Contiki - a Lightweight and Flexible Operating System for Tiny Networked
Sensors

Adam Dunkels, Bjorn Gronvall, Thiemo Voigt
Swedish Institute of Computer Science
{adam, bg, thiemo}@sics.se

Abstract

Wireless sensor networks are composed of large num-
bers of tiny networked devices that communicate unteth-
ered. For large scale networks it is important to be able
to dynamically download code into the network. In this
paper we present Contiki, a lightweight operating system
with support for dynamic loading and replacement of in-
dividual programs and services. Contiki is built around an
event-driven kernel but provides optional preemptive multi-
threading that can be applied to individual processes. We
show that dynamic loading and unloading is feasible in a
resource constrained environment, while keeping the base
system lightweight and compact.

1. Introduction

Wireless sensor networks are composed of large num-
bers of tiny sensor devices with wireless communication ca-
pabilities. The sensor devices autonomously form networks
through which sensor data is transported. The sensor de-
vices are often severely resource constrained. An on-board
battery or solar panel can only supply limited amounts of
power. Moreover, the small physical size and low per-device
cost limit the complexity of the system. Typical sensor de-
vices [1, 2, 5] are equipped with 8-bit microcontrollers,
code memory on the order of 100 kilobytes, and less than
20 kilobytes of RAM. Moore’s law predicts that these de-
vices can be made significantly smaller and less expensive
in the future. While this means that sensor networks can
be deployed to greater extents, it does not necessarily im-
ply that the resources will be less constrained.

For the designer of an operating system for sensor nodes,
the challenge lies in finding lightweight mechanisms and
abstractions that provide a rich enough execution environ-
ment while staying within the limitations of the constrained
devices. We have developed Contiki, an operating system
developed for such constrained environments. Contiki pro-
vides dynamic loading and unloading of individual pro-

grams and services. The kernel is event-driven, but the sys-
tem supports preemptive multi-threading that can be applied
on a per-process basis. Preemptive multi-threading is imple-
mented as a library that is linked only with programs that
explicitly require multi-threading.

Contiki is implemented in the C language and has been
ported to a number of microcontroller architectures, includ-
ing the Texas Instruments MSP430 and the Atmel AVR. We
are currently running it on the ESB platform [5]. The ESB
uses the MSP430 microcontroller with 2 kilobytes of RAM
and 60 kilobytes of ROM running at 1 MHz. The microcon-
troller has the ability to selectively reprogram parts of the
on-chip flash memory.

The contributions of this paper are twofold. Our first con-
tribution is that we show the feasibility of loadable pro-
grams and services even in a constrained sensor device.
The possibility to dynamically load individual programs
leads to a very flexible architecture, which still is compact
enough for resource constrained sensor nodes. Our second
contribution is more general in that we show that preemp-
tive multi-threading does not have to be implemented at the
lowest level of the kernel but that it can be built as an ap-
plication library on top of an event-driven kernel. This al-
lows for thread-based programs running on top of an event-
based kernel, without the overhead of reentrancy or multi-
ple stacks in all parts of the system.

1.1. Downloading code at run-time

Wireless sensor networks are envisioned to be large
scale, with hundreds or even thousands of nodes per net-
work. When developing software for such a large sensor
network, being able to dynamically download program code
into the network is of great importance. Furthermore, bugs
may have to be patched in an operational network [9]. In
general, it is not feasible to physically collect and reprogram
all sensor devices and in-situ mechanisms are required. A
number of methods for distributing code in wireless sensor
networks have been developed [21, 8, 17]. For such meth-
ods it is important to reduce the number of bytes sent over



the network, as communication requires a large parts of the
available node energy.

Most operating systems for embedded systems require
that a complete binary image of the entire system is built
and downloaded into each device. The binary includes the
operating system, system libraries, and the actual applica-
tions running on top of the system. In contrast, Contiki has
the ability to load and unload individual applications or ser-
vices at run-time. In most cases, an individual application is
much smaller than the entire system binary and therefore re-
quires less energy when transmitted through a network. Ad-
ditionally, the transfer time of an application binary is less
than that of an entire system image.

