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Abstract

The classification of human body motion is an integral component for the automatic interpretation of video sequences. In a

first part we present an effective approach that uses mixed discrete/continuous states to couple perception with classification.

A spline contour is used to track the outline of the person. We show that for a quasi-periodic human body motion, an

autoregressive process is a suitable model for the contour dynamics. A collection of autoregressive processes can then be

used as a dynamical model for mixed state Condensation filtering, switching automatically between different motion classes.

Subsequently this method is applied to automatically segment sequences which contain different motions into subsequences,

which contain only one type of motion.

Tracking the contour of moving people is however difficult. This is why we propose to classify the type of motion directly

from the spatio-temporal features of the image sequence. Representing the image data as a spatio-temporal or XYT cube and

taking the ’epipolar slices’ [4] of the cube reveals that different motions, such as running and walking, have characteristic

patterns. A new method, which effectively compresses these motion patterns into a low-dimensional feature vector is intro-

duced. The convincing performance of this new feature extraction method is demonstrated for both the classification and

automatic segmentation of video sequences for a diverse set of motions.

1 Introduction

The automatic interpretation of video sequences is relevant to a growing number of applications of digital video technology.

The automatic annotation of image sequences for example is very important for archiving film and video. The interpretation

of human actions plays a vital role for intelligent environments and surveillance applications. In the case of the surveillance

application this classification has to be instantaneous such that an alarm message can be generated once a suspicious action

is observed. Due the high dimensionality of the configuration space, the tracking of people with a fully three-dimensional

articulated motion model [7, 23] from a single view is difficult. Other than in the case of human motion capture the aim of this

work is to classify the type of motion without having to estimate the pose. Therefore we avoid the use of an articulated model.

The guiding principle of the work presented here is to use a low dimensional representation for modelling appearance and to

facilitate the instantaneous classification of the observed motion. Motion classification experiments based on two different

approaches are presented. The first approach uses the technique of active contour tracking to simultaneously perceive and
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classify the type of motion. Later a method which classifies the type of motion directly from the set of spatio temporal

features of the sequence is presented.

Modelling people by using their apparent contour as used by Baumberg and Hogg [1] is a compromise between a complex

articulated model and a basic blob tracker. In the contour tracking framework [3] the apparent contour of an object is modelled

as a spline contour. The deformation of this contour with respect to a template is controlled by a low dimensional linear state

space, the shape space. The dynamics of the contour is then modelled by a stochastic process. A number of researchers

[24, 5, 27] have investigated the use of Hidden Markov Models (HMM) to describe complex motions. Wilson and Bobick

[28] as well as Starner and Pentland [24] use a Hidden Markov model to recognise hand gestures. Here the observation

probabilities of the HMM model pixel coordinates. The recognition of gestures is different from recognising motions as hand

gesture do not depend generally on the speed of the motion. But speed or frequency of a motion provide a strong clue for

detecting the class of motion. Bregler [5] presents a system which tracks and classifies different motions. Four different levels

of abstraction are established each supporting a set of hypotheses. On the highest level a number of Hidden Markov models

are used to evaluate which complex gesture is observed. The states of the HMM correspond to different dynamical motion

models. But the models are only used to describe very simple and elementary motions like moving left and right, up or down.

It will be demonstrated here that statistical models used for the anticipation of motion (linear, stochastic differential equations

and their discrete embodiment as auto-regressive processes) are capable of modelling certain repetitive human motions such

as running and walking.

In most approaches tracking and motion classification are dealt with as two separate processes. However it is highly

desirable to develop systems where classification feeds back into the perception of motion since perception and classification

are inextricably bound together. The reasoning behind the approach is that the statistical models used for the anticipation of

motion can potentially be adapted for classification. This concept can be implemented by extending the CONDENSATION

[12] filter to a mixed state tracker which automatically switches between different motion models. This is possible since the

CONDENSATION filter can handle several different hypotheses at the same time and allows for a nonlinear model to predict

the position of an object in the next time step. The current position and deformation of the contour relative to a template

is specified through a continuous variable. A discrete variable denotes the current motion model being used. This work is

therefore related to [2]. The main difference is that Black and Jepson model motion as a trajectory through a configuration

space spanned by a basis of optical flow fields. The computation of the optic flow field for the entire area of interest requires

considerable computational complexity.

An important aspect of this work is that by switching automatically between different motion classes an automatic seg-

mentation of the sequence is obtained. The duration of the different motions are explicitly modelled by a Markov chain

which applies long-term temporal constraints. Because of the expected length of a duration of one particular motion the

probabilities of state transitions tend to be very small. As a consequence only a small number of particles will be propagated

with an alternative motion model. In order to avoid the use of an extremely high number of samples aPartial Importance

Sampling(see section 3.2) strategy is developed to approximate the posterior probability with a low number of samples. One

important fact is that the importance sampling method used here hasO(N) complexity and notO(N2) as in [13]. It will be

demonstrated that this framework can also be used to learn complex dynamics from a sequence containing mixed motions.
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2. Simultaneous perception and classification

When tracking with an active contour [3] the objects apparent contour is described by a spline curve. The time-varying

shape of the spline contour with respect to a template at timet is specified in terms of a continuous state vectorxt ∈ R
Nx .

