
Realization and Performance Comparison of Sequential and Weak Memory
Consistency Models in Network-on-Chip based Multi-core Systems

Abdul Naeem, Xiaowen Chen, Zhonghai Lu and Axel Jantsch
Department of Electronic Systems, Royal Institute of Technology, Sweden

E-mail: {abduln, xiaowenc, zhonghai, axel}@kth.se

Abstract-This paper studies realization and performance
comparison of the sequential and weak consistency models in
the network-on-chip (NoC) based distributed shared memory
(DSM) multi-core systems. Memory consistency constrains the
order of shared memory operations for the expected behavior
of the multi-core systems. Both the consistency models are
realized in the NoC based multi-core systems. The performance
of the two consistency models are compared for various sizes of
networks using regular mesh topologies and deflection routing
algorithm. The results show that the weak consistency improves
the performance by 46.17% and 33.76% on average in the code
and consistency latencies over the sequential consistency model,
due to relaxation in the program order, as the system grows
from single core to 64 cores.

I. Introduction

There is a trend in the processor development from single
core to multi-core architectures [1, 2, 3]. The
Network-on-chip (NoC) can be used as a reliable and
scalable communication medium among these cores in the
system [4, 5, 6, 7]. As the number of processors grows on
the chip their memory requirements also grow. The
distributed shared memory (DSM) architecture is preferred,
because a single centralized shared memory has the
performance bottleneck in the multi-core systems. The
processor development still confronts many challenges like
memory consistency, coherence and parallel programming
issues. The memory consistency decides the order of
execution of shared memory operations up to the
expectation of programmer in the multi-core systems.
Various memory consistency models already proposed [8, 9,
10] are based on the ordering constraints on the shared
memory operations in the multi-core systems. The strict
memory consistency models disable the performance
optimizations due to more restrictions on the ordering of
shared memory operations. For instance, the sequential
consistency model [11] allows minimum performance
optimizations due to the strictness in the program order. The
strict ordering on the shared memory operations are
prohibitively expensive in the DSM based multi-core
systems. Consequently, several relaxed ordering (like weak
ordering, release consistency) [12, 13] emerged to allow
these performance optimizations. Relaxed consistency
models enhance the system performance significantly at the
reasonable cost.

We investigate the performance of the sequential and
weak consistency models that are realized in the NoC based
multi-core (McNoC) systems. The strict sequential
consistency model (also called as strong ordering) is the
extension of uni-processor memory model applied to the
multi-processor systems. It does not allow reordering in the
shared memory operations. The weak consistency model

(often called as weak ordering) is a relaxed consistency
model which permits overlapping in the shared memory
operations in the McNoC systems. The sequential
consistency model is implemented by stalling the processor
till the completion of previously issued operation. The weak
consistency model is implemented by using a transaction
counter in the platform hardware to avoid the interference
between the data and synchronization operations. In the
results section, the average, maximum code and consistency
latencies are explored and compared for the various sizes of
the 2D mesh networks. The average code latency is the
average of execution times of codes running on the
concurrent nodes in the McNoC system. The consistency
latency is the code latency without the network latency and
synchronization wait time. The differences in the code and
consistency latencies for both the consistency models are
significant in the large networks. These latencies are reduced
by the weak consistency model in comparison to the
sequential consistency model due to the allowed reordering
in the memory operations.

The rest of the paper is organized as follows. In the next
section, we review the related work. In section III, memory
consistency background is discussed. In section IV, DSM
based McNoC platform is discussed. In section V, realization
of the sequential and weak consistency models are focused.
In section VI, simulation results and performance analysis of
the two consistency models in the McNoC system are
described. Section VII summarizes our contribution.

