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ABSTRACT 

The dynamics of an experimental electrodynamic loudspeaker is studied by using the tools of chaos theory and time 
series analysis. Delay time, embedding dimension, fractal dimension and other empirical quantities are determined 
from experimental data. Particular attention is paid to issues of stationarity in the system in order to identify sources 
of uncertainty. Lyapunov exponents and fractal dimension are measured using several independent techniques. 
Results are compared in order to establish independent confirmation of low dimensional dynamics and a positive 
dominant Lyapunov exponent. We thus show that the loudspeaker may function as a chaotic system suitable for low 
dimensional modeling and the application of chaos control techniques. 

 

1. INTRODUCTION 

Loudspeakers are the most variable elements in any 
audio system, and are responsible for marked audible 
differences between otherwise identical sound systems. 
Loudspeaker performance (i.e., their accuracy in 
reproducing a signal without adding distortion) is 
significantly poorer than that of other audio equipment. 

For example, harmonic distortion in a typical 
loudspeaker can be 100 to 1000 times greater than that 
of amplifiers[1]. The frequency response of a 
loudspeaker is often referenced as being within ±3 dB 
of perfect linearity (and many speaker designs fall 
further outside this range), whereas an amplifier may 
vary less than 0.1 dB. 

An electrodynamic loudspeaker consists of a membrane 
suspended to a fixed rim and put in motion by the 
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Lorentz force exerted on the voice coil positioned in the 
field of a permanent magnet. The Lorentz force 
oscillates in the same phase and frequency as the current 
generated by the sound radiation, and it is commonly 
accepted that the membrane vibrates with amplitude 
being linearly dependent on the amplitude of the input 
AC signal, while natural frequency is expected to be 
independent of vibration amplitude, i.e. the system 
operates in a linear regime. However, this is true only 
for small driving AC currents (<10 mA). For higher 
currents the vibration amplitude deviates from the linear 
dependence and natural frequency changes with 
changing amplitude of the input signal.  

It is of great importance to study such a nonlinear 
system in terms of the laws and rules of widely quoted 
nonlinear phenomena, including stability theories. Their 
development makes possible the use of new physical 
tools in understanding the loudspeaker vibration 
properties. Thus an improved understanding of the 
dynamics of a loudspeaker is of great importance, since 
when taking into account the nonlinear phenomena, a 
loudspeaker might be better designed and yield 
significantly better performance in an audio playback 
system. 

Evidence of possible chaotic behavior in a loudspeaker 
was first observed by Wei, et al in 1986[2], where the 
appearance of subharmonics and broadband spectra at 
various drive frequencies and voltages was noted. Tong, 
et al[3] also identified chaos through the measurement 
of Lyapunov exponents and fractal dimension, although 
their results were not held up to scrutiny and may be 
considered unreliable (for instance, they do not report 
how many data points were used and the results are not 
repeatable). Recent work strengthened the conjecture of 
chaotic behavior [4-6] with the observation of 
hysteresis, also reported in [7], and period doubling 
when the loudspeaker is driven at low frequencies. This 
in general is not observed in the models and thus it is 
important to verify chaos and adjust the models 
accordingly. 

The question arises whether study of the chaotic state 
may be useful in the construction of the loudspeaker. It 
was found[6] that chaos appears in loudspeakers with 
comparatively high intrinsic friction (Ri ~ 0.6-0.7 kg/sec 
measured at driving current I0 = 10-100 mA), as 
evaluated from the resonance line width. This should be 
compared to a non-chaotic loudspeaker with Ri ~ 0.17-
0.20 kg/sec, and high intrinsic friction would normally 
be an indication of the poor quality of the loudspeaker. 

However, resonance line width by itself does not 
necessarily imply a reduction of the harmonic nature of 
the loudspeaker, when considered as a forced oscillator. 
Of primary importance is the dependence of the intrinsic 
friction on the vibration amplitude. This dependence 
contributes to the temperature rise on the membrane 
surface. This is low in high quality loudspeakers, due to 
the high heat capacity of the membrane material. The 
temperature rise in turn reduces the thermo-elastic noise 
in the membrane and contributes to the quality of sound 
reproduction. 

A dynamical system is represented by a set of nonlinear 
equations[8, 9] given in the form 
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which might be applied to  a nonlinear forced oscillator  
described by the equation of motion 
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In the linear regime when the electrodynamic 
loudspeaker (EDL) is driven by a small current (I0~10 
mA), the coefficients in equation (2) are nearly constant, 
and stiffness k is expressed by the natural frequency 
ω0 and mass M in the form k=ω0

2M. The solution to 
equation (2) can be expressed as x=A·cosωt. 

In this form, displacement x in equation (2) properly 
describes only the motion of the voice coil, while the 
points on the membrane, because of its flexibility, suffer 
combined displacement x+z, z being the solution of the 
Bessel equation which is given in the radial coordinate r  

2 2 2

22 2 2

1d z d z d z dzE z E f
r drdt dt dr
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⎝ ⎠
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E and ρ are the Young modulus and density of the 
membrane polymeric material, respectively. Equation 
(3) expresses force density coming from the inertial and 
elastic shear term. After integration over the membrane 
volume both terms can be added to the left side of 
equation (2).  

However, the Bessel modes derived from equation (3) 
do not contribute to the intrinsic friction of the 
membrane, but such a friction results from the 
viscoelastic losses and these losses are manifested by 
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fluctuations in the membrane surface visible as tilts[10]. 
Such tilts are stochastic surface fluctuations and are 
associated to vibration modes having frequencies 
extending up two orders of magnitude higher than 
loudspeaker’s natural frequency.  