1.2. Portability

As the number of different sensor device platforms in-
creases (e.g. [1, 2, 5]), it is desirable to have a common
software infrastructure that is portable across hardware plat-
forms. The currently available sensor platforms carry com-
pletely different sets of sensors and communication devices.
Due to the application specific nature of sensor networks,
we do not expect that this will change in the future. The sin-
gle unifying characteristic of today’s platforms is the CPU
architecture which uses a memory model without segmen-
tation or memory protection mechanisms. Program code is
stored in reprogrammable ROM and data in RAM. We have
designed Contiki so that the only abstraction provided by
the base system is CPU multiplexing and support for load-
able programs and services. As a consequence of the ap-
plication specific nature of sensor networks, we believe that
other abstractions are better implemented as libraries or ser-
vices and provide mechanisms for dynamic service manage-
ment.

1.3. Event-driven systems

In severely memory constrained environments, a multi-
threaded model of operation often consumes large parts of
the memory resources. Each thread must have its own stack
and because it in general is hard to know in advance how
much stack space a thread needs, the stack typically has
to be over provisioned. Furthermore, the memory for each
stack must be allocated when the thread is created. The
memory contained in a stack can not be shared between
many concurrent threads, but can only be used by the thread
to which is was allocated. Moreover, a threaded concur-
rency model requires locking mechanisms to prevent con-
current threads from modifying shared resources.

To provide concurrency without the need for per-thread
stacks or locking mechanisms, event-driven systems have
been proposed [15]. In event-driven systems, processes are
implemented as event handlers that run to completion. Be-

cause an event handler cannot block, all processes can use
the same stack, effectively sharing the scarce memory re-
sources between all processes. Also, locking mechanisms
are generally not needed because two event handlers never
run concurrently with respect to each other.

While event-driven system designs have been found
to work well for many kinds of sensor network applica-
tions [18] they are not without problems. The state driven
programming model can be hard to manage for program-
mers [17]. Also, not all programs are easily expressed
as state machines. One example is the lengthy computa-
tion required for cryptographic operations. Typically, such
operations take several seconds to complete on CPU con-
strained platforms [22]. In a purely event-driven operat-
ing system a lengthy computation completely monopolizes
the CPU, making the system unable to respond to ex-
ternal events. If the operating system instead was based
on preemptive multi-threading this would not be a prob-
lem as a lengthy computation could be preempted.

To combine the benefits of both event-driven systems
and preemptible threads, Contiki uses a hybrid model: the
system is based on an event-driven kernel where preemp-
tive multi-threading is implemented as an application li-
brary that is optionally linked with programs that explic-
itly require it.

The rest of this paper is structured as follows. Section 2
reviews related work and Section 3 presents an overview
of the Contiki system. We describe the design of the Con-
tiki kernel in Section 4. The Contiki service concept is pre-
sented in Section 5. In the following section, we describe
how Contiki handles libraries and communication support
is discussed in Section 7. We present the implementation
of preemptive multi-threading in Section 8 and our experi-
ences with using the system is discussed in Section 9. Fi-
nally, the paper is concluded in Section 10.

2. Related work

TinyOS [15] is probably the earliest operating system
that directly targets the specific applications and limitations
of sensor devices. TinyOS is also built around a lightweight
event scheduler where all program execution is performed
in tasks that run to completion. TinyOS uses a special de-
scription language for composing a system of smaller com-
ponents [12] which are statically linked with the kernel to a
complete image of the system. After linking, modifying the
system is not possible [17]. In contrast, Contiki provides a
dynamic structure which allows programs and drivers to be
replaced during run-time and without relinking.

