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Abstract

We present a technique to linearly estimate the radial distor-
tion of a wide-angle lens given three views of a real-world
plane. The approach can also be used with pure rotation as
in this case all points appear as lying on a plane. The three
views can even be recorded using three different cameras as
long as the deviation from the pin-hole model for each cam-
era is distortion along radial lines. We introduce the 1D
radial camera which projects scene points onto radial lines
and the radial trifocal tensor which encodes the multi-view
relations between radial lines. Given at least seven triplets
of corresponding points the radial trifocal tensor can be
computed linearly. This allows recovery of the radial cam-
eras and the projective reconstruction of the plane up to a
two-fold ambiguity. This 2D reconstruction is unaffected by
radial distortion and can be used in different ways to com-
pute the radial distortion parameters. We propose to use the
division model as in this case we obtain a linear algorithm
that computes the radial distortion coefficients and the 3 re-
maining degrees of freedom of the homography relating the
reconstructed 2D plane to the undistorted image. Each fea-
ture point that has at least one corresponding point yields
one linear constraint on those unknowns. Our method is
validated on real-world images. We successfully calibrate
several wide-angle cameras.

1. Introduction
For many vision applications, cameras with large field of
view are required. Wide-angle lenses or curved mirrors
obtain a large field of view, by severely bending the rays,
but the corresponding camera projection model is far more
complicated than the traditional pin-hole model. A major
problem in the calibration procedure is the non-linear rela-
tion between the image and space coordinates.

This paper deals with the problem of estimating the coef-
ficients of the non-linear transformation (henceforth, called
the distortion parameters), that maps points in the distorted
(input) image to points in the undistorted image (i.e, one
that would conform to the pin-hole model). Computing the
distortion parameters would allow us to use images having

∗tvn@cs.unc.edu, Dept of Computer Science, UNC-Chapel Hill
†marc@cs.unc.edu, Dept of Computer Science, UNC-Chapel Hill

large radial distortion, for most applications in 3D computer
vision (which make the pin-hole assumption), by using the
transformed image coordinatesrather than the input image
coordinates.

We now present a short overview of methods used for
recovering distortion parameters.

The first class of methods do so with the aid of features
whose coordinates in the 3D space are known (for exam-
ple [14]). In [5], Goshtasby uses Bezier patches to model
the distortions and uses a uniform grid as a calibration ob-
ject. Weng et al. [15] also uses calibration objects to extract
distortion parameters.

The second category of methods do not rely on known
scene points but use the property of the pin-hole model, that
straight lines in space must project onto straight lines in the
image. Brown [1] used the above technique but had noise-
less image data by imaging plumb-lines. The method pro-
posed in [13] also falls into this category. In their approach,
the user clicks points on image curves that (s)he knows are
straight lines in the scene and an objective function is con-
structed that tries to minimize the deviation of these curves
from straight lines. The parameters, over which this func-
tion is minimized, are the distortion parameters. In [8],
Kang used snakes to represent the distortion curves. De-
vernay and Faugeras [2] proposed an approach in which the
system does edge-detection, followed by polygonal approx-
imation, to group edgels which could possibly have come
from an edge segment. The system then tries to minimize
the distortion error by optimizing over the distortion param-
eters. This is done iteratively till the relative change in error
is below a threshold.

The first category of methods suffer from the require-
ment of known calibration objects. This requirement makes
them unsuitable to use with variable lens geometries (for
eg., with variable zoom), because of the strong coupling
that exists among the estimates of the parameters of a cam-
era. The second category of methods require the presence
of straight lines in the scene (which might not always be
the case). Further, it requires that that image curves which
could have possibly come from lines in the scenes, be ro-
bustly detected. This is non-trivial in general, since an au-
tomatic system can confuse real-world curves with straight
lines and thus may require manual input of points or super-
vision of the system.
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The third category of methods does so, by using point
correspondences. Stein [12] proposes a method in which
he uses epipolar and trifocal constraints. That is, given cor-
responding points in three (distorted) images, he computes
the parameters of the trilinear equations. These parameters
are then used to reproject points into the third image, given
corresponding points in the first two images. The cost func-
tion is defined as the RMS reprojection error and minimized
over the distortion parameters. In [4], Fitzgibbon proposes
a technique for simultaneous estimation of the fundamen-
tal matrix and the lens distortion parameters, by formulat-
ing the problem as a quadratic-eigenvalue problem (QEP).
However, his approach concentrates on being able to ”al-
low matching of image pairs via interest-point correspon-
dences, when lens distortion would otherwise hinder the
process” anddoes notyield an accurate estimation of the
distortion parameters themselves. While the above method
may be applicable for small lens distortions, it is not be suit-
able for large distortions, such as those produced by curved
mirrors/fish-eye lenses etc. Micusik and Pajdla ([9]), also
formulate the estimation of the fundamental matrix and the
distortion coefficients, as a QEP.

