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Abstract

We introduce a geometric transition between two homogeneous three-dimensional geome-

tries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-

dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe

a method for constructing a natural continuation of this path into AdS structures. In

particular, when hyperbolic cone manifolds collapse, the AdS manifolds generated on the

“other side” of the transition have tachyon singularities. The method involves the study of

a new transitional geometry called half-pipe geometry.

We also discuss combinatorial/algebraic tools for constructing transitions using ideal

tetrahedra. Using these tools we prove that transitions can always be constructed when the

underlying manifold is a punctured torus bundle.
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Preface

This thesis focuses on connections between two particular types of geometry: hyperbolic ge-

ometry and anti de Sitter (AdS) geometry. Though hyperbolic manifolds have been studied

for over a century, it was Thurston’s ground-breaking work starting in the late 1970s that

established hyperbolic geometry as a vital tool for understanding three-manifolds. Today,

with Perelman’s proof of Thurston’s Geometrization Conjecture, the study of hyperbolic

manifolds is at the heart of the most important questions in low-dimensional topology. Anti

de Sitter geometry is a Lorentzian analogue of hyperbolic geometry. Witten [Wit88] and

others have studied such constant curvature Lorentzian spaces as simple models for 2 + 1

dimensional gravity. In the last ten years, AdS geometry has drawn much renewed interest

due to its role in the most successful realizations of the holographic principle in string theory

[Mal99].

Though historically the studies of hyperbolic geometry and anti de Sitter geometry have

been somewhat disjoint, many parallels have appeared in recent years. One breakthrough

along these lines is Mess’s classification of maximal AdS space-times [Mes07, ABB+07] and

its remarkable similarity to the Simultaneous Uniformization Theorem of Bers [Ber60] for

quasi-Fuchsian hyperbolic manifolds. Stemming from Mess’s work, results and questions in

hyperbolic and AdS geometry have begun to appear in tandem, suggesting the existence

of a deeper link between the two geometries. The search for such a link is one motivating

force behind this research.

The work presented here on geometric transitions establishes an explicit connection

between three-dimensional hyperbolic and AdS geometry, strengthening the analogies de-

scribed above. Many of the ideas are inspired by Craig Hodgson’s study of degeneration

and regeneration of hyperbolic structures [Hod86] and by the work of Joan Porti and col-

laborators on regeneration of hyperbolic structures from various other geometric structures

[Por98, HPS01, Por02, Por10].
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Chapter 1

Introduction

1.1 Geometric transitions: from H3 to AdS3

The study of deformation spaces of geometric structures is a rich subject with many inter-

esting questions. Of particular interest is the question of how and why geometric structures

degenerate. The overarching philosophy in three dimensions, based loosely on Thurston’s

geometrization program, is that when a path of geometric manifolds degenerates, the de-

generation is calling for a transition to a different type of geometry in order to continue the

path. One prominent example of this is the transition from hyperbolic to spherical, studied

by Hodgson [Hod86] and Porti [Por98]. A path of hyperbolic structures (say compact with

collapse

rescale

Figure 1.1: Hyperbolic structures on a sphere with three cone points (of equal angle) collapse
down to a point as the cone angles increase to 2π

3 . After rescaling the metric, the structures
limit to a Euclidean sphere with cone points and then transition to spherical cone structures.

singularities) that collapses down to a point can be isotropically rescaled and made to con-

verge to a Euclidean structure. This Euclidean structure in turn determines a regeneration

from the collapsed structure (a point) to a path of expanding spherical structures (which

when rescaled also approximate the Euclidean structure). This phenomenon is an example

1



2 CHAPTER 1. INTRODUCTION

of a geometric transition. The focus of this thesis is the study of geometric transitions in the

context of a different degeneration behavior, that of three-dimensional structures collapsing

down onto a hyperbolic plane.

Figure 1.2: Fundamental domains for hyperbolic cone manifolds collapse onto a hyperbolic
plane.

To begin the discussion, we focus our attention on hyperbolic structures on a compact

three-manifold M with boundary. Let Dt : M̃ → H3 be a family of developing maps de-

fined for t > 0 and suppose Dt converges to D0 a local submersion onto a two dimensional

hyperbolic plane P. Then D0 defines a co-dimension one transversely hyperbolic foliation.

The problem of regenerating hyperbolic structures from this data was examined by Hodg-

son [Hod86], and later in a specific case by Porti [Por10]. However, it had not yet been

established how to construct a geometric transition in this context. Our point of view,

based on projective geometry, is that such a degeneration naturally suggests a transition

to AdS geometry. As motivation, note that the isometry groups Isom(H3) = SO(3, 1) and

Isom(AdS3) = SO(2, 2) are naturally subgroups of the projective group PGL(4,R). The

intersection SO(3, 1) ∩ SO(2, 2) is, with suitable choice of coordinates, exactly the copy of

O(2, 1) that preserves the hyperbolic plane P.

Roughly, the transition from hyperbolic to AdS geometry is constructed similarly to

the transition from hyperbolic to spherical, alluded to above. As the hyperbolic structures

degenerate, the collapsing direction is rescaled so that the structures converge to a robust

three-dimensional structure called a half-pipe (HP) structure. Interpreting the hyperbolic

structures as projective structures, this rescaling is really a projective change of coordinates.

This construction is given in Chapter 3.

The key for constructing transitions is that HP structures contain precisely the informa-

tion needed to regenerate to both hyperbolic and AdS structures. In fact, if a regeneration

can be constructed on the level of representations, then an HP structure can be “expo-

nentiated” to produce a regeneration to robust geometric structures. We simply note here

that HP geometry plays the same central role in the transition between hyperbolic and AdS
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geometry as Euclidean geometry plays in the transition between hyperbolic and spherical.

Figure 1.3: Rescaling the hyperboloid model for H2. The limit is the hyperboloid model for half-pipe
(HP) geometry.

1.1.1 Cone/tachyon transitions

Chapter 4 focuses on transitions in the context of hyperbolic cone structures (see Section 4.3

or e.g. [CHK00, BLP05, Bro07]). In this case, the AdS structures generated on the “other

side” of the transition have tachyon singularities, a natural Lorentzian analogue to cone

singularities (see [BBS09], or Section 4.4). Recall that a cone singularity is a singularity

along a geodesic axis such that the holonomy of a meridian encircling the axis is a rotation

around the axis. Similarly, a tachyon is a singularity along a space-like axis such that the

holonomy of a meridian encircling the axis is a Lorentz boost perpendicular to the axis. The

magnitude of the boost is called the tachyon mass. The following is proved in Chapter 4:

Theorem 6. Let N be a closed three-manifold, with Σ a knot, and let M = N \ Σ. Let ht

be a path of hyperbolic cone structures on (N,Σ) defined for t > 0. Suppose that:

• As t → 0, the cone angle approaches 2π and ht limits to a transversely hyperbolic

foliation with holonomy ρ : π1M → O(2, 1).

• There are projective structures Pt, defined for t > 0, equivalent to ht, and which

converge to an HP structure.

• H1(π1M, so(2, 1)Adρ) = R.

Then a transition to AdS structures with tachyons exists: We can continue the path Pt to

t < 0 so that Pt is projectively equivalent to an AdS structure with a tachyon singularity

(of mass O(t)). The same result holds when the roles of hyperbolic and AdS structures are

interchanged.
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The proof of the theorem involves a generalization of cone singularities to projective

geometry (Section 4.2). This class of singularities, called cone-like singularities, includes

cone singularities in hyperbolic geometry, tachyons in AdS geometry, and the correspond-

ing singularity in HP geometry. We prove that deformations of a projective structure with

cone-like singularities are locally in correspondence with appropriate deformations of the

holonomy representation. Then, we analyze the representation variety to produce represen-

tations with the needed properties and prove a regeneration theorem going from singular

HP structures to singular hyperbolic and AdS structures (Theorem 4 of 4.7) which implies

the result.

The cohomology condition in Theorem 6 is satisfied by a variety of examples, including

examples coming from small Seifert fiber spaces and Anosov torus bundles. This condition,

reminiscent of a similar condition appearing in Porti’s regeneration theorem for Euclidean

cone structures [Por98], is simply a way to guarantee smoothness of the representation

variety. Our construction of a geometric transition really only requires that a transition

exists on the level of representations which is implied by (but does not require) smoothness.

In Section 4.11, we study examples of collapsing structures for which the singular locus has

two components. In this case the SO(2, 1) representation variety is not smooth, but we can

still produce transitions. We also observe an interesting flexibility phenomenon in this case:

A transitional HP structure can be deformed so that it no longer regenerates to hyperbolic

structures.

1.2 Ideal triangulations

In Chapter 5, we introduce tools for studying many of the above questions in the case

when an ideal triangulation is available. Ideal triangulations are featured in the volume

maximization program of Casson-Rivin [Riv94], the recent variational formulation of the

Poincaré conjecture by Luo [Luo10], and many other articles (e.g. [PP00, Lac00]). Perhaps

the most widespread use of ideal triangulations is in the study of deformation spaces of

singular hyperbolic structures, which are constructed as varieties of solutions to Thurston’s

equations ([Thu80] or see [NZ85]). We generalize this construction to study deformation

spaces of triangulated AdS structures, transversely hyperbolic foliations, and HP structures.

Let M3 have a union of tori as boundary and assume that M3 has a fixed topological ideal

triangulation T = {T1, . . . , Tn}.
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1.2.1 Deformation Varieties

Recall that a hyperbolic ideal tetrahedron is described up to isometry by a complex shape

parameter (See [Thu80] or Section 2.2.4 for a description). Defining a hyperbolic structure

on (M, T ) amounts to assigning complex numbers zj to each tetrahedron Tj such that the zj

satisfy Thurston’s edge consistency equations. Solutions to these algebraic equations make

up the hyperbolic deformation variety. A point (zj) for which all tetrahedra are positively

oriented (i.e. Im(zj) > 0) determines a robust hyperbolic structure. A degenerate H2 ideal

tetrahedron is a hyperbolic tetrahedron with real shape parameter. Such a tetrahedron is

collapsed onto a plane. The real deformation variety of real solutions to Thurston’s equa-

tions describes transversely hyperbolic foliations built out of these degenerate tetrahedra.