II. Related Work

Very little work has been done on the memory
consistency issue in the McNoC systems. Sarita V et al. [8]
discussed memory consistency issues with an emphasis on
the system optimizations they allow. They proposed the
counter based technique to realize the weak memory
consistency. The proposed counter keeps track of the
outstanding data operations between the two consecutive
synchronization operations. The data operations may still be
reordered and overlapped with respect to each other. We
realized the weak consistency model using the same concept
in the McNoC systems. Petrot et al. [14] explored the
reordering of synchronization and data operations due to the
routing scheme, diverse paths, and physical location of the
target in the NoC based shared memory multi-processor SoC
architectures. They proposed that the initiator should wait
for the response of the first target before sending the request
to the second target to avoid the interference between the
synchronization and data operations. But in our work such
interference is avoided without suffering the relaxation in
the program order. In [15], the scalability of weak
consistency model in the NoC based multi-core architectures

978-1-4244-7516-2/11/$26.00 ©2011 IEEE

2B-2

154

is discussed. However, the performance of the weak
consistency model is not compared with any other
consistency model in McNoC system. In this paper the
performance of the weak consistency is compared with the
sequential consistency in the more flexible McNoC platform.
Monchiero et al. [16] proposed a synchronization buffer, a
hardware unit to support the memory controller and the lock
is locally polled in the shared memory NoC based MPSoC
systems. However, since all the synchronization requests
issued by all nodes flow through the network into the stand
alone synchronization module, the network congestion due
to the heavy traffic may affect the system performance. Also,
the target system architecture assumes the weak consistency
model but does not mention how to constrain the shared
memory operations for the weak consistency model.

III. Memory Consistency Background

The memory consistency model is a contract between the
programmer and parallel system. The programmer follows
the rules that are guaranteed by the parallel system to get the
predictable results of the shared memory operations. Shared
memory access latency can be reduced by the hardware and
software optimizations in the system architecture. These
performance optimizations can reorder the shared memory
operations and the system may give unexpected results. For
the expected results, these reordering should be controlled
carefully. Different memory consistency models enforce
different ordering constraints on the shared memory
operations [8]. The sequential consistency enforces strict
ordering constraints on the shared memory operations. The
IBM 370, total store ordering (TSO) and processor
consistency (PC) models eliminate the ordering constraints
between write followed by a read to a different location. The
partial store ordering (PSO) model also in addition removes
the ordering constraints among writes to the different
locations. The weak consistency, release consistency, Alpha,
relaxed memory order (RMO), and PowerPC models relax
the program order requirement among all the shared
memory operations to the different locations. In this paper,
we focus on the two memory consistency models (sequential
and weak consistency) that are realized in the McNoC
systems.

A. Sequential Consistency Model
The sequential consistency defined by Lamport [11] has

to maintain the program order among operations of each
individual processor and sequential order among multiple
processors in the system. In fact, according to the definition,
reorder can be allowed since the result is the same as the
strict program order expects. However, it will be difficult to
implement due to that the consequence of each re-order has
to be globally analyzed to ensure correctness. In the
following, we discuss the sequential consistency model that
literally follows the program order.

The sequential consistency (strong ordering) is a strict
model expected by the programmer. A memory operation
(read, write) cannot be reordered or overlapped with the
following memory operation to the different locations in the
shared memory. The shared memory operations are

completed according to the program order as given in Fig.
1(a). The sequential consistency enforces the global orders
on shared memory operations as given in Fig. 1(b).

 (a) (b)
Fig. 1. a) Strong Ordering b) Global orders to enforce

The sequential memory consistency model does not allow
the performance optimizations [8] in the hardware (write
buffer, cache, interconnection network) and in the software
(compiler reordering, register allocation) due to the strict
order enforcement on the shared memory operations.
Relaxed memory consistency models permit such
optimizations. These models relax the program order
requirement to allow the possible reordering in the shared
memory operations by the system optimizations. The shared
memory operations may not complete according to the
program order. The overall program correctness is ensured
to enforce ordering constraints on a subset of shared
memory operations. We consider the weak consistency
model which relaxes the strict program order requirement
and allows reordering in the shared memory operations. The
shared memory operations (read, write) can be reordered
with the following shared memory operations in the specific
program segments.

B. Weak Consistency Model
The weak consistency model proposed by Dubois et al.

[12] classifies shared memory operations as synchronization
and data operations. Synchronization operations are related
to the special synchronization variables (locks, semaphores)
in the shared address space. The lock must be gained
exclusively in the shared memory multi-processor systems.
Data operations are the load-store operations related to the
ordinary shared variables. To make the strong ordering
comparable with the weak ordering Fig. 2(a) also considers
the synchronization operation.