So the problem is to estimate the state vectorxt based on a set of measurementszt taken from the current frame of the

image sequence. But rather than having a single estimate in the Bayesian framework the posterior probabilityp(xt|Zt) is

propagated over time.Zt denotes the history of the measurements, i.eZt = {z0, . . . , zt}. Here the probability density

p(xt|Zt) is represented in a non-parametric form by a set ofK samples{x(i)
t }i. Each samplex(i)

t has a likelihood weightπi

associated to it, such that
∑

i πi = 1. The interpretation of such a particle set is that if the set isresampled, meaning that anX

is chosen to be one ofX(n)
t , with probability proportional to its weightπ(n)

t , thatX is distributed (approximately) according

to the posteriorpt. A Condensation or particle filter [10] is applied to propagatep(Xt|Zt) over time. Multi-class dynamics

are represented by appending to the continuous state vectorxt, a discrete state componentyt to make a “mixed” state

Xt = (xt, yt)T , whereyt ∈ {1, . . . , Y } is the discrete component of the state, labelling the class of motion. Corresponding

to each stateyt = y there is a dynamical model, taken to be a Markov model of orderK that specifiespi(xt|xt−1, . . . xt−K).

A linear-Gaussian Markov model of orderK is an autoregressive Process (ARP) [16] defined by

xt =
K∑

k=1

Akxt−k + d + Bwt (1)

in which eachwt is a vector ofNx independent randomN(0, 1) variables andwt, wt′ are independent fort 6= t′. Each

classy has a set(Ay , By,dy) of dynamical parameters, and the goal is to learn these from example trajectories. Note that the

stochastic parameterBy is a first-class part of a dynamical model, representing the degree and the shape of uncertainty in mo-

tion, allowing the representation of an entire distribution of possible motions for each statey. In addition, and independently,

state transitions are governed by the transition matrix for a 1st order Markov chain:

P (yt = y′|yt−1 = y) = M(y, y′).

Observationszt are assumed to be conditioned purely on the continuous partx of the mixed state, independent ofyt, and this

maintains a healthy separation between the modelling of dynamics and of observations. Observations are also assumed to be

independent, both mutually and with respect to the dynamical process. The observation process is defined by specifying, at

each timet, the conditional densityp(zt|xt) which is taken to be Gaussian in experiments here. The Condensation filter, or

particle filters [8, 15, 11] in general, can be extended straightforwardly [12] to deal with mixed states. A maximum likelihood

learning approach as presented in [19] is used to estimate the set of dynamical parameters(Ay , By,dy).

3 Automatic segmentations

Autoregressive processes are a special class of Gaussian Markov processes. It is known that a second order Markov process

in continuous time is governed by a stochastic differential equation, the Fokker-Plank or Kolmogorov equation [14]

mẍ + cẋ + kx = bw ,

wherew is white noise. When there is no noise present, i.e.w = 0 this is an oscillator with massm, damping constantc

and stiffnessk. The sample path of such a process in continuous time in one dimension is a damped harmonic oscillation.

A multivariate process can be decomposed into damped harmonic oscillations along different directions of the configuration

3



space. A comparison of three different learnt models for walking presented in figure 1 indicates that most of the2Nx degrees

of freedom of the second order autoregressive model are ’unused’ - i.e. discarded by the learning algorithm.

3.1 Motion models for classification

The continuous variableXt describes the current position and deformation of the contour relative to a template. In the case

where two different motions are already characterised by having very different configurationsXt the classification problem

is not very hard because essentially the shape information is used to discriminate between the different motions. Motions

which can only be discriminated in phase space make the classification problem difficult. In this case only the dynamical

information can be used to discriminate between the two different motions. The motion models need to be finely tuned

in order to allow the mixed state CONDENSATION filter to automatically select the correct motion class. Since there can

still be ambiguities between different motion models we cannot expect that the dynamical information alone will result in

good segmentation results. Therefore as important as tuning the models is to model the expected duration of each motion

correctly. The Markov chain with the transition matrixM does in fact act as a prior to the perception of the motion. It will be

demonstrated later that an inappropriate set of transition probabilities will result in a very bad segmentation of the sequence.

It is a standard result of Markov chains, that the mean duration of a motion from classy is given by1/(1−M(y, y)). For

example, for a human body motion of mean duration 2 seconds, at a video-field rate of 50 Hz,M(y, y) = 0.99. Since also, for

any Markov transition matrix,
∑

y′ M(y, y′) = 1, and all elements positive, we must haveM(y, y′) ≤ 0.01 for anyy′ 6= y.