These foliations have Dehn surgery singularities as defined by Hodgson in [Hod86].

In Section 5.2.3, deformation spaces of AdS structures built of anti de Sitter ideal tetra-

hedra are constructed. All faces of these tetrahedra are space-like hyperbolic ideal triangles.

It turns out that the shape of a tetrahedron is determined by a parameter z lying in the

algebra R + Rτ where τ commutes with R and satisfies τ2 = +1. An element a + bτ has

square-norm defined by |a+bτ |2 = a2−b2. The parameter z determines an ideal tetrahedron

if and only if z, 1
1−z , and z−1

z (are defined and) have positive square-norm (such elements

are called space-like). The AdS deformation variety consists of space-like solutions to the

edge consistency equations over R+Rτ . A point (zj) for which all tetrahedra are positively

oriented (Im(zj) > 0) determines a robust AdS structure. We emphasize that the absence

of a Riemannian metric makes AdS structures very difficult to study. These combinatorial

and algebraic methods give an easy way to construct and deform AdS structures.

Remark 1. A half-space model of AdS3, with isometries given by PGL+(2,R+Rτ) acting

by Mobius transformations, is constructed in Appendix A. The ideal boundary in this

model is a projectivization of (R + Rτ)2.

1.2.2 Regeneration results

The study of the real deformation variety is crucial for constructing regenerations to hyper-

bolic and AdS structures on (M, T ). In fact, if the real deformation variety is smooth at a

point, then any positive tangent vector determines regenerations to robust hyperbolic and

anti de Sitter structures (Section 5.3). In the case that M is a punctured torus bundle with

anosov monodromy, we identify two canonical connected components of the deformation
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variety for which every point has the best possible properties. The following theorem is

discussed in Chapter 6:

Theorem 7. Let M3 be a punctured torus bundle with Anosov monodromy and let T be the

monodromy ideal triangulation on M . Let DR be the deformation variety of of transversely

hyperbolic foliations on (M, T ). Then, there are two canonical smooth, one dimensional,

connected components V+ of DR with positive tangent vectors at every point. Further, each

component of V+ is parameterized by the (signed) length of the puncture curve.

Corollary. Any transversely hyperbolic foliation on (M, T ) belonging to V+ regenerates to

hyperbolic and AdS structures.

1.2.3 Triangulated transitions and HP tetrahedra

It is possible to frame the triangulated transition problem in terms of solving Thurston’s

edge consistency equations over a varying path of sub-algebras of a larger Clifford algebra.

These sub-algebras smoothly transition from C to R + Rτ and pass through a transitional

shape parameter algebra R+Rσ, where σ2 = 0, that describes shape parameters for half-pipe

ideal tetrahedra. This construction is discussed in Section 5.4.



Chapter 2

Geometric structures

In this chapter we give a description of the (X,G) formalism that is ubiquitous in the study

of locally homogeneous geometric structures. We will then describe hyperbolic geometry,

AdS geometry, and a few other examples using this formalism. The material in this chapter

is standard; references will be given along the way. We give an intuitive account of the

important concepts rather than rigorous proofs.

2.1 (X,G) structures

Let X be a smooth manifold with G a Lie group of diffeomorphisms of X acting transitively.

We assume further that the elements of G are analytic in the sense that an element is

determined by its restriction to any open set in X. The following definition is originally

due to Ehresmann [Ehr36], though much of the modern study of homogeneous geometric

structures is based on the work of Thurston [Thu80] (or see Goldman’s expository article

[Gol10]).

Definition 1. An (X,G) structure on a manifold M is given by a family of charts ϕα :

Uα → X which cover M such that each transition map ϕαϕ
−1
β is the restriction of an

element gαβ ∈ G.

Note that the transition map ϕαϕ
−1
β is only defined on the intersection ϕβ(Uα ∩ Uβ).

However, if this intersection is non-empty, the element gαβ is uniquely determined because

of the analytic condition.

Choosing a base chart ϕ0 : U0 → X, we build a developing map D : M̃ → X as follows.

7
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Fix a basepoint p ∈ U0. We identify M̃ with the space of paths in M originating at p

up to homotopy rel endpoints. Begin by defining D(p) = ϕ0(p) and define D along paths

originating from p via analytic continuation as follows. Consider a path γ : [0, 1] → M ,

with γ(0) = p. Find finitely many charts U0, U1, . . . , Uk covering γ, where we assume the

first chart to be our base chart. Further assume that consecutive charts overlap. If γ(t) lies

in U0, define D(γ(t)) = ϕ0(γ(t)). If γ(t) lies in U1, then define D(γ(t)) = g01ϕ1(γ(t)). In

general, if γ(t) lies in the jth open set Uj , define

D(γ(t)) = g01g12 · · · gj−1,jϕj(γ(t)).

Note that D is well-defined, for on the overlap Uj ∩ Uj+1, we have ϕj = gj,j+1ϕj+1 which

implies that

g01g12 · · · gj−1,jϕj = g01g12 · · · gj−1,jgj,j+1ϕj+1.

It is a straightforward exercise to show that D is well defined independent of the covering

U1, . . . , Uk of γ and independent of γ up to homotopy rel endpoints. Thus D is a well-defined

local diffeomorphism.

ϕ0

ϕ1

g01

XM ϕ2

g01g12

Figure 2.1: A developing map is constructed via analytic continuation of the charts along
paths.

Given an (X,G) manifold M with charts (Uα, ϕα) and another (X,G) manifold N with

charts (Vβ, ψβ), an (X,G) isometry or equivalence is a diffeomorphism Φ : M → N so that

ϕα ◦Φ ◦ ψ−1
β is the restriction of an element g ∈ G whenever defined. Each lift Φ̃ : M̃ → Ñ

of Φ is an (X,G) isometry of the universal covers. Let DM , DN be developing maps for M

and N . In a small neighborhood of x ∈ M̃ , DM is a diffeomorphism and DN ◦ Φ̃ ◦D−1
M is
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the restriction of an element g(x, Φ̃) ∈ G. However, g(x, Φ̃) is locally constant in x and so

it does not depend on x at all. That is, for any Φ̃ there is a unique g(Φ̃) ∈ G such that

DN ◦ Φ̃ = g(Φ̃) ◦DM .

In the case that M = N , with Φ = Id, the lifts Φ̃ are exactly the deck transformations of

M̃ corresponding to elements γ ∈ π1M . The homomorphism ρ : γ 7→ g(γ) is called the

holonomy representation. We record this information in a proposition:

Proposition 1. Given an (X,G) structure on M , the choice of a base chart (U0, ϕ0) de-

termines a developing map D : M̃ → X and holonomy representation ρ : π1M → G. Note

that D is a local diffeomorphism and is equivariant with respect to ρ:

D(γ · x) = ρ(γ)D(x)

where on the left hand side γ · x refers to deck translation by γ ∈ π1M .

Definition 2. An (X,G) structure is complete if the developing map is a covering map.

Assume that X is simply connected and that M is a complete (X,G) manifold. Then

the developing map is a diffeomorphism and we identify M̃ = X. Note that the holon-

omy representation ρ must be discrete and faithful. Further, Γ = ρ(π1M) acts properly

discontinuously on X and we may identify M with the quotient M = X/Γ.

Remark 2. In the case that X has a G-invariant Riemannian metric, this definition of

completeness is equivalent to geodesic completeness.

2.1.1 Deforming (X,G) structures

A smooth family of (X,G) structures on a manifold M with boundary is given by a smooth

family of developing maps Dt : M̃ → X equivariant with respect to a smooth family of

holonomy representations ρt : π1M → G.

Definition 3. Two deformationsDt and Ft of a given structureD0 are considered equivalent

if there exists a path gt ∈ G and a path Φt of diffeomorphisms defined on all but a small

neighborhood of ∂M so that

Dt = gt ◦ Ft ◦ Φ̃t

where Φ̃t is a lift of Φt to M̃ and we assume g0 = 1 and Φ̃0 = Id.
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A trivial deformation of D0 is of the form Dt = gt ◦D0 ◦ Φ̃t. In this case, the holonomy

representations differ by a path of conjugations:

ρt = gtρ0g
−1
t .

Such a deformation of the holonomy representation is also called trivial. Let R(π1M ;G)

be the space of representations up to conjugation (we only consider points at which this

quotient is reasonable). Let D(M ;X,G) be the space of all (X,G) structures on M up to

the equivalence described above. The following fact is crucial for the study of deformations

of (X,G) structures.

Proposition 2 (Thurston). The map hol : D(M ;X,G) → R(π1M ;G), which maps an

(X,G) structure to its holonomy representation, is (well-defined and) a local homeomor-

phism.

The injectivity and well-defined-ness is not hard to see. For if we have two paths of

(X,G) developing maps Dt, Ft with corresponding holonomy representations ρt and σt so

that ρt = gtσtg
−1
t . Then, by replacing Ft with the equivalent deformation g−1

t Ft, we may

assume that ρt = σt. Next, since F0 = D0, we can find diffeomorphisms Ψt such that

Ft = Dt ◦ Ψt. Since Ft and Dt are both equivariant with respect to ρt, we must have Ψt

invariant under the action of π1M , so that Ψt = Φ̃t is a lift of a diffeomorphism of M . The

local surjectivity is a little bit harder. We give the proof in Lemma 5 of Section 3.6.

Remark 3. We emphasize that the definition of D(M ;X,G) above does not consider

behavior at the boundary. In particular, given a structureD0 with special geometric features

at ∂M , Proposition 2 may produce nearby (X,G) structures with very different boundary

geometry. Often, it is desirable to deform (X,G) structures with control over the geometry

at the boundary. This is the case, for example, in the study of hyperbolic cone structures

(see [HK98]). The Proposition is not strong enough in these cases, and a thorough study of

the boundary geometry is needed. In Chapter 4 we will pay careful attention to this issue

as we deform from hyperbolic cone structures to AdS tachyon structures.
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2.1.2 Infinitesimal Deformations

Consider a smooth family of representations ρt : π1M → G. The derivative of the homo-

morphism condition (evaluated at t = 0) gives that

ρ′(ab) = ρ′(a)ρ0(b) + ρ0(a)ρ′(b).

