table 5.

A T2D-significant protein-protein interaction (PPI) network (See Figure 2) is reconstructed a
by connecting Top-20 significant genes in IAB from GSE24215, with and within the T2D-
associated genes (seed genes) curated from OMIM (PubMed >= 50), in HAPPI_1.31 (3-Star)
(Confidence: h-Score >=0.75)
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Table 4: Top-20 differential genes in IAB from GSE24215, ordered by FC, (FC>=1.3, p-value
<=0.05 and AEL >=40% after applying Limma package in Bioconductor). Note: Gene names are
linked to GeneCards.org, UniProt IDs are linked to UniProt.org, and Evidences are linked to

PubMed.
Gene Symbol p-Value FDR Log2 FC ABS FC Evidences
NR4A3 0.00000 0.00000 4.18431 18.18032 2
SOCS3 0.00005 0.00780 4.12982 17.50651 28
GADD45B 0.00054 0.03440 3.56927 11.87016 1
THBD 0.00000 0.00100 3.48248 11.17714 0
ADAMTS4 0.00019 0.01838 3.40269 10.57580 1
PDE4B 0.00000 0.00005 3.33522 10.09258 0
FOS 0.00031 0.02436 3.31416 9.94630 18
EGR1 0.00002 0.00362 3.11271 8.65008 3
JUNB 0.00004 0.00743 3.08829 8.50488 2
RGS16 0.00044 0.03038 2.96393 7.80246 1
ZFP36 0.00012 0.01425 2.92543 7.59700 2
MYC 0.00026 0.02179 2.86543 7.28754 23
CISH 0.00000 0.00049 2.78449 6.88992 0
CCL2 0.00013 0.01462 2.59339 6.03513 111
CXCL2 0.00006 0.00858 2.35828 5.12758 2
ATF3 0.00202 0.07254 2.31257 4.96766 9
SERPINA3 0.00732 0.14867 2.16589 4.48742 0
NFIL3 0.00002 0.00434 2.15060 4.44013 0
GADD45A 0.00382 0.10196 2.14953 4.43682 0
1L6 2.0786 0.00044 0.03051 4.22398 52
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Figure 2: Top-20 significant genes in IAB from GSE24215, interacted with T2D-associated genes.
Node size represents Evidence for each gene, node color represents Log2 FC, red color implies
over-expressed and blue color implies under-expressed. Green circled nodes are seed genes
(T2D-associated genes curated from OMIM). Edge color represents Confidence (h-Score) for

each interaction.
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Table 5: Top-20 significant genes in IAB from GSE24215, ordered by Sig_Score, which is
measured in the T2D-specific PPI network (PubMed >=0, h-Score >=0.45) for all the differential
genes (FC>=1.3, p-value <=0.05 and AEL >=40% after applying Limma package in
Bioconductor) in IAB from GSE24215. Note: Gene names are linked to GeneCards.org, UniProt
IDs are linked to UniProt.org, and Evidences are linked to PubMed.

Gene Symbol p-Value FDR Log2 FC | ABS FC | Weight 1 | Weight 2 | Sig_Score | Evidences
CCL2 0.00013 | 0.01462 2.59339 6.03513 98 75.2645 34.9751 111
1L6 0.00044 | 0.03051 2.0786 | 4.22398 140 112.808 | 34.68919 52
IRS1 0.00902 | 0.16494 | -0.68912 1.6123 103 83.1045 | 23.58864 280
IL6R 0.00002 | 0.00404 0.79678 | 1.73722 70 55.9728 | 22.14359 7
VEGFA 0.00017 | 0.01724 0.92831 1.90304 57 44.6818 21.6589 28
APP 0.03329 | 0.31458 -0.43503 1.35194 80 68.3971 21.01141 15
SOCS3 0.00005 | 0.0078 4.12982 | 17.50651 7 6.3574 | 20.52815 28
ADRB2 0.00016 | 0.0164 1.0105 | 2.01461 37 31.2254 | 20.09311 10
FOXO1 0.00008 | 0.01056 0.52622 | 1.44015 65 44.529 | 19.42493 59
MYC 0.00026 | 0.02179 2.86543 7.28754 10 8.8236 19.33394 23
SOD2 0.00164 | 0.06478 0.82246 1.76841 50 29.5486 18.85629 4
DGKD 0.02661 | 0.28238 0.5992 | 1.51487 42 34.932 | 18.59775 2
FOS 0.00031 | 0.02436 3.31416 9.9463 7 6.3552 | 18.17698 18
PIK3R1 0 | 0.00008 1.67218 | 3.18695 13 11.8228 17.1966 9
XBP1 0.00338 | 0.09606 0.40352 1.32273 42 26.9454 16.35234 9
AGT 0.00295 | 0.08852 0.59516 1.51064 24 18.032 15.28071 42
UCP3 0.00163 | 0.06449 | -0.75312 | 1.68543 22 15.2626 | 15.10061 45
UCP2 0.00186 | 0.06897 | -0.60181 | 1.51762 22 15.7096 | 14.63273 78
PPARGCIA 0.00479 0.117 0.53018 1.44411 17 13.6 13.65437 111
GFPT2 0.04473 | 0.36274 0.54879 1.46286 14 12.2852 13.2432 2

3.2.3 Top-20 significant pathways

Totally 64 significant pathways (p*-norm >= 1.2) in IAB from GSE24215 are obtained from
all the differential pathways, measured by using pathway differential expressions (p*-norm).
Top-20 significant pathways in IAB from GSE24215, ordered by pathway differential
expressions (p*-norm), are listed in Table 6.