The method that is proposed in this paper also requires
corresponding points (which come from any plane in the
scene) across three views. However, we consider the dis-
torted input image as a 1D image of radial lines generated
by a radial camera. Thus, only thedirectionsof the fea-
ture points in the image (from the center of radial distor-
tion), which are known precisely, are used. This allows us
to factor out the radial component of the projection model
(where, by the projection model, we mean a conversion of
3D space coordinates to undistorted image coordinates, i.e.
adhering to the pin-hole model, followed by some distor-
tion along the radial line). Thus whatever be the deviation
from the pin-hole model along radial lines (i.e points being
pulled towards/away from the center of radial distortion), it
does not affect the estimation of the parameters of the trifo-
cal tensor or the projective reconstruction of the scene plane
that we obtain.

Since we have obtained a projective reconstruction of the
plane (which is equivalent to one obtained from 3 pin-hole
camera images), we have upto a homography what the plane
looks like in the undistorted image. Further the parameters
of the 1D radial camera that we can estimate from the tri-
focal tensor, fix 5 parameters of the homography. Thus we
have the undistorted positions of the feature points upto the
three unknown parameters of the homography. This allows
us to linearly estimate the distortion parameters.

Therefore, the contribution of our paper is two-fold.
First, by introducing the radial trifocal tensor, we are able
to linearly estimate the structure of the observed plane in-
dependent of arbitrary radial distortion. Once this structure
has been computed the plane can be used as a (projective)

calibration object and several approaches can be used to re-
cover a model for radial distortion. Secondly, we propose
a linear method to compute the radial distortion of wide-
angle cameras. The main contribution of our approach is
to separate the estimation of the multi-view relation and the
estimation of the distortion coefficients in two linear steps.

Notation: Vectors will be denoted in bold, for example
x while scalars will be in normal, likex. For the camera
matrices, the letters,P , P

′
, P

′′
will be used. Whether the

coordinates are distorted or undistorted, will be made clear
by the subscripts (such asxd and xu respectively). The
scene plane ,which contains the points whose images are
matched in the three images, is denoted byΠ. The distorted
(input) images are denoted byIi

d wherei = 1, 2, 3. The
undistorted images that conform to the pin-hole model are
denoted byIi

u wherei = 1, 2, 3. If the size of a matrix is not
clear, it will be pointed out in the subscript (such asP2×3

and so on).

2. Radial Distortion Models
Let the center of radial distortion becrad = (cxr, cyr). The
standard model ([11]) for lens distortions gives the map-
ping from the distorted image coordinates,xd = (xd, yd),
that are observable to the undistorted coordinatesxu =
(xu, yu), by the equation

xu = xd + x′d(K1r
′
d
2 + K2r

′
d
4 + K3r

′
d
6 + . . .) (1)

wherex′d = (xd − crad) andrd =|| x′d ||
Other models for radial distortion have been proposed.

Fitzgibbon [4] proposed thedivision modelwhere,

xu =
xd

(1 + K1rd
2 + K2rd

4 + K3rd
6 + . . .)

(2)

The above equation assumes that the center of radial distor-
tion is given and the distorted images,Ii

ds are transformed
so that the center of radial distortion is the origin.

Among the other models proposed, an important one is
the fish-eye or the equidistant model. The model proposes
that the distance between the an image point and the center
of radial distortion is proportional to the angle between the
corresponding 3D point, the optical center and the optical
axis.

