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Abstract

The classification of human body motion is an integral component for the automatic interpretation of video sequences. In a
first part we present an effective approach that uses mixed discrete/continuous states to couple perception with classificatior
A spline contour is used to track the outline of the person. We show that for a quasi-periodic human body motion, an
autoregressive process is a suitable model for the contour dynamics. A collection of autoregressive processes can then k
used as a dynamical model for mixed state Condensation filtering, switching automatically between different motion classes
Subsequently this method is applied to automatically segment sequences which contain different motions into subsequenc
which contain only one type of motion.

Tracking the contour of moving people is however difficult. This is why we propose to classify the type of motion directly
from the spatio-temporal features of the image sequence. Representing the image data as a spatio-temporal or XYT cube at
taking the 'epipolar slices’ [4] of the cube reveals that different motions, such as running and walking, have characteristic
patterns. A new method, which effectively compresses these motion patterns into a low-dimensional feature vector is intro
duced. The convincing performance of this new feature extraction method is demonstrated for both the classification anc

automatic segmentation of video sequences for a diverse set of motions.

1 Introduction

The automatic interpretation of video sequences is relevant to a growing number of applications of digital video technology.
The automatic annotation of image sequences for example is very important for archiving film and video. The interpretation
of human actions plays a vital role for intelligent environments and surveillance applications. In the case of the surveillance
application this classification has to be instantaneous such that an alarm message can be generated once a suspicious ac
is observed. Due the high dimensionality of the configuration space, the tracking of people with a fully three-dimensional
articulated motion model [7, 23] from a single view is difficult. Other than in the case of human motion capture the aim of this

work is to classify the type of motion without having to estimate the pose. Therefore we avoid the use of an articulated model.
The guiding principle of the work presented here is to use a low dimensional representation for modelling appearance and t
facilitate the instantaneous classification of the observed motion. Motion classification experiments based on two differen
approaches are presented. The first approach uses the technique of active contour tracking to simultaneously perceive a



classify the type of motion. Later a method which classifies the type of motion directly from the set of spatio temporal
features of the sequence is presented.

Modelling people by using their apparent contour as used by Baumberg and Hogg [1] is a compromise between a comple;
articulated model and a basic blob tracker. In the contour tracking framework [3] the apparent contour of an object is modellec
as a spline contour. The deformation of this contour with respect to a template is controlled by a low dimensional linear state
space, the shape space. The dynamics of the contour is then modelled by a stochastic process. A number of research
[24, 5, 27] have investigated the use of Hidden Markov Models (HMM) to describe complex motions. Wilson and Bobick
[28] as well as Starner and Pentland [24] use a Hidden Markov model to recognise hand gestures. Here the observatic
probabilities of the HMM model pixel coordinates. The recognition of gestures is different from recognising motions as hand
gesture do not depend generally on the speed of the motion. But speed or frequency of a motion provide a strong clue fo
detecting the class of motion. Bregler [5] presents a system which tracks and classifies different motions. Four different levels
of abstraction are established each supporting a set of hypotheses. On the highest level a number of Hidden Markov mode
are used to evaluate which complex gesture is observed. The states of the HMM correspond to different dynamical motior
models. But the models are only used to describe very simple and elementary motions like moving left and right, up or down.
It will be demonstrated here that statistical models used for the anticipation of motion (linear, stochastic differential equations
and their discrete embodiment as auto-regressive processes) are capable of modelling certain repetitive human motions su
as running and walking.

In most approaches tracking and motion classification are dealt with as two separate processes. However it is highl
desirable to develop systems where classification feeds back into the perception of motion since perception and classificatic
are inextricably bound together. The reasoning behind the approach is that the statistical models used for the anticipation ¢
motion can potentially be adapted for classification. This concept can be implemented by extendiog HENEATION
[12] filter to a mixed state tracker which automatically switches between different motion models. This is possible since the
CoNDENsATIONfilter can handle several different hypotheses at the same time and allows for a nonlinear model to predict
the position of an object in the next time step. The current position and deformation of the contour relative to a template
is specified through a continuous variable. A discrete variable denotes the current motion model being used. This work is
therefore related to [2]. The main difference is that Black and Jepson model motion as a trajectory through a configuratior
space spanned by a basis of optical flow fields. The computation of the optic flow field for the entire area of interest requires
considerable computational complexity.

An important aspect of this work is that by switching automatically between different motion classes an automatic seg-
mentation of the sequence is obtained. The duration of the different motions are explicitly modelled by a Markov chain
which applies long-term temporal constraints. Because of the expected length of a duration of one particular motion the
probabilities of state transitions tend to be very small. As a consequence only a small number of particles will be propagatec
with an alternative motion model. In order to avoid the use of an extremely high number of sanRalggblmportance
Samplingsee section 3.2) strategy is developed to approximate the posterior probability with a low number of samples. One
important fact is that the importance sampling method used her® (1si$ complexity and noO(N?) as in [13]. It will be
demonstrated that this framework can also be used to learn complex dynamics from a sequence containing mixed motions.