In order to provide run-time reprogramming for TinyOS,
Levis and Culler have developed Maté [17], a virtual ma-
chine for TinyOS devices. Code for the virtual machine can
be downloaded into the system at run-time. The virtual ma-



chine is specifically designed for the needs of typical sen-
sor network applications. Similarly, the MagnetOS [7] sys-
tem uses a virtual Java machine to distribute applications
across the sensor network. The advantages of using a vir-
tual machine instead of native machine code is that the vir-
tual machine code can be made smaller, thus reducing the
energy consumption of transporting the code over the net-
work. One of the drawbacks is the increased energy spent
in interpreting the code—for long running programs the en-
ergy saved during the transport of the binary code is instead
spent in the overhead of executing the code. Contiki pro-
grams use native code and can therefore be used for all types
of programs, including low level device drivers without loss
of execution efficiency.

SensorWare [8] provides an abstract scripting language
for programming sensors, but their target platforms are not
as resource constrained as ours. Similarly, the EmStar envi-
ronment [13] is designed for less resource constrained sys-
tems. Reijers and Langendoen [21] use a patch language
to modify parts of the binary image of a running system.
This works well for networks where all nodes run the ex-
act same binary code but soon gets complicated if sensors
run slightly different programs or different versions of the
same software.

The Mantis system [3] uses a traditional preemptive
multi-threaded model of operation. Mantis enables repro-
gramming of both the entire operating system and parts
of the program memory by downloading a program im-
age onto EEPROM, from where it can be burned into flash
ROM. Due to the multi-threaded semantics, every Mantis
program must have stack space allocated from the system
heap, and locking mechanisms must be used to achieve mu-
tual exclusion of shared variables. In contrast, Contiki uses
an event based scheduler without preemption, thus avoiding
allocation of multiple stacks and locking mechanisms. Pre-
emptive multi-threading is provided by a library that can be
linked with programs that explicitly require it.

The preemptive multi-threading in Contiki is similar to
fibers [4] and the lightweight fibers approach by Welsh and
Mainland [23]. Unlike the lightweight fibers, Contiki does
not limit the number of concurrent threads to two. Further-
more, unlike fibers, threads in Contiki support preemption.

As Exokernel [11] and Nemesis [16], Contiki tries to re-
duce the number of abstractions that the kernel provides to
a minimum [10]. Abstractions are instead provided by li-
braries that have nearly full access to the underlying hard-
ware. While Exokernel strived for performance and Neme-
sis aimed at quality of service, the purpose of the Contiki
design is to reduce size and complexity, as well as to pre-
serve flexibility. Unlike Exokernel, Contiki do not support
any protection mechanisms since the hardware for which
Contiki is designed do not support memory protection.

3. System overview

A running Contiki system consists of the kernel, li-
braries, the program loader, and a set of processes. A
process may be either an application program or a ser-
vice. A service implements functionality used by more
than one application process. All processes, both appli-
cation programs and services, can be dynamically re-
placed at run-time. Communication between processes
always goes through the kernel. The kernel does not pro-
vide a hardware abstraction layer, but lets device drivers
and applications communicate directly with the hard-
ware.

A process is defined by an event handler function and
an optional poll handler function. The process state is held
in the process’ private memory and the kernel only keeps
a pointer to the process state. On the ESB platform [5],
the process state consists of 23 bytes. All processes share
the same address space and do not run in different protec-
tion domains. Interprocess communication is done by post-
ing events.

ROM

Loaded program

' Communication service I RAM

Language run-time
Loaded program

Program loader

Kernel

I
! - 0

| 1 Communication service |
i I
! Kernel !

Figure 1. Partitioning into core and loaded
programs.

A Contiki system is partitioned into two parts: the core
and the loaded programs as shown in Figure 1. The parti-
tioning is made at compile time and is specific to the deploy-
ment in which Contiki is used. Typically, the core consists
of the Contiki kernel, the program loader, the most com-
monly used parts of the language run-time and support li-
braries, and a communication stack with device drivers for
the communication hardware. The core is compiled into a
single binary image that is stored in the devices prior to de-
ployment. The core is generally not modified after deploy-
ment, even though it should be noted that it is possible to
use a special boot loader to overwrite or patch the core.