In this paper, weassume that the center of radial distor-
tion is knownand the distorted images are transformed so
that the center of radial distortion is the origin. Typically,
we assume that the center of radial distortion coincides with
the center of the image. We have experimentally verified
that this is a good approximation and that including param-
eters for the center of radial distortion in the estimation does
not significantly improve the results. For the purpose of es-
timating the radial distortion parameters, we show results by
using the division model. However, we are free to choose
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the type/parameters of the radial distortion model, that we
deem fit, because we have been able to separate the the esti-
mation of the multi-view relation (the radial trifocal tensor)
and the estimation of the parameters of radial distortion into
two different stages (in contrast to [4], [9], where the esti-
mation is done simultaneously and the problem formulation
is dependent on the radial distortion model used).

3. Radial 1D Camera
Let the center of radial distortion be the origin. In the pres-
ence of large, unknown radial distortion, only the direction
in the image is precisely known. Consider the image point,
xd = (xd, yd, 1)T . The direction to this point from the
center of radial distortion can be represented by the 1D ho-
mogenous vectord = (y,−x)T . A line passing through
xd = (x, y, 1)T and thecrad (which is equal to the ori-
gin) is given bŷlrad=xd × crad =(y,−x, 0)T . Since all
radial lines,l̂rad, have their last component equal to zero,
we can represent the space of radial lines, using 1D ho-
mogenous vectors. Thus, we will denote the radial lines,
by lrad = (y,−x)T . Note that the undistorted image point
corresponding toxd lies on l̂rad. Thus by representing the
distorted image as a 1D image consisting of radial lines, we
factor out theunknown deviationfrom the pin-hole model
(which is along the radial line), but preserve theprecise in-
formation(which is the direction of the radial line).

Definition: The radial 1D camera represents the map-
ping of a point on the scene-plane,Π, to a radial line in the
image (i.e., the line passing through the the center of radial
distortion). Since it is a mapping fromP2 to P1, it can be
represented by a2×3 matrix and has 5 degrees of freedom.

4. Radial Trifocal Tensor
Consider the pointX, lying on Π, that projects onto the
linesl2×1, l′ andl′′. Then it projects by the following set of
equations,

λl = P2×3X
λ′l′ = P′

2×3X
λ′′l′′ = P′′

2×3X
(3)

These equations can be rewritten in matrix format as, P2×3 l 0 0
P′

2×3 0 l′ 0
P′′

2×3 0 0 l′′




X
−λ
−λ′

−λ′′

 = 0 (4)

Since we know that a solution exists, the right null-space
of the6 × 6 measurement matrix should have non-zero di-
mension, which implies that

det

 P2×3 l 0 0
P′

2×3 0 l′ 0
P′′

2×3 0 0 l′′

 = 0 (5)

Expansion of the determinant produces the unique trilinear
constraint for 1D views,

2∑
i=1

2∑
j=1

2∑
k=1

Tijklil′jl
′′
k = 0 (6)

Tijk is the2 × 2 × 2 homogeneous radial trifocal ten-
sor of the three 1D radial cameras. Elements ofT can
be written as3 × 3 minors of the joint projection ma-

trix
[
PT P

′T
P

′′T
]T

with each row (of the minor) coming

from a different camera matrix.
It can be shown that for 1D cameras observing a plane,

we can obtain no higher-order constraints (i.e, from 4 or
more views). Further, the radial trifocal tensor is a minimal
parameterization of the three 1D cameras as the d.o.f can
be shown to match,2 × 2 × 2 − 1 = 7 = 3 × (2 × 3 −
1)− (3× 3− 1) (with the LHS being the d.o.f ofT and the
RHS being the d.o.f of the three uncalibrated views upto a
projectivity) and has no internal constraints.

The radial trifocal tensor can be linearly estimated given
seven corresponding triplets (where every triplet gives a
linear constraint on the parameters of the radial trifocal
tensor using equation [6]) Given more than seven corre-
spondences, we can obtain the linear least squares solution.
Since the size of the minimal hypothesis, for the radial tri-
focal tensor, is 7 and it can be estimated linearly, we can use
a robust sieve, like RANSAC, to estimate it.

The trifocal tensor for 1D cameras and its properties
were first studied in [3] in the context of planar motion re-
covery.

