
CS429: Computer Organization and Architecture

Introduction

Dr. Bill Young
Department of Computer Sciences

University of Texas at Austin

Last updated: February 15, 2016 at 08:00

CS429 Slideset 1: 1 Intro to Computer Systems

Acknowledgement

The slides uses this semester are derived from slides originally
prepared by the textbook authors, Randall Bryant and David
O’Hallaron.

They were modified with permission and reformatted for use in our
class.

CS429 Slideset 1: 2 Intro to Computer Systems

Topics of this Slideset

Theme of the course

Five great realities of computer science

How this class fits into the CS curriculum

CS429 Slideset 1: 3 Intro to Computer Systems

Abstraction vs. Reality

Abstraction is good, but don’t forget reality!

Most courses to date have emphasized abstraction.

Abstract data types!

Asymptotic analysis!

These abstractions have limits!

Especially in the presence of bugs!

Need to understand underlying implementations!

Need to have a working understanding of architecture!

CS429 Slideset 1: 4 Intro to Computer Systems

Desired Outcomes

Useful outcomes!

Become more effective programmers!

Able to find and eliminate bugs efficiently!
Able to tune program performance!

Prepare for later systems classes: Compilers, Operating
Systems, Networks, Computer Architecture, Embedded
Systems, many others.

Hint: Hang onto your book. You’ll be using this same book (3rd
edition) in CS439.

CS429 Slideset 1: 5 Intro to Computer Systems

Great Reality 1

Ints are not Integers; Floats are not Reals.

Is x2 ≥ 0? For floats, yes. For ints, not necessarily.

40000 ∗ 40000 → 1600000000

50000 ∗ 50000 →??

Is (x + y) + z = x + (y + z)?

For unsigned and signed int’s: yes. For floats, maybe not.

(1e20 +−1e20) + 3.14 → 3.14

1e20 + (−1e20 + 3.14) →??

CS429 Slideset 1: 6 Intro to Computer Systems

Experiment

Get into the habit of writing programs to experiment with the
architecture:

vo i d main () {
p r i n t f (”40000 ∗ 40000 = %d\n” , 40000 ∗ 40000) ;
p r i n t f (”50000 ∗ 50000 = %d\n” , 50000 ∗ 50000) ;
p r i n t f (”1 e20 + (−1e20 + 3 . 14) = %f \n” , 1 e20 + (−1e20

+ 3 . 14)) ;
p r i n t f (” (1 e20 + −1e20) + 3 .14 = %f \n” , (1 e20 + −1e20)

+ 3 . 14) ;
}

> gcc t e s t e r . c
> a . out
40000 ∗ 40000 = 1600000000
50000 ∗ 50000 = −1794967296
1e20 + (−1e20 + 3 . 14) = 0.000000
(1 e20 + −1e20) + 3 .14 = 3.140000

CS429 Slideset 1: 7 Intro to Computer Systems

Code Security Example

/∗ Pro to type o f l i b f u n c t i o n memcpy ∗/
vo i d ∗memcpy(vo i d ∗ dest , v o i d ∗ s r c , s i z e t n) :

/∗ Kerne l memory wi th use r−a c c e s s i b l e data . ∗/
#d e f i n e KSIZE 1024
char kbuf [KSIZE] ;

/∗ Copy at most maxlen by t e s from k e r n e l to u s e r b u f f e r
∗/

i n t c opy f r om Ke rn e l (v o i d ∗ u s e r d e s t , i n t maxlen) {
/∗ Byte count l e n i s minimum of b u f f e r s i z e and

maxlen ∗/
i n t l e n = KSIZE < maxlen ? KSIZE : maxlen ;
memcpy(u s e r d e s t , kbuf , l e n) ;
r e t u r n l e n ;

}

CS429 Slideset 1: 8 Intro to Computer Systems

Typical Usage

Similar to code in FreeBSD’s implementation of getpeername.