Programs are loaded into the system by the program
loader. The program loader may obtain the program bina-



ries either by using the communication stack or by using
directly attached storage such as EEPROM. Typically, pro-
grams to be loaded into the system are first stored in EEP-
ROM before they are programmed into the code memory.

4. Kernel architecture

The Contiki kernel consists of a lightweight event sched-
uler that dispatches events to running processes and period-
ically calls processes’ polling handlers. All program execu-
tion is triggered either by events dispatched by the kernel
or through the polling mechanism. The kernel does not pre-
empt an event handler once it has been scheduled. There-
fore, event handlers must run to completion. As shown in
Section 8, however, event handlers may use internal mech-
anisms to achieve preemption.

The kernel supports two kind of events: asynchronous
and synchronous events. Asynchronous events are a form of
deferred procedure call: asynchronous events are enqueued
by the kernel and are dispatched to the target process some
time later. Synchronous events are similar to asynchronous
but immediately causes the target process to be scheduled.
Control returns to the posting process only after the target
has finished processing the event. This can be seen as an
inter-process procedure call and is similar to the door ab-
straction used in the Spring operating system [14].

In addition to the events, the kernel provides a polling
mechanism. Polling can be seen as high priority events that
are scheduled in-between each asynchronous event. Polling
is used by processes that operate near the hardware to check
for status updates of hardware devices. When a poll is
scheduled all processes that implement a poll handler are
called, in order of their priority.

The Contiki kernel uses a single shared stack for all
process execution. The use of asynchronous events reduce
stack space requirements as the stack is rewound between
each invocation of event handlers.

4.1. Two level scheduling hierarchy

All event scheduling in Contiki is done at a single level
and events cannot preempt each other. Events can only be
preempted by interrupts. Normally, interrupts are imple-
mented using hardware interrupts but may also be imple-
mented using an underlying real-time executive. The lat-
ter technique has previously been used to provide real-time
guarantees for the Linux kernel [6].

In order to be able to support an underlying real-time ex-
ecutive, Contiki never disables interrupts. Because of this,
Contiki does not allow events to be posted by interrupt han-
dlers as that would lead to race-conditions in the event han-
dler. Instead, the kernel provides a polling flag that it used

to request a poll event. The flag provides interrupt handlers
with a way to request immediate polling.

4.2. Loadable programs

Loadable programs are implemented using a run-time re-
location function and a binary format that contains reloca-
tion information. When a program is loaded into the sys-
tem, the loader first tries to allocate sufficient memory space
based on information provided by the binary. If memory al-
location fails, program loading is aborted.

After the program is loaded into memory, the loader
calls the program’s initialization function. The initialization
function may start or replace one or more processes.

4.3. Power save mode

In sensor networks, being able to power down the node
when the network is inactive is an often required way to re-
duce energy consumption. Power conservation mechanisms
depend on both the applications [18] and the network pro-
tocols [20]. The Contiki kernel contains no explicit power
save abstractions, but lets the the application specific parts
of the system implement such mechanisms. To help the ap-
plication decide when to power down the system, the event
scheduler exposes the size of the event queue. This informa-
tion can be used to power down the processor when there
are no events scheduled. When the processor wakes up in
response to an interrupt, the poll handlers are run to han-
dle the external event.

5. Services

Kernel ‘
Service layer

Service interface

ion process Service process

Version number

Service Function 1 ptr

interface N
Function 1();—| stub | ——= Function 2 ptr

Function 3 ptr
Function 2():§
Function 3();

Function 1 implementation

Function 3 implementation

Function 2 implementation

Figure 2. An application function calling a
service.

In Contiki, a service is a process that implements func-
tionality that can be used by other processes. A service
can be seen as a form of a shared library. Services can
be dynamically replaced at run-time and must therefore be



dynamically linked. Typical examples of services includes
communication protocol stacks, sensor device drivers, and
higher level functionality such as sensor data handling al-
gorithms.

