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Abstract-This paper studies realization and performance 
comparison of the sequential and weak consistency models in 
the network-on-chip (NoC) based distributed shared memory 
(DSM) multi-core systems. Memory consistency constrains the 
order of shared memory operations for the expected behavior 
of the multi-core systems. Both the consistency models are 
realized in the NoC based multi-core systems. The performance 
of the two consistency models are compared for various sizes of 
networks using regular mesh topologies and deflection routing 
algorithm. The results show that the weak consistency improves 
the performance by 46.17% and 33.76% on average in the code 
and consistency latencies over the sequential consistency model, 
due to relaxation in the program order, as the system grows 
from single core to 64 cores.  

I. Introduction 

There is a trend in the processor development from single 
core to multi-core architectures [1, 2, 3]. The 
Network-on-chip (NoC) can be used as a reliable and 
scalable communication medium among these cores in the 
system [4, 5, 6, 7]. As the number of processors grows on 
the chip their memory requirements also grow. The 
distributed shared memory (DSM) architecture is preferred, 
because a single centralized shared memory has the 
performance bottleneck in the multi-core systems. The 
processor development still confronts many challenges like 
memory consistency, coherence and parallel programming 
issues. The memory consistency decides the order of 
execution of shared memory operations up to the 
expectation of programmer in the multi-core systems. 
Various memory consistency models already proposed [8, 9, 
10] are based on the ordering constraints on the shared 
memory operations in the multi-core systems. The strict 
memory consistency models disable the performance 
optimizations due to more restrictions on the ordering of 
shared memory operations. For instance, the sequential 
consistency model [11] allows minimum performance 
optimizations due to the strictness in the program order. The 
strict ordering on the shared memory operations are 
prohibitively expensive in the DSM based multi-core 
systems. Consequently, several relaxed ordering (like weak 
ordering, release consistency) [12, 13] emerged to allow 
these performance optimizations. Relaxed consistency 
models enhance the system performance significantly at the 
reasonable cost. 

We investigate the performance of the sequential and 
weak consistency models that are realized in the NoC based 
multi-core (McNoC) systems. The strict sequential 
consistency model (also called as strong ordering) is the 
extension of uni-processor memory model applied to the 
multi-processor systems. It does not allow reordering in the 
shared memory operations. The weak consistency model 

(often called as weak ordering) is a relaxed consistency 
model which permits overlapping in the shared memory 
operations in the McNoC systems. The sequential 
consistency model is implemented by stalling the processor 
till the completion of previously issued operation. The weak 
consistency model is implemented by using a transaction 
counter in the platform hardware to avoid the interference 
between the data and synchronization operations. In the 
results section, the average, maximum code and consistency 
latencies are explored and compared for the various sizes of 
the 2D mesh networks. The average code latency is the 
average of execution times of codes running on the 
concurrent nodes in the McNoC system. The consistency 
latency is the code latency without the network latency and 
synchronization wait time. The differences in the code and 
consistency latencies for both the consistency models are 
significant in the large networks. These latencies are reduced 
by the weak consistency model in comparison to the 
sequential consistency model due to the allowed reordering 
in the memory operations. 

The rest of the paper is organized as follows. In the next 
section, we review the related work. In section III, memory 
consistency background is discussed. In section IV, DSM 
based McNoC platform is discussed. In section V, realization 
of the sequential and weak consistency models are focused. 
In section VI, simulation results and performance analysis of 
the two consistency models in the McNoC system are 
described. Section VII summarizes our contribution. 