2. Simultaneous perception and classification

When tracking with an active contour [3] the objects apparent contour is described by a spline curve. The time-varying
shape of the spline contour with respect to a template at tilmspecified in terms of a continuous state veatoe RV«

So the problem is to estimate the state veatobased on a set of measurementsaken from the current frame of the
image sequence. But rather than having a single estimate in the Bayesian framework the posterior prabapityis
propagated over timeZ; denotes the history of the measurementszi.e= {z,...,2:}. Here the probability density
p(x¢|Z¢) is represented in a non-parametric form by a self(n‘ampleq:pii)}i. Each sampl@ﬁi) has a likelihood weight;
associated to it, such thaf, ; = 1. The interpretation of such a particle set is that if the seisamplegdmeaning that aik

is chosen to be one dft("), with probability proportional to its Weight,f"), thatX is distributed (approximately) according

to the posteriop;. A Condensation or particle filter [10] is applied to propagdt&;|Z;) over time. Multi-class dynamics

are represented by appending to the continuous state vegter discrete state componeptto make a “mixed” state

X = (w4, y:)T, wherey, € {1,...,Y} is the discrete component of the state, labelling the class of motion. Corresponding
to each statg; = y there is a dynamical model, taken to be a Markov model of okd#rat specifiep; (x|xt—1, ... +— k).

A linear-Gaussian Markov model of ordér is an autoregressive Process (ARP) [16] defined by
K

2y =Y Apzi_y +d+ Bw, (1)

k=1
in which eachw; is a vector ofN, independent randonv (0, 1) variables andwv;, w; are independent far # ¢’. Each

classy has a sefAY, BY, d¥) of dynamical parameters, and the goal is to learn these from example trajectories. Note that the
stochastic parametét? is a first-class part of a dynamical model, representing the degree and the shape of uncertainty in mo-
tion, allowing the representation of an entire distribution of possible motions for eacly stataddition, and independently,

state transitions are governed by the transition matrix for a 1st order Markov chain:

Plys =y |ly—1 = y) = M(y, ).

Observationg, are assumed to be conditioned purely on the continuoug:pdithe mixed state, independentigf and this
maintains a healthy separation between the modelling of dynamics and of observations. Observations are also assumed to
independent, both mutually and with respect to the dynamical process. The observation process is defined by specifying, ¢
each time, the conditional density(z:|x:) which is taken to be Gaussian in experiments here. The Condensation filter, or
particle filters [8, 15, 11] in general, can be extended straightforwardly [12] to deal with mixed states. A maximum likelihood
learning approach as presented in [19] is used to estimate the set of dynamical paradtetBrsdY).

3 Automatic segmentations

Autoregressive processes are a special class of Gaussian Markov processes. It is known that a second order Markov proc
in continuous time is governed by a stochastic differential equation, the Fokker-Plank or Kolmogorov equation [14]

mx +ct + kxr = bw ,

wherew is white noise. When there is no noise present,@we= 0 this is an oscillator with mass:,, damping constant
and stiffnessc. The sample path of such a process in continuous time in one dimension is a damped harmonic oscillation.
A multivariate process can be decomposed into damped harmonic oscillations along different directions of the configuratior



space. A comparison of three different learnt models for walking presented in figure 1 indicates that moahgfdegrees
of freedom of the second order autoregressive model are 'unused’ - i.e. discarded by the learning algorithm.

3.1 Motion models for classification

The continuous variabl&,; describes the current position and deformation of the contour relative to a template. In the case
where two different motions are already characterised by having very different configuratidims classification problem
is not very hard because essentially the shape information is used to discriminate between the different motions. Motion:
which can only be discriminated in phase space make the classification problem difficult. In this case only the dynamical
information can be used to discriminate between the two different motions. The motion models need to be finely tuned
in order to allow the mixed state GNDENSATION filter to automatically select the correct motion class. Since there can
still be ambiguities between different motion models we cannot expect that the dynamical information alone will result in
good segmentation results. Therefore as important as tuning the models is to model the expected duration of each motic
correctly. The Markov chain with the transition matfix does in fact act as a prior to the perception of the motion. It will be
demonstrated later that an inappropriate set of transition probabilities will result in a very bad segmentation of the sequence
It is a standard result of Markov chains, that the mean duration of a motion fromyakgsven byl/(1 — M (y,y)). For
example, for a human body motion of mean duration 2 seconds, at a video-field rate of @41z, = 0.99. Since also, for
any Markov transition matrixy _,, M (y,y’) = 1, and all elements positive, we must hay, y’) < 0.01 for anyy’ # y.
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Figure 1: Discrete eigenvalues of motion models learnt from three different walksThree different walking sequences of