5. Reconstruction of the Plane
We now consider the problem of reconstructing points (on
the plane,Π) whose corresponding image triplets have been
identified in the three views. Note that the input points are in
the distorted images and hence only the direction informa-
tion from these points is precise, but the distance from the
center of radial distortion is unknown. However, by consid-
ering the 2D distorted images as 1D images consisting of
radial lines, and then computing the correspondingradial
trifocal tensor, we have been able to glean only the infor-
mation that is conforming to the pin-hole model and now
we will do a reconstruction based on it. Also note that we
have not made any assumption about the type/parameters
of the distortion model during the estimation of the radial
trifocal tensor (which was dealt with in the previous sec-
tion) nor shall any assumption be made about the distortion
model during the projective reconstruction of the plane,Π.

Given the radial trifocal tensor, we can estimate the three
uncalibrated camera matrices (see Appendix for the details).
However, for every valid radial trifocal tensor, we will have
two possible triplets of camera matrices that generate the
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same radial trifocal tensor. This inherent two-way ambi-
guity was studied by [10] and also in [6]. We obtain two
possible (projective) reconstructions of the planeΠ, from
the two sets of camera matrices. This ambiguity will be re-
solved once we include additional constraints by fitting our
radial distortion model (see next section).

Suppose we have calibrated the three radial cameras upto
a projectivity. Points on the real-world plane,Π , can then
be reconstructed by back-projecting the corresponding ra-
dial lines [7].

L = PT l
L′ = P′T l′

L′′ = P′′T l′′
(7)

Since we are reconstructing points on a plane,Π, only
two lines are required to obtain a unique point. With three
lines, we can find a least-square solution as the right sin-
gular vector of the line matrix,[LL′ L′′]T . Note that one
can find more matching features in between two views as
compared to across three views. Thus, once we have esti-
mated the radial trifocal tensor using corresponding triplets
of points, we can reconstruct any feature onΠ that can be
matched in two views. These additional points, thus would
give us more data to estimate the radial distortion parame-
ters for a particular view. To avoid the inclusion of outliers,
a robust procedure is also used when computing the distor-
tion parameters.

6. Estimating Distortion Parameters
We have only used the direction of the triplets in their cor-
responding distorted images, to compute the reconstruction.
Thus, we now have a projective reconstruction of points on
the real-world plane,Π, as if we had started from three im-
ages conforming to the pin-hole model. We now wish to es-
timate the distortion parameters that would take points from
I1
d to I1

u.

6.1. Estimating the homography fromΠ to the
undistorted images

Consider the projection matrix of the first radial camera,
PT

3×2 =
[
p>1 p>2

]
, wherep1 andp2 are the rows of2 × 3

matrix,P.

l =
[

l1
l2

]
=

[
p1

p2

]
X (8)

SupposeX projects ontoxu in the first image (I1
u, con-

forming to the pin-hole model). Also, suppose thatX
projects onto the linel = [l1 l2]

T , in the first distorted

image(I1
d ). Then,xu is of the formλ

[
−l2
l1

]
(since the

center of distortion is(0, 0)T , and deviation is only along
the radial line).

The homographyH from Π to I1
u, would mapX to xu.

From the observation made above, we can estimate the first
two rows ofH as

H =

 −p2

p1

h3

 (9)

whereh3 = (h31, h32, h33)T is unknown.
Let

Su = {

 xi
u

yi
u

1

 | i = 1 . . . n}

be the set of coordinates of the feature points in the undis-
torted image,I1

u.
Then by estimating the homography,H, upto three un-

known parameters, as we have done above, we are able to
express the set,Su, as

Su(h31, h32, h33) = {

 −p2 ·Xi

p1 ·Xi

[h31 h32 h33] ·Xi

 | i = 1 . . . n}

(10)
The undistorted coordinates (xu) of all the feature points,
together, are thus now known upto only three parameters
(of h3) in total.

6.2. Computing the distortion parameters
We will now estimate the distortion parameters of the divi-
sion model1. The transformation fromI1

d to I1
u, induced by

the distortion parameters,is

xu =
xd

(1 + K1rd
2 + K2rd

4 + K3rd
6 + . . .)

(11)

The transformation fromΠ to I1
u, induced byH, is

λ

[
xu

1

]
=

 −p2X
p1X
h3X

 (12)

with λ an unknown scale factor. Since the two points are
the same, the vectors representing them should be parallel.
Thus their cross-product should be equal to zero [7]. −p2X

p1X
h3X

×

 xd

yd

(1 + K1rd
2 + . . .)