II. Related Work 

Very little work has been done on the memory 
consistency issue in the McNoC systems. Sarita V et al. [8] 
discussed memory consistency issues with an emphasis on 
the system optimizations they allow. They proposed the 
counter based technique to realize the weak memory 
consistency. The proposed counter keeps track of the 
outstanding data operations between the two consecutive 
synchronization operations. The data operations may still be 
reordered and overlapped with respect to each other. We 
realized the weak consistency model using the same concept 
in the McNoC systems. Petrot et al. [14] explored the 
reordering of synchronization and data operations due to the 
routing scheme, diverse paths, and physical location of the 
target in the NoC based shared memory multi-processor SoC 
architectures. They proposed that the initiator should wait 
for the response of the first target before sending the request 
to the second target to avoid the interference between the 
synchronization and data operations. But in our work such 
interference is avoided without suffering the relaxation in 
the program order. In [15], the scalability of weak 
consistency model in the NoC based multi-core architectures 
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is discussed. However, the performance of the weak 
consistency model is not compared with any other 
consistency model in McNoC system. In this paper the 
performance of the weak consistency is compared with the 
sequential consistency in the more flexible McNoC platform. 
Monchiero et al. [16] proposed a synchronization buffer, a 
hardware unit to support the memory controller and the lock 
is locally polled in the shared memory NoC based MPSoC 
systems. However, since all the synchronization requests 
issued by all nodes flow through the network into the stand 
alone synchronization module, the network congestion due 
to the heavy traffic may affect the system performance. Also, 
the target system architecture assumes the weak consistency 
model but does not mention how to constrain the shared 
memory operations for the weak consistency model.  

III. Memory Consistency Background 

The memory consistency model is a contract between the 
programmer and parallel system. The programmer follows 
the rules that are guaranteed by the parallel system to get the 
predictable results of the shared memory operations. Shared 
memory access latency can be reduced by the hardware and 
software optimizations in the system architecture. These 
performance optimizations can reorder the shared memory 
operations and the system may give unexpected results. For 
the expected results, these reordering should be controlled 
carefully. Different memory consistency models enforce 
different ordering constraints on the shared memory 
operations [8]. The sequential consistency enforces strict 
ordering constraints on the shared memory operations. The 
IBM 370, total store ordering (TSO) and processor 
consistency (PC) models eliminate the ordering constraints 
between write followed by a read to a different location. The 
partial store ordering (PSO) model also in addition removes 
the ordering constraints among writes to the different 
locations. The weak consistency, release consistency, Alpha, 
relaxed memory order (RMO), and PowerPC models relax 
the program order requirement among all the shared 
memory operations to the different locations. In this paper, 
we focus on the two memory consistency models (sequential 
and weak consistency) that are realized in the McNoC 
systems. 

A. Sequential Consistency Model 
The sequential consistency defined by Lamport [11] has 

to maintain the program order among operations of each 
individual processor and sequential order among multiple 
processors in the system. In fact, according to the definition, 
reorder can be allowed since the result is the same as the 
strict program order expects. However, it will be difficult to 
implement due to that the consequence of each re-order has 
to be globally analyzed to ensure correctness. In the 
following, we discuss the sequential consistency model that 
literally follows the program order.  

The sequential consistency (strong ordering) is a strict 
model expected by the programmer. A memory operation 
(read, write) cannot be reordered or overlapped with the 
following memory operation to the different locations in the 
shared memory. The shared memory operations are 

completed according to the program order as given in Fig. 
1(a). The sequential consistency enforces the global orders 
on shared memory operations as given in Fig. 1(b). 

   
              (a)                 (b)  
Fig. 1.  a) Strong Ordering    b) Global orders to enforce 

The sequential memory consistency model does not allow 
the performance optimizations [8] in the hardware (write 
buffer, cache, interconnection network) and in the software 
(compiler reordering, register allocation) due to the strict 
order enforcement on the shared memory operations. 
Relaxed memory consistency models permit such 
optimizations. These models relax the program order 
requirement to allow the possible reordering in the shared 
memory operations by the system optimizations. The shared 
memory operations may not complete according to the 
program order. The overall program correctness is ensured 
to enforce ordering constraints on a subset of shared 
memory operations. We consider the weak consistency 
model which relaxes the strict program order requirement 
and allows reordering in the shared memory operations. The 
shared memory operations (read, write) can be reordered 
with the following shared memory operations in the specific 
program segments. 

B. Weak Consistency Model 
The weak consistency model proposed by Dubois et al. 

[12] classifies shared memory operations as synchronization
and data operations. Synchronization operations are related 
to the special synchronization variables (locks, semaphores) 
in the shared address space. The lock must be gained 
exclusively in the shared memory multi-processor systems. 
Data operations are the load-store operations related to the 
ordinary shared variables. To make the strong ordering 
comparable with the weak ordering Fig. 2(a) also considers 
the synchronization operation.  