← β = 0 ← β = 0 ← β = 0

Figure 1: Discrete eigenvalues of motion models learnt from three different walks.Three different walking sequences of
one human are tracked. For each sequence a second order autoregressive process are learnt using the Maximum Likelihood
learning rule. Only the periods in which the walker is in a steady state are used to learn the model. It is crucial to observe
that only the first 4 modes (displayed as black circles) are similar for all three models. From these only the first 2 nodes
are significant since they have a time constantβ−1 > 1 second. All remaining modes have a damping constantβ−1 < .2
seconds.

Thus, in a filter usingN particles, only0.01N particles are committed at each time step, on average, to the possibility of a

change of motion class. Thus it is to be expected that mixed-class tracking could require, in the worst case, thatN be hundred

times greater than for single-class, for comparable performance. One general approach to reduce the number of particles is

to use importance sampling [9], in which areas of configuration space that are unduly sparsely populated with particles can

be artificially repopulated, and corresponding likelihood weightsπ
(n)
t reduced to maintain the correct posterior distribution.

This is done using an importance functiong(X) which determines the intensity of repopulation over the configuration space

for X . In the standard approach, given a priorp0(X), a particle set{(X(n), π(n)), n = 1, . . . , N}, is constructed, in which

4



theX(n) are drawn fromp0 and likelihood weights areπ(n) = p0(X(n))/g(X(n)). Then, a random variableX generated by

resampling from the particle set is distributed (approximately) asp0(X).

3.2 Partial importance sampling

In the multi-class classification problem, it is the discrete componenty of the stateX for which importance sampling is

required. Importance sampling of the continuous componentx certainly has applications [13], but where it is not required,

the sampling algorithm can be simplified as follows. The importance sampling functiong now takes the form

gt(Xt|Xt−1) = p(xt|xt−1, yt)P (yt|yy−1) ,

whereP (yt|yy−1) = G(yt−1, yt). It mimics the true process dynamics with respect to the continuousx and the discrete

componenty is sampled according to the importance transition matrixG. Now the forward algorithm, with Partial importance

sampling over the discrete component of state only, is as follows.

Algorithm:

1. Choose an indexm randomly (with replacement) fromm = 1, . . . , N , with probability proportional toπ(m)
t−1 .

2. Choosey(n)
t with probabilityG(y(m)

t−1 , y
(n)
t ) from y = 1, . . . , Y .

3. Choosex(n)
t by sampling at random from the distributionp(xt|x(m)

t−1, y
(m)
t ), i.e. computex(n)

t for the AR process with

the parameters(Ay, By, dd) wherey = y
(m)
t that is, for an autoregressive process with orderp = 1 for the dynamics

of classy = y
(m)
t :

X
(n)
t = Ay

1X
(m)
t−1 + dy + Byw(m)

t

where thew(m)
t are vectors of normal random variables generated independently for eachm, t.

4. Setπ(n)
t = p(zt|x(n)

t )
M(y

(m)
t−1 ,y

(n)
t )

G(y
(m)
t−1,y

(n)
t )

Two different motion classes were used for a classification experiment. Apure jump, i.e jumping up and down without

lateral arm or leg movement and ahalf star which is a ’star jump’ without arm movement. In order to illustrate the two

motions the contours of the previous time frames are superimposed on one frame (figure 2). A separate set of training

sequences which only contain one type of motion were used to learn the motion models. In all the experiments the tracking

process is initialised by hand. In order to get a very good model the Maximum Likelihood learning rule was used on a

sequence of 8 seconds length. Note that a combination of these two motions illustrates both types of classification problems:

The lateral leg movement makes it easy to decide when the person is in motion classhalf star. The jumping up from the

bending down position is on the other hand very difficult. As motivated before an importance sampling method on the discrete

state has two advantages. A lower number of particles can be used as well as modelling a low probability of a change of

motion class. The importance weights were chosen such that the off-diagonal weights were 0.01 or 0.05, i.e. the probability

that a particle changes state is 10 times more likely than without partial importance sampling. As can be seen in figure 4 it

was indeed possible to use a lower number of samples to archive a asymptotical misclassification performance of 10%. By

using 400 samples it was possible to obtain a very good segmentation of the sequence. The asymptotic error rate however

was not reduced by this method. The misclassification for the set of three different test sequences was 10%.
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Figure 2: Motion classes used in the experiment.In order to illustrate the motion contours of previous time steps are
superimposed on one frame. Left image: pure jump, i.e. jumping up and down without lateral arm or leg movement. Right
image: half star - a ’star jump’ without arm moment. Notice that both motions begin with an upwards acceleration. Hence it
is then difficult to discriminate between both motions.