Services are managed by a service layer conceptually sit-
uated directly next to the kernel. The service layer keeps
track of running services and provides a way to find in-
stalled services. A service is identified by a textual string
that describes the service. The service layer uses ordinary
string matching to querying installed services.

A service consists of a service interface and a process
that implements the interface. The service interface consists
of a version number and a function table with pointers to
the functions that implement the interface.

Application programs using the service use a stub library
to communicate with the service. The stub library is linked
with the application and uses the service layer to find the
service process. Once a service has been located, the ser-
vice stub caches the process ID of the service process and
uses this ID for all future requests.

Programs call services through the service interface stub
and need not be aware of the fact that a particular function
is implemented as a service. The first time the service is
called, the service interface stub performs a service lookup
in the service layer. If the specified service exists in the sys-
tem, the lookup returns a pointer to the service interface.
The version number in the service interface is checked with
the version of the interface stub. In addition to the version
number, the service interface contains pointers to the imple-
mentation of all service functions. The function implemen-
tations are contained in the service process. If the version
number of the service stub match the number in the ser-
vice interface, the interface stub calls the implementation of
the requested function.

5.1. Service replacement

Like all processes, services may be dynamically loaded
and replaced in a running Contiki system. Because the pro-
cess ID of the service process is used as a service identifier,
it is crucial that the process ID is retained if the service pro-
cess is replaced. For this reason, the kernel provides special
mechanism for replacing a process and retaining the pro-
cess ID.

When a service is to be replaced, the kernel informs the
running version of the service by posting a special event to
the service process. In response to this event, the service
must remove itself from the system.

Many services have an internal state that may need to be
transfered to the new process. The kernel provides a way
to pass a pointer to the new service process, and the ser-
vice can produce a state description that is passed to the
new process. The memory for holding the state must be al-

located from a shared source, since the process memory is
deallocated when the old process is removed.

The service state description is tagged with the version
number of the service, so that an incompatible version of
the same service will not try to load the service description.

6. Libraries

The Contiki kernel only provides the most basic CPU
multiplexing and event handling features. The rest of the
system is implemented as system libraries that are option-
ally linked with programs. Programs can be linked with li-
braries in three different ways. First, programs can be stat-
ically linked with libraries that are part of the core. Sec-
ond, programs can be statically linked with libraries that are
part of the loadable program. Third, programs can call ser-
vices implementing a specific library. Libraries that are im-
plemented as services can be dynamically replaced at run-
time.

Typically, run-time libraries such as often-used parts of
the language run-time libraries are best placed in the Con-
tiki core. Rarely used or application specific libraries, how-
ever, are more appropriately linked with loadable programs.
Libraries that are part of the core are always present in the
system and do not have to be included in loadable program
binaries.

As an example, consider a program that uses the
memcpy () and atoi() functions to copy mem-
ory and to convert strings to integers, respectively. The
memcpy () function is a frequently used C library func-
tion, whereas atoi () 1is used less often. Therefore,
in this particular example, memcpy () has been in-
cluded in the system core but not atoi (). When the pro-
gram is linked to produce a binary, the memcpy () function
will be linked against its static address in the core. The ob-
ject code for the part of the C library that implements the
atoi () function must, however, be included in the pro-
gram binary.

7. Communication support

Communication is a fundamental concept in sensor net-
works. In Contiki, communication is implemented as a ser-
vice in order to enable run-time replacement. Implement-
ing communication as a service also provides for multiple
communication stacks to be loaded simultaneously. In ex-
perimental research, this can be used to evaluate and com-
pare different communication protocols. Furthermore, the
communication stack may be split into different services as
shown in Figure 3. This enables run-time replacement of in-
dividual parts of the communication stack.