 (a) (b)
Fig. 2. a) Strong Ordering b) Weak Ordering

155

2B-2

According to the weak memory consistency data
operations (R1, W1) can be reordered with respect to one
another as shown in Fig. 2(b). Similarly, the data operations
(W2, R2) and (R3, R4) in their respective sections can also
be reordered with respect to each. The data operations (R1,
W1) are not allowed to be reordered and overlapped with the
data operations (W2, R2) and (R3, R4) in another section.
Also, the data operations (R1, W1, R2, W2, R3, R4) are not
allowed to be reordered with respect to the synchronization
operations.

The weak consistency model enforces some global orders
on the shared memory operations as shown in Fig. 3(b). The
enforcement of these global orders on the shared memory
operations ensures the program correctness in the weak
consistency model with the permitted relaxation in data
operations. It also ensures to get the final consistent result of
the program execution in the multi-processor systems. All
previously issued outstanding data operations must be
completed before the issuance of synchronization operation.
Similarly, previously issued outstanding synchronization
operation must also be completed before the issuance of any
data operation. The transaction counter based technique for
the enforcement of the global orders, required for the weak
consistency model is illustrated in the later section.

 (a) (b)
Fig. 3. a) Weak Ordering b) Global orders to enforce

IV. DSM based McNoC Platform

Fig. 4(a) shows a homogenous NoC based multi-core system
having one type of nodes. The system is comprised of 16
nodes interconnected via a packet-switching network. All
the nodes are connected in a 2D mesh topology. Each node
represents a typical processor-memory (PM) node in the
platform. The structure of a PM node is given in Fig. 4(b).
Each PM node consists of a processor, data management
engine (DME) and a local memory. The DME in the PM
node is connected to the NoC, processor and local memory.
Routers in the NoC use deflection routing algorithm to route
the packets to the proper destinations. The platform uses
distributed shared memories (DSM) which are integrated
with processors in the nodes. All shared parts in the local
memories form virtual memory, which is organized as a
DSM and use a single global memory address space. Two
addressing schemes are adapted and for the shared memory
access, a virtual-to-physical (V2P) address translation is
required.

 (a) (b)
Fig. 4. a) Homogeneous McNoC b) PM node

The DME is in each node of the McNoC platform. Its
architecture is given in Fig. 5. The DME is connected to the
CPU core, the local memory, and the network. The DME
contains core interface control unit (CICU), network
interface control unit (NICU), control store,
mini-processor-A, mini-processor-B, synchronization
supporter and a transaction counter. The CICU and NICU
provide the hardware interface to the local core and network
respectively. The two mini-processors are the central
processing engine. Micro-program is initially stored in the
local memory, and is dynamically uploaded into the control
store during the program execution. The synchronization
supporter coordinates the two mini-processors to avoid
simultaneous accesses to the same synchronization variable
(lock) and guarantees atomic read-modify-write operations
over the lock. Both the local memory and the control store is
dual ported, port A and B, which are connected to the
mini-processor A and B, respectively. The transaction
counter (TC) is used in the DME hardware to realize the
weak consistency model in the McNoC platform. The
sequential consistency model platform does not use the TC.
The shared memory operations (read, write) and
synchronization operations are implemented in the DME
micro-code. The DME offers flexibility to implement a
verity of read-write commands and different synchronization
primitives.

Local memory

Fig. 5. Structure of DME

Local shared memory operations are accomplished by
mini-processor-A within the node. Similarly, for the remote
shared memory and lock access, messages are sent to the
remote node by mini-processor-A via network. Remote
shared memory operations are completed either by the
remote data return or write acknowledgment by
mini-processor-B in the remote node. The DME provides
both the hardware and software support for the memory

2B-2

156

synchronization. The synchronization supporter (SS)
provides the underlying hardware support for the memory
synchronization. The SS can simultaneously receive and
respond to two synchronization requests from the local core
via mini-processor-A and the remote cores via
mini-processor-B. Two special micro-operations (ll and sc)
together with the SS ensure atomic read-modify-write
operations over locks. Various synchronization primitives
(spin lock, queue locks) like test-and-set() are implemented
in the DME micro-code using these special ll and sl
micro-operations. The ll micro-operation checks the lock
address in the SS, if it is not there, then the lock address is
recorded in the SS over the entire period of lock acquire or
release operations. The lock is gained exclusively in the
shared memory. If the address is present i.e., other node is
gaining access to the same lock, then the relevant
mini-processor is stalled until the completion of preceding
acquire or release operation (removal of lock address from
SS) by the other node. The sl micro-operation not only
acquires or releases a lock but also remove the lock address
from the SS. For more detail we refer you to [17].