In these experiments, stiffness k was evaluated from the 
static measurements by the use of calibrated loads and 
the evaluation of corresponding membrane 
displacements. It was found that stiffness has a form 
k=m+n·x+p·x2 (m = 930 Νm-1, n = −114·103 Νm-

2, p = 32·103 Nm-3), and k obtains a minimum value at 
x~1.8 mm. A short analysis of equation (2) shows that it 
would be exceedingly difficult to explain amplitude 
bifurcations and the existence of a chaotic state in the 
loudspeaker by this nonlinearity, even if coefficients m, 
n, and  p are varied over a broad range of values far 
from the commonly accepted values indicated by the 
technical performance of the loudspeaker. Instead, the 
only effect observed by the use of simulations based 
upon this quadratic nonlinearity was the well known 
amplitude cut-off[11], as shown in the inset of Figure 1.   

Another experiment showed that the membrane's 
properties play an important role in the dynamics of the 
system. The same membrane was reinforced by 
phenolic resin[12], leaving the elastic suspension intact. 
Static measurement of the stiffness after the 
reinforcement revealed that k increased to about 1230 
Nm-1 at the origin, and this is to be contrasted with the 
concept of the EDL membrane as being a point mass 
suspended on an elastic spring. Furthermore, an increase 
of the stiffness by such reinforcement suggests a 
substantial contribution of membrane elasticity to the 
vibration properties of the EDL.  

In addition to the elastic properties of the membrane 
governed by the Young modulus, viscoelasticity of the 
composite polymer material also plays an important 
role. Viscoelastic losses in the membrane are expressed 
by intrinsic membrane friction Ri entering the second 
term in equation (2), and these losses are brought about 
as a hysteresis in the stress-strain diagram of the 
membrane material. Systems with such hysteresis obey 
memory properties which manifest in the loudspeaker as 
a time dependent stiffness[13], and in the literature 
dealing with stochastic processes are commonly referred 
as an after effect. 

Furthermore, one has to consider that a resonance 
frequency dependent on  vibration amplitude (Figure 2) 
deviates from the dependence of the resonance 

frequency calculated from the formula k=ω0
2·M, k being 

measured statically by the use of the calibrated loads. 
An initial decrease of the calculated resonance 
frequency from static measurements correlates to a 
decrease of the resonant frequency obtained from 
dynamic measurements, but a strong increase of the 
latter at A>5 mm might not be explained bythe   simple 
quadratic nonlinearity in equation (2). Properties of the 
membrane material also play an important role in the 
restoring force. 

In this respect, investigation of the dynamics of the 
chaotic state can provide very useful information 
concerning the composition and elastic properties of the 
membrane. This, in turn, could enable important 
improvements to the membrane design. 

 
Figure 1. Frequency dependence of the impedance of the 
loudspeaker. The inset shows the frequency dependence of 
the vibration amplitude for driving current I0=4 A. 
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Figure 2. Amplitude dependent resonant frequency; (○) 
calculated from the statically measured stiffness, (●) 
measured in dynamic regime. Inset shows current 
dependent intrinsic membrane friction Ri. 

In this work, we analyze time series from an 
experimental electrodynamic loudspeaker system. We 
use a variety of techniques from chaotic time series 
analysis[14] to show that the system is indeed chaotic 
and exhibits low dimensional dynamics suitable for 
further analysis and the implementation of chaos control 
techniques. By quantifying the nonlinear behavior, we 
also provide empirical observations which may be used 
to refine the modeling and design of loudspeakers. 

2. EXPERIMENTAL SET-UP 

In these experiments, a low frequency loudspeaker was 
used with a resonant frequency, recorded in air, of f = 
38 Hz, driving current I0 = 10 mA, factor B·l = 3.9 Tm, 
membrane diameter 2R = 16 cm, rated RMS power of 
60 W, and nominal impedance of 8 ohms. According to 
the manufacturer’s data, the voice coil inductance is L = 
0.9 mH, and the contribution of the inductive part ω·L to 
the loudspeaker's impedance can be neglected for 
driving frequencies f < 100 Hz.  

 

Figure 3. Experimental set up with loudspeaker and laser 
distance meter. 

The experimental set-up is depicted in Figure 3. The 
loudspeaker was placed in a stainless steel chamber. Air 
pressure within the chamber was measured by the use of 
an absolute capacitive gauge with ultimate resolution 
0.01 mbar. A glass window on the top of the chamber 
ensured the transparency to the light beam from the 
laser distance meter which measured vibration 
amplitude with an accuracy of 2 μm, and sampling 
frequency of ~ 1 kHz (a similar measurement apparatus 
was used to analyse nonlinear vibrations of a 
loudspeaker in Wei, et al[2]). The A/D converter 
resolution of the laser distance meter was 8 bits. This 
allowed the acquisition of 128 amplitude levels in both 
up and down vibration directions. In order to check the 
possible influence of the chamber wall friction on the 
course of measurements, the impedance and vibration 
amplitude data were recorded at 1 bar air pressure in 
closed chamber and compared to those evaluated in free 
laboratory atmosphere. In the frequency range near 50 
Hz recorded data, notably impedance, showed no 
significant difference.    

For impedance and amplitude measurements, the 
loudspeaker was connected to an audio amplifier with 
rated power of 300W via a series resistor 0.44 Ω. A 
rather small resistor value was used because of the 
possibility of driving higher currents. However, small 
resistance gave rise to increased influence of the back 
electromotive force. A satisfactory compromise was 
found with the total voltage swing across the 
loudspeaker, clipping not included, of +/- 50 V, which 
in turn provided driving currents I0 = 4 to 5A. For 
driving currents I0 < 100 mA, the back electromotive 
force is comparable to the friction term in Eq. (2), while 
for higher currents intrinsic friction increased and 
became the dominant contribution to the impedance.  