Communication services use the service mechanism to
call each other and synchronous events to communicate



Communication
stack

Application

-

Routing protocol 1 Routing protocol 2

Device driver 1 Device driver 2

| | *
| | | |
o i |

Hardware

Figure 3. Loosely coupled communication
stack.

with application programs. Because synchronous event han-
dlers are required to be run to completion, it is possible to
use a single buffer for all communication processing. With
this approach, no data copying has to be performed. A de-
vice driver reads an incoming packet into the communica-
tion buffer and then calls the upper layer communication
service using the service mechanisms. The communication
stack processes the headers of the packet and posts a syn-
chronous event to the application program for which the
packet was destined. The application program acts on the
packet contents and optionally puts a reply in the buffer
before it returns control to the communication stack. The
communication stack prepends its headers to the outgoing
packet and returns control to the device driver so that the
packet can be transmitted.

8. Preemptive multi-threading

In Contiki, preemptive multi-threading is implemented
as a library on top of the event-based kernel. The library is
optionally linked with applications that explicitly require a
multi-threaded model of operation. The library is divided
into two parts: a platform independent part that interfaces
to the event kernel, and a platform specific part implement-
ing the stack switching and preemption primitives. Usually,
the preemption is implemented using a timer interrupt that
saves the processor registers onto the stack and switches
back to the kernel stack. In practice very little code needs to
be rewritten when porting the platform specific part of the
library. For reference, the implementation for the MSP430
consists of 25 lines of C code.

Unlike normal Contiki processes each thread requires
a separate stack. The library provides the necessary stack
management functions. Threads execute on their own stack
until they either explicitly yield or are preempted.

The API of the multi-threading library is shown in Fig-
ure 4. It consists of four functions that can be called from a
running thread (mt _yield (), mt_post (), mt_wait (),

mt_yield();
Yield from the running thread.

mt_post (id, event, dataptr);
Post an event from the running thread.

mt_wait (event, dataptr);
Wait for an event to be posted to the running thread.

mt_exit ();
Exit the running thread.

mt_start (thread, functionptr, dataptr);
Start a thread with a specified function call.

mt_exec (thread) ;
Execute the specified thread until it yields or is preempted.

Figure 4. The multi-threading library API.

and mt _exit () ) and two functions that are called to setup
and run a thread (mt_start () and mt_exec ()). The
mt_exec () function performs the actual scheduling of a
thread and is called from an event handler.

9. Discussion

We have used the Contiki operating system to implement
a number of sensor network applications such as multi-hop
routing, motion detection with distributed sensor data log-
ging and replication, and presence detection and notifica-
tion.

9.1. Over-the-air programming

We have implemented a simple protocol for over-the-air
programming of entire networks of sensors. The protocol
transmits a single program binary to selected concentrator
nodes using point-to-point communication. The binary is
stored in EEPROM and when the entire program has been
received, it is broadcasted to neighboring nodes. Packet
loss is signaled by neighbors using negative acknowledg-
ments. Repairs are made by the concentrator node. We in-
tend to implement better protocols, such as the Trickle al-
gorithm [19], in the future.

During the development of one network application, a
40-node dynamic distributed alarm system, we used both
over-the-air reprogramming and manual wired reprogram-
ming of the sensor nodes. At first, the program loading
mechanism was not fully functional and we could not use
it during our development. The object code size of our ap-
plication was approximately 6 kilobytes. Together with the
Contiki core and the C library, the complete system image
was nearly 30 kilobytes. Reprogramming of an individual
sensor node took just over 30 seconds. With 40 nodes, re-
programming the entire network required at least 30 min-



utes of work and was therefore not feasible to do often. In
contrast, over-the-air reprogramming of a single component
of the application was done in about two minutes—a reduc-
tion in an order of magnitude—and could be done with the
sensor nodes placed in the actual test environment.

9.2. Code size

An operating system for constrained devices must be
compact in terms of both code size and RAM usage in order
to leave room for applications running on top of the system.
Table 1 shows the compiled code size and the RAM usage
of the Contiki system compiled for two architectures: the
Texas Instruments MSP430 and the Atmel AVR. The num-
bers report the size of both core components and an example
application: a sensor data replicator service. The replicator
service consists of the service interface stub for the service
as well as the implementation of the service itself. The pro-
gram loader is currently only implemented on the MSP430
platform.