0 sec 1 sec 2 sec 3 sec 4 sec 5 sec 6 sec 7 sec 8 sec
0
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 Ground truth

 Mixed state condensation:

 N = 2000, M(y, y) = .99

 Partial importance sampling:

 N = 400, M(y, y) = .99 

 N = 400, M(y, y) = .9

Figure 3: Examples of the different segmentations.The motion class pure jump in shown in red, half star in blue. The
top row corresponds to the ground truth obtained by hand segmenting the sequence. A two state CONDENSATION filter
without importance sampling is used withN = 2000 particles. The third row displays the segmentation obtained using partial
importance sampling on the discrete state withN = 400 samples. Note that the quality of the segmentations does not get
worse when the sample size is reduces. The crucial role of the transition matrix is documented in the bottom row. Here a
transition matrix withM(y, y) = .9 and importance weights withg(y, y) = .8 are used, hence the expected duration of the
motion is no longer correct.
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Figure 4:Misclassification Graphs. The average error of three tests for each of the three filters on a particular test sequence
is displayed for different particle sizesN .

4 Classifying motions directly from spatio-temporal features

The robustness of the tracking process obviously depends on the foreground model. Sullivan [25, 26]et al. show that the

quality of the tracking can be improved significantly by taking the structure and variability of the foreground into account.

It is however difficult to construct such a model of a human body in motion. Yacoob and Black [29] track different body

parts and use a vector of measurements over the temporal axis to characterise the type of motion. In order to compensate

for a certain variability of the motion they formulate an algorithm which recognises an observed activity subject to a set

of admissible transformations. Altought this is an alternative which reduces the complexity of the foreground model the

problem of tracker initialisation is still open. The main aim of the work presented here is to use a very basic approach to

track the foreground region and subsequently recognise the type of motion based on the spatio-temporal features of the image

sequence.

One possible spatio temporal feature is optic flow which is used in [2] to recognise gestures and expressions. But because

the flow field of the entire image is used these measurements are not very well localised and can easily be corrupted by

background motion. Chomatet al. [6] present a system which recognises certain motions by evaluating the responses of

spatio-temporal filters. Their system is, for example, able to detect if a person enters or leaves a room. We are, however,

interested in a much finer distinction of motion patterns. In our experience it is very difficult to discriminate between motions,

such as different walking styles, on the basis of spatio-temporal filters. Representing the image sequence as a space time cube

[4] as shown in figure 7 reveals that different motions such as running and walking have characteristic patterns. Niyogi and

Adelson [17, 18] use this observation to recognise people by their gait. They fit spatio-temporal surfaces to the person in

motion in order to estimate the parameters of a stick-figure model. Recognising the type of motion should not require any

articulated motion model, or in fact, any intermediate representation. Section 4 of this article presents the construction of
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a feature extraction method which projects the data from the three dimensional cube onto a low dimensional space. It will

then be shown that this method can be used to classify certain motion patterns. Finally it will be demonstrated that the same

method can be applied to classify sequences of mixed motions instantaneously.

In addition to the dynamical model the contour tracking approach requires a suitable observation likelihood and a tracker

initialisation. In the case of tracking people both of these problems are difficult to solve. Therefore we now present, as

mentioned in the introduction, a technique which allows to recognise a particular motion pattern directly from the spatio-

temporal features in the image sequence. The key idea here is to use slices of the spatio-temporal cube, epipolar slices to be

exact, to classify the type of motion. The braided pattern of the epipolar slices, as seen in figure 6 clearly contains enough

information to discriminate the motion pattern generated by different walking styles. We now aim to design a specific feature

extraction method which captures the salient information of this pattern. Due to the regularity of the motion pattern it will be

possible to encode the braided pattern using only a small number of parameters.

Motions like running, walking, and skipping can be characterised by the different intrinsic velocities of leg movement. As

discussed before, epipolar slices of the spatio-temporal cube (see figure 7) exhibit a braided pattern which characterises the

type of motion. Since the epipolar slice is an entity in space-time, the braided pattern is directly related to the velocity-profile

of the motion. The braided pattern of the leg motion, for example, consists of two self intersecting curves, one for each leg.

Hence the velocity of the leg can be computed by estimating the outer normal to the curve. This is also illustrated in figure 5.

The angleα of the outer normal can be computed as

tan(α) =
δtI

δxI

Since thetan-function is antisymmetric, i.e.− tan−1(−x) = tan−1(x), for every timet the modulus ofα, |α|, estimated

from either curve, is identical. Hence the distribution of|α| will describe the velocity distribution of the motion pattern. In

0.5

1

1.5

0 π/2

α

P(α)

Figure 5: Idealized braided pattern. The figure on the left shows an idealised braided pattern of a person walking under a
frontto parallel view. The angle of the outer normal to one curve,α, measures the velocity of the leg at timet. The second
curve is of course a mirror image of the first hence the angles of both other normals are related. This is becausetan-function
is antisymmetric, i.e.− tan−1(−x) = tan−1(x). It is also clear that the angles of the inner normals correspond to those
of the outer normals. The distribution of|α| hence characterises the braided pattern. The graph on the right shows a typical
learnt distribution of|α| from an epipolar slice taken from the experimental data.