/∗ Kerne l memory r e g i o n ho l d i n g use r−a c c e s s i b l e data .
∗/

#d e f i n e KSIZE 1024
char kbuf [KSIZE] ;

/∗ Copy at most maxlen by t e s from k e r n e l to u s e r b u f f e r
∗/

i n t c opy f r om Ke rn e l (v o i d ∗ u s e r d e s t , i n t maxlen) {
. . .

}

#de f i n e MSIZE 528

vo i d g e t s t u f f () {
cha r mybuf [MSIZE] ;
c o p y f r om k e r n e l (mybuf , MSIZE) ;
p r i n t f (”%s \n” , mybuf) ;

}

CS429 Slideset 1: 9 Intro to Computer Systems

Malicious Usage

Legions of smart people try to find vulnerabilities in programs.

/∗ Kerne l memory r e g i o n ho l d i n g use r−a c c e s s i b l e data .
∗/

#d e f i n e KSIZE 1024
char kbuf [KSIZE] ;

/∗ Copy at most maxlen by t e s from k e r n e l to u s e r b u f f e r
∗/

i n t c opy f r om Ke rn e l (v o i d ∗ u s e r d e s t , i n t maxlen) {
. . .

}

#de f i n e MSIZE 528

vo i d g e t s t u f f () {
cha r mybuf [MSIZE] ;
c o p y f r om k e r n e l (mybuf , −MSIZE) ;
. . .

}

CS429 Slideset 1: 10 Intro to Computer Systems

Computer Arithmetic

Computer arithmetic does not generate random values. Arithmetic
operations have important mathematical properties.

But you cannot assume the “usual” properties of arithmetic.

Due to finiteness of representations.

Integer operations satisfy ring properties: commutativity,
associativity, distributivity.

Floating point operations satisfy ordering properties:
monotonicity, values of signs.

Observation:

Need to understand which abstractions apply in which
contexts.

Important issues for compiler writers and serious application
programmers.

CS429 Slideset 1: 11 Intro to Computer Systems

Great Reality 2

You’ve got to know assembly!

You won’t often program in assembly. Compilers are much better
at it and more patient than you are.

Understanding assembly is key to machine-level execution models.

Behavior of programs in presence of bugs; high-level language
model breaks down.

Tuning program performance and understanding sources of
program inefficiency.

Implementing system software

Compiler has machine code as target
Operating systems must manage process state

Creating / fighting malware: x86 is the language of choice for
attackers.

CS429 Slideset 1: 12 Intro to Computer Systems

Diving Down to Assembler Level

There are hardware resources that are not accessible from C or
other high level languages.

s t a t i c un s i gned c y c h i = 0 ;
s t a t i c un s i gned c y c l o = 0 ;

/∗ Set ∗ h i and ∗ l o to the h igh and low o r d e r b i t s
o f the c y c l e coun t e r . ∗/

vo i d a c c e s s c o u n t e r (un s i gned ∗ hi , un s i gned ∗ l o)
{

asm(” r d t s c ; movl %%edx ,%0; movl %%eax ,%1”
: ”=r ” (∗ h i) , ”=r ” (∗ l o)
:
: ”%edx” , ”%eax ”) ;

}

This is a C program, with embedded x86 assembler.

CS429 Slideset 1: 13 Intro to Computer Systems

Great Reality 3

Memory Matters!

Memory is not unbounded!

It must be allocated and managed.

Many applications are memory dominated.

Memory referencing bugs especially pernicious. The effects may be
distant in both time and space.

Memory performance is not uniform.

Cache and virtual memory effects can greatly affect program
performance.

Adapting your programs to characteristics of memory system
can lead to major speed improvements.

CS429 Slideset 1: 14 Intro to Computer Systems

Memory Referencing Bug Example

doub l e fun (i n t i)
{

i n t a [2] ;
doub l e d [1] = {3 . 1 4} ;
a [i] = 1073741824; /∗ Out o f bounds r e f e r e n c e ∗/
r e t u r n d [0] ;

}

Assume x86 (double is 8 bytes; int is 4 bytes). This will be different
on other systems, and may cause segmentation fault on some.