The loudspeaker vibration amplitude dependent on 
frequency was measured for various driving currents in 
an evacuated space and in normal atmospheric pressure 
(1 bar)[15]. The data recorded in vacuo are shown in 
Figure 4. By an increase of the driving current the 
resonance curve became more and more distorted until 
an amplitude downturn (cut-off) appeared near f = 43.5 
Hz for I0 = 200 mA. This current indicated the starting 
value for identification of the chaotic regime. The inset 
in Figure 4 depicts the hysteretic property of the cut-off 
effect. That is, cut-off frequencies differ for positive and 
negative frequency sweep. 
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Onset of the amplitude cut-off was followed by a 
subsequent frequency sweep which gave rise to the 
erratic vibration amplitude. This unstable range 
extended up to 54 Hz. This was chosen as the fixed 
frequency for evaluation of the appearance of 
subharmonics which precede the chaotic state. An 
important feature of the unstable range was the 
relatively small change of the impedance with 
increasing driving current. In these experiments, 
loudspeaker impedance stayed at ~ 11 Ω, irrespective of 
whether the system was operated in air or in an 
evacuated chamber. This in turn meant that the driving 
system could be considered as a current source, even in 
the case when the amplifier was used as a voltage 
source. 

 

 

Figure 4. Impedance measured in vacuo for various 
driving currents. The inset shows the hysteresis of the cut-
off frequency for positive and negative frequency sweeps. 
 

 

Figure 5. A bifurcation diagram of vibration amplitudes 
recorded in vacuo for fixed driving frequency 53 Hz and 
20 mA/sec sweeping driving current. 

A bifurcation diagram, as shown in Figure 5, was 
produced by fixing the frequency at f = 53 Hz, sweeping 
the driving current from I0 = 1.5 A to 2.5A at a rate of 
20 mA/sec, and recording the amplitude of the 
displacement of the loudspeaker. At I0 ~ 1.81, a first 
bifurcation pitchfork appeared, which was followed by 
multiple period doublings, until at I0 = 2.15 A the 
characteristic period-3 window appeared[16] and the 
system vibrated with 3 amplitudes. Existence of period 
doubling and a period 3 window was a strong indicator 
of chaos.  

However, the period 3 window was observed only in an 
evacuated space, and data from a loudspeaker operating 
in an evacuated chamber is unsuitable for time series 
analysis techniques. This is primarily because the voice 
coil bonding agent evaporates when in a vacuum, which 
in turn changes the resonant frequency during the course 
of the measurements. In addition, for long time and 
heavy duty loudspeaker operation it is important to 
remove heat from the loaded voice coil, and this is more 
easily accomplished in an air atmosphere.  

Measurements in 1 bar air were performed in a closed 
chamber, since this minimised parameter drift due to 
free air convection in the laboratory. The driving 
frequency was fixed at 56 Hz, and the driving current 
was increased up to values when higher harmonics 
appeared as a result of the nonlinear restoring term in 
Eq. (2). Excerpts of the time series waveforms 
representing various driving currents are given in Figure 
6. Figure 6a shows the time dependent vibration 
amplitude at the starting driving current I0 = 2.4 A, 
when the recorded signal shows nearly sinusoidal 
behavior. Figure 6b, c and d show new vibration 
amplitudes (marked with triangles) which appear with 
increasing driving current. The corresponding averaged 
spectra over the whole time series given in Figure 7. 
Figure 7a shows the expected behavior, with a 
fundamental frequency corresponding to the drive 
frequency.  The first subharmonic appeared at 28 Hz, as 
depicted in Figure 7b. Further increase of the driving 
current resulted in a new subharmonic at 14 Hz (see 
Figure 7c) and the subsequent appearance of broadband 
behavior, Figure 7d.  

The bifurcation diagram for measurements of vibration 
amplitude in air is shown in Figure 8, and was produced 
in the same manner as Figure 5. Vertical lines indicate 
values of driving currents for which the Feigenbaum 
ratio δ1/δ2 = 4.669 is fulfilled[17]. A period 3 window 
cannot be seen, but this is not a contra-indicator of 
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chaos. Noise in the data acquisition system may obscure 
the window, and existence of such a window is not 
considered a necessary condition. Whereas heating the 
voice coil makes long term measurements difficult for 
the evacuated loudspeaker experiment, reverberation 
and air circulation added noise to the short term 
measurements used in generating the bifurcation 
diagram of Figure 8. 

Leaving the loudspeaker to operate at a driving 
frequency of 45 Hz, the driving current was selected at a 
value slightly below 2.8 A, at which point the first 
subharmonic became attenuated. This indicated the 
starting point for recording the vibration amplitude 
included in time series analysis. A rather low frequency 
of 45 Hz was selected because the dynamics appeared 
less susceptible to parameter drift and nonstationary 
behaviour in this range.  

The time series analysis presented in the following 
sections is derived from a 247,392 point experimental 
flow data set. The data was recorded with 16bit 
resolution, though this is further limited by the 8 bit 
resolution of the laser distance meter. The sample rate 
was 1024Hz, so that the data set is just over four 
minutes long and there are approximately 22.76 samples 
per drive period. In the results that follow, units are not 
typically given on the measurements since they have 
been scaled and transformed by the data acquisition 
system.   