one human are tracked. For each sequence a second order autoregressive process are learnt using the Maximum Likelihc
learning rule. Only the periods in which the walker is in a steady state are used to learn the model. It is crucial to observe
that only the first 4 modes (displayed as black circles) are similar for all three models. From these only the first 2 nodes
are significant since they have a time consgant > 1 second. All remaining modes have a damping constant < .2
seconds.

Thus, in a filter usingV patrticles, only0.01 NV particles are committed at each time step, on average, to the possibility of a
change of motion class. Thus itis to be expected that mixed-class tracking could require, in the worst cidee thatdred

times greater than for single-class, for comparable performance. One general approach to reduce the number of particles
to use importance sampling [9], in which areas of configuration space that are unduly sparsely populated with particles cat
be artificially repopulated, and corresponding likelihood Weigztﬁi@ reduced to maintain the correct posterior distribution.

This is done using an importance functig{iX ) which determines the intensity of repopulation over the configuration space
for X. In the standard approach, given a prigtX ), a particle se{ (X ™), 7(")),n = 1,..., N}, is constructed, in which



the X (") are drawn fronp, and likelihood weights are(™ = po(X ™)/g(X (™). Then, a random variabl& generated by
resampling from the particle set is distributed (approximately)aX).

3.2 Partial importance sampling

In the multi-class classification problem, it is the discrete compopeagitthe stateX for which importance sampling is
required. Importance sampling of the continuous componemrtainly has applications [13], but where it is not required,
the sampling algorithm can be simplified as follows. The importance sampling furctiow takes the form

9e(Xe| Xe—1) = p(@e|we—1, ye) P(ye|yy—1) »

whereP(y;|yy—1) = G(yi—1,¥:). It mimics the true process dynamics with respect to the continuaarsd the discrete
componeny is sampled according to the importance transition maitixow the forward algorithm, with Partial importance
sampling over the discrete component of state only, is as follows.

Algorithm:

1. Choose an index randomly (with replacement) fromw = 1, ..., N, with probability proportional tOrt(Tl).

2. Choose)\™ with probabilityG(yt(Tl), vy fromy =1,....Y.

3. Chooser" by sampling at random from the distributiptiz; |={™), 4™, i.e. computer{™ for the AR process with

the parametergA?, BY, d?) wherey = ytm) that is, for an autoregressive process with opgder 1 for the dynamics

of classy = yt(m):

xM=Avx{") +av + Brw{™
™) are vectors of normal random variables generated independently forreach
My y™)
Gy yi™)

where thewg

4. Setr{™ = p(z|z{™)

Two different motion classes were used for a classification experimepturédjump i.e jumping up and down without
lateral arm or leg movement andhalf star which is a 'star jump’ without arm movement. In order to illustrate the two
motions the contours of the previous time frames are superimposed on one frame (figure 2). A separate set of trainin
sequences which only contain one type of motion were used to learn the motion models. In all the experiments the tracking
process is initialised by hand. In order to get a very good model the Maximum Likelihood learning rule was used on a
sequence of 8 seconds length. Note that a combination of these two motions illustrates both types of classification problem:
The lateral leg movement makes it easy to decide when the person is in motiohalfastar. The jumping up from the
bending down position is on the other hand very difficult. As motivated before an importance sampling method on the discrete
state has two advantages. A lower number of particles can be used as well as modelling a low probability of a change o
motion class. The importance weights were chosen such that the off-diagonal weights were 0.01 or 0.05, i.e. the probability
that a particle changes state is 10 times more likely than without partial importance sampling. As can be seen in figure 4 i
was indeed possible to use a lower number of samples to archive a asymptotical misclassification performance of 10%. B
using 400 samples it was possible to obtain a very good segmentation of the sequence. The asymptotic error rate howev
was not reduced by this method. The misclassification for the set of three different test sequences was 10%.