Call Result

fun(0) → 3.14
fun(1) → 3.14
fun(2) → 3.1399998664856
fun(3) → 2.00000061035156
fun(4) → 3.14, then segmentation fault

CS429 Slideset 1: 15 Intro to Computer Systems

Memory Referencing Bug Explanation, Little Endian

doub l e fun (i n t i)
{

i n t a [2] ;
doub l e d [1] = {3 . 1 4} ;
a [i] = 1073741824; /∗ Out o f bounds r e f e r e n c e ∗/
r e t u r n d [0] ;

}

Modified Call Result

a[0] fun(0) → 3.14
a[1] fun(1) → 3.14
d3 . . . d0 fun(2) → 3.1399998664856
d7 . . . d4 fun(3) → 2.00000061035156
saved state fun(4) → 3.14, then seg fault

What can you infer about how the memory is laid out?

CS429 Slideset 1: 16 Intro to Computer Systems

Memory Referencing Errors

C and C++ do not provide any memory protection.

Out of bounds array references

Invalid pointer values

Abuses of malloc/free

This can lead to nasty bugs.

Whether or not bug has any effect depends on system and
compiler.
Action at a distance

Corrupted object logically unrelated to one being accessed.
Effect of bug may be first observed long after it is generated.

How can I deal with this?

Program in Java, Lisp, or ML

Understand what possible interactions may occur

Use or develop tools to detect referencing errors

CS429 Slideset 1: 17 Intro to Computer Systems

Memory Performance Example

The following is a matrix multiplication example:

/∗ i j k ∗/
f o r (i =0; i<n ; i++) {

f o r (j =0; j<n ; j++) {
sum = 0 . 0 ;
f o r (k=0; k<n ; k++)

sum += a [i] [k] ∗ b [k] [j] ;
c [i] [j] = sum ;

}
}

CS429 Slideset 1: 18 Intro to Computer Systems

Memory Performance Example

This one computes precisely the same result.

/∗ j i k ∗/
f o r (j =0; j<n ; j++) {

f o r (i =0; i<n ; i++) {
sum = 0 . 0 ;
f o r (k=0; k<n ; k++)

sum += a [i] [k] ∗ b [k] [j] ;
c [i] [j] = sum ;

}
}

But the performance is very different (21 times slower on a
Pentium 4), particularly for large arrays. Can you guess why that
may be?

CS429 Slideset 1: 19 Intro to Computer Systems

Great Reality 4

There’s more to performance than asymptotic
complexity.

Constant factors matter too!

Even an exact op count does not predict performance.

Easily see 10:1 performance range depending on how code is
written.

Must optimize at multiple levels: algorithm, data
representations, procedures, and loops.

Must understand the system to optimize performance.

How programs are compiled and executed.

How to measure program performance and identify
bottlenecks.

How to improve performance without destroying code
modularity and generality.

CS429 Slideset 1: 20 Intro to Computer Systems

Great Reality 5

Computers do more than execute programs.

They need to get data in and out. The I/O system is critical to
program reliability and performance.

They communicate with each other over networks. Many
system-level issues arise in the presence of networking.

Concurrent operations by autonomous processes

Coping with unreliable media

Cross platform compatibility

Complex performance issues

CS429 Slideset 1: 21 Intro to Computer Systems

Course Perspective

Most systems courses are “builder-centric.”

Computer Architecture: Design pipelined processor in Verilog.

Operating Systems: Implement large portions of operating
system.

Compilers: Write compiler for simple language.

Networking: Implement and simulate network protocols.

CS429 Slideset 1: 22 Intro to Computer Systems

Course Perspective

This course is programmer-centric.

The purpose is to show how by knowing more about the
design of the underlying system, one can be more effective as
a programmer.

Enable you to

Write programs that are more reliable and efficient
Incorporate features that require hooks into OS: concurrency,
signal handlers, etc.

Not just a course for dedicated hackers. We bring out the
hidden hacker in everyone.

Cover material in this course that you won’t see elsewhere.

CS429 Slideset 1: 23 Intro to Computer Systems

Our Subject: Computer Organization

CS429 Slideset 1: 24 Intro to Computer Systems