 = 0 (13)

1Note that everything up to this stage was independent of any assump-
tion on the form of the radial distortion. Therefore, we could also use
a different distortion model. Depending on the type/parameters of distor-
tion, we may or may not be able to estimate the last row of the homography
and the distortion parameters linearly. However, the relations that we will
derive are valid irrespective of the model used.
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Thus every point gives us two equations,[
xd(h3X) + p2X(K1r

2
d + . . .)

yd(h3X)− p1X(K1r
2
d + . . .)

]
=

[
(−p2X)
(p1X)

]
(14)

which can be rewritten as,

[
xdX (p2X)[r2

d r4
d . . .]

ydX (−p1X)[r2
d r4

d . . .]

]
h>3
K1

K2

...

 =
[

(−p2X)
(p1X)

]

(15)
These two equations are in general dependent, but it is best
to use them both to avoid degenerate cases and deal with
orientation ambiguities.

Given more than3 + n feature points (wheren is the
number of distortion parameters), we can solve the system
of equations we would get, in a least-squares sense.

Using the above set of equations directly, we minimize
an algebraic error. A better solution would be to minimize
the geometric error in the distorted image,I1

d (since that is
the input image). For that we need to divide each of the
equations given in Eq( 15), by1

h3X
. This would then min-

imize the sum (over all the feature points) of the following
squared-error.

||

[
xd − −p2X

h3X
(1 + K1r

2
d + . . .)

yd − p1X
h3X

(1 + K1r
2
d + . . .)

]
||2 (16)

which is distance, in I1
d , from (xd, yd)T to[

−p2X
h3X

p1X
h3X

]T

(1 + K1r
2
d + . . .) i.e, the pixel cor-

responding to the feature point inI1
u, warped by the

distortion parameters ((1 + K1r
2
d + . . .)). However, we

don’t have 1
h3X

, sinceh3 is unknown, but by scaling with
||(xd,yd)T ||

||(−p2X,p1X)T || we can at least normalize for the arbitrary
scale ofX. We scale both of the equations, generated by
each feature point, before stacking them in the matrix to
obtain the least-squares solution.

This system of equations could be refined iteratively us-
ing the previous approximation ofh3 to normalize the equa-
tions or alternatively a non-linear minimization of Eq. (16)
could be used to refine our linear solution. The results de-
scribed in the experimental section are obtained using the
linear method only.

7. Experiments
In our first experiment, the input image-set was a triplet
obtained by a rotating camera. The images were acquired
using a Nikon 16mm fish-eye lens mounted on a Kodak-
DCS760 camera. The image resolution was 3032x2008 pix-
els. 40 triplets were hand-clicked and fed as input to the

system. We estimate the input error was 2-3 pixels/point
(see Figure 3). RANSAC based on the radial trifocal tensor,
produced 36 inliers (when the threshold was set to 3-4 pix-
els). A second RANSAC based on reprojection error, pro-
duced 29 inliers (threshold being 2 pixels). Figure 1 plots
(1 + K1r

2
d + · · ·K4r

8
d) vs. rd, obtained when we consider

points from only one view (for each view) and when points
from all the three views are combined. Note that the curve
for view 2, deviates from the others around radius of 1.2-
1.4 . This is expected as view 2 (see Figure 3) has most of
the input points concentrated at the center of the image. We

Figure 1:Top:Distortion curves, when coefficients are com-
puted by using feature points from individual/all views. Ra-
dius of points used shown at the top.Bottom: Linearly es-
timated distortion curves for varying number of coefficients
(3-8)

also examined the performance of our procedure with dif-
ferent number of distortion parameters (3-8). Figure 1 plots
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Figure 3: Three images taken with a rotating camera (with selected feature triplets marked)
the corresponding distortion curves. Note that for most of
the image the curves are very close. The deviation occurs
only in the periphery of the image (the radius of the image is
shown by the vertical line atRmax). Finally in Figure 2 we
display the undistorted image obtained by warping the in-
put images with the computed distortion parameters. Note
how straight lines in the scene appear as straight lines in
the images, even at the periphery of the image. The RMS
reprojection error is less than a pixel.