Figure 2: Motion classes used in the experimentin order to illustrate the motion contours of previous time steps are
superimposed on one frame. Left image: pure jump, i.e. jumping up and down without lateral arm or leg movement. Right
image: half star - a 'star jump’ without arm moment. Notice that both motions begin with an upwards acceleration. Hence it
is then difficult to discriminate between both motions.
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Figure 3: Examples of the different segmentationg.he motion class pure jump in shown in red, half star in blue. The

top row corresponds to the ground truth obtained by hand segmenting the sequence. A twes@iEEATION filter

without importance sampling is used with= 2000 particles. The third row displays the segmentation obtained using partial
importance sampling on the discrete state with- 400 samples. Note that the quality of the segmentations does not get
worse when the sample size is reduces. The crucial role of the transition matrix is documented in the bottom row. Here ¢
transition matrix withM (y, y) = .9 and importance weights wit(y, y) = .8 are used, hence the expected duration of the
motion is no longer correct.
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Figure 4:Misclassification Graphs. The average error of three tests for each of the three filters on a particular test sequence
is displayed for different particle sizeg.

4 Classifying motions directly from spatio-temporal features

The robustness of the tracking process obviously depends on the foreground model. Sullivan &%3128jow that the

quality of the tracking can be improved significantly by taking the structure and variability of the foreground into account.
It is however difficult to construct such a model of a human body in motion. Yacoob and Black [29] track different body
parts and use a vector of measurements over the temporal axis to characterise the type of motion. In order to compense
for a certain variability of the motion they formulate an algorithm which recognises an observed activity subject to a set
of admissible transformations. Altought this is an alternative which reduces the complexity of the foreground model the
problem of tracker initialisation is still open. The main aim of the work presented here is to use a very basic approach to
track the foreground region and subsequently recognise the type of motion based on the spatio-temporal features of the ima
sequence.

One possible spatio temporal feature is optic flow which is used in [2] to recognise gestures and expressions. But becaus
the flow field of the entire image is used these measurements are not very well localised and can easily be corrupted b
background motion. Chomat al. [6] present a system which recognises certain motions by evaluating the responses of
spatio-temporal filters. Their system is, for example, able to detect if a person enters or leaves a room. We are, howeve
interested in a much finer distinction of motion patterns. In our experience it is very difficult to discriminate between motions,
such as different walking styles, on the basis of spatio-temporal filters. Representing the image sequence as a space time cL
[4] as shown in figure 7 reveals that different motions such as running and walking have characteristic patterns. Niyogi anc
Adelson [17, 18] use this observation to recognise people by their gait. They fit spatio-temporal surfaces to the person ir
motion in order to estimate the parameters of a stick-figure model. Recognising the type of motion should not require any

articulated motion model, or in fact, any intermediate representation. Section 4 of this article presents the construction of



a feature extraction method which projects the data from the three dimensional cube onto a low dimensional space. It will
then be shown that this method can be used to classify certain motion patterns. Finally it will be demonstrated that the sam
method can be applied to classify sequences of mixed motions instantaneously.

In addition to the dynamical model the contour tracking approach requires a suitable observation likelihood and a tracker
initialisation. In the case of tracking people both of these problems are difficult to solve. Therefore we now present, as
mentioned in the introduction, a technique which allows to recognise a particular motion pattern directly from the spatio-
temporal features in the image sequence. The key idea here is to use slices of the spatio-temporal cube, epipolar slices to
exact, to classify the type of motion. The braided pattern of the epipolar slices, as seen in figure 6 clearly contains enoug!
information to discriminate the motion pattern generated by different walking styles. We now aim to design a specific feature
extraction method which captures the salient information of this pattern. Due to the regularity of the motion pattern it will be
possible to encode the braided pattern using only a small number of parameters.

Motions like running, walking, and skipping can be characterised by the different intrinsic velocities of leg movement. As
discussed before, epipolar slices of the spatio-temporal cube (see figure 7) exhibit a braided pattern which characterises tl
type of motion. Since the epipolar slice is an entity in space-time, the braided pattern is directly related to the velocity-profile
of the motion. The braided pattern of the leg motion, for example, consists of two self intersecting curves, one for each leg.
Hence the velocity of the leg can be computed by estimating the outer normal to the curve. This is also illustrated in figure 5.
The anglex of the outer normal can be computed as

ol

tan(a) = i

Since thetan-function is antisymmetric, i.e— tan~!(—2) = tan—!(x), for every timet the modulus ofy, |a|, estimated
from either curve, is identical. Hence the distributiorj@f will describe the velocity distribution of the motion pattern. In
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Figure 5: Idealized braided pattern. The figure on the left shows an idealised braided pattern of a person walking under a
frontto parallel view. The angle of the outer normal to one cusyaneasures the velocity of the leg at timeThe second

curve is of course a mirror image of the first hence the angles of both other normals are related. This isshedanston

is antisymmetric, i.e—tan~!'(—z) = tan~!(z). Itis also clear that the angles of the inner normals correspond to those
of the outer normals. The distribution pf| hence characterises the braided pattern. The graph on the right shows a typical
learnt distribution of«| from an epipolar slice taken from the experimental data.