 
Figure 6. Short time series plots of the vibration amplitude 
recorded in 1 bar air for a fixed driving frequency of 56 
Hz, and various driving currents. The triangles indicate 
the appearance of period doubling, leading to aperiodic 
behavior observed at 3.6A. 
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Figure 7. Average spectrum of vibration amplitude 
recorded in 1 bar air for various driving currents 
corresponding to Figure 6. 

 
Figure 8. A bifurcation diagram of vibration amplitudes 
recorded in 1 bar air for a driving current swept at 20 
mA/sec and fixed driving frequency of 56 Hz. 

3. DATA ANALYSIS AND RESULTS 

To analyse a 1 dimensional experimental data set using 
chaotic time series analysis techniques, it is necessary to 
transform the data using phase space reconstruction 
techniques. If only one variable from the system can be 
observed, X={X(1), X(2), ...X(N),...}, then a D-
dimensional time series of length N, Y={Y(1), Y(2), ... 
Y(N)}  is constructed from the original time series using 
a delay d as follows. 

( )( ) ( ), ( ),... ( ( 1) )n X n X n d X n D d= + + −Y  (4) 

where we have assumed that X contains at least N+(D-
1)d data points. If the time between samples represents 
one period of data, then X represents time series 
generated from a map, or Poincare section of the 
system. In which case the delay d used to generate Y is 
usually set to 1.  

Assuming that the time series is stationary, that is, the 
parameters which govern the dynamics are not 
significantly changing over time, then with sufficient 
data and the appropriate choice of the delay parameter d 
and the embedding dimension D, Y will accurately 
represent the dynamical behaviour of the system. Once 
Y has been constructed, then further analysis of this 
multidimensional time series may be used to estimate 
various quantities related to the structure of the phase 
space, such as the dimensionality of the attractor, 
characterisation of the chaotic behavior or lack thereof, 
and identification of chaotic orbits. 
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Figure 9. Nonstationary behavior of the time series.  
Plotted are estimates of the maximum and minimum 
values for overlapping windows of 1024 samples (one 
second) from the experimental data. 

In the following subsections, we construct delay 
coordinate embeddings from the scalar time series, and 
then use this technique to analyse the data and quantify 
its dynamical system properties. We will use the 
notation introduced above to describe the original scalar 
time series, X={X(1), X(2), ...X(N)} and a delay 
coordinate embedding of the time series, Y={Y(1), Y(2), 
... Y(N)}. 

3.1. Nonstationarity and long-term dynamics 

A few simple tests were first performed that would 
identify strong drifts in the data.  Sliding windows of 
varying length were applied to the data and statistical 
quantities such as mean, maximum, minimum and 
standard deviation were computed for each window. If 
the data was truly stationary, then these quantities 
would remain constant throughout the data. Results of 
the drift in the maximum and minimum values of a one 
second window (1024 data points) are depicted in 
Figure 9.  
 

 

 

Figure 10. Plot of the waveform for two methods of 
sectioning the data. The top plot, part (a), depicts peak 
amplitudes and the bottom plot, part (b), depicts time 
intervals between zero crossings. 

It can be seen that the dynamics of the system are not 
entirely stationary. For instance, the maximum value 
undergoes an upward trend, particularly near the 
beginning of the time series. This nonstationarity was 
also confirmed by the measurement of other statistical 
quantities such as the skewness and kurtosis for 
windowed data.   

When the dynamics change over time in an 
experimental system it is often difficult to determine the 
cause. The behavior may be caused by long term 
dynamics which are inherent to the system or by a 
simple transient before settling into some behaviour. 
However, this fluctuation is quite small in relation to the 
full extent of the data (for instance, variation in the 
maximum value is less than 2% the full scale of the 
data) and thus, though it may affect the results of 
chaotic time series analysis methods, it is still small 
enough that the data is acceptable for analysis.  
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Figure 11. Two techniques for estimating an embedding 
delay from the experimental data. The first method uses 
the first minimum of the mutual information function and 
the second uses the first zero crossing of the 
autocorrelation function. The methods suggest a delay 
between 6 and 7. 

3.2. Poincaré sections 

A common technique in chaotic time series analysis is 
to generate a Poincare section, with one point per 
period, from data sampled at much higher than the drive 
frequency. Given that the system has a drive frequency 
of 45Hz, a natural Poincaré section would be to sample 
the system at the drive frequency. Since this was not 
possible due to the limited sampling frequencies of the 
data acquisition system, we considered several 
techniques for extracting a Poincaré section. These 
included the peak amplitude values, their second 
derivatives, times between peaks and times at which the 
amplitudes cross a fixed value. Figure 10 depicts the 
Poincare section plots using extracted peak amplitudes 
and extracted times between zero crossings in the flow 
data. Both techniques successfully capture the 
dynamics, though the use of zero crossings appears 
slightly less noisy. 

3.3. Embedding parameters 

A reasonable value for the delay may be suggested 
either by the first zero crossing of the autocorrelation 
function or by the first minimum of the mutual 
information function[18, 19], as either value is plotted 
as a function of delay.  For the time series data, given a 
delay d, the autocorrelation is found simply from  

 

Figure 12. Results of the FNN routine as applied to the  
original flow data and the two Poincare sections. An 
appropriate embedding dimension is found when the 
percentage of false near neighbors drops to a constant 
value. This indicates that the embedding dimension should 
be at least 4. 

2
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1( ) [ ( ) ][ ( ) ]
( )

N k
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R d X n X n d
N k

μ μ
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−

=

= − + −
− ∑  (5) 

where μ is the mean and σ2 is the variance of the data.  