This is a statement in the tangent space at ρ0(ab) in G. In order to translate all of the

tangent vectors back to the identity, we multiply this equation by ρ0(ab)−1 :

ρ′(ab)ρ0(ab)−1 = ρ′(a)ρ0(a)−1 + ρ0(a)ρ′(b)ρ0(b)−1ρ0(a)−1

= ρ′(a)ρ0(a)−1 +Adρ0(a)(ρ
′(b)ρ0(b)−1).

Letting g = TIdG denote the Lie algebra of G, define z : π1M → g by z(γ) = ρ′(γ)ρ0(γ)−1.

Then z satisfies the cocycle condition:

z(ab) = z(a) +Adρ0(a)z(b). (2.1)

The group cocycles Z1(π1M, gAdρ0) are defined to be all functions z satisfying Equation 2.1

for all a, b ∈ π1M . We call z ∈ Z1(π1M, gAdρ0) an infinitesimal deformation of the rep-

resentation ρ0. Next, suppose ρt = gtρ0g
−1
t is a trivial deformation of ρ0. Differentiating

shows that

ρ′(γ)ρ0(γ)−1 = g′ −Adρ0(γ)g
′.

The co-boundaries B1(π1M, gAdρ0) are defined to be all group cocycles z such that

z(γ) = u−Adρ0(γ)u

for some u ∈ g. These are thought of as trivial infinitesimal deformations. Now define the

cohomology group

H1(π1M, gAdρ0) = Z1(π1M, gAdρ0)/B1(π1M, gAdρ0).

Proposition 3. If R(π1M ;G) is a smooth manifold at ρ0, then H1(π1M, gAdρ0) describes

the tangent space at ρ0.

Remark 4. In all cases of interest in this thesis, G is an algebraic group. In this case the
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representation space R(π1M ;G) can be given the structure of an algebraic variety.

2.1.3 Projective Geometry

We close this section with an important example of an (X,G) geometry which does not

come from a homogeneous Riemannian model space. The real projective space RPn is the

space of lines in Rn+1. It is an n-dimensional manifold, orientable if and only if n is odd.

The group GL(n + 1,R) acts by diffeomorphisms on RPn, with kernel given by its center

{λI : λ ∈ R∗}. Thus PGL(n + 1,R), defined to be the quotient of GL(n + 1,R) by its

center, acts faithfully by diffeomorphisms on RPn. A hyperplane of dimension k + 1 in

Rn+1 descends to a copy of RPk inside RPn, which we call a k-plane. The lines in RPn are

described by the case k = 1. They correspond to two-dimensional planes in Rn+1. Note

that k-planes in RPn are taken to other k-planes by PGL(n+1,R), so these are well defined

geometric objects in projective geometry; they play the role of totally geodesic hyperplanes

in a Riemannian model geometry.

Definition 4. A projective structure on a manifold Mn is an (X,G) structure for X = RPn,

G = PGL(n+ 1,R).

Remark 5. Usually, it most convenient to work with a simply connected model space. If

desired, R̃Pn can be used as the model for projective geometry. However, it turns out that

RPn has nicer global geometry than its universal cover. The best example of this is that

any two points in RPn are connected by a unique line, while this is not true in R̃Pn.

The geometry of projective structures is a vast subject with may interesting problems.

We mention in particular the rich theory of convex projective structures developed by

Goldman [Gol90], Choi-Goldman [CG97], Labourie [Lab97], Fock-Goncharov [FG07], and

others. We do not attempt to give an introduction to these ideas here. Rather, we continue

on to the main geometries of interest in this thesis: hyperbolic and anti de Sitter geometry.

Both are specializations of projective geometry.

2.2 Hyperbolic geometry

Hyperbolic space Hn is the unique simply connected Riemannian manifold with constant

sectional curvatures equal to negative one. Given a smooth manifold M , the data of a

hyperbolic metric on M (i.e. a Riemannian metric with sectional curvatures equal to −1) is
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equivalent to an (X,G) structure on M , where X = Hn and G = Isom(Hn) is the group of

isometries of Hn. We study hyperbolic structures on M using the formalism described in the

previous section. In this section we discuss several useful models for hyperbolic geometry,

along the way reviewing a small selection of well-known facts from this vast subject. For a

more thorough treatment, see [Thu80, Thu97, Rat94].

2.2.1 The hyperboloid model

Let Rn,1 denote Rn+1 equipped with the (n, 1) Minkowski form η:

η =

(
−1 0

0 In

)
.

The hyperboloid defined by xT ηx = −1 has two sheets, distinguished by the sign of the

first coordinate x1. Commonly, hyperbolic space is taken to be the sheet with x1 > 0. We

choose to define Hn as a quotient of the two-sheeted hyperboloid by the action of ±I, which

identifies the two sheets.

Hn = {x ∈ Rn+1 : xT ηx = −1}/{±I}.

The hyperboloid xT ηx = −1 inherits a Riemannian metric of constant curvature −1 from

the form η. The tangent space to a point x is given by the hyperplane x⊥ in Rn,1 and the

metric on that tangent space is the restriction of η. We also note that distances are easily

calculated in the hyperboloid model by − cosh d(x, x′) = xT ηx′.

The isometries of Hn are exactly the isometries of η considered up to ±I:

Isom(Hn) = PO(n, 1) := {A ∈ GL(n+ 1,R) : AT ηA = η}/{±I}.

The orientation preserving isometries are the isometries lying in the identity component of

PO(n, 1):

Isom+(Hn) = PO0(n, 1).

For n even, PO(n, 1) ∼= SO(n, 1) and PO0(n, 1) ∼= SO0(n, 1). For n odd, PO0(n, 1) ∼=
PSO(n, 1).

Remark 6. If we had chosen to think of Hn as the positive sheet of the hyperboloid xT ηx,
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rather than as a quotient, we would think of PO(n, 1) as the subgroup of O(n, 1) that

preserves the positive sheet.

The hyperboloid model is very useful for calculating geometric quantities like lengths

and angles because the metric η is easy to work with. In dimensions two and three, the upper

half-space model (Sections 2.2.3 and 2.2.4) is more visually appealing and so it is usually the

model of choice. For the purposes of studying geometric transitions, the projective model,

next up, will be most natural.

2.2.2 The projective model

The hyperboloid model for Hn intersects each line in Rn+1 in exactly one point or zero

points. Hence, the hyperboloid model defines a domain in RPn, which is known as the

projective model. This domain is given by

Hn = {x : xT ηx < 0}/scale.

The group PO(n, 1) ⊂ PGL(n + 1,R) is exactly the subgroup that preserves the domain

Hn ⊂ RPn. So, every hyperbolic structure is also a projective structure and we say that hy-

perbolic geometry is a specialization of projective geometry. Geodesic lines and hyperplanes

in Hn are given by lines and hyperplanes in RPn that intersect Hn.

The ideal boundary at infinity ∂∞Hn, given by

∂∞Hn = {x 6= 0 : xT ηx = 0}/scale

is precisely the boundary of (the closure of) Hn in RPn. The action of PO(n, 1) preserves

the boundary and it is often useful to describe the action of an isometry by its action on

the boundary. Although ∂∞Hn does not have an invariant Riemannian metric, it does have

an invariant flat conformal structure.

Proposition 4. A geodesic in Hn is determined by two distinct endpoints on ∂∞Hn.

We digress here to mention an important theorem about hyperbolic structures.

Theorem 1 (Mostow Rigidity). Let M be a closed manifold of dimension n ≥ 3. Then,

if M has a hyperbolic structure, it is unique. More specifically, if M and N are two closed

hyperbolic n-manifolds, then a homotopy equivalence M → N is homotopic to an isometry.
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The theorem implies, in particular, that a hyperbolic structure on a closed manifold M

can not be deformed. However, a natural question is whether or not a hyperbolic structure

on M can deform as a projective structure. It turns out, rather mysteriously, that sometimes

it can and sometimes it can not. See [CLT07].

2.2.3 n = 2: the upper half-plane model

The upper half-plane model is perhaps the most popular model for working with two-

dimensional hyperbolic geometry. It is defined as follows:

H2 = {z = x+ iy ∈ C : Im(z) = y > 0}

with metric given by

h =
dx2 + dy2

y2
.

The ideal boundary is given by RP1 = R ∪∞. The group of orientation preserving isome-

tries is PSL(2,R) acting by Mobius transformations. The orientation reversing isometries

are the 2 × 2 matrices of determinant equal to −1 acting by anti-holomorphic Mobius

transformations. Hence the entire isometry group is described by PGL(2,R).

One can check fairly easily that the geodesics in this model are half-circles in the complex

plane which meet the real axis at right angles. So every geodesic is determined by two

endpoints on ∂∞H2 = RP1.

Definition 5. An ideal triangle is a geodesic triangle in H2 determined by three distinct

vertices on the ideal boundary.

Figure 2.2: Two ideal triangles in the upper half-plane model of H2.

The following is an immediate corollary of the properties of Mobius transformations:
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Proposition 5. For any two ideal triangles 41,42 (with labeled vertices) in H2, there is

a unique isometry taking 41 to 42 (and preserving the labeling).

The correspondence between the upper half-plane model and the hyperboloid (or pro-

jective model) is given, on the level of isometry groups, by the following construction. We

identify R3 with the space of 2× 2 symmetric matrices Y using the coordinates

Y =

(
x1 + x2 x3

x3 x1 − x2

)
.

We identify PGL(2,R) with 2× 2 matrices of determinant ±1 up to multiplication by ±I.

Then A ∈ PGL(2,R) acts on R3 by

Y 7→ AY AT .