V. Realization of Memory Consistency Models

A. Sequential Consistency Model
The sequential memory consistency model in the McNoC

platform is realized by stalling the processor on the issuance
of shared memory operation till the completion of preceding
operation. On the completion of previous operation,
processor issues the next operation. The completion of
preceding operation is indicated by the return data or
acknowledgment. The program order is maintained due to
the strict order between the shared memory operations and
sequential order is maintained by the read-modify-write
memory operation in the system. Fig. 6 demonstrates the
realization scheme of the sequential consistency model in
the McNoC system.

Fig. 6. Sequential consistency implementation scheme

The local shared memory operations are issued (1) and
completed (2) in the local node. For the remote shared
memory accesses, message passing (3, 4) is carried out to
the remote node via network. Remote operations complete
via response messages (5, 6). Overall, the memory
operations are issued and completed in the order specified in
the program.

The transaction processing FSM for the sequential
consistency model (FSM-SEQ) in the DME is given in Fig.
7. The FSM-SEQ initializes and configures the DME in the
working state. The FSM-SEQ asserts the
Keep-Transaction-Going (KTG) output of the DME low
(refer to Fig. 4) as it receives a memory operation from the
processor and issue it to the memory system. The active low
KTG stall the processor and the FSM-SEQ switches to the
wait state. The FSM-SEQ returns to the working state on the
completion of the previously issued operation, and asserts
the KTG output high. Active high KTG signals the processor
to issue the next memory operation in the program.

Fig. 7. Transaction processing FSM for sequential consistency

B. Weak Consistency Model
The transaction counter (TC) based approach [8] is

adapted for the realization of the weak memory consistency
model in the McNoC systems. The counter is implemented
in the DME hardware of each node to keep track of the
outstanding data operations issued between the two
synchronization points. It is incremented and decremented
by the issuance and completion of data operations
correspondingly. It is not affected by the synchronization
operations. Fig. 8 illustrates the realization scheme of the
weak consistency model in the McNoC platform.

Fig. 8. Weak consistency implementation scheme

The issuance (1) and completion (2) of the data operations
to the local shared memory increment and decrement the TC.
Local or remote synchronization operations are not issued (3,
9) until the TC becomes zero, i.e., the completion of all the
previously issued outstanding data operations. The TC is
neither incremented nor decremented by the synchronization

157

2B-2

operation. The atomicity over the synchronization operation
is achieved by using two special purpose micro-operations sl
and ll and the synchronization supporter. The subsequent
data operations wait and cannot be issued until the
completion of the previously issued synchronization
operation. A local synchronization operation (3) is
completed by synchronization acknowledgment (4). For the
remote data operations message passing (5, 6) is carried out
to the remote node via network. Remote data operations are
completed by response messages (7, 8) from the remote
node. The completions of remote data operations also
decrement the same TC in the local node. The message
passing (9, 10, 11, 12) is involved to the remote node for the
remote synchronization operations. In summary, the TC in
each node is incremented with the issuance of the local and
remote data operations (1, 5). It is decremented by the
completion of previously issued local and remote data
operations (2, 8). It is not affected by the local (3, 4) and
remote (9, 10, 11, 12) synchronization operations.

The transaction processing FSM for the weak memory
consistency model (FSM-WK) in the DME is depicted in
Fig. 9. The FSM-WK is in the working state initially. The
FSM-WK issues outstanding data operations in the working
state as it asserts the KTG output of the DME high to the
processor on the issuance of each data operation. When the
FSM-WK receives the synchronization operation, its
issuance to the memory system is postponed until the TC
becomes zero (completion of previously issued outstanding
data operations). The FSM-WK asserts the KTG output low
on the issuance of the synchronization operation to the
memory system to stop the subsequent data operations from
the processor. The FSM-WK switches to the synchronization
wait state and waits for the completion of the previously
issued synchronization operation. The FSM-WK returns to
the working state on the reception of the synchronization
acknowledgment and asserts the KTG output high. The
processor can send now the outstanding data operations
again until the next synchronization point.