The mutual information of two random variables, 
 and a A b B∈ ∈ , is given by  

( , )( ; ) ( , ) log
( ) ( )a A b B

p a bI A B p a b
p a p b∈ ∈

=∑∑  (6) 

where the convention 0log0=0 was used. In the case of 
the mutual information between a time series and a 
delayed version of itself, a represents a range of values 
for X(n) and b a range of values for X(n+d). These 
values must be chosen so as to provide a reasonable 
approximation to the mutual information of the 
underlying dynamical systems generating X(n) and 
X(n+k). Here, the mutual information was calculated 
efficiently using a method described in Reiss, et al.[20], 
which partitions the range of values for X(n) and X(n+k) 
recursively until there is no more hidden structure.  

The mutual information often gives a better value 
because it takes nonlinear correlations into account. 
However, for the loudspeaker data, the mutual 
information function and the autocorrelation function 
were in strong agreement.  As shown in Figure 11, the 
autocorrelation suggests a delay of 6 and the mutual 
information a delay of 7. This was in agreement with 
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visual inspection since 2 and 3 dimensional plots 
revealed the most structure near these values of delay 
(see Figure 13). Unfortunately, they also reveal a 
complexity or noise dependence that makes the fine 
scale structure very difficult to detect. 

A modified form of the false nearest neighbors 
algorithm[21] (FNN) was chosen as the primary 
technique for determining the embedding dimension. 
The modification is intended to take into account 
stochastic phenomena which result in FNNs occurring 
regardless of the embedding dimension. An appropriate 
embedding dimension is found when the percentage of 
FNNs drops to a constant value.  As shown in Figure 
12, the percentage of false neighbors approaches a 
constant value with an embedding dimension of 5 for 
the flow data, and an embedding dimension of 4 for 
either sectioned data set. This is in agreement with the 
observation that a Poincaré section should have one less 
dimension than the original data. 

3.4. Fractal dimension 

The dimensionality of a chaotic attractor is typically a 
noninteger value. That is, the attracting region of the 
phase space will not completely fill out a region of that 
space. In this section we use several different methods 
to estimate the dimensionality of the loudspeaker data, 
which further gives an idea of the complexity of the 
underlying dynamics.  

The correlation dimension is found by constructing a 
function C(ε) that is the probability that two arbitrary 
points from the delay coordinate embedding are closer 
together than a distance ε.  

1

1 1

2( ) ( | ( ) ( ) |)
( 1)

N i

i j

C H Y i Y j
N N

ε ε
−

= =

= − −
− ∑∑  (7) 

where H is the Heaviside unit step function. The 
correlation dimension of an experimental time series is 
then given by  

log( ) / log( )D d C d ε=  (8) 

in the limit 0ε → , and N → ∞ . The correlation 
dimension may be estimated by the slope of the curve 
log(C(ε)) versus log(ε). A noninteger result for the 
correlation dimension indicates that the data is probably 
fractal. For too low or too high ε values, the results are 

inaccurate, so the slope must be measured in the 
midrange of the curve. A good value should be in the 
region where measurements of the dimension are most 
stable.  

The Grassberger-Proccacia algorithm[22, 23] was used 
to estimate fractal dimension. Results of log2(C(ε)) 
versus log(ε) for the peak values from the original 45Hz 
data are depicted in Figure 14. The correlation 
dimension cannot be accurately estimated since there is 
not a significant region where the slope remains 
constant. This is because estimates of correlation 
dimension using the Grassberger-Proccacia algorithm 
are highly susceptible to noise and data set size. Limited 
data set size reduces the region of the plateau and 
increases uncertainty, and the presence of noise implies 
that accurate measurement can only be obtained for 
large ε. For higher dimensional data these problems are 
aggravated since minimal noise and exponentially more 
data are required to identify the plateau region.  In 
addition, data with a high sample rate may exhibit 
strong correlations that skew the estimates.  The 
approximations due to noise, data set size, 
nonstationarity and so on are inherent in the data set.  
But the Grassberger-Proccacia algorithm also uses an 
approximation to the definition of correlation 
dimension.  Therefore, we attempted an alternative 
technique that allows estimation of multiple definitions 
of the fractal dimension. 

 

Figure 13. A two dimensional plot of the experimental data 
with a delay of 7. 

The delay coordinate embedded data can be gridded into 
n-dimensional boxes of equal length ε, such that all 
vectors lie within these N boxes. If a box is labelled i, 
then it has an associated probability, Pi(ε), that a vector 
on the attractor will reside within this box. The 
generalized entropies, H0, H1, … are defined in terms of 
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the probabilities of vectors occupying boxes. For 
q=0,1,2…, 
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In the following we keep the conventions common in 
dimension definitions and use the natural logarithm as 
opposed to the log base 2. The generalized dimension of 
order q is then defined as 

( )
( ) lim

ln
qH

D q
ε

ε
ε→∞

= −  (10) 

Under this definition, D(0), D(1), and D(2) are the box 
counting dimension, the information dimension and the 
correlation dimension, respectively. We also have the 
property that if p>q, then D(p)≤D(q). 

Once the generalized entropies have been determined, 
there are two ways to approximate the generalized 
dimensions for time series data. The first is if ε is 
sufficiently small such that the limit is approximately 
correct, and we have enough data to get an accurate 
measurement for ( )qH ε . In which case we may use 

( ) ( ) ( ) / lnq qD q D Hε ε ε≈ = −  (11) 

However, the preferred method is to simply look at the 
slope of a plot of Hq(ε) vs ln(ε), since this has a quicker 
rate of converge to the limit of ε−>0. We should 
mention that further information theoretic properties can 
be determined from the analysis of this sorting, such as 
the generalized mutual information of high dimensional 
data, In(X1,X2,…Xn), or estimation of the metric 
entropy[24]. 