order to characterise a particular motion it will be necessary to take a collection of epipolar slices into account. It would be

therefore desirable to use a more compact representation of the distributions of|α|. The learnt distributions,p(|α|), shown in

figure 8, have very characteristic shapes. The shape of the distributions depends on both the location of the epipolar slice and

the type of motion. They are clearly different in their third moment. The estimate of the third moment or skewness,γ1 (see
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Figure 6:Epipolar slices of the space time cube.As indicated in figure 7, this graph displays three typical epipolar slices
for the three different motions running, skipping and walking. Note that these epipolar slices are taken from sequences where
the centroid of the foreground region, i.e. the walking person, is stationary. The purpose of this preprocessing is to factor out
the general motion and isolate the pattern which characterises a particular walking style. The image heights are chosen such
that the slices on the top row correspond to hip motion, the middle row to upper leg and the bottom row to the shin. It can be
clearly seen that the upper leg and shin move at different speeds.
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for example, [22]) of the distributions is defined as,

γ1({α1, . . . , αN}) =
1
N

N∑
j=1

( αj − ᾱ

σ

)3

. (2)

The skewness of a distribution measures the degree of asymmetry. The measure does not depend on the location or scale

(measured respectively by the meanᾱ and the varianceσ). Hence a linear transformation of the distribution will not affect

the skew factorγ1. For a symmetrical distribution the skewness,γ1, is evidently zero. A positive value of skewness signifies

a distribution with an asymmetric tail extending to the right of the mean and vice versa. Three typical epipolar slices, ranging

from fast to slow motions, are displayed in figure 8. Both the learnt distributions and the skewness,γ1, allow to discriminate

between the three different velocity profiles. We therefore conclude that it is sufficient to compute the skewness of the learnt

distribution of a collection of epipolar slices and treat the vector of the skew factors as a feature vector.

4.1 Practical computations

Two steps are necessary to estimateα from real data. Firstly, the motion boundary needs to be extracted and, secondly,α

needs to be estimated from noisy data. Based on the assumption that a suitable bandpass filter will be sufficient for denoising,

the space time cube is first convolved with a spatio-temporal Gaussian filter,ϕ. In the next step the partial derivativesδxI and

δtI are computed from the bandpass-filtered data. This can, of course, be performed in one step by convolving the data with

the partial derivatives of the filterϕ. In order to estimate the normals to the self-intersecting curves,α is calculated where

|∇I| exceeds a threshold, i.e.|∇I(x, t)| > C, thence

tan(α(x, t)) =
(I ∗ δtϕ)(x, t)
(I ∗ δxϕ)(x, t)

. (3)

Unless otherwise stated the thresholdC is set naively. In fact the thresholdC can be set conservatively. Its only purpose is to

prevent the distributionp(|α|) from being swamped byα-values which correspond to locations(x, t) at which the modulus

of the gradient|∇I(x, t)| is near zero.

Figure 8 displays a set of epipolar slices for running, walking, and skipping. These slices were taken at the height of the

shin. Figure 8 also shows the distributionsp(|α|) for each of the epipolar slices and the corresponding skew values. One can

observe that both, the shape of the distributionp(|α|), and the skew valuesγ1 discriminate between the different motions.

The distributionp(|α|) clearly depends on the position of the epipolar slice. Hence we conclude that a collection of epipolar

slices taken from different heights of the space time cube is necessary to discriminate between the different motions.

In order to formalise the approach it is necessary to make the notation more precise. Since each epipolar slice of the

sequenceI depends on the heighty (see figure 7) we denote the skew factor of the corresponding|α|-distribution asγ1(I, y)

and define

γ1(I) := {γ1(I, y1), . . . , γ1(I, yN )} , (4)

whereN is the number of epipolar slices which is taken from the space time cube. Hence we compress the image sequence

I to a feature vector of lengthN .

So far we have discussed the problem of classifying sequences which only contain one type of motion. One requirement

for classifying the motion instantaneously is the estimation of the moments ofp(|α|) from a very short time window. Conse-

quently this problem has two different aspects. Firstly, the estimation of the moments from a small number of samples and
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Figure 7:Spatio-temporal cube or XYT cube. In order to convolve the image sequence with a spatio-temporal filter the
different frames of the sequence are arranged in a so called spatio-temporal cube (left). The width and height of the cube are
determined by the width and height of the image. The depth of the cube is determined by the temporal length of the filter.
An epipolar sliceof the XYT cube is defined for a fixed image heighty = y1. The effect of taking an epipolar slice of the
spatio-temporal cube is illustrated by a person walking across the scene. The leg motion gives rise to a particular braided
pattern which is visible in the epipolar slice (right).