The code size of Contiki is larger than that of
TinyOS [15], but smaller than that of the Mantis sys-
tem [3]. Contiki’s event kernel is significantly larger than
that of TinyOS because of the different services pro-
vided. While the TinyOS event kernel only provides a
FIFO event queue scheduler, the Contiki kernel sup-
ports both FIFO events and poll handlers with priori-
ties. Furthermore, the flexibility in Contiki requires more
run-time code than for a system like TinyOS, where com-
pile time optimization can be done to a larger extent.

Module Code size | Code size RAM
(AVR) | (MSP430) usage

10+

Kernel 1044 810 | +4e+2p
Service layer 128 110 0
Program loader - 658 8
Multi-threading 678 582 8+s
Timer library 90 60 0
Replicator stub 182 98 4
Replicator 1752 1558 200
230 + 4e +

Total 3874 3876 +2p+s

Table 1. Size of the compiled code, in bytes.

The RAM requirement depends on the maximum num-
ber of processes that the system is configured to have (p),
the maximum size of the asynchronous event queue (e) and,
in the case of multi-threaded operation, the size of the thread
stacks (s).

9.3. Preemption

Round-rip time —+—

Milliseconds
>

L L L L L L L
0 2 4 6 8 10 12 14 16
Seconds

Figure 5. A slight increase in response time
during a preemptible computation.

The purpose of preemption is to facilitate long running
computations while being able to react on incoming events
such as sensor input or incoming communication packets.
Figure 5 shows how Contiki responds to incoming packets
during an 8 second computation running in a preemptible
thread. The curve is the measured round-trip time of 200
“ping” packets of 40 bytes each. The computation starts
after approximately 5 seconds and runs until 13 seconds
have passed. During the computation, the round-trip time
increases slightly but the system is still able to produce
replies to the ping packets.

The packets are sent over a 57600 kbit/s serial line with a
spacing of 200 ms from a 1.4 GHz PC to an ESB node run-
ning Contiki. The packets are transmitted over a serial line
rather than over the wireless link in order to avoid radio ef-
fects such as bit errors and MAC collisions. The compu-
tation consists of an arbitrarily chosen sequence of multi-
plications and additions that are repeated for about 8 sec-
onds. The cause for the increase in round-trip time during
the computation is the cost of preempting the computation
and restoring the kernel context before the incoming packet
can be handled. The jitter and the spikes of about 0.3 mil-
liseconds seen in the curve can be contributed to activity in
other poll handlers, mostly the radio packet driver.

9.4. Portability

We have ported Contiki to a number of architectures, in-
cluding the Texas Instruments MSP430 and the Atmel AVR.
Others have ported the system to the Hitachi SH3 and the
Zilog Z80. The porting process consists of writing the boot
up code, device drivers, the architecture specific parts of the



program loader, and the stack switching code of the multi-
threading library. The kernel and the service layer does not
require any changes.

Since the kernel and service layer does not require any
changes, an operational port can be tested after the first I/O
device driver has been written. The Atmel AVR port was
made by ourselves in a couple of hours, with help of pub-
licly available device drivers. The Zilog Z80 port was made
by a third party, in a single day.

10. Conclusions

We have presented the Contiki operating system, de-
signed for memory constrained systems. In order to reduce
the size of the system, Contiki is based on an event-driven
kernel. The state-machine driven programming of event-
driven systems can be hard to use and has problems with
handling long running computations. Contiki provides pre-
emptive multi-threading as an application library that runs
on top of the event-driven kernel. The library is option-
ally linked with applications that explicitly require a multi-
threaded model of computation.

A running Contiki system is divided into two parts: a
core and loaded programs. The core consists of the kernel,
a set of base services, and parts of the language run-time and
support libraries. The loaded programs can be loading and
unloading individually, at run-time. Shared functionality is
implemented as services, a form of shared libraries. Ser-
vices can be updated or replaced individually, which leads
to a very flexible structure.