Figure 2: Left Image unwarped to conform to pin-hole
model, using 4 distortion coefficients

In our second experiment, 3 images of a courtyard, ac-
quired by a Sigma 8mm-f4-EX fish-eye lens with view an-
gle180o mounted on a Canon EOS-1Ds digital camera were
used. The image resolution was 2560x2560 pixels. Since
the camera center in the 3 views is not the same, we in-
put 44 corresponding triplets, that lie on a real-world plane
(see Figure 4). We observed that the average clicking error
was 1-3 pixels. As in the previous experiment, RANSAC,
based on the radial trifocal tensor, was used, resulting in 30
inlier triplets. A second RANSAC based on reprojection

Figure 5: Cubemap of undistorted left image (warping
done, per pixel, onto a 2000x2000 image, using 5 distor-
tion parameters)
error, was used to estimate the distortion parameters. A dis-
tortion model with 5 parameters was estimated and used to
compute a undistorted image, for one of the views, using a
cubemap projection (see Figure 5). Note that we are able
to accurately undistort, not only regions in the center of the
image, but also the periphery of the image. Since the images
were acquired using a full180o fish-eye lens, it shows that
the model is robust for wide-angle lenses withvery highde-
gree of distortion. In this case, the RMS reprojection error
was around 2-3 pixels.

8. Conclusion and Future Work
In this paper we have presented a stratified approach to re-
cover the radial distortion of a camera observing a plane or
undergoing pure rotation. In a first step, we linearly esti-
mate theradial trifocal tensor from a minimum of seven
correspondences across three views. This allows us to re-
cover the projective structure of the plane and the radial
camera matrices. From this point on several approaches
could be used to recover the radial distortion. We propose a
linear approach that can estimate any number of radial dis-
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Figure 4: Three images, taken with different camera centers, input to the system (matching points input to the system are
marked)

Figure 6: Distortion Curves1 +K1r
2
d + · · ·+ Knr2n

d when
different number parameters (n = 4 − 8, marked next to
corresponding curve) are used. Note that most of the curves
are well-behaved even atr = Rmax.

tortion parameters of the division model. We have validated
our approach using two real-world datasets. One of a fish-
eye lens observing a plane and one of a wide-field of view
camera undergoing pure rotation. We show that the results
of our linear approach are very good.

In the future, we intend to investigate the possibility of
using a similar multiple view relation between four views,
i.e. the radial quadrifocal tensor, to calibrate omnidirec-
tional cameras from images of a general 3D scene. We also
intend to investigate more in depth the possibilities offered
by the radial trifocal tensor for pure rotation as we believe
a direct non-parametric estimation of the radial distortion
should be possible.

Appendix

Consider Eq( 5) in Section 4. Let the camera matrices be

P =
[

P1

P2

]
and so on (i.e,{Pi}2

i=1 is theith row of the

corresponding2 × 3 camera matrix). It can be written as,

2∑
i=1

2∑
j=1

2∑
k=1

det

 P∼i

P
′

∼j

P
′′

∼k

 (−1)i+j+k+1lil
′

j l
′′

k = 0 (17)

where(∼ i)i=1 = 2 and vice-versa.

Once we have evaluatedT, we can computeS,
which is a 2 × 2 × 2 homogenous tensor, such that,
S∼i∼j∼k(−1)i+j+k+1 = Tijk. We then haveSijk =

det

 Pi

P
′

j

P
′′

k

. We can then set up a projective basis, by
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choosing

 P
P

′

P
′′

 =


1 0 0
p p p
0 1 0

p21 p22 p23

0 0 1
p31 p32 p33

 (18)

Then, if we normalizeS such thatS111 = 1, we can ob-
tain p = S211, p22 = S121, p33 = S112, S221 = p(p22 −
p21), S212 = (−p)(p33−p31). We then have to evaluatep23

andp32 and have two equations,S122 = p22p33 − p23p32

andS222 = p(S122−(p21p33−p31p23)+p21p32−p31p22).
This allows us to solve for{p23, p32} by solving a quadratic
equation. And when we get two real unequal roots, we have
a two-way ambiguity in the projective structure of the cam-
eras.
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