order to characterise a particular motion it will be necessary to take a collection of epipolar slices into account. It would be
therefore desirable to use a more compact representation of the distributjesTie learnt distributiong(|«|), shown in
figure 8, have very characteristic shapes. The shape of the distributions depends on both the location of the epipolar slice ar
the type of motion. They are clearly different in their third moment. The estimate of the third moment or skewr{sss,
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Figure 6: Epipolar slices of the space time cubeAs indicated in figure 7, this graph displays three typical epipolar slices

for the three different motions running, skipping and walking. Note that these epipolar slices are taken from sequences wher
the centroid of the foreground region, i.e. the walking person, is stationary. The purpose of this preprocessing is to factor ou
the general motion and isolate the pattern which characterises a particular walking style. The image heights are chosen su
that the slices on the top row correspond to hip motion, the middle row to upper leg and the bottom row to the shin. It can be

clearly seen that the upper leg and shin move at different speeds.



for example, [22]) of the distributions is defined as,

71({041,...,041\;}):%ﬁ:(aj_a)d. (2)

g

The skewness of a distribution measures the degree of asymmetry. The measure does not depend on the location or sc
(measured respectively by the meaand the variance). Hence a linear transformation of the distribution will not affect

the skew factory;. For a symmetrical distribution the skewness, is evidently zero. A positive value of skewness signifies

a distribution with an asymmetric tail extending to the right of the mean and vice versa. Three typical epipolar slices, ranging
from fast to slow motions, are displayed in figure 8. Both the learnt distributions and the skewnediew to discriminate
between the three different velocity profiles. We therefore conclude that it is sufficient to compute the skewness of the learn
distribution of a collection of epipolar slices and treat the vector of the skew factors as a feature vector.

4.1 Practical computations

Two steps are necessary to estimatrom real data. Firstly, the motion boundary needs to be extracted and, seaondly,
needs to be estimated from noisy data. Based on the assumption that a suitable bandpass filter will be sufficient for denoisin
the space time cube is first convolved with a spatio-temporal Gaussiandilierthe next step the partial derivativég and

0+1 are computed from the bandpass-filtered data. This can, of course, be performed in one step by convolving the data wit
the partial derivatives of the filtep. In order to estimate the normals to the self-intersecting curvés calculated where

|VI| exceeds a threshold, i.&I(z,t)| > C, thence

(L * 61p)(x,t)
(I * 0z00) (1)

Unless otherwise stated the thresh6lis set naively. In fact the threshold can be set conservatively. Its only purpose is to

tan(a(z,t)) = 3)

prevent the distributiop(|«|) from being swamped by-values which correspond to locatiofis ¢) at which the modulus
of the gradientVI(z, t)| is near zero.

Figure 8 displays a set of epipolar slices for running, walking, and skipping. These slices were taken at the height of the
shin. Figure 8 also shows the distributigr{$x|) for each of the epipolar slices and the corresponding skew values. One can
observe that both, the shape of the distributidjar|), and the skew values, discriminate between the different motions.

The distributionp(]«|) clearly depends on the position of the epipolar slice. Hence we conclude that a collection of epipolar
slices taken from different heights of the space time cube is necessary to discriminate between the different motions.

In order to formalise the approach it is necessary to make the notation more precise. Since each epipolar slice of th
sequencé depends on the height(see figure 7) we denote the skew factor of the correspondindistribution asy; (1, y)
and define

) ={nly),....1I,yn)} , (4)

whereN is the number of epipolar slices which is taken from the space time cube. Hence we compress the image sequenc
1 to a feature vector of lengthv.

So far we have discussed the problem of classifying sequences which only contain one type of motion. One requiremer
for classifying the motion instantaneously is the estimation of the momepts«d} from a very short time window. Conse-
guently this problem has two different aspects. Firstly, the estimation of the moments from a small number of samples anc
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Figure 7: Spatio-temporal cube or XYT cube. In order to convolve the image sequence with a spatio-temporal filter the
different frames of the sequence are arranged in a so called spatio-temporal cube (left). The width and height of the cube at
determined by the width and height of the image. The depth of the cube is determined by the temporal length of the filter.
An epipolar sliceof the XYT cube is defined for a fixed image height= y;. The effect of taking an epipolar slice of the
spatio-temporal cube is illustrated by a person walking across the scene. The leg motion gives rise to a particular braide
pattern which is visible in the epipolar slice (right).
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Figure 8: Skewness of thd«|-distributions. This figure illustrates the effect of estimating the skewngs§2) of the

learnt distributions fof«|. The top row shows examples of typical epipolar slices for running, walking and skipping. The
corresponding distributions d&| are shown in the bottom. It should be noted that all three representations of the data,
the raw data, the learnt distribution fpf| and the skewness of the distribution allow us to discriminate the three different
motion patterns. In these examples the foreground pattern (in black) is clearly visible. But since this method is based on the
estimation of normals the representation does not depend on the intensity difference between foreground and background
long as exceeds the threshold C (see equation (3).
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secondly, depending on the temporal length of the sequences, the dependency on the phase of the motion. In order to obte
more robust estimates on small sample sizes one could try to approximate the distpbujiamixture of Gaussians, where