4 Discussion

The key finding of the present study on GSE24215 was that bed rest was associated with a
paradoxically increased response to insulin of genes involved in acute-phase response and
inflammation, including IL-6 signaling, IL-10 signaling, and the ER stress pathway,
contrasting the development of severe peripheral insulin resistance of glucose metabolism in
young healthy men. The present study demonstrated that 9 days of bed rest induces severe
transcriptional changes of genes potentially involved in the pathogenesis of insulin resistance
and T2D in skeletal muscle, which might to some extent explain the harmful effect of a
sedentary lifestyle on human metabolism. Impaired expression of HK2, VEGFA, NDUFBS6,
PPARGC1A, and OXPHOS genes in general, as well as a markedly increased expression of
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RRAD, are among the prime candidates contributing to the development of insulin resistance
during bed rest.

Table 6: Top-20 significant pathways in 1AB from GSE24215, ordered by pathway differential
expressions (p*-norm), which is measured with all the available differential gene expressions in

IAB from GSE24215.

PATHWAY_NAME DB_SOURCE_ID NORM_ABS _FC MAX_ABS _FC
IL-9 Pathway KEGG 6.70137 10.92515
IL-10 Pathway KEGG 6.43693 10.92515
IL6-mediated signaling events NCI-Nature Curated 6.34297 10.92515
EPO signaling pathway NCI-Nature Curated 6.13163 10.92515
IL23-mediated signaling events NCI-Nature Curated 6.01717 10.92515
igf-1 signaling pathway BioCarta 5.98831 9.94630
Type Il diabetes mellitus KEGG 5.90782 10.92515
Signaling events mediated by PTP1B NCI-Nature Curated 5.83706 10.92515
IL-4 Pathway KEGG 5.71129 10.92515
signal transduction through illr BioCarta 5.68010 9.94630
Growth Hormone Signaling KEGG 5.67342 10.92515
Calcineurin-regulated NFAT-dependent NCI-Nature Curated 5.66004 9.94630
transcription in lymphocytes
IL4-mediated signaling events NCI-Nature Curated 5.53802 10.92515
FOXML1 transcription factor network NCI-Nature Curated 5.44978 9.94630
Adipocytokine signaling pathway KEGG 5.40776 10.92515
GDNF-Family Ligands and Receptor KEGG 5.18210 9.94630
Interactions
HIF-1-alpha transcription factor network NCI-Nature Curated 4.99991 9.94630
Regulation of nuclear SMAD?2/3 signaling NCI-Nature Curated 4.91493 9.94630
Insulin signaling pathway KEGG 4.89924 10.92515
Jak-STAT signaling pathway KEGG 4.80603 10.92515

Our analysis on this microarray dataset also shows that Insulin-stimulation After Bed-rest
(IAB) is associated with the same significant genes: VEGFA (Rank: 5), PPARGC1A (Rank:
19), HK2 (Rank: 23), and RRAD (Rank: 29). We also found IAB is associated the
same/similar pathways: 1L-10 Pathway (Rank: 2) from KEGG database, IL6-mediated
signaling events (Rank: 3) from NCI-Nature Curated pathway database, igf-1 signaling
pathway (Rank: 6)from BioCarta database, Type Il diabetes mellitus (Rank: 7) from KEGG
database, Growth Hormone Signaling (Rank: 11) from KEGG database, Insulin signaling
pathway (Rank: 19) from KEGG database, Jak-STAT signaling pathway (Rank: 20) from
KEGG database, il 6 signaling pathway (Rank: 27) from BioCarta database, and role of erbb?2
in signal transduction and oncology (Rank 31) from BioCarta database.

5 Conclusions

In this paper, we apply both classical microarray analysis (such as differential analysis in
Bioconductor) and our knowledge-guided analysis (network expansion analysis and pathway
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enrichment analysis). From the evidence from literature (PubMed), Top 20 significant genes
from our analysis have more supports than Top 20 differential genes from simple differential
analysis, in the case study on the microarray dataset - GSE24215. This implies the vitality of
our hypothesis on which organized knowledge will help microarray data analysis in
significant ways.

For GSE24215 dataset, both of the two networks (shown in Figure 1 and Figure 2) consist of
two subnetworks. The bigger one includes genes that are highly related to diabetic type 2.
Some of genes are shared between before bed network and after bed network, like insulin
receptor, peroxisome proliferator-activated receptor gamma and so on. For those shared
genes, their expressions are different between these two conditions. We can see from the
figure that IRS1, PPARG are under-expressed in after bed condition while IRS2 are under-
expressed in before bed condition. Beside those shared molecules, some only show in after
bed condition, like PPARGC1A, IDE, IL6R, APP, and PTPN1 while others only show in
before bed condition, like CD36, SCARB1, SELP, ICAM1, TNFRSF1A, HSD11B1, and
AKT2. The smaller one is relatively small sub-network. Commonly shared gene between
before bed and after bed are HNF1A, HNF4A and MYC with similar expression level. Some
genes like TCF7L2 only show up in before bed network while GCK, GFPT2, FOXO1, and
SIRT1 only show in after bed network.

Another interesting finding is that the molecules which connect the red sub-network and blue-
subnetwork are different. In before bed network, SMAD3 play this important role while in
after bed network it is FOS that connect these two subnetworks. In fact, FOS and SMAD3 are
physically interacting with each other and together Smad3 cooperates with c-Jun/c-Fos to
mediate TGF-beta-induced transcription. Finally though IGF1 doesn’t show up in the
network, yet the IGF1 pathway is highly ranked (refer to pathway analysis part) in the after
bed condition.
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