Note that the action preserves the determinant detY = x2
1 − x2

2 − x3
3 = −xT ηx, where

x = (x1, x2, x3). So, this gives a map PGL(2,R) → PO(2, 1). A straightforward (but

annoying) computation shows the map is an isomorphism.

2.2.4 n = 3: the upper half-space model

Similar to the half-plane model for H2, the upper half-space model for H3 is very popular

for explicit computation. We define it as follows:

H3 = {(x, y, z) ∈ R3 : z > 0}

with metric given by

h =
dx2 + dy2 + dz2

z2
.

Geodesics are again half-circles meeting the boundary, z = 0, at right angles. Totally

geodesic planes, which are isometric copies of H2, are half-spheres meeting the boundary at

right angles. All of the isometries of a given plane extend to unique orientation preserving

isometries of H3.

The ideal boundary ∂∞H3 can be identified with CP1 = C ∪ ∞. As the action of an

isometry is determined by its action on ∂∞H3, we can describe Isom(H3) as a subgroup

of diffeomorphisms of CP1. In fact, the orientation preserving isometries are given by
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Isom+(H3) = PSL(2,C) acting by Mobius transformations on the ideal boundary. The

orientation reversing isometries are given by another copy of PSL(2,C) acting by anti-

holomorphic Mobius tranformations.

The correspondence between the upper half-space model and the hyperboloid (or pro-

jective model) is given, on the level of isometry groups, by the following construction. We

identify R4 with the space of 2× 2 Hermitian matrices Y over C using the coordinates

Y =

(
x1 + x2 x3 + ix4

x3 − ix4 x1 − x2

)
.

Then A ∈ PSL(2,C) acts on R4 by

Y 7→ AY A∗.

Note that the action preserves the determinant detY = x2
1 − x2

2 − x3
3 − x2

4 = −xT ηx, where

x = (x1, x2, x3, x4). So, this gives a map PSL(2,C) → PO(3, 1). A straightforward (but

annoying) computation shows the map is an isomorphism onto PSO(3, 1). In order to get

all of PO(3, 1), one must include the orientation reversing isometries, which are (as a set)

another copy of PSL(2,C) acting by Y 7→ AY A∗.

The group preserving a geodesic

In order to study cone singularities (in Section 4.3), we will need a description of the group

that preserves a geodesic γ in H3. We may translate γ so that its endpoints are at 0 and

∞. Let Hγ be the subgroup of orientation preserving isometries that preserve γ and its

orientation. Then Hγ consists of the Mobius transformations that preserve 0 and ∞. So

each A ∈ Hγ is a complex dilation by its exponential complex length ed+iθ. The quantity d

gives the distance that A translates along γ, while θ gives the angle of rotation around γ.

The quantities d, θ give a natural parametrization: Hγ = Rd × S1
θ .

Ideal tetrahedra and Thurston’s Equations

Any three distinct points on ∂∞H3 determine a geodesic ideal triangle and there is a unique

orientation preserving isometry of H3 transforming one ideal triangle to another. On the

other hand, an arrangements of four points in ∂∞H3 can be transformed to another such
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arrangement if and only if the arrangements share the same cross-ratio, defined by:

(t, u : v, w) =
(t− v)(u− w)

(t− w)(u− v)

Definition 6. An ideal tetrahedron T is a geodesic tetrahedron in H3 determined by four

distinct vertices t, u, v, w on the ideal boundary.

Figure 2.3: An ideal tetrahedron with one vertices ∞, 0, 1, z in the upper half-space model
of H3.

The properties of Mobius transformations immediately imply that

Proposition 6. The cross ratio z = (t, u : v, w) is a complete invariant of the isometry

type (with vertices labeled) of the ideal tetrahedron T . For this reason, z is called the

shape parameter of the tetrahedron.

There is a nice geometric interpretation of the cross ratio, which justifies the name

“shape parameter”. Let e be the edge in T connecting u to t. Then f1 = 4utw and

f2 = 4utv are the two faces of T that meet at e. Write the shape parameter z in polar

coordinates as z = edeiθ. Then θ is the dihedral angle between the faces f1 and f2. Next,

there are unique circles C1, C2 inscribed in each of the faces f1, f2 respectively. Then, C1

and C2 are tangent to the edge e at points which are distance d apart. Thus, the shape

parameter z is the exponential complex length of the unique isometry which transforms

f1 into f2. Note that, by this interpretation, the shape parameter z = (t, u; v, w) really

describes the geometry of the tetrahedron T from the point of view of the edge e. The

shape parameters of the other five edges are determined by z according to Figure 2.4.

As the faces of an ideal tetrahedron are ideal triangles, there is a unique isometry glueing
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Figure 2.4: The shape parameters corresponding to the six edges of an ideal tetrahedron.

together two ideal tetrahedra along a face. Thus ideal tetrahedra in H3 are convenient build-

ing blocks for constructing hyperbolic structures on a three-manifold (with torus boundary).

Consider ideal tetrahedra T1, . . . , Tn that are glued together around a common edge e. The

resulting identification space S has a hyperbolic structure on the complement of e. The

hyperbolic structure extends over e if and only if S embeds isometrically in H3. That is,

isometric copies of the tetrahedra must fit together neatly around an edge in H3. This is

the case if and only if the shape parameters z1, . . . , zn of T1, . . . , Tn corresponding to the

edge e satisfy

z1 . . . zn = 1 (2.2)

argz1 + . . .+ argzn = 2π

where 0 < argzi < π is the dihedral angle at the edge e of tetrahedron Ti. The second

condition requires that the total dihedral angle around e is 2π. Note that the first condition

only implies that the total dihedral angle is an integer multiple of 2π. One way to see

Equations 2.2 is by placing all of the tetrahedra in standard position so that the vertices of

each Ti are ti =∞, ui = 0, vi = 1, wi = zi (yes, the location of the fourth vertex is the shape

parameter). We let the edge e correspond to 0∞. Now, the glueing maps which arrange

the tetrahedra around 0∞ are given by complex dilations. To glue T2 to T1, we must apply

dilation by z1 to T2. To glue T3 to T1∪T2, we must apply dilation by z1z2 to T3. Continuing

inductively, we find that the glueing map which identifies Tn to T1 is exactly dilation by

z1z2 . . . zn (see Figure 5.4).

Given a three-manifold M with a topological ideal triangulation T = {T1, . . . Tn}, one

way to produce hyperbolic structures on M is to realize each Ti as an ideal tetrahedron Ti in
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z1z2z3z4 = 1

z1

z1z2

z1z2z3

0

Figure 2.5: Glueing tetrahedra together around an edge.

H3 so that the Ti fit together correctly around each interior edge. This amounts to solving

Equations 2.2 for each edge in T . All of these equations together are called Thurston’s edge

consistency equations. The solutions make up the deformation variety ; they parameterize

the hyperbolic structures on (M, T ) with Dehn surgery type singularities (see [Thu80]).

In Chapter 5, we generalize this triangulated deformation theory to build many concrete

examples of geometric transitions.

Higher dimensional half-space models

As a final remark in our brief discussion of hyperbolic geometry, we mention that Ahlfors

[Ahl85] constructed upper half-space models for Hn in higher dimensions n ≥ 4. The

construction of Hn uses the Clifford algebra Cn−1, generated by n − 1 square roots of −1

which pairwise anti-commute. The isometries in this model are Mobius transformations

with coefficients in Cn−2.
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2.3 AdS geometry

Anti de Sitter (AdS) geometry is a Lorentzian analogue of hyperbolic geometry in the

sense that AdSn has all sectional curvatures equal to −1. However, the metric on AdSn is

Lorentzian, meaning it has signature (n−1, 1). Vectors of negative length-squared are called

time-like, vectors of positive length-squared are called space-like, and non-zero vectors with

zero length are called light-like or null. For basics on Lorentzian geometry, see [BEE96]. The

implications of negative curvature in Lorentzian geometry are somewhat different than in

Riemannian geometry. For example, AdSn has an ideal boundary at infinity. But only space-

like and light-like geodesics have endpoints on this ideal boundary. Time-like geodesics, on

the other hand, are periodic. The geometry in the time-like directions acts more like a

positively curved Riemannian space. We review some pertinent facts about AdS geometry,

and refer the reader to [BB09] for a more thorough description.

2.3.1 The hyperboloid model

Let Rn−1,2 denote Rn+1 equipped with the (n − 1, 2) Minkowski form η, which we choose

to write as follows

η =


−1 0 0

0 In−1 0

0 0 −1

 .

The hyperboloid defined by xT ηx = −1 has one sheet. Nonetheless, we mimic our construc-

tion in the hyperbolic case, and define

AdSn = {x ∈ Rn+1 : xT ηx = −1}/{±I}.

The hyperboloid xT ηx = −1 inherits a Lorentzian metric of constant curvature −1 from

the form η. The tangent space to a point x is given by the hyperplane x⊥ in Rn−1,2 and

the metric on that tangent space is the restriction of η. We also note that distances are

easily calculated in the hyperboloid model by − cosh d(x, x′) = xT ηx′. These distances can

be positive, zero, or imaginary depending on whether the geodesic connecting x to x′ is

space-like, light-like, or time-like.

Before the quotient by ±I, {x ∈ Rn+1 : xT ηx = −1} is topologically S1 × Rn−1. AdSn

is the Rn−1 bundle over the circle with monodromy the antipodal map. So, π1 AdSn = Z
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and if n is even, AdSn is non-orientable, while if n is odd, AdSn is orientable. In either

case AdSn is time-orientable. The AdS metric defines a light-cone in every tangent space

which divides the time-like vectors into two components. Time orientable means that one

component can be labeled future and the other component labeled past, and that this can

be done consistently over all of AdSn.

Remark 7. Usually, it most convenient to work with a simply connected model space. If

desired, ÃdSn can be used as the model for AdS geometry. However, it turns out that the

definition of AdSn given above is geometrically most convenient to work with. For example,

any two points in AdSn are connected by a geodesic. However, this not true in ÃdSn, nor

is it true in the double cover {x ∈ Rn+1 : xT ηx = −1} of AdSn. This is similar to the case

of projective geometry, where RPn has nicer global geometric properties than its universal

cover.