M

plx) =Y p(=li)P() (5)

j=1
where each of the component densifiés|j) is chosen to be a normal distribution, ig€z|j) = N(u;, ;). The coefficients
P(j) are referred to as the mixing parameters which sum to unity. The mixing parameters are hidden variables of the model
The mixture of Gaussians allows for the computation of moments in closed form. But our experiments have shown that this
method only provides a marginal improvement.

As opposed to the previous method described in section 3 the segmentation boundaries detected by this method depend
the length of the time window for computing the skew veetg(T). In case this time-window becomes too short the variance
of the learnt distributiong(z|;) will become so large such that the discrimination between the different motion classes will
be impossible.

5 Classification Experiments

We now benefit from the fact that it is no longer necessary to track the outline of the person in order to classify the type of
motion. This allows us to test the newly developed method on examples which are considerably more complex than thes
used in section 3. The first data set contains sequences of four different people running, skipping and walking. Due to the
low contrast between foreground and background it would be difficult to track the outline of the people using an edge-basec
contour tracker. The second set of test sequences consists of a set of aerobics exercises similar to those used previously. |
here we include the star jump as third motion class.

All sequences of people walking were recorded at the same time and place. Images of the people involved in the experimel
are shown in figure 9. The group of people contains three males and one female all between 20 and 30 years old. In all th
data set includes 77 sequences whose lengths vary between 2 sec. and 5 sec.. A simple blob tracker based on motion detec
is applied to locate the foreground window in every frame.

IM JD JS JR
Figure 9:People involved in the experiment.Shown are the four people from whom sequences of walking, skipping, and

running were recorded. The group contains three males and one female person. It can be seen that the four people are
different height.
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Figure 10: Skew vectors~, (I) for different walking styles. The skew vectors;(I) (4) are computed for a set of 20
epipolar slices. The exact position of the slices are indicated as red lines in the image on the left. The skewMdotdcs,

each of the sequences are presented in the graph on the right. The skew vectors are colour coded. The colour red correspo!
to running, green to skipping, and blue to walking. It can be observed that the skew factors of top and bottom slices are
implausible. This is a consequence of the naive threshold set in (see equation (3)). The amount of variation in the uppe
half of the body can be explained by the body motion with respect to the centroid of the body. As a result of computing the
skew factors of the different epipolar slices the different walking styles are ordered according to their average speed. In ar
experiment a linear discrimination analysis of the skew vectof$) for a set of four different people performing running,
skipping and walking was used to demonstrate that the three different motion classes can be separated.
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Figure 11: Classification of walking styles.The set of sequences containing running, skipping and walking of four different
people was divided into a training and a test set. A linear fisher discriminant was then computed for the training data. The
test data was mapped onto the first and second canonical variates. Every person in the training set is represented by one
the following symbols { - IM, O - JS,> - JR,0 - D). The red colour indicates running, green skipping and blue walking.
The samples belonging to the training set are shown as outlines whereas the samples of the test set are shown as filled
symbols. Two trials were conducted. The graph on the left shows the results obtained form the first trial. Here the training
set contained samples of each person and all three motion types. In a second trial the training set only contained the data
three people performing running, skipping and walking. Although no normalisation for the height of the person is made the
methods allows to reliably detect the type of walking style.
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In order to visualise some of the results the resulting skew vectors of one persbn,are presented in figure 10. A total
number of 20 epipolar slices are analysed for each of the sequences. As a result of the naive thré3hblel skew factors
for the top and bottom slices are implausible. The number of locafiortg where the modulus of the gradieitI(z, t)]
exceeds the threshotd is small hence the estimate of the distributiorj@fis noisy and unreliable. For that reason the top
and bottom slices are discarded. It should be noted that the vectors of skew factors shown in figure 10 give rise to a ven
natural interpretation of the characteristics of the three different motion types. This method orders these different walking
styles in some kind of continuum where the two extremes are defined by running and walking. Here we of course make us
of the fact that the walking motions are periodic. In the next section we will demonstrate that the same method can be use:
to recognise non-repetitive motions when very short time intervals are used.