We have shown that dynamic loading and unloading of
programs and services is feasible in a resource constrained
system, while keeping the base system lightweight and
compact. Even though our kernel is event-based, preemp-
tive multi-threading can be provided at the application layer
on a per-process basis.

Because of its dynamic nature, Contiki can be used to
multiplex the hardware of a sensor network across multi-
ple applications or even multiple users. This does, however,
require ways to control access to the reprogramming facili-
ties. We plan to continue our work in the direction of oper-
ating system support for secure code updates.

References

[1] Berkeley mica motes. Web page. Visited 2004-06-22.
http://www.xbow.com/

[2] Eyes prototype sensor node. Web page. Visited 2004-06-22.
http://eyes.eu.org/sensnet.htm

[3] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth,
B. Shucker, J. Deng, and R. Han. MANTIS: system sup-
port for MultimodAl NeTworks of In-Situ sensors. In Proc.
WSNA’03, 2003.

[4] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R.
Douceur. Cooperative Task Management Without Manual
Stack Management. In Proc. USENIX, 2002.

[S] CST Group at FU Berlin. Scatterweb Embedded
Sensor Board. Web page. Visited 2004-06-22.
http://www.scatterweb.com/

[6] M. Barabanov. A Linux-based RealTime Operating System.
Master’s thesis, New Mexico Institute of Mining and Tech-
nology, 1997.

[7] R. Barr, J. C. Bicket, D. S. Dantas, B. Du, T. W. D. Kim,
B. Zhou, and E. Sirer. On the need for system-level sup-
port for ad hoc and sensor networks. SIGOPS Oper. Syst.
Rev., 36(2), 2002.

[8] A. Boulis, C. Han, and M. B. Srivastava. Design and im-
plementation of a framework for efficient and programmable
sensor networks. In Proc. MOBISYS ‘03, May 2003.

[9] D.Estrin (editor). Embedded everywhere: A research agenda
for networked systems of embedded computers. National
Academy Press, 2001.

[10] D.R. Engler and M. F. Kaashoek. Exterminate all operating
system abstractions. In Proc. HotOS-V, May 1995.

[11] D. R. Engler, M. F. Kaashoek, and J. O’Toole Jr. Exoker-
nel: an operating system architecture for application-level re-
source management. In Proc SOSP ’95, December 1995.

[12] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
D. Culler. The nesC language: A holistic approach to net-
worked embedded systems. In Proc. SIGPLAN’03, 2003.

[13] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos, N. Ra-
manathan, and D. Estrin. EmStar: A Software Environment
for Developing and Deploying Wireless Sensor Networks. In
Proc. USENIX, 2004.

[14] G. Hamilton and P. Kougiouris. The spring nucleus: A mi-
crokernel for objects. In Proc. Usenix Summer Conf., 1993.

[15] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for networked sen-
sors. In Proc. ASPLOS-IX, November 2000.

[16] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. T. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The design and imple-
mentation of an operating system to support distributed mul-
timedia applications. IEEE JSAC, 14(7):1280-1297, 1996.

[17] P.Levis and D. Culler. Maté: A tiny virtual machine for sen-
sor networks. In Proc. ASPLOS-X, October 2002.

[18] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk,
A. Woo, E. Brewer, and D. Culler. The Emergence of Net-
working Abstractions and Techniques in TinyOS. In Proc.
NSDI, 2004.

[19] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A self-
regulating algorithm for code propagation and maintenance
in wireless sensor networks. In Proc. NSDI, 2004.

[20] V. Raghunathan, C. Schurgers, S. Park, and M. Srivastava.
Energy aware wireless microsensor networks. IEEE Signal
Processing Magazine, 19(2):40-50, 2002.

[21] N. Reijers and K. Langendoen. Efficient code distribution in
wireless sensor networks. In Proc. WSNA’03, 2003.

[22] F. Stajano. Security for Ubiquitous Computing. Wiley, 2002.

[23] M. Welsh and G. Mainland. Programming Sensor Networks
Using Abstract Regions. In Proc. NSDI, 2004.