For large box size, the box counting dimension varies 
widely from the others, since the box counting 
dimension D(0) is more susceptible to errors. It is also a 
poor quantity to use since it says nothing about the 
density of the attractor, only about its shape. However, 
the box counting dimension and all the others converge 
in the mid-region, before diverging slightly and then 
dropping to zero (due to data set size). It is this mid 
region that parallels the plateau region of the 
Grassberger-Proccacia algorithm[22, 23].   

Figure 15 and Figure 16 presents the results of our 
calculations of the first four generalised dimensions 
performed on the flow data embedded in five 

dimensions and the sectioned data embedded in four 
dimensions, respectively.  Displayed are estimates of 
the first four generalized entropies for varying box size. 
Additional tests were also performed for the embedding 
dimensions 3-6, and for the next four generalized 
entropies. The results indicated that, for 

, ( ) ( )p q D p D q> ≤ , which agrees with theory.   

The estimates for fractal dimension were derived from 
where the slope of of Hq(ε) vs ln(ε) showed the least 
deviation for successive values of ε (ε =2-4 and 2-5). 
Estimates ranged from 1.8 to 2.2, for all fractal 
dimensions calculated on the sectioned data, and 2.6 to 
3.0 for all fractal dimensions calculated on the flow 
data, when embedding dimension was greater than or 
equal to 4. In both cases the estimate This agrees with 
our choice of the embedding dimension, and is also in 
rough agreement with the result from the Grassberger-
Proccacia algorithm.  However, in general, the 
dimensionality of the sectioned data is less than 1 plus 
the dimensionality of the flow data. This may be 
accounted for primarily by the small data set size for the 
sectioned data (approximately 10,000 points), which is 
known to cause a slight overestimation of fractal 
dimension, and the relatively high sample rate of the 
flow data, which skewed estimates downwards[25]. 

3.5. Lyapunov exponents 

The Lyapunov exponents characterize how chaotic a 
system is. For a D-dimensional dynamical system, 
consider the infinitesimally small D-sphere centered 
around a point on the attractor. As this evolves, the 
sphere will become an D-ellipsoid due to the deforming 
nature of the attractor flow. Then the ith Lyapunov 
exponent is defined in terms of the exponential growth 
rate of the ith principal axis of the ellipsoid. 

( )1lim ln
(0)

i
i t

i

p t
t p

λ
→∞

=  (12) 



Reiss, Djurek, Petosic and Djurek Chaos in a loudspeaker
 

AES 125th Convention, San Francisco, CA, USA, 2008 October 2–5 
Page 12 of 17 

 
Figure 14. Plot of the log correlation function versus log 
distance. With sufficient, low noise data, the slope of the 
plot may provide the correlation dimension. 

Thus the spectrum of Lyapunov exponents, 
{λ1, λ2, ..., λD} describes the rate of growth of the 
distance between nearby trajectories in phase space. 
Chaos is often defined by the existence of a positive 
dominant Lyapunov exponent, which indicates that 
nearby trajectories will, over time, diverge 
exponentially away from each other. 

The determination of Lyapunov exponents from noisy, 
experimental data is a difficult task. Although many 
methods have been presented, there are also numerous 
examples of these methods breaking down when tested 
against real data, as well as questions concerning the 
validity of the methods. Thus the results of exponent 
determination were held to scrutiny. Criteria were 
established for identification of Lyapunov exponents.   

There should be agreement between exponents as 
measured from different algorithms, and some 
measurement of error should be provided. Embedding 
parameters used in estimating exponents must be 
confirmed independently by other methods. The results 
should remain consistent under various parameter 
settings for exponent estimation. For flow data, a zero 
exponent should be clearly found.  Estimation of 
exponents from each both flow and sectioned data 
should be in agreement. The sum of all the exponents 
must be negative, and the sum of the positive exponents 
should be less than or equal to the metric entropy. In 
fact, for many cases they should be equal.[26] Under the 
proper conditions, the Lyapunov exponents should all, 
approximately, switch sign when measured from a time 
reversal of the data.[27]   

The Lyapunov dimension may be defined as  

1 1

1 L

j
L j

D Lλ λ
λ + =

= + ∑  (13) 

where L is the maximum integer such that the sum of 
the L largest exponents is still non-negative. That is, 

1

0
L

j
j

λ
=

≥∑ , and 
1

1

0
L

j
j

λ
+

=

<∑ . The Kaplan-Yorke 

conjecture[28] proposes that this is equal to the 
information dimension. Within error bounds, this seems 
to be true. Therefore, a final criterion is that the 
Lyapunov dimension estimates should agree with 
information dimension estimates.   

It is doubtful that all criteria can be satisfied unless one 
is dealing with a long, noise-free time series of low 
dimensional simulated data. Noise, high dimensionality 
and short time series length (few orbits or small number 
of points or both) negatively affect all methods of 
analysis. Some criteria, such as confirmation of 
embedding parameter choices are a virtual necessity 
before any calculation is made.  Others, such as 
agreement between the Lyapunov dimension and 
information dimension, are very strong indicators that 
Lyapunov exponents have been reasonably determined. 
Still other criteria require calculations of quantities that 
are particularly difficult to compute from time series, 
such as metric entropy. Previous authors chose to reject 
the use of estimated Lyapunov exponents as 
discriminating statistics[29]. 