The question of how well the skew vectors discriminate the different motions was tested in a second experiment. The tota
number of sequences was divided into a training set and a test set. The first and second canonical variates, also known as
first two Fisher linear discriminants, [21] were computed from the training data. One problem is, of course, that the number
of data points compared to the dimensionality of the feature space is small. In order to avoid over-fitting, the training set is
enlarged by a number of random samples. The samples for each class are drawn from a multivariate Gaussian distributic
whose center and diagonal covariance matrix are estimated from the training data. The test data was subsequently mapp
onto these canonical variates. In a first trial the training and the test set contained samples of all four people and all thre:
motions. In a second trial the training set contained samples of all three motions but only of three people. Both results are
shown in figure 11. Without applying any normalisation with respect to the height of the person the motion classes are well
separated and allow a reliable classification of the class of walking style. The second trial was repeated such that every pers

was eliminated from the training set. In all experiments we are able to separate the classes of motion.

N

g

1
1

Jumping Half-Star Star-Jump

Figure 12: Aerobics motions. The figure shows single frames taken from the test sequences containing aerobics exercises.
The sequences containing jumping and the half star motion were already used for the automatic segmentation experimen
in section 3. The full Star-Jump or jumping jack was not used because the contour tracker failed to track the arm motion
correctly. Because this analysis does not require any contour tracking this problem is now eliminated.

The second set of test sequences contains three different gymnastic exercises: Jump, Half-Star jump and Star-Jump (
jumping jack) (see figure 12). These sequences do not require any preprocessing since the exercise is performed on the sp
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Figure 13: Skew vectorsy; (I) for the aerobics motions. In these experiments the skew factgig) (see equation (4))

are computed for a set of 40 epipolar slices. The exact position of the slices are again indicated as red lines in the image o
the left. The skew vectorg, (I) for each of the test sequences are presented in the graph in the right. The skew vectors are
colour coded. The colour red corresponds to Jumping, green to Half-Star jump and blue to the full Star-Jump. It should be
noted that although this method is more suitable for analysing leg motion (see text) the presence of arm motion is detecte
correctly. And moreover the fact that the skew factors are a relatively smooth function with respdottoate that the
estimates are not particularly noisy.

As it was mentioned in the introduction to this section it is now no longer necessary to track the contour of the person.
The skew factors; (1) can be estimated directly from the image sequence. It needs to be noted that the method of analysing
epipolar slices is particularly well suited to analysing the leg motion. This is because of the length of the legs and their
relative angle with the epipolar slice. Arm motion does not give rise to a continuous motion pattern which can be observed
in the epipolar slices. But the resulting skew vectors, shown in figure 13 clearly reflect the presence of arm motion. Similar
to the skew factors for the walking sequences a very natural interpretation of the data is obtained. Since the leg motion o
the Half-Star and the Star-Jump is identical, the vector of skew factors are similar for the slices corresponding to the lowet
half on the body. A similar effect can be observed for the lack of arm motion in the other two motions in the upper body.
Needless to say a linear projection of the skew factors onto the first and second canonical variates shows that the data is we
separated. Hence this is a suitable feature set for classification. Figures 13 and 10 both indicate that the skew fagjors
are continuous with respect 1o This results, of course, from the fact that humans move smoothly. This fact will be used
later, when we estimate the skew vector§l) for small samples sizes.

6 Automatic Segmentations

Many applications require the instantaneous classification of the type of motion. The skew vectbere computed for a

set of consecutive frames or in other words, of a spatio-temporal cube of a certain temporaf'ledg#t of the noise of the
measurement model itself, the distribution of the skew vectpf) for each class of motion will now depend on the length

of the temporal window. This is due to the phase dependency of the motion itself. In a first experiment we attempt to classify
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each temporal window using a very basic model for the class densities. Like in the computation of the linear discriminant
analysis in the previous section, the distributions of the skew vegt¢f3 for each motion class are modelled as multivariate
Gaussians with megm and diagonal covariance. The Mahalanobis distance between the skew veetgiE), computed

for each interval of length T, and the learnt centesss used to classify the observed motion.

We believe, that it is important to test the use of the skew veetd® using a very basic classification technique. Unlike
Hidden Markov Models, such an approach discards, of course, the temporal information about the mean duration of eacl
motion. But parameters for models with hidden parameters are usually learnt using some form of expectation maximisatior
learning rule. These algorithms do not guarantee to find a local minimum and depend heavily on an initialisation step. If the
results obtained by a basic classifier are promising it will be possible to refine them using a more elaborate model.
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Figure 14: Skew vectorsy, (I) for basketball player. The skew vectors, (I) (4) are computed for a set of 44 epipolar
slices. The feature vectors are convolved with a smoothing filter to reduce the measurement noise (see text). As before tt
left image shows the location of the epipolar slices. The distributions of the skew vectors of each motion class is modelled
by a multivariate Gaussian with a diagonal covariance matrix. The graph on the right shows the mean and standard deviatio
of each motion class. Four motion classes are used in this experiment: running (in red), walking (in green), turning (in
magenta), and throwing (in blue). It can be easily observed that the throw is the only motion that involves a considerable
amount of arm motion. The turning motion involves very little arm and leg motion. The motion classes running and walking,
however, show some overlap.