Fig. 9. Transaction processing FSM for weak consistency

VI. Experiments and Results

A. Purpose and Setup
We analyze the performance of the sequential and weak

consistency models that are realized in the McNoC systems.
The affects of network size on the code and consistency
latencies are investigated. Average and maximum latencies
of the sequential and weak consistency models are compared
with the increasing size of the NoC in the system. The
experimental setup uses the DME based flexible and

configurable McNoC platform. Tests are performed for
various sizes of the networks. Regular 2D mesh topology
network using deflection routing algorithm is considered in
the tests. Two hotspot nodes are used one for the critical
section (CS-node) and the other for the lock (SYNC-node).
As shown in Fig. 10, the critical section in the CS-node is
protected by the lock maintained in the SYNC-node.

Fig. 10. Synchronization and data requests

Each node sends the synchronization request to the

SYNC-node. The shared memory locations in the CS-node
are accessed exclusively after acquiring the lock
successfully in the SYNC-node. After the critical section
execution, the lock is released for the other waiting acquires
requests. The hotspot traffic is generated by the code
running on each node in the platform. The pseudo-test-code
is given in Fig. 11.

Fig. 11. Pseudo-test-code

B. Code Latency
The average code latency is the average of codes

execution time running on the concurrent nodes in the
McNoC system. The average and maximum code latencies
for the different sizes of networks are shown in Fig. 12. The
average code latency increases exponentially for both the
sequential and weak consistency models as the network
grows from single core to 64 cores. It is due to the
increasing synchronization wait time and network
congestion in the larger networks. The network congestion
and synchronization wait time may suffer the system
performance in the larger networks. Average code latency
for the weak consistency model in the 8x8 network is about
241.96 times of the single core, whereas for the sequential
consistency model it is 353.67 times. The weak consistency
model reduces these latencies due to the relaxation in the
program order as compared to the sequential consistency
model. The performance gain of the weak consistency over
the sequential consistency model is 46.17% in the average
code latency, as the system grows from single core to 64
cores.

2B-2

158

1x1 1x2 2x2 2x4 4x4 4x8 8x8
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Network Size

Cy
cl

es

Average Code Latency (Weak consistency)
Max Code Latency (Weak consistency)
Average Code Latency (Sequential consistency)
Max Code Latency (Sequential consistency)

Fig. 12. Code latency

C. Consistency Latency
The consistency latency is the code latency without the

network latency and synchronization wait time. The average
and maximum consistency latencies observed in the
experiments for various sizes of network are shown in Fig.
13. The increasing trend in the consistency latency is linear
for both the consistency models as the network size scales.
The average consistency latency for the weak consistency
model in the 8x8 network is about 1.54 times of the single
core, while for the sequential consistency model it is 1.96
times. The performance gain of the weak consistency over
the sequential consistency model in the average consistency
latency is 33.76%.

1x1 1x2 2x2 2x4 4x4 4x8 8x8
0

50

100

150

200

250

300

350

400

450

500

Network Size

C
yc

le
s

 Average Consistency Latency (Weak consistency)
 Max Consistency Latency (Weak consistency)
 Average Consistency Latency (Sequential consistency)
 Max Consistency Latency (Sequential consistency)

Fig. 13. Consistency latency

VII. Conclusion

We explore the memory consistency models in the DSM
based McNoC systems. The sequential consistency model is
realized by stalling the processor to serialize the issuance
and completion of the shared memory operations. The
hardware transaction counter can enforces the required
global orders needed for the weak consistency model. The
transaction counter based realization of the weak
consistency model avoids the possible interference problem
between the data and synchronization operations. We
analyze the performance of both the consistency models in
the McNoC systems. The mesh topology networks are
considered in the McNoC platform for both the consistency
models. All the nodes synchronized over the same block
(queue) lock in a particular node. The average and maximum
code and consistency latencies increase significantly for
both the consistency models as the network scales. The
experimental results show that the weak consistency model
performs 46.17% and 33.76% better on average in the code
and consistency latencies in comparison to the sequential
consistency model due to the relaxation in the program
order.