Running Skipping Walking

20 40 60 80 100 120 140

10

30

50

20 40 60 80 100 120 140

10

30

50

20 40 60 80 100 120 140

10

30

50

0.5

1

1.5

0 π/2

α

P(α)

0.5

1

1.5

0 π/2

α

P(α)

0.5

1

1.5

0 π/2

α

P(α)

γ1 = −1.08 γ1 = −0.07 γ1 = 0.26

Figure 8: Skewness of the|α|-distributions. This figure illustrates the effect of estimating the skewnessγ1 (2) of the
learnt distributions for|α|. The top row shows examples of typical epipolar slices for running, walking and skipping. The
corresponding distributions of|α| are shown in the bottom. It should be noted that all three representations of the data,
the raw data, the learnt distribution of|α| and the skewness of the distribution allow us to discriminate the three different
motion patterns. In these examples the foreground pattern (in black) is clearly visible. But since this method is based on the
estimation of normals the representation does not depend on the intensity difference between foreground and background as
long as exceeds the threshold C (see equation (3).
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secondly, depending on the temporal length of the sequences, the dependency on the phase of the motion. In order to obtain

more robust estimates on small sample sizes one could try to approximate the distributionp(α) a mixture of Gaussians, where

p(x) =
M∑

j=1

p(x|j)P (j) , (5)

where each of the component densitiesp(x|j) is chosen to be a normal distribution, i.e.p(x|j) = N(µj , σj). The coefficients

P (j) are referred to as the mixing parameters which sum to unity. The mixing parameters are hidden variables of the model.

The mixture of Gaussians allows for the computation of moments in closed form. But our experiments have shown that this

method only provides a marginal improvement.

As opposed to the previous method described in section 3 the segmentation boundaries detected by this method depend on

the length of the time window for computing the skew vectorγ1(I). In case this time-window becomes too short the variance

of the learnt distributionsp(x|j) will become so large such that the discrimination between the different motion classes will

be impossible.

5 Classification Experiments

We now benefit from the fact that it is no longer necessary to track the outline of the person in order to classify the type of

motion. This allows us to test the newly developed method on examples which are considerably more complex than these

used in section 3. The first data set contains sequences of four different people running, skipping and walking. Due to the

low contrast between foreground and background it would be difficult to track the outline of the people using an edge-based

contour tracker. The second set of test sequences consists of a set of aerobics exercises similar to those used previously. But

here we include the star jump as third motion class.

All sequences of people walking were recorded at the same time and place. Images of the people involved in the experiment

are shown in figure 9. The group of people contains three males and one female all between 20 and 30 years old. In all the

data set includes 77 sequences whose lengths vary between 2 sec. and 5 sec.. A simple blob tracker based on motion detectors

is applied to locate the foreground window in every frame.

JM JD JS JR

Figure 9:People involved in the experiment.Shown are the four people from whom sequences of walking, skipping, and
running were recorded. The group contains three males and one female person. It can be seen that the four people are of
different height.
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Figure 10: Skew vectorsγ1(I) for different walking styles. The skew vectorsγ1(I) (4) are computed for a set of 20
epipolar slices. The exact position of the slices are indicated as red lines in the image on the left. The skew vectors,γ1(I), for
each of the sequences are presented in the graph on the right. The skew vectors are colour coded. The colour red corresponds
to running, green to skipping, and blue to walking. It can be observed that the skew factors of top and bottom slices are
implausible. This is a consequence of the naive threshold set in (see equation (3)). The amount of variation in the upper
half of the body can be explained by the body motion with respect to the centroid of the body. As a result of computing the
skew factors of the different epipolar slices the different walking styles are ordered according to their average speed. In an
experiment a linear discrimination analysis of the skew vectorsγ1(I) for a set of four different people performing running,
skipping and walking was used to demonstrate that the three different motion classes can be separated.
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Figure 11: Classification of walking styles.The set of sequences containing running, skipping and walking of four different
people was divided into a training and a test set. A linear fisher discriminant was then computed for the training data. The
test data was mapped onto the first and second canonical variates. Every person in the training set is represented by one of
the following symbols (4 - JM, � - JS,B - JR,◦ - JD). The red colour indicates running, green skipping and blue walking.
The samples belonging to the training set are shown as outlines whereas the samples of the test set are shown as filled in
symbols. Two trials were conducted. The graph on the left shows the results obtained form the first trial. Here the training
set contained samples of each person and all three motion types. In a second trial the training set only contained the data of
three people performing running, skipping and walking. Although no normalisation for the height of the person is made the
methods allows to reliably detect the type of walking style.
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In order to visualise some of the results the resulting skew vectors of one person,γ1(I), are presented in figure 10. A total

number of 20 epipolar slices are analysed for each of the sequences. As a result of the naive thresholdC (3) the skew factors

for the top and bottom slices are implausible. The number of locations(x, t) where the modulus of the gradient|∇I(x, t)|
exceeds the thresholdC is small hence the estimate of the distribution of|α| is noisy and unreliable. For that reason the top

and bottom slices are discarded. It should be noted that the vectors of skew factors shown in figure 10 give rise to a very

natural interpretation of the characteristics of the three different motion types. This method orders these different walking

styles in some kind of continuum where the two extremes are defined by running and walking. Here we of course make use

of the fact that the walking motions are periodic. In the next section we will demonstrate that the same method can be used

to recognise non-repetitive motions when very short time intervals are used.