7 Segmentation Results

Two sets of image sequences were analysed. The first set contains three sequences of a mixture of aerobics exercises show
figure 12. The temporal length of the spatio-temporal ciili'echosen to be 25 fields or half a second. Like in the experiment
shown in figure 13, a number of 40 epipolar slices are used to compllte The distributions of the skew vector for each

class Jumping, Half-Star, and Star-Jump are learnt from a separate set of training sequences each of which only contains o
type of motion. In total, 114 half-second intervals were analysed. Out of these 8 were classified wrongly, which corresponds
to an error rate of 7%.
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These classification errors are due to measurement noise. In order to reduce this measurement noise we convolve ea
feature vector with a smoothing filter. This is justified by the following observations. Firstly, we expect the true skew factors
v (I,y), as mentioned before, to be continuous with respegt t8econdly, the noise of the skew estimate on two adjacent
slicesy, (1, y;) andy, (1, y;) can be assumed to be independent. The reason being that the support of thé, {iltensls, ¢,
needed to compute (see equation 3), on the two adjacent slices are disjoint. As a result the number of misclassifications is

reduced to 3 out of 114 samples. This corresponds to an error rate of 2.6 %.

Frame 239 Frame 275

Frame 457

Figure 15: Automatically annotated basketball sequence Shown are single frames out of the automatically annotated
sequence. The person runs towards the basket dribbling the ball. The ball is then thrown into the basket. After the ball is
caught the person walks back. All of these stages are identified correctly. Only the decision between running and walking is
sometimes ambiguous.

Finally we analyse sequences of a person playing basketball. Two sequences, each of which is 50 seconds length, a
used. Like in the previous example the length of the spatio-temporal cube T is set to be 25 fields of half a second and the
skew vectorsy; (I) were again convolved with a smoothing kernel. The foreground region was tracked using a simple blob
tracker. The training data is obtained by labelling each half second interval in one of the sequences as belonging to one ¢
the following motion classes: walking, running, turning, and throwing. As before, each of these motion classes is modelled
by a multivariate Gaussian with diagonal covariance matrix. The resulting means for each of the motion classes are shown i
figure 14. As it can be seen in the figure the distributions of walking and running have some overlap. As a result walking is
occasionally misclassified as running. In total, 10 out of 99 samples are misclassified which corresponds to a misclassificatio
rate of 10 %. All remaining classes of motion are identified correctly. Single frames of the sequence are shown in figure 15.
Taking the difficulty of the sequence into account this is a very promising result. Potentially this error rate results from the
fact that during training some intervals which contain a transition from standing still to running were labelled as running.
Assuming that the camera is stationary this error rate can easily be reduced by taking prior information, such as the outpt
from the blob tracker, into account.
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8 Conclusion

We have demonstrated that a particle filter with mixed states can be used for classifying motions online. In the approact
presented by [5] the discrete states are used up for modelling atomic motions. In that context a bi-level recursive algorithrr
[20] could be tried for automatic segmentation. But these algorithms are notoriously computationally expensive. Here we
show that a single autoregressive model is a serious candidate as a model of atomic motions. This leaves the discrete stz
free for classification. A Markov chain is used to model the state transitions and to apply long-term continuity constraints.
It was demonstrated that the Markov chain can be applied more effectively by using partial importance sampling. Partial
importance sampling does indeed improve the asymptotical efficiency, but it does not seem to be capable of reducing th
asymptotic error rate.

In order to address the problem of tracker initialisation and foreground modelling we present a novel feature extraction
method for the classification of human motion. The method produces feature vectors which can easily be interpreted by
inspection. The strength of this feature extraction method is demonstrated for both the classification of sequences containin
only one type of motion, as well as, the automatic segmentation of sequences containing mixed motions. The experiment
on classifying different walking styles show, that this method is able to generalise from the training data, i.e. it is possible to
classify the motion of a person who was not included in the training set. Although we have successfully eliminated problems
related to the contour tracking approach there are still a number of open problems. One important question which need
to be addressed is how this method can be used to obtain a view-point independent classification. Yacoob and Black [2€
addressed this problem by defining a similarity measure which is invariant under a certain transformation set. Also the effec
of background motion need to be investigated in more detail.
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