              (a)                      (b)  
Fig. 2.  a) Strong Ordering           b) Weak Ordering 
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According to the weak memory consistency data 
operations (R1, W1) can be reordered with respect to one 
another as shown in Fig. 2(b). Similarly, the data operations 
(W2, R2) and (R3, R4) in their respective sections can also 
be reordered with respect to each. The data operations (R1, 
W1) are not allowed to be reordered and overlapped with the 
data operations (W2, R2) and (R3, R4) in another section. 
Also, the data operations (R1, W1, R2, W2, R3, R4) are not 
allowed to be reordered with respect to the synchronization 
operations. 

The weak consistency model enforces some global orders 
on the shared memory operations as shown in Fig. 3(b). The 
enforcement of these global orders on the shared memory 
operations ensures the program correctness in the weak 
consistency model with the permitted relaxation in data 
operations. It also ensures to get the final consistent result of 
the program execution in the multi-processor systems. All 
previously issued outstanding data operations must be 
completed before the issuance of synchronization operation. 
Similarly, previously issued outstanding synchronization 
operation must also be completed before the issuance of any 
data operation. The transaction counter based technique for 
the enforcement of the global orders, required for the weak 
consistency model is illustrated in the later section. 

             (a)                        (b)  
Fig. 3.  a) Weak Ordering    b) Global orders to enforce 

IV. DSM based McNoC Platform 

Fig. 4(a) shows a homogenous NoC based multi-core system 
having one type of nodes. The system is comprised of 16 
nodes interconnected via a packet-switching network. All 
the nodes are connected in a 2D mesh topology. Each node 
represents a typical processor-memory (PM) node in the 
platform. The structure of a PM node is given in Fig. 4(b). 
Each PM node consists of a processor, data management 
engine (DME) and a local memory. The DME in the PM 
node is connected to the NoC, processor and local memory. 
Routers in the NoC use deflection routing algorithm to route 
the packets to the proper destinations. The platform uses 
distributed shared memories (DSM) which are integrated 
with processors in the nodes. All shared parts in the local 
memories form virtual memory, which is organized as a 
DSM and use a single global memory address space. Two 
addressing schemes are adapted and for the shared memory 
access, a virtual-to-physical (V2P) address translation is 
required.

            (a)                       (b)  
Fig. 4.   a) Homogeneous McNoC      b) PM node 

The DME is in each node of the McNoC platform. Its 
architecture is given in Fig. 5. The DME is connected to the 
CPU core, the local memory, and the network. The DME 
contains core interface control unit (CICU), network 
interface control unit (NICU), control store, 
mini-processor-A, mini-processor-B, synchronization 
supporter and a transaction counter. The CICU and NICU 
provide the hardware interface to the local core and network 
respectively. The two mini-processors are the central 
processing engine. Micro-program is initially stored in the 
local memory, and is dynamically uploaded into the control 
store during the program execution. The synchronization 
supporter coordinates the two mini-processors to avoid 
simultaneous accesses to the same synchronization variable 
(lock) and guarantees atomic read-modify-write operations 
over the lock. Both the local memory and the control store is 
dual ported, port A and B, which are connected to the 
mini-processor A and B, respectively. The transaction 
counter (TC) is used in the DME hardware to realize the 
weak consistency model in the McNoC platform. The 
sequential consistency model platform does not use the TC. 
The shared memory operations (read, write) and 
synchronization operations are implemented in the DME 
micro-code. The DME offers flexibility to implement a 
verity of read-write commands and different synchronization 
primitives.  

Local memory 

Fig. 5.   Structure of DME 

Local shared memory operations are accomplished by 
mini-processor-A within the node. Similarly, for the remote 
shared memory and lock access, messages are sent to the 
remote node by mini-processor-A via network. Remote 
shared memory operations are completed either by the 
remote data return or write acknowledgment by 
mini-processor-B in the remote node. The DME provides 
both the hardware and software support for the memory 
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synchronization. The synchronization supporter (SS) 
provides the underlying hardware support for the memory 
synchronization. The SS can simultaneously receive and 
respond to two synchronization requests from the local core 
via mini-processor-A and the remote cores via 
mini-processor-B. Two special micro-operations (ll and sc)
together with the SS ensure atomic read-modify-write 
operations over locks. Various synchronization primitives 
(spin lock, queue locks) like test-and-set() are implemented 
in the DME micro-code using these special ll and sl
micro-operations. The ll micro-operation checks the lock 
address in the SS, if it is not there, then the lock address is 
recorded in the SS over the entire period of lock acquire or 
release operations. The lock is gained exclusively in the 
shared memory. If the address is present i.e., other node is 
gaining access to the same lock, then the relevant 
mini-processor is stalled until the completion of preceding 
acquire or release operation (removal of lock address from 
SS) by the other node. The sl micro-operation not only 
acquires or releases a lock but also remove the lock address 
from the SS. For more detail we refer you to [17]. 