Three methods of determining Lyapunov exponents 
were implemented; the method of Eckmann and 
Ruelle[30] for determining the Lyapunov spectra, and 
the Rosenstein[31] and Wolf, et al.,[32] methods for 
determining the largest exponent.  Since these methods 
are fundamentally different, one would not expect 
agreement between the estimates to be simply due to 
them incorporating the same mistakes. The sectioned 
data were used for all estimates since this reduces 
dependence on the choice of delay time. Abarbanel’s 
method was also applied[33], though this is based on the 
same technique as Eckmann and Ruelle’s method and 
for sectioned data provides very similar results. 

Wolf[32] defined the exponents in terms of the rates of 
divergence of volumes as they evolve around the 
attractor. The Wolf method involves following a 
trajectory in its path around the attractor.  The rate of 
growth between points on this trajectory and a nearby 
trajectory is used to estimate the largest Lyapunov 
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exponent.  When the distance between these trajectories 
becomes too large, then a new nearby trajectory is found 
that is within a reasonable angular distance from the 
previous nearby trajectory.  In order to minimize 
parameter dependence, we used a variation on the Wolf 
method[25]. In previous work,[32, 34, 35] both 
maximum allowable displacement and maximum 
angular displacement were left as free parameters. We 
use one parameter: the number of near neighbors to 
consider after a given number of iteration steps.  

The Rosenstein method involves looking at average 
divergence rates of nearest neighbors. It also finds the 
dominant exponent. The Eckmann and Ruelle method 
involves using a small neighborhood of points and 
iterating them forward to estimate the local Jacobian, 
and then determining the Lyapunov spectrum from the 
eigenvalues of the Jacobians around the attractor. 

In Table I, results of exponent calculations are provided.  
All calculations were performed with a time delay of 1, 
and embedding dimension of 4, as suggested by the 
False Nearest Neighbors routine.  The exponents are 
given in units of 1/time, where the time scale is defined 
so that the time between samples is 1.  Many more 
calculations were performed until a reasonable and 
stable parameter regime was found for all methods. In 
general, exponent calculations converged to within 5% 
of their final value when averaging local estimates of 
the dominant Lyapunov exponent over only 1,000 
points (although the entire sectioned data set was used 
to find near neighbors).   

Table I.  Results of estimation of the lyapunov exponent(s) 
using three different techniques. All calculations were 
performed with a four dimensional embedding of the peak 
values data. 

Algorithm λ1 λ2 λ3 λ4 Sum 

Rosenstein 0.403     

Wolf 0.391     

Eckmann-
Ruelle 

0.380 0.054 -0.184 -0.484 -0.234 

Several of our criteria are determined immediately upon 
inspection.  The dominant exponent results from all 
three methods provide rough agreement.  One check on 
the Wolf algorithm was calculating the average angular 
displacement. This was typically less than 20%, well 

within reasonable bounds. For the Lyapunov spectrum, 
the second exponent is very close to zero and the sum of 
the exponents is negative.  

The folding of the attractor brings diverging orbits back 
together.  So any effects of nonlinearities will most 
likely serve to move all exponents closer to zero.  Also 
increasing the number of near neighbors used may 
underestimate the value because this allows a larger 
distance between neighbors. Hence a slight 
underestimate of the positive exponents for the 
Eckmann-Ruelle algorithm (and for Abarbanel’s 
technique[33]) was expected. For the Wolf algorithm, 
the angular displacement errors are not likely to 
accumulate, but each error may skew the largest 
positive exponent downwards. These assumptions are 
confirmed by the slightly lower estimate of dominant 
exponent for the Eckmann-Ruelle and Wolf algorithms 
as compared to Rosenstein’s technique, which is less 
susceptible to these errors. 

However, it was not possible to confirm all criteria.  
Measurement of the metric entropy is still ongoing 
work.  Sectioning the data introduced additional noise. 
More importantly, the uncertainty in sample values 
tended to dominate over the divergence on a small time 
scale, thus introducing errors into measurement of 
Lyapunov exponents from the original flow data.  Thus 
it was not possible to get agreement between exponent 
estimates from the section and from the flow, nor was it 
expected. For measurement of the Lyapunov spectrum, 
uncertainty in the values of other exponents meant that 
it was not possible to get a reliable estimate of the 
Lyapunov dimension.  Time reversal results were also 
inconclusive at best.  However, simulated data with the 
addition of noise would not usually switch the signs of 
the exponents under time reversal either.  So the sign 
change of exponents when the data is reversed may not 
be a suitable criterion for noisy data. 
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Figure 15. Plot of the first four generalized dimensions 
from the original data . 

 

Figure 16. Plot of the first four generalized dimensions 
from the sectioned data. 

3.6. Unstable periodic orbits 

In addition to the occurrence of a positive Lyapunov 
exponent, a chaotic system may also be characterized by 
having an infinite number of unstable periodic orbits 
(UPOs). The identification of unstable periodic orbits 
plays a critical role in many chaos control 
algorithms[36]. Most standard chaos control algorithms 
attempt to control the system onto a UPO while 
operating within the chaotic regime. Small time-
dependent perturbations applied to an accessible 
parameter may then be used to force the system onto the 
stable manifold and hence enforce stability and periodic 
behavior. The drive frequency is the most preferable 
candidate to use as the varied parameter in a control 
scheme. This is because it is easily adjustable and a 
small change in drive frequency often yields appropriate 
changes in the dynamics. it is useful in occasional 
proportional feedback control schemes, tracking and 
targeting of  trajectories, and in the identification of 
symbolic dynamics[36, 37]. Thus we will also attempt 
to characterize the UPOs exhibited during the chaotic 
state. 