The isometries of AdSn are the linear transformations preserving η, up to ±:

Isom(AdSn) = PO(n− 1, 2) := {A ∈ GL(n+ 1,R) : AT ηA = η}/{±I}.

If n is even, this group has two components, one that preserves time-orientation and one

that reverses it. In this case PO(n − 1, 2) ∼= SO(n − 1, 2). If n is odd, Isom(AdSn) has

four components corresponding to the binary conditions orientation-preserving (or not),

and time-orientation preserving (or not). The orientation preserving, time-orientation pre-

serving subgroup is the component of the identity PO0(n − 1, 2) = PSO0(n − 1, 2). The

orientation preserving subgroup is PSO(n− 1, 2).

2.3.2 The projective model

The hyperboloid model for AdSn intersects each line in Rn+1 in exactly one point or zero

points. Hence, the hyperboloid model projects to a domain in RPn, which is known as the

projective model. This domain is given by

AdSn = {x : xT ηx < 0}/scale.

The group PO(n−1, 2) ⊂ PGL(n+ 1,R) is exactly the subgroup that preserves the domain

AdSn ⊂ RPn. So, every AdS structure is also a projective structure. We say that AdS
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geometry is a specialization of projective geometry. Geodesic lines and hyperplanes in

AdSn are given by lines and hyperplanes in RPn that intersect AdSn.

The ideal boundary at infinity ∂∞AdSn, given by

∂∞AdSn = {x 6= 0 : xT ηx = 0}/scale

is precisely the boundary of (the closure of) AdSn in RPn. The action of PO(n − 1, 2)

preserves the boundary and it is often useful to describe the action of an isometry by its

action on the boundary. Although, ∂∞AdSn does not have an invariant metric, it does

have a flat Lorentzian metric (of signature (n− 2, 1)) which is invariant up to a conformal

factor.

Proposition 7. The asymptotic behavior of geodesics in AdSn is characterized as follows:

• A space-like geodesic in AdSn is determined by two distinct endpoints on ∂∞AdSn.

• A light-like geodesic limits, in both directions, to the same point on ∂∞AdSn.

• A time-like geodesic is periodic (closed), with length 2π.

Proof. A geodesic is represented by a two-plane in Rn−1,2 which contains negative lines. If

the two-plane has signature (1, 1), then it descends to a space-like geodesic in AdSn. Every

two plane of signature (1, 1) contains exactly two null-lines which represent the endpoints of

the geodesic on the ideal boundary. Conversely, any two non-orthogonal null lines in Rn−1,2

span a plane of signature (1, 1). There is no geodesic (space-like or otherwise) connecting

two endpoints corresponding to orthogonal null lines within AdSn. The plane spanned

by two orthogonal (distinct) null lines descends to a null geodesic contained in the ideal

boundary.

Next, a two plane which contains one null line and (many) negative lines descends to a

geodesic with one endpoint on ∂∞AdSn. This geodesic is light-like: its tangent direction is

null.

Finally, a two plane of signature (0, 2) descends to a time-like geodesic. Since every

line in such a plane is negative, the projectivization of the entire plane lies inside AdSn,

and so the geodesic is a copy of RP1. The length computation can be done easily in the

hyperboloid model.

Another important fact which is easy to check:
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Proposition 8. Every space-like k-dimensional totally geodesic plane is isometric to Hk.

Every time-like (meaning it has negative directions) non-degenerate k-dimensional totally

geodesic plane is isometric to AdSk.

2.3.3 n = 3: The PSL(2,R) model

In dimension 3, a simple change of coordinates transforms the η-norm into the determinant

on 2× 2 matrices. We may identify the 2× 2 matrices M(2,R) with R2,2 by associating the

vector (x1, x2, x3, x4) ∈ R2,2 with the matrix

Y =

(
x1 + x2 x3 + x4

x3 − x4 x1 − x2

)
.

Then xT ηx = −det(Y ). Hence, we can think of the hyperboloid model of AdS3 as the

matrices of determinant equal to one up to ±I:

AdS3 = PSL(2,R).

As we will see, this identification reveals a close connection between AdS3 geometry and the

geometry of the hyperbolic plane. The inner product induced by −det (which represents η

in these coordinates) is given by:〈(
a b

c d

)
,

(
e f

g h

)〉
= −1

2
tr

((
a b

c d

)(
h −f
−g e

))

where tr(A) denotes the trace of A. The product can be expressed by

〈Y, Z〉 = −1

2
det(Z)tr(Y Z−1)

when Z is invertible. Hence, the action of PSL(2,R)× PSL(2,R) on AdS3 defined by

(A,B) · Y := AY B−1

preserves the AdS3 metric. In fact (A,B) ∈ GL(2,R) × GL(2,R) acts by isometries as

long as detA = detB = ±1. Let PGL(2,R)2,+ be the group of (A,B) such that detA =

detB = ±1, where A and B are each defined up to ±I. The map we have described is an



2.3. ADS GEOMETRY 25

isomorphism

PGL(2,R)2,+ → PSO(2, 2).

We note that the orientation reversing isometries in this model are given by another copy

of PGL(2,R)2,+ acting by
(
a b
c d

)
7→ A

(
d −b
−c a

)
B−1.

In AdSn, the stabilizer of a point is O(n− 1, 1) which is not compact. For this reason, a

discrete group Γ ⊂ PO(n− 1, 2) of isometries may or may not act properly discontinuously

on AdSn. We give an example of both possibilities in dimension n = 3 using the PSL(2,R)

model. Let Γ0 be a discrete subgroup of PSL(2,R) so that H2/Γ0 is a hyperbolic surface

or orbifold. Define Γ = Γ0 × {1} = {(γ, 1) : γ ∈ Γ0}. In other words, we act on the

left by Γ0 and on the right by the identity. The action is properly discontinuous, and

taking the quotient M = AdS3 /Γ gives the unit tangent bundle of the hyperbolic surface

S = H2/Γ0. In this case, the manifold AdS3 /Γ naturally has a structure modeled on P̃SL

geometry. P̃SL is a Riemannian model space with a four-dimensional isometry group (see

[Sco83]). However, from the point of view of (X,G) structures P̃SL is a specialization of

AdS3 geometry: Every P̃SL structure can be interpreted as an AdS3 structure.

Remark 8. The manifold M = AdS3 /Γ is a closed Seifert fibered manifold. The AdS

structure can easily be deformed, for example, by deforming the group Γ0 in PSL(2,R).

Thus the deformation space of AdS3 structures on M includes the entire Teichmuller space

of S = H2/Γ0. In fact, there are even more deformations (see [Gol85]). Hence, the analogue

of Mostow Rigidity for closed AdS3 manifolds does not hold.

On the other hand, we can also let Γ0 act diagonally. Let Γ∆ = {(γ, γ) : γ ∈ Γ0}. The

action of Γ∆ on AdS3 is just the action of Γ0 on PSL(2,R) by conjugation. It is easy to

see that Γ∆ does not act discontinuously on AdS3. For, let γ ∈ Γ0 be of infinite order.

Then 〈(γ, γ)〉 is an infinite subgroup of Γ∆ which fixes the point γ ∈ AdS3. Nonetheless,

there is an open domain in AdS3 on which Γ∆ acts discontinuously. A maximal domain of

discontinuity Ω for Γ∆ is the space of elliptics in PSL(2,R) (where A is elliptic if |tr(A)| < 2).

The quotient Ω/Γ∆ is a basic example of a globally hyperbolic maximal compact AdS space-

time (see [Mes07, ABB+07]). It is topologically H2/Γ0×(0, 2π) and H2/Γ0×{π} is a totally

geodesic surface. The other level surfaces H2/Γ0 × {θ} are curved space-like surfaces and

have arbitrarily small diameter as θ → 0 or θ → 2π.
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The ideal boundary

In this model, the ideal boundary is given by the rank one 2 × 2 matrices modulo scale

factors.

∂∞AdS = {A : rank(A) = 1}/scale.

Any rank one matrix A can be written as

A = vwT

where v, w ∈ R2 are vectors, uniquely determined up to scale. This gives a diffeomorphism

∂∞AdS ∼= RP1×RP1. It is more convenient to use a slightly different identification. Define

the operation w 7→ w† by (
a

b

)†
=
(
−b a

)
and note that (Bw)† = w† det(B)B−1 (as long as B−1 exists). Now, any rank one matrix

can be written as

A = vw†

and the vectors v, w are uniquely determined up to scale. Under this identification ∂∞AdS =

RP1 × RP1, the action of Isom+(AdS) = PGL(2,R)2,+ on ∂∞AdS is exactly the product

action:

A(vw†)B−1 = (Av)(Bw)†.

The group preserving a geodesic

In order to study tachyon singularities (in Section 4.4), we will need a description of the

isometries preserving a space-like geodesic. We give a few proofs in this section to demon-

strate the interplay between AdS geometry and the geometry of the hyperbolic plane.

A space-like geodesic γ in AdS is determined by its endpoints (pL, pR) and (qL, qR)

on ∂∞AdS = RP1 × RP1. Let Hγ be the group of orientation preserving isometries that

preserve γ and its orientation. Then

Hγ = {(A,B) ∈ PGL(2,R)2,+ : ApL = pL, AqL = qL, BpR = pR, BqR = qR}.

Let γL be the geodesic in H2 connecting pL to qL and let HγL ⊂ PSL(2,R) be the subgroup
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translating along γL. Define γR and HγR similarly. Then

Hγ = HγL ×HγR × Z/2

where the Z/2 factor is generated by the element (refγL , refγR) which reflects about γL in

the first factor and reflects about γR in the second factor. The element (refγL , refγR) acts

on AdS3 as a time-orientation reversing involution that point-wise fixes γ.

Note Hγ also preserves a different geodesic γ̂ which has endpoints at (qL, pR) and

(pL, qR). γ̂ is the dual of γ in the following sense:

Proposition 9. Let Pγ and Pγ̂ be the two-planes in M(2,R) whose intersection with AdS3

gives γ and γ̂ respectively. Then Pγ and Pγ̂ are orthogonal with respect to 〈·, ·〉.