V. Realization of Memory Consistency Models 

A. Sequential Consistency Model 
The sequential memory consistency model in the McNoC 

platform is realized by stalling the processor on the issuance 
of shared memory operation till the completion of preceding 
operation. On the completion of previous operation, 
processor issues the next operation. The completion of 
preceding operation is indicated by the return data or 
acknowledgment. The program order is maintained due to 
the strict order between the shared memory operations and 
sequential order is maintained by the read-modify-write 
memory operation in the system. Fig. 6 demonstrates the 
realization scheme of the sequential consistency model in 
the McNoC system.  

Fig. 6.  Sequential consistency implementation scheme 

The local shared memory operations are issued (1) and 
completed (2) in the local node. For the remote shared 
memory accesses, message passing (3, 4) is carried out to 
the remote node via network. Remote operations complete 
via response messages (5, 6). Overall, the memory 
operations are issued and completed in the order specified in 
the program. 

The transaction processing FSM for the sequential 
consistency model (FSM-SEQ) in the DME is given in Fig. 
7. The FSM-SEQ initializes and configures the DME in the 
working state. The FSM-SEQ asserts the 
Keep-Transaction-Going (KTG) output of the DME low 
(refer to Fig. 4) as it receives a memory operation from the 
processor and issue it to the memory system. The active low 
KTG stall the processor and the FSM-SEQ switches to the 
wait state. The FSM-SEQ returns to the working state on the 
completion of the previously issued operation, and asserts 
the KTG output high. Active high KTG signals the processor 
to issue the next memory operation in the program.

Fig. 7. Transaction processing FSM for sequential consistency 

B. Weak Consistency Model 
The transaction counter (TC) based approach [8] is 

adapted for the realization of the weak memory consistency 
model in the McNoC systems. The counter is implemented 
in the DME hardware of each node to keep track of the 
outstanding data operations issued between the two 
synchronization points. It is incremented and decremented 
by the issuance and completion of data operations 
correspondingly. It is not affected by the synchronization 
operations. Fig. 8 illustrates the realization scheme of the 
weak consistency model in the McNoC platform.  

Fig. 8. Weak consistency implementation scheme 

The issuance (1) and completion (2) of the data operations 
to the local shared memory increment and decrement the TC. 
Local or remote synchronization operations are not issued (3, 
9) until the TC becomes zero, i.e., the completion of all the 
previously issued outstanding data operations. The TC is 
neither incremented nor decremented by the synchronization 
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operation. The atomicity over the synchronization operation 
is achieved by using two special purpose micro-operations sl
and ll and the synchronization supporter. The subsequent 
data operations wait and cannot be issued until the 
completion of the previously issued synchronization 
operation. A local synchronization operation (3) is 
completed by synchronization acknowledgment (4). For the 
remote data operations message passing (5, 6) is carried out 
to the remote node via network. Remote data operations are 
completed by response messages (7, 8) from the remote 
node. The completions of remote data operations also 
decrement the same TC in the local node. The message 
passing (9, 10, 11, 12) is involved to the remote node for the 
remote synchronization operations. In summary, the TC in 
each node is incremented with the issuance of the local and 
remote data operations (1, 5). It is decremented by the 
completion of previously issued local and remote data 
operations (2, 8). It is not affected by the local (3, 4) and 
remote (9, 10, 11, 12) synchronization operations. 