The question of how well the skew vectors discriminate the different motions was tested in a second experiment. The total

number of sequences was divided into a training set and a test set. The first and second canonical variates, also known as the

first two Fisher linear discriminants, [21] were computed from the training data. One problem is, of course, that the number

of data points compared to the dimensionality of the feature space is small. In order to avoid over-fitting, the training set is

enlarged by a number of random samples. The samples for each class are drawn from a multivariate Gaussian distribution

whose center and diagonal covariance matrix are estimated from the training data. The test data was subsequently mapped

onto these canonical variates. In a first trial the training and the test set contained samples of all four people and all three

motions. In a second trial the training set contained samples of all three motions but only of three people. Both results are

shown in figure 11. Without applying any normalisation with respect to the height of the person the motion classes are well

separated and allow a reliable classification of the class of walking style. The second trial was repeated such that every person

was eliminated from the training set. In all experiments we are able to separate the classes of motion.

Jumping Half-Star Star-Jump

Figure 12: Aerobics motions.The figure shows single frames taken from the test sequences containing aerobics exercises.
The sequences containing jumping and the half star motion were already used for the automatic segmentation experiments
in section 3. The full Star-Jump or jumping jack was not used because the contour tracker failed to track the arm motion
correctly. Because this analysis does not require any contour tracking this problem is now eliminated.

The second set of test sequences contains three different gymnastic exercises: Jump, Half-Star jump and Star-Jump (or

jumping jack) (see figure 12). These sequences do not require any preprocessing since the exercise is performed on the spot.
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Figure 13: Skew vectorsγ1(I) for the aerobics motions. In these experiments the skew factorsγ1(I) (see equation (4))
are computed for a set of 40 epipolar slices. The exact position of the slices are again indicated as red lines in the image on
the left. The skew vectorsγ1(I) for each of the test sequences are presented in the graph in the right. The skew vectors are
colour coded. The colour red corresponds to Jumping, green to Half-Star jump and blue to the full Star-Jump. It should be
noted that although this method is more suitable for analysing leg motion (see text) the presence of arm motion is detected
correctly. And moreover the fact that the skew factors are a relatively smooth function with respect toy indicate that the
estimates are not particularly noisy.

As it was mentioned in the introduction to this section it is now no longer necessary to track the contour of the person.

The skew factorsγ1(I) can be estimated directly from the image sequence. It needs to be noted that the method of analysing

epipolar slices is particularly well suited to analysing the leg motion. This is because of the length of the legs and their

relative angle with the epipolar slice. Arm motion does not give rise to a continuous motion pattern which can be observed

in the epipolar slices. But the resulting skew vectors, shown in figure 13 clearly reflect the presence of arm motion. Similar

to the skew factors for the walking sequences a very natural interpretation of the data is obtained. Since the leg motion of

the Half-Star and the Star-Jump is identical, the vector of skew factors are similar for the slices corresponding to the lower

half on the body. A similar effect can be observed for the lack of arm motion in the other two motions in the upper body.

Needless to say a linear projection of the skew factors onto the first and second canonical variates shows that the data is well

separated. Hence this is a suitable feature set for classification. Figures 13 and 10 both indicate that the skew factorsγ1(I, y)

are continuous with respect toy. This results, of course, from the fact that humans move smoothly. This fact will be used

later, when we estimate the skew vectorsγ1(I) for small samples sizes.

6 Automatic Segmentations

Many applications require the instantaneous classification of the type of motion. The skew vectorsγ1(I) are computed for a

set of consecutive frames or in other words, of a spatio-temporal cube of a certain temporal lengthT . Apart of the noise of the

measurement model itself, the distribution of the skew vectorsγ1(I) for each class of motion will now depend on the length

of the temporal window. This is due to the phase dependency of the motion itself. In a first experiment we attempt to classify
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each temporal window using a very basic model for the class densities. Like in the computation of the linear discriminant

analysis in the previous section, the distributions of the skew vectorsγ1(I) for each motion class are modelled as multivariate

Gaussians with meanµ and diagonal covarianceΣ. The Mahalanobis distance between the skew vectorsγ1(I), computed

for each interval of length T, and the learnt centersµi, is used to classify the observed motion.