Proof. The proposition can be easily checked because γ and γ̂ are given explicitly by:

γ = {Y ∈ PSL(2,R) : Y pR = pL, Y qR = qL}

γ̂ = {Z ∈ PSL(2,R) : ZpR = qL, ZqR = pL}.

So, if Y ∈ γ and Z ∈ γ̂, then Y Z−1 maps pL 7→ qL and qL 7→ pL. So Y Z−1 is elliptic of

order two. Hence < Y,Z >= −1
2tr(Y Z−1) = 0.

Suppose (A,B) ∈ Hγ point-wise fixes γ and preserves time orientation. This will be

the case if and only if the signed translation length a of A along γL is equal to the signed

translation length b of B along γR in H2. The action orthogonal to γ is that of a Lorentz

boost of hyperbolic angle ϕ = a. In general, an element of Hγ will translate along γ by a

distance d and boost by a hyperbolic angle ϕ. The parameters d, ϕ are global parameters

for the time-orientation preserving subgroup of Hγ .

Proposition 10. Suppose (A,B) ∈ Hγ translates by distance d along γ and acts as a

Lorentz boost of hyperbolic angle ϕ orthogonal to γ. Then (A,B) translates by distance ϕ

along γ̂ and acts as a boost of hyperbolic angle d orthogonal to ϕ̂. Further, if a, b are the

signed translation lengths of A along γL and B along γR respectively, then

d =
a− b

2

ϕ =
a+ b

2
.
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Proof. Let Pγ and Pγ̂ be the planes representing γ and γ̂ respectively in M(2,R). Then,

for any point x ∈ γ̂ the plane orthogonal to the direction of γ̂ in Tx AdS3 is exactly Pγ

independent of x (and this identification is parallel along γ̂). The action of (A,B) on Pγ

is described, in an orthonormal basis, by

(
cosh(d) sinh(d)

sinh(d) cosh(d)

)
, while the action on Pγ̂ is

described, in an orthonormal basis, by

(
cosh(ϕ) sinh(ϕ)

sinh(ϕ) cosh(ϕ)

)
. The duality of translation

distance and boost angle is clear.

The formulas for d, ϕ in terms of a, b are most easily checked by assuming γL = γR. In

this case γ consists of all hyperbolic translations in PSL(2,R) along γL, while γ̂ consists of

all rotations by π about points along γL. For any Y1, Y2 ∈ PSL(2,R),

− cosh d(Y1, Y2) = −〈Y1, Y2〉

= −1

2
tr(Y1Y

−1
2 )

= − cosh(tl(Y1Y
−1

2 )/2)

where tl denotes the translation length in H2 (and we assume Y1Y
−1

2 is a hyperbolic trans-

lation). Hence, for Y1, Y2 ∈ γ, d(Y1, Y2) is half the difference of the translation lengths

(tl(Y1)− tl(Y2))/2. For Z1, Z2 ∈ γ̂, d(Z1, Z2) = tl(Z1Z
−1
2 )/2 is exactly the distance between

the fixed points of Z1, Z2 in H2.

Now, the formulas are easily verified as for Y ∈ γ, Z ∈ γ̂,

AY B−1 = AB−1Y

AZB−1 = (AB)1/2Z(AB)−1/2

where the last equality follows because A,B anti-commute with Z (AZ = ZA−1).

A half-space model for AdS

Ahlfors [Ahl85] constructed upper half-space models for hyperbolic geometry Hn in all

dimensions. The construction of Hn uses the Clifford algebra Cn−1, generated by n−1 square

roots of −1 which pairwise anti-commute. Following Ahlfors, we construct a conformal half-

space model for anti de Sitter three-space using generalized Clifford numbers in Appendix A.

The model has some advantages over the PSL(2,R) model, the main one being that it allows
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ϕ

γ

γ̂

light

Figure 2.6: An isometry that point-wise fixes γ acts as a Lorentz boost on tangent planes
orthogonal to γ (shown right) and as a pure translation along γ̂.

for better visualization of the geometry.

2.4 Transversely hyperbolic foliations

Let X be a (n − k)-dimensional model geometry. A transversely (X,G) foliation on a

manifold Mn is a smooth foliation by k-dimensional leaves so that locally the space of

leaves has an (X,G) structure. More concretely, a transversely (X,G) foliation is defined

by charts ϕα : Uα → Rk × X so that each transition map ϕα ◦ ϕ−1
β = (f, g) respects the

product structure and acts on the first factor by a smooth function f (not necessarily defined

on all of Rk) and on the second factor by the restriction of an element g ∈ G. As we do not

require the smooth functions f to be analytic, a transversely (X,G) foliation is not itself

an (X ′, G′) structure.

Consider the case k = 1, with X = Hn−1, G = Isom(Hn−1). Then a transversely

(X,G) structure on M is called a transversely hyperbolic foliation. By the same analytic

continuation process described in Section 2.1, we can build a pseudo-developing map D :

M̃ → X, which is a local submersion equivariant with respect to a representation ρ : π1M →
G, again called the holonomy representation. This degenerate developing map encapsulates

all of the information about the foliation and its transverse structure.

Transversely hyperbolic foliations arise as limits of degenerating hyperbolic structures.

Assume for simplicity that M is orientable. Consider a path Dt : M̃ → Hn of developing

maps for hyperbolic structures such that D0 = limt→0Dt collapses to a local submersion
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onto a codimension one hyperbolic space P ∼= Hn−1. The limit D0 will be equivariant with

respect to the limiting holonomy representation ρ0. The image of ρ0 must lie in the subgroup

H of Isom+(Hn) that preserves the plane P. This group H is exactly the isometries of P,

so D0 defines a transversely (P, H) ∼= (Hn−1, Isom(Hn−1)) structure on M . In the case of

dimension n = 3, Hodgson [Hod86] studied the following regeneration problem:

Question. Given a transversely hyperbolic foliation F on a manifold M , what data is

needed to produce a family of hyperbolic structures that collapse to F .

This question and its generalization to other geometric contexts was then studied by

Porti and collaborators [Por98, HPS01, Por02, Por10]. The works of Hodgson and Porti

lead to natural questions about geometric transitions and are the basic motivation for the

questions addressed in this thesis.

There is a notion of completeness for transversely (X,G) foliations.

Definition 7. A transversely (X,G) foliation is complete if its pseudo-developing map is a

fibration.

Any n-manifold M with a complete dimension one transversely hyperbolic foliation has

universal cover R×Hn−1 with deck transformations acting by isometries in the second factor.

This puts a restriction on the topology of M . The following theorem of Thurston [Thu80]

classifies the topology of closed three-manifolds M that admit a transversely hyperbolic

foliation:

Theorem 2 (Thurston). Suppose M3 is a closed manifold endowed with a transversely

hyperbolic foliation. Let D be a pseudo-developing map with holonomy ρ. Then one of the

following holds.

(a) The holonomy group ρ(π1M) is discrete and D descends to a Seifert fibration

D/π1M : M → H2/ρ(π1M).

(b) The holonomy group ρ(π1M) is not discrete, and M fibers over the circle with fiber a

torus.

The case (b) of the Theorem is of particular interest. A torus bundle M with Anosov

monodromy has Sol geometry (see, for example [Sco83]). In Sol geometry, there are two
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natural projection maps to H2 which can be used to define two transversely hyperbolic

foliations on M . In Section 6.2.3, we show how to build these hyperbolic foliations directly

using degenerate H2 ideal tetrahedra. We study deformation varieties of singular hyperbolic

foliations on torus bundles in Chapter 6.
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Chapter 3

Transition theory: half-pipe

structures

Our description of the transition between hyperbolic and AdS geometry hinges on the

understanding of an interesting new transitional geometry, which we call half-pipe or HP

geometry, that bridges the gap between hyperbolic and AdS geometry. Recall that we

wish to construct transitions in the context of hyperbolic and anti de Sitter structures that

collapse onto a co-dimension one hyperbolic space. Therefore our model for HPn should be

the “midpoint” in a family of models Xs which share a common embedded co-dimension

one hyperbolic space. We give a natural construction of such a family of models inside of

real projective geometry. Though the main focus will be the case n = 3, we develop this

part of the theory in all dimensions n ≥ 2.

Xs ∼= AdSn Xs ∼= Hn

AdSn HnX0 = HPn

real
projective
geometry

33



34 CHAPTER 3. TRANSITION THEORY: HALF-PIPE STRUCTURES

3.1 Hn and AdSn as domains in RPn

Consider the family ηs of diagonal forms on Rn+1 given by

ηs =


−1 0 0

0 In−1 0

0 0 sign(s)s2


where s is a real parameter and In−1 represents the identity matrix. Each form ηs defines

a convex region Xs in RPn by the inequality

xT ηsx = −x2
1 + x2

2 + . . .+ x2
n + sign(s)s2x2

n+1 < 0.

For each s, Xs is a homogeneous sub-space of RPn which is preserved by the group Gs of

linear transformations that preserve ηs. The usual projective model for hyperbolic geometry

is given by Hn = X+1, with G+1 = PO(n, 1). In fact, for all s > 0 an isomorphism X+1 → Xs
is given by the rescaling map

rs =

(
In 0

0 |s|−1

)
∈ PGL(n+ 1,R).

Note that rs conjugates PO(n, 1) into Gs. Similarly, X−1 is the usual projective model for

anti de Sitter geometry, AdSn, with G−1 = PO(n− 1, 2). For all s < 0, the map rs gives an

isomorphism X−1 → Xs, conjugating PO(n− 1, 2) into Gs. The rescaling map rs should be

thought of as a projective change of coordinates which does not change intrinsic geometric

properties.

Remark 9. For s 6= 0, a constant curvature −1 metric on Xs is obtained by considering

the hyperboloid model, defined by xT ηsx = −1. In this sense, the maps rs are isometries.

There is a distinguished codimension one hyperbolic space Pn−1 defined by

xn+1 = 0 and − x2
1 + x2

2 + . . .+ x2
n < 0.