The transaction processing FSM for the weak memory 
consistency model (FSM-WK) in the DME is depicted in 
Fig. 9. The FSM-WK is in the working state initially. The 
FSM-WK issues outstanding data operations in the working 
state as it asserts the KTG output of the DME high to the 
processor on the issuance of each data operation. When the 
FSM-WK receives the synchronization operation, its 
issuance to the memory system is postponed until the TC 
becomes zero (completion of previously issued outstanding 
data operations). The FSM-WK asserts the KTG output low 
on the issuance of the synchronization operation to the 
memory system to stop the subsequent data operations from 
the processor. The FSM-WK switches to the synchronization 
wait state and waits for the completion of the previously 
issued synchronization operation. The FSM-WK returns to 
the working state on the reception of the synchronization 
acknowledgment and asserts the KTG output high. The 
processor can send now the outstanding data operations 
again until the next synchronization point. 

Fig. 9. Transaction processing FSM for weak consistency 

VI. Experiments and Results 

A. Purpose and Setup 
We analyze the performance of the sequential and weak 

consistency models that are realized in the McNoC systems. 
The affects of network size on the code and consistency 
latencies are investigated. Average and maximum latencies 
of the sequential and weak consistency models are compared 
with the increasing size of the NoC in the system. The 
experimental setup uses the DME based flexible and 

configurable McNoC platform. Tests are performed for 
various sizes of the networks. Regular 2D mesh topology 
network using deflection routing algorithm is considered in 
the tests. Two hotspot nodes are used one for the critical 
section (CS-node) and the other for the lock (SYNC-node). 
As shown in Fig. 10, the critical section in the CS-node is 
protected by the lock maintained in the SYNC-node.  

Fig. 10. Synchronization and data requests  
   
Each node sends the synchronization request to the 

SYNC-node. The shared memory locations in the CS-node 
are accessed exclusively after acquiring the lock 
successfully in the SYNC-node. After the critical section 
execution, the lock is released for the other waiting acquires 
requests. The hotspot traffic is generated by the code 
running on each node in the platform. The pseudo-test-code 
is given in Fig. 11. 

Fig. 11.  Pseudo-test-code  

B. Code Latency  
The average code latency is the average of codes 

execution time running on the concurrent nodes in the 
McNoC system. The average and maximum code latencies 
for the different sizes of networks are shown in Fig. 12. The 
average code latency increases exponentially for both the 
sequential and weak consistency models as the network 
grows from single core to 64 cores. It is due to the 
increasing synchronization wait time and network 
congestion in the larger networks. The network congestion 
and synchronization wait time may suffer the system 
performance in the larger networks. Average code latency 
for the weak consistency model in the 8x8 network is about 
241.96 times of the single core, whereas for the sequential 
consistency model it is 353.67 times. The weak consistency 
model reduces these latencies due to the relaxation in the 
program order as compared to the sequential consistency 
model. The performance gain of the weak consistency over 
the sequential consistency model is 46.17% in the average 
code latency, as the system grows from single core to 64 
cores. 
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Fig. 12. Code latency    

C. Consistency Latency 
The consistency latency is the code latency without the 

network latency and synchronization wait time. The average 
and maximum consistency latencies observed in the 
experiments for various sizes of network are shown in Fig. 
13. The increasing trend in the consistency latency is linear 
for both the consistency models as the network size scales. 
The average consistency latency for the weak consistency 
model in the 8x8 network is about 1.54 times of the single 
core, while for the sequential consistency model it is 1.96 
times. The performance gain of the weak consistency over 
the sequential consistency model in the average consistency 
latency is 33.76%. 
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Fig. 13. Consistency latency 

VII. Conclusion 

We explore the memory consistency models in the DSM 
based McNoC systems. The sequential consistency model is 
realized by stalling the processor to serialize the issuance 
and completion of the shared memory operations. The 
hardware transaction counter can enforces the required 
global orders needed for the weak consistency model. The 
transaction counter based realization of the weak 
consistency model avoids the possible interference problem 
between the data and synchronization operations. We 
analyze the performance of both the consistency models in 
the McNoC systems. The mesh topology networks are 
considered in the McNoC platform for both the consistency 
models. All the nodes synchronized over the same block 
(queue) lock in a particular node. The average and maximum 
code and consistency latencies increase significantly for 
both the consistency models as the network scales. The 
experimental results show that the weak consistency model 
performs 46.17% and 33.76% better on average in the code 
and consistency latencies in comparison to the sequential 
consistency model due to the relaxation in the program 
order.  
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