Acknowledgements

This work has been supported partially by the FP7 EU
project Mosart under contract number IST-215244, and the
HEC/SI joint scholarship program of Pakistan and Sweden.

References

[1] M. Horowitz, W. Dally, “How scaling will change processor
architecture,” in: Proc. of International Solid-State Circuits
Conference. (ISSCC’04), Digest of Technical Papers, pp. 132–133,
Feb. 2004.
[2] S. Borkar, “Thousand core chips: A technology perspective,” in:
Proc. of the 44th Design Automation Conference. (DAC’07), pp.
746–749, June 2007.
[3] S. Vangal, J. Howard, G. Ruhl, “An 80-tile 1.28tflops
network-on-chip in 65nm cmos,” in: International Solid-State
Circuits Conference. (ISSCC’07), Digest of Technical Papers, pp.
98–100, Feb. 2007.
[4] A. Jantsch, H. Tenhunen, “Networks on Chip,” Kluwer
Academic Publishers, 2003.
[5] L. Benini, G. D. Micheli, “Networks on Chip: A new SoC
paradigm,” IEEE Computer, 35(1):70–78, January 2002.
[6] T. Bjerregaard, S. Mahadevan, “A survey of research and
practices of network-on-chip,” ACM Computing Surveys, vol. 38,
no. 1, pp. 1–51, March 2006.
[7] J. D. Owens, W. J. Dally, “Research challenges for on-chip
interconnection networks,” IEEE MICRO, vol. 27, no. 5, pp.
96–108, Oct. 2007.
[8] S. V. Adve, Kourosh Gharachorloo, “Shared Memory
Consistency Models: A Tutorial,” Digital Western Research
Laboratory, report no. 95/7, Palo Alto, California 94301 USA,
September 1995.
[9] D. Mosberger, “Memory Consistency Models, ACM SIGOPS
Operating Systems Review,” Vol. 27, No. 1, USA, January 1993.
[10] R. C. Steinke, G. J. Nutt, “A unified theory of shared memory
consistency,” Journal of the ACM, vol. 51, no. 5, pp. 800-849,
2004.
[11] L. Lamport, “How to Make a Multiprocessors Computer That
Correctly Executes Multiprocessor Programs,” IEEE Transaction
on Computers, Vol.C-28. No. 9, pp. 690-691, September 1979.
[12] M. Dubois, Christoph Scheurich, Fayb Briggs, “Memory
access buffering in multiprocessors,” in: Proc. of the 13th Annual
International Symposium on Computer Architecture, pp. 434-442,
June 1986.
[13] K. Gharachorloo, D. Lenoski, J. Laudon, Phillip Gibbons,
Anoop Gupta, John Hennessy, “Memory consistency and event
ordering in scalable shared-memory multiprocessors,” Computer
Architecture News, 18(2): 15-26, June 1990.
[14] F. Petrot, A. Greiner, P. Gomez, “On cache coherency and
memory consistency issues in NoC based shared memory
multiprocessor SoC architectures,” in: Proc. of 9th EUROMICRO
Conf. on Digital System Design: Architectures, Methods and Tools,
pp. 53-60, Croatia 2006.
[15] A. Naeem, X. Chen, Z. Lu, and A. Jantsch, “Scalability of
Weak Consistency in NoC based Multicore Architectures,” in Proc.
of the IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 3497-3500, Paris, France, June 2010.
[16] M. Monchiero, G. Palermo, C. Silvano, and O. Villa,
“Power/performance hardware optimization for synchronization
intensive applications in MPSoCs,” in Proc. of the Conf. on Design,
automation and test in Europe (DATE’06), pp. 606–611, 2006.
[17] X. Chen, Z. Lu, A. Jantsch and S. Chen, “Supporting
Distributed Shared Memory on Multi-core Network-on-Chips
Using a Dual Microcoded Controller,” In Proc. of the Conf. for
(DATE’10), Dresden, Germany, March 2010.

159

2B-2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