Note that Pn−1 is contained in Xs for all s. For s 6= 0, the rescaling map rs point-wise fixes

Pn−1.
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3.2 Rescaling the degeneration - definition of HPn

Figure 3.1: For each s > 0, the hyperboloid xT ηsx = −1 gives a model for H2 (left four
figures). As s → 0+, the limit is the hyperboloid model for HP2 (shown right). The
distinguished codimension one hyperbolic space P ∼= H1 is shown in red.

The space X0 is a natural intermediary space between Hn and AdSn. However, as the

metric η0 is degenerate, the full group of isometries of X0 makes the structure too flimsy

to be of much use in our transition context. In order to determine a useful structure group

for X0 we examine the degeneration context in which we hope to construct a transition. In

this section, we will not pay close attention to technical details about collapsing.

Consider a family of developing maps

Dt : M̃ → X1 with holonomy ρt : π1M → G1 = SO(n, 1),

defined for t > 0. Suppose that at time t = 0, our developing maps collapse to D0,

a local submersion onto the co-dimension one hyperbolic space Pn−1. In particular the

last coordinate xn+1 converges to the zero function. The holonomy representations ρt

then converge to a representation ρ0 with image in the subgroup H0
∼= PO(n − 1, 1) that

preserves Pn−1. The one dimensional foliation defined by the local submersion D0 has a

natural transverse Hn−1 structure. The foliation together with its transverse structure is

called a transversely hyperbolic foliation (see Section 2.4). We assume for simplicity that

the the fibers of the foliation can be consistently oriented so that in particular the holonomy

representation ρ0 of the transverse structure has image in the subgroup

H+
0 =

{(
A 0

0 1

)
: A ∈ SO(n− 1, 1)

}
/{±I} ∼= PSO(n− 1, 1).

Next, apply the rescaling map rt to get the family rtDt : M̃ → Xt. This does not change

the intrinsic hyperbolic geometry, but extrinsically in RPn this stretches out the collapsing
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direction: rt rescales the xn+1 coordinate by 1/t. Let us assume that rtDt converges as t→ 0

to a local diffeomorphism D : M̃ → X0 (see Section 3.5). The map D will be equivariant

with respect to a representation ρD : π1M → PGL(n + 1,R). This representation is the

limit of the holonomy representations for the Xt structures determined by rtDt, which are

given by the representations rtρtr
−1
t . For a particular γ ∈ π1M , we write

ρt(γ) =

(
A(t) w(t)

v(t) a(t)

)

where A is n× n, w, vT ∈ Rn, and a ∈ R. Then

rtρt(γ)r−1
t =

(
A(t) tw(t)
v(t)
t a(t)

)
−−−−→
t→0

(
A(0) 0

v′(0) 1

)
= ρD(γ). (3.1)

The special form of ρD motivates the following definition.

Definition 8. Define HPn = X0 and GHP to be the subgroup of PGL(n+ 1,R) of matrices

(defined up to ±I) with the form

(
A 0

v ±1

)
where A ∈ O(n− 1, 1) and vT ∈ Rn. We refer

to GHP as the group of half-pipe isometries. A structure modeled on (HPn, GHP) is called

a half-pipe structure.

Definition 9. We say that any path of O(n, 1) representations ρt satisfying the limit (3.1)

is compatible to first order at t = 0 with ρD.

Remark 10. Both Lie algebras so(n, 1) and so(n − 1, 2) split with respect to the adjoint

action of O(n − 1, 1) as the direct sum so(n − 1, 1) ⊕ Rn−1,1. In both cases, the Rn−1,1

factor describes the tangent directions normal to O(n − 1, 1). The group GHP is really a

semi-direct product

GHP
∼= Rn−1,1 o O(n− 1, 1)

where an element

(
A 0

v′ ±1

)
is thought of as an infinitesimal deformation v′ of the element

A normal to O(n− 1, 1) (into either O(n, 1) or O(n− 1, 2)).

Remark 11. We also note that the isotropy group of a point in HPn is

Rn−1 o (O(n− 1)× Z2).
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The the subgroup that fixes a point and also preserves orientation and the orientation of

the degenerate direction is Rn−1 o SO(n− 1).

3.3 Example: singular torus

We give an illustrative example in dimension n = 2 of transitioning singular structures on

a torus. Let F2 = 〈a, b〉 be the free group on two generators. For t > 0 define the following

representations into G+1 = PSO(2, 1):

ρt(a) =


3 2

√
2 0

2
√

2 3 0

0 0 1

 , ρt(b) =


√

1 + t2 0 t

0 1 0

t 0
√

1 + t2

 .

For small t, the commutator ρt[a, b] is elliptic, rotating by an amount θ(t) = 2π−2t+O(t2).

These representations describe a family of hyperbolic cone tori with cone angle θ(t). As

t → 0 these tori collapse onto a circle (the geodesic representing a). Next, we rescale this

family to produce a limiting half-pipe representation:

rtρt(a)r−1
t = ρt(a) (independent of t)

rtρt(b)r
−1 =


√

1 + t2 0 t2

0 1 0

1 0
√

1 + t2

 −−−−→t→0


1 0 0

0 1 0

1 0 1

 .

After applying rt, the fundamental domains for the hyperbolic cone tori limit to a funda-

mental domain for a singular HP structure on the torus (see figure 3.2). The commutator

rtρt([a, b])r
−1
t −−−−→

t→0


1 0 0

0 1 0

2 −2
√

2 1


fixes the singular point and shears in the degenerate direction. This half-pipe isometry can

be thought of as an infinitesimal rotation in H2.

Next consider the family of singular AdS2 structures on the torus given by the following
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rescale

Figure 3.2: Fundamental domains for hyperbolic cone tori collapsing to a circle (shown in
red). The collapsing structures are rescaled to converge to an HP structure (right).

G−1 = PSO(1, 2) representations defined for t < 0:

σt(a) =


3 2

√
2 0

2
√

2 3 0

0 0 1

 , σt(b) =


√

1− t2 0 −t
0 1 0

t 0
√

1− t2

 .

Here the commutator σt[a, b] acts as a Lorentz boost by hyperbolic angle ϕ(t) = −2t+O(t2)

about a fixed point in AdS2. These representations describe a family of AdS tori with a

singular point of hyperbolic angle ϕ(t). The singular point is the Lorentzian analogue of

a cone point in Riemannian gometry. We describe the three-dimensional version of this

singularity in more detail in Section 4.4. Again, as t → 0 these tori collapse onto a circle

(the geodesic representing a). Similar to the above, we have that

rtσt(b)r
−1
t −−−−→

t→0


1 0 0

0 1 0

1 0 1


showing that the limiting HP representation for these collapsing AdS structures is the same

as for the above hyperbolic structures. So we have described a transition on the level

of representations. Indeed, applying rt to fundamental domains for the collapsing AdS

structures gives the same limiting HP structure as in the hyperbolic case above.

rescale

Figure 3.3: The HP structure (left) from Figure 3.2 is also the rescaled limit of AdS tori
with “boost” singularities. Fundamental domains for the AdS structures are shown right.
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3.4 The geometry of HPn

Though no Riemannian metric on HPn exists, there are some useful geometric tools for

studying HP structures. To begin with, the form η0 induces a degenerate metric on HPn.

The degenerate direction defines a foliation of HPn by degenerate lines. These are exactly

the lines of constant x1, . . . , xn coordinates, with xn+1 allowed to vary. There is a projection

map p : HPn → Pn−1 ∼= Hn−1, given in coordinates by

p(x1, . . . , xn, xn+1) = (x1, . . . , xn, 0)

which makes the foliation by degenerate lines into a (trivial) R-bundle over Hn−1. The

projection commutes with the action of GHP in the sense that if g ∈ GHP, then

p ◦ g = π(g) ◦ p.

where π : GHP → O(n − 1, 1) is given by π

(
A 0

v ±1

)
= A. Thus p defines a transverse

hyperbolic structure on the degenerate lines of HPn. This transverse structure descends

to any HPn structure on a manifold M . So an HP structure on M induces a transversely

hyperbolic foliation on M (see Section 2.4). This can be described directly with developing

maps: If D : M̃ → HPn is a local diffeomorphism, equivariant with respect to ρ : π1M →
GHP, then D0 = p ◦D is a local submersion onto Hn−1 which is equivariant with respect to

π ◦ ρ : π1M → O(n − 1, 1). Thinking of the induced transversely hyperbolic foliation, we

will sometimes refer to the degenerate direction as the fiber direction.

Topologically, HPn is just Hn−1 × R. A particularly useful diffeomorphism is given by

(p, L) : HPn → Hn−1 × R, where p is the projection defined above and L is defined in

coordinates by

L(x1, . . . , xn, xn+1) =
xn+1

x1

√
1− (x2x1 )2 − · · · − (xnx1 )2

.

Our choice of structure group GHP makes the geometry more stiff than the geometry of

the degenerate metric alone. In particular, the non-zero vector field

Xfiber = x1

√
1−

(
x2

x1

)2

− · · · −
(
xn
x1

)2 ∂

∂xn+1
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HP2

fiber

P

Figure 3.4: The hyperboloid model of half-pipe geometry in dimension two. The degenerate
fibers (blue) foliate HP2.

descends to HPn ⊂ RPn and is invariant under GHP up to ±. It is tangent to the degenerate

direction. The group GHP has four components, corresponding to the conditions orientation

preserving (or not) and preserving Xfiber (or flipping it). We denote the two components

that preserve Xfiber by GfHP. Declaring Xfiber to have length one, we can measure lengths

along degenerate fibers, as follows. Let γ(t) be a path parallel to the degenerate direction,

defined for t ∈ [a, b]. Then

γ′(t) = f(t)Xfiber

and we define

Lfiber(γ) =

∫ b

a
f(t)dt.

We note that Lfiber(γ) = L(γ(b))− L(γ(a)).

Proposition 11. |Lfiber(γ)| is invariant under GHP. The sign of Lfiber(γ) is preserved by

the subgroup GfHP that preserves the fiber direction.