By looking for when the dynamics approach the same 
region after a given number of iterates, periodic orbits 
can be found. UPOs of period p are found simply by 
establishing a threshold ε, 

|| ( ) ( ) ||Y n Y n p ε− + <    (14) 

In which case, a periodic orbit exists in the vicinity of 
Y(n) and a least squares fit of all data in the region can 

be used to estimate its exact location. The exact value of 
ε may be varied depending on the size of the data set, 
the period p and the number of UPOs that one wishes to 
find. Identification of false positive UPOs may be 
determined using the mean squared error of the least 
squares fit. 

Figure 17 shows the delay coordinate embedding of the 
Poincaré section using times between zero crossings. In 
this figure, we identified period 1, period 2 and period 3 
orbits. From the least squares fit estimate of the local 
dynamics, the eigenvalues and eigenvectors 
corresponding to the stable and unstable manifolds can 
be found. For the period 1 orbit, we have a fixed point 
located at 0.0222 seconds, corresponding to the drive 
frequency of the system, 45 Hz. Its eigenvalues are 
0.155 and -1.571, with corresponding eigenvectors 
(1,0.155) and (-0.637,1). Similar results can be obtained 
for other identified periodic orbits, and these results can 
be used to implement a chaos control technique. 

4. CONCLUSIONS AND FURTHER WORK 

Analysis was attempted on time series data from an 
experimental electrodynamic loudspeaker in order to 
characterize the embedding dimension, fractal 
dimension, the Lyapunov exponents, and the unstable 
periodic orbits. Results were obtained which indicate 
that the system is governed by low dimensional chaotic 
dynamics, and thus is highly amenable to control, 
tracking, synchronization, noise reduction and so forth. 
Particular care was made in verifying the presence of a 
positive Lyapunov exponent.  

 

Figure 17. A delay coordinate embedding plot of the times 
between zero crossings. Period 1, 2 and 3 points are 
identified, along with the stable and unstable manifolds of 
the period 1 orbit. 
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Various estimates of fractal dimension were performed, 
including measurement of correlation dimension[22, 
23], information dimension, and box counting 
dimension for different embedding dimensions. 
Although there was qualitative confirmation of low 
dimensional behavior, consistent results for quantitative 
values for the fractal dimension were not achieved.  

However, estimation of the dominant Lyapunov 
exponent, which is less reliant on large data set size,  
provided consistent results regardless of the method of 
estimation[26]. Several different techniques were used 
which provided rough agreement in their estimates of 
the dominant exponent, and the results further agreed 
with theory concerning the Lyapunov spectrum its 
properties. They reliably showed evidence of a positive 
Lyapunov exponent, a strong indicator of chaos. 

Finally, we attempted to estimate the eigenvalues and 
eigenvectors associated with detected unstable periodic 
orbits. These may be easily identified. Control may be 
applied to allow the loudspeaker to operate as desired 
within the chaotic regime. Tracking and maintenance 
should also be possible, since the appropriate dynamics 
have been found for the application of several well-
known algorithms.  

However, extraction of many empirical quantities, 
particularly fractal dimension, proved difficult due to a 
number of issues. This may be accounted for partly due 
to nonstationarity and short data set size. Though the 
original data set is over 200,000 points, it represents 
about 10,000 orbits. This is insufficient for effective 
calculation of fractal dimension in the presence of noise 
and long term dynamics. Furthermore, although the 
dynamics are somewhat stable, there is still a gradual 
change in various statistical quantities when examined 
using a sliding window through the data. This tends to 
distort various measurements. Longer data set size could 
capture the long term dynamics. 

However, we believe that the difficulty in estimating 
some measures of nonlinear behavior and 
dimensionality is primarily due to low sample rates and 
low resolution due to limitations in the data acquisition 
system. First, the data was sampled at 1024 samples per 
second, or approximately 23 samples per period. A 
higher sampling rate would yield more accurate 
Poincaré sections. Alternatively, if the sampling data 
could be sampled at exactly the drive frequency, 45Hz, 
then this would produce a natural Poincaré section. The 
analysed data had 16 bit precision, but this was further 

limited by the 8 bit resolution of the A/D converter of 
the laser distance meter. This meant that there was 
significant uncertainty in the location of nearby points. 
Since most analysis of chaotic time series relies on 
analysis of near neighbors in a locally linear region, this 
resulted in inaccuracies in estimation of fractal 
dimension and Lyapunov exponents. 

Current work is focused on improvements to the data 
acquisition system. This would allow more accurate 
analysis of the data, including measurements of how 
fractal dimension and Lyapunov dimension change with 
parameter settings, and use of chaotic time series 
prediction methods on the data. This could also be used 
for further direct comparison with dynamical behavior 
from enhanced models of the loudspeaker. An accurate 
model of an electrodynamic loudspeaker would 
represent a significant advance in the field, particularly 
since model parameters could then be modified to yield 
a loudspeaker design with optimal performance. 

The investigators are also devising experimental 
conditions for the control of chaos[36] in the 
loudspeaker. In addition to more practical applications, 
such as robust operation of the loudspeaker in the 
chaotic regime, this work can be useful for composing 
fractal music[38]. Unlike other chaotic dynamic 
systems, loudspeaker operate in two-dimensions by 
changing two input parameters, frequency and driving 
current. So, the necessary two-dimensional patterns 
provided for successful composing can be created by 
two variables. Similar to other composing instruments, 
the loudspeaker may be used in both roles 
simultaneously, as a composing and music reproduction 
device. This is an advantage over the usual theory of 
fractal composing which assumes complicated 
interpolating electronic stages based upon synthesizers.  
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