We believe, that it is important to test the use of the skew vectorsγ1(I) using a very basic classification technique. Unlike

Hidden Markov Models, such an approach discards, of course, the temporal information about the mean duration of each

motion. But parameters for models with hidden parameters are usually learnt using some form of expectation maximisation

learning rule. These algorithms do not guarantee to find a local minimum and depend heavily on an initialisation step. If the

results obtained by a basic classifier are promising it will be possible to refine them using a more elaborate model.
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Figure 14: Skew vectorsγ1(I) for basketball player. The skew vectorsγ1(I) (4) are computed for a set of 44 epipolar
slices. The feature vectors are convolved with a smoothing filter to reduce the measurement noise (see text). As before the
left image shows the location of the epipolar slices. The distributions of the skew vectors of each motion class is modelled
by a multivariate Gaussian with a diagonal covariance matrix. The graph on the right shows the mean and standard deviation
of each motion class. Four motion classes are used in this experiment: running (in red), walking (in green), turning (in
magenta), and throwing (in blue). It can be easily observed that the throw is the only motion that involves a considerable
amount of arm motion. The turning motion involves very little arm and leg motion. The motion classes running and walking,
however, show some overlap.

7 Segmentation Results

Two sets of image sequences were analysed. The first set contains three sequences of a mixture of aerobics exercises shown in

figure 12. The temporal length of the spatio-temporal cubeT is chosen to be 25 fields or half a second. Like in the experiment

shown in figure 13, a number of 40 epipolar slices are used to computeγ1(I). The distributions of the skew vector for each

class Jumping, Half-Star, and Star-Jump are learnt from a separate set of training sequences each of which only contains one

type of motion. In total, 114 half-second intervals were analysed. Out of these 8 were classified wrongly, which corresponds

to an error rate of 7%.
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These classification errors are due to measurement noise. In order to reduce this measurement noise we convolve each

feature vector with a smoothing filter. This is justified by the following observations. Firstly, we expect the true skew factors

γ1(I, y), as mentioned before, to be continuous with respect toy. Secondly, the noise of the skew estimate on two adjacent

slicesγ1(I, yi) andγ1(I, yj) can be assumed to be independent. The reason being that the support of the filters,δtϕ andδxϕ,

needed to computeα (see equation 3), on the two adjacent slices are disjoint. As a result the number of misclassifications is

reduced to 3 out of 114 samples. This corresponds to an error rate of 2.6 %.

Frame 36 Frame 126 Frame 205

Frame 239 Frame 275 Frame 457

Figure 15: Automatically annotated basketball sequence.Shown are single frames out of the automatically annotated
sequence. The person runs towards the basket dribbling the ball. The ball is then thrown into the basket. After the ball is
caught the person walks back. All of these stages are identified correctly. Only the decision between running and walking is
sometimes ambiguous.

Finally we analyse sequences of a person playing basketball. Two sequences, each of which is 50 seconds length, are

used. Like in the previous example the length of the spatio-temporal cube T is set to be 25 fields of half a second and the

skew vectorsγ1(I) were again convolved with a smoothing kernel. The foreground region was tracked using a simple blob

tracker. The training data is obtained by labelling each half second interval in one of the sequences as belonging to one of

the following motion classes: walking, running, turning, and throwing. As before, each of these motion classes is modelled

by a multivariate Gaussian with diagonal covariance matrix. The resulting means for each of the motion classes are shown in

figure 14. As it can be seen in the figure the distributions of walking and running have some overlap. As a result walking is

occasionally misclassified as running. In total, 10 out of 99 samples are misclassified which corresponds to a misclassification

rate of 10 %. All remaining classes of motion are identified correctly. Single frames of the sequence are shown in figure 15.

Taking the difficulty of the sequence into account this is a very promising result. Potentially this error rate results from the

fact that during training some intervals which contain a transition from standing still to running were labelled as running.

Assuming that the camera is stationary this error rate can easily be reduced by taking prior information, such as the output

from the blob tracker, into account.
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8 Conclusion

We have demonstrated that a particle filter with mixed states can be used for classifying motions online. In the approach

presented by [5] the discrete states are used up for modelling atomic motions. In that context a bi-level recursive algorithm

[20] could be tried for automatic segmentation. But these algorithms are notoriously computationally expensive. Here we

show that a single autoregressive model is a serious candidate as a model of atomic motions. This leaves the discrete state

free for classification. A Markov chain is used to model the state transitions and to apply long-term continuity constraints.

It was demonstrated that the Markov chain can be applied more effectively by using partial importance sampling. Partial

importance sampling does indeed improve the asymptotical efficiency, but it does not seem to be capable of reducing the

asymptotic error rate.

In order to address the problem of tracker initialisation and foreground modelling we present a novel feature extraction

method for the classification of human motion. The method produces feature vectors which can easily be interpreted by

inspection. The strength of this feature extraction method is demonstrated for both the classification of sequences containing

only one type of motion, as well as, the automatic segmentation of sequences containing mixed motions. The experiments

on classifying different walking styles show, that this method is able to generalise from the training data, i.e. it is possible to

classify the motion of a person who was not included in the training set. Although we have successfully eliminated problems

related to the contour tracking approach there are still a number of open problems. One important question which needs

to be addressed is how this method can be used to obtain a view-point independent classification. Yacoob and Black [29]

addressed this problem by defining a similarity measure which is invariant under a certain transformation set. Also the effect

of background motion need to be investigated in more detail.
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