Note that we can not measure such a fiber length for a path transverse to the fiber

direction because there is no invariant projection onto the fiber direction. This is the
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reason that no Riemannian metric exists on HPn.

We have already seen an example of an HP structure on the torus with a singular point.

Though we have not yet given a detailed discussion of singularities in HP geometry (see

Section 4.5), we show here that, at least in dimensions n = 2 and n = 3, all HP structures

on closed manifolds must have singularities. This should not be surprising as HP geometry

was designed for the purpose of transitioning from singular hyperbolic structures to singular

AdS structures.

Proposition 12. Let S be any closed surface. Then any HP structure on S must be

singular.

Proof. Suppose S has a non-singular HP structure. All elements of GHP preserve the

foliation of HP2 by degenerate lines (these are lines of constant x1, x2 coordinate). Thus

the HP structure on S defines a line field on S which is nowhere zero. So S has Euler

characteristic χ = 0. Hence S is either a torus or a Klein bottle. We show that no HP

structure on the torus exists. It then follows that no (non-singular) HP structure could

exist on the Klein bottle (as the torus double covers the Klein bottle).

Suppose S = T 2, with π1S = Z×Z. We may assume that the holonomy ρ : π1S → GHP

preserves orientation as well as the fiber direction Xfiber (if not, lift to a cover). Thus the

holonomy lifts to a representation into SL(3,R) of the form

ρ(·) =

(
A(·) 0

v(·) 1

)

where A ∈ SO(1, 1) and v ∈ R2. The condition that π1T
2 is abelian implies (after a quick

computation) that the entire representation ρ(π1T
2) lies in a one parameter subgroup of

the form (
A(t) 0

u(A(t)− I) 1

)
.

Thus either the representation has non-trivial kernel or it is not discrete. This is a contra-

diction in light of the following lemma.

Lemma 1. An HPn structure on a closed manifold is complete, meaning the developing

map is a diffeomorphism.
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Proof. Let D : M̃ → HPn be the developing map of an HP structure on a closed n-

manifold. To show that D is a diffeomorphism, we must show D is a covering map. First,

we construct product neighborhoods around points in M . Let B be an (n− 1)-dimensional

disk embedded in M , transverse to the fiber direction, such that p ◦D maps (any lift of) B

diffeomorphically to a disk of radius r in Hn−1. Let x ∈ M be the center of B. For some

ε > 0, the neighborhood UB,ε of all points in M with Lfiber distance from B less than ε is

an embedded ball:

UB,ε = {y ∈M : ∃γ(s) tangent to the fiber, with γ(0) ∈ B, γ(1) = y, LF (γ) < ε}.
∼= B × (−ε, ε).

By compactness, the radius r of B and the thickness ε can be chosen uniformly, so that

every point x ∈M is the center of some UB,ε.

We use the neighborhoods UB,ε to show that D has the path-lifting property. First, we

show that paths along the fiber direction can be lifted. Consider a point q = D(x) in the

image of D and consider the fiber f in HPn that contains q. Let J be an open interval

around q in f so that J lifts to an interval I around x in M̃ . Let q′ be an endpoint of J in

HPn. Then, let q′′ be a point in J with Lfiber distance less than ε from q′. Let y ∈ I with

D(y) = q′′. Then, there is a lifted neighborhood ŨB,ε around y in M̃ . We must have that

D(ŨB,ε) contains q′. Hence we can extend J to include q′. It follows that the entire fiber f

lifts to M̃ . Next, consider the neighborhood Tr(f) of all points in HPn whose η0 distance

to f is less than r. Let ŨB′,ε be a lifted product neighborhood around x. Then D(ŨB′,ε) is

contained in Tr(f) and intersects every fiber of Tr(f) in an open interval. Hence we can lift

every fiber of Tr(f) to M̃ and so we can lift Tr(f) to M̃ .

Finally, let x ∈ M̃ and let γ : [0, 1]→ HPn be any path beginning at γ(0) = D(x). Let

J be the maximal connected sub-interval of [0, 1] such that γ(J) lifts to M̃ . Then J is open

because D is a local diffeomorphism. To show J is closed, consider a sub-interval [0, a) ⊂ J .

Let a′ < a such that γ([a′, a]) is contained in the neighborhood Tr(f) where f is the fiber

containing γ(a′). Since Tr(f) lifts to M̃ , it follows that we can lift γ([0, a]) to M̃ . So, J

is closed and we must have that J = [0, 1]. This shows that D : M̃ → HPn has the path

lifting property. So D is a covering map.

This completes the proof of the proposition.
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In fact, the same result holds in dimension n = 3:

Proposition 13. Let M be a closed three-manifold. Then any HP structure on M must

have singularities.

Proof. Suppose M has a (non-singular) HP structure. Without loss in generality we may

assume M is orientable and that the fibers can be consistently oriented (if not lift to a finite

cover). Let D : M̃ → HP3 be the developing map and ρ its holonomy representation. As in

the previous Proposition, we choose a lift of ρ(·) to SL(4,R) so that:

ρ(γ) =

(
ρ0(γ) 0

v(γ) 1

)
.

The projection p ◦ D : M̃ → H2 is a local submersion defining a transversely hyperbolic

foliation with holonomy ρ0. Now by Theorem 2 (originally from [Thu80]), there are two

possibilities for M :

(a) The holonomy group ρ0(π1M) is discrete and D descends to a Seifert fibration

D/π1M : M → H2/ρ0(π1M).

In this case, let S = H2/ρ0(π1M) denote the base surface (or orbifold) of the fibration.

The generic fiber f ∈ π1M generates the center of π1M . Hence, ρ0(f) = 1. Next, we may

interpret v(·) as an infinitesimal deformation of the representation ρ0 in SO(2, 1). However,

the deformations of ρ0 correspond precisely to the deformations of the hyperbolic geometry

of the base surface. Thus the ρ0 component of the representation space R(π1M, SO(2, 1))

is a copy of the Teichmuller space of S. In particular, it is smooth and f 7→ 1 for all

representations. Hence v(f) = 0, and so ρ(f) = 1. This contradicts Lemma 1 above.

The other possibility is

(b) The holonomy group ρ0(π1M) is not discrete, and M fibers over the circle with fiber

a torus.

In fact, from the proof of Theorem 2 (see [Thu80]), we can say precisely what ρ0 looks like.

π1M is generated by three elements a, b, c with 〈a, b〉 = Z×Z generating the torus fiber and

c corresponding to the circle direction. The conjugation action of c on 〈a, b〉 is described by
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an Anosov element ϕ of SL(2,Z):

ϕ =

(
m n

r s

)
cac−1 = ambr

cbc−1 = anbs.

The representation ρ0 is reducible, mapping a, b to parabolics with fixed point Q and map-

ping c to a hyperbolic translation with fixed points Q,Q′. The translation length of ρ0(c)

is equal to one of the eigenvalues of ϕ. In fact, the data of ϕ entirely determines the rep-

resentation ρ0 up to conjugacy. The only infinitesimal deformations of ρ0 are infinitesimal

conjugations. Thus it follows that ρ can be conjugated in GHP so that v(·) = 0. Hence, ρ

is not discrete (because ρ0 is not), and we have a contradiction by Lemma 1.

Remark 12. We study torus bundles with Anosov monodromy in a related context in

Chapter 6. We will see that the representation ρ0 can be deformed if one allows the hy-

perbolic foliation to have a singularity. The deformation space of these singular hyperbolic

foliations is naturally at the boundary of deformation spaces of both hyperbolic and AdS

structures.

3.5 Collapsing and Rescaling

In general, a family of diffeomorphisms which collapses in the limit can exhibit complicated

behavior. In the case of interest, we have developing maps Dt : M̃ → X which collapse

as t → 0 to a local submersion D0 onto a co-dimension one hyperbolic plane. We wish

to rescale these maps and obtain convergence to a developing map for an HP structure.

Precise conditions for when such convergence can be obtained (possibly after applying a

smooth path of re-parameterizations) are beyond the scope of this thesis. We explore the

delicate issue of collapsing and rescaling in a future paper. In this section, we produce

an HP structure from collapsing Hn structures under some strong assumptions about the

collapse. A similar construction may be possible in the AdS setting, but we omit this case.

We consider incomplete X = Hn structures on a compact manifold M with boundary.

The main example to keep in mind is a hyperbolic cone three-manifold with a tubular

neighborhood of the singular locus removed.
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In order for the rescaling process to have a chance of working correctly, we need to know

that one part of the manifold is not collapsing faster than the rest. To make this more

concrete, we make the following definition which generalizes the usual notion of maximal

and minimal injectivity radius for a complete Riemannian manifold.

Definition 10. Let (M, g) be a compact Riemannian manifold (with or without boundary).

Consider an embedded open ball B(p, r) in M . We say that B(p, r) is maximal if one of

the following holds

1. The closure B̄(p, r) is no longer embedded.

2. The closure B̄(p, r) of B intersects the boundary ∂M .

The maximal injectivity radius Rmax of (M, g) is the supremal radius r over all maximal

balls B(p, r). The minimal injectivity radius Rmin of (M, g) is the infimal radius r over all

maximal balls B(p, r).

We will assume that the rate at which the minimal injectivity radius collapses is on

the order of t. We construct examples of collapsing H3 structures using ideal tetrahedra

in Chapter 5. In all of these examples, the hypotheses of the following proposition are

satisfied.

Proposition 14 (Rescaling). Let M be a compact oriented n-manifold with boundary.

Consider collapsing Hn structures defined by developing maps Dt : M̃ → Hn that converge

to a local submersion D0 onto a co-dimension one hyperbolic space Pn−1. Assume the family

Dt is smooth in t at t = 0, that the convergence is uniform in C 2 on compacts, and that

Rmin(M,ht) ≥ ct

where ht = D∗t h is the hyperbolic metric at time t. Then the limit F : M̃ → HPn of

the rescaled developing maps is equivariantly homotopic to a map D, which restricts to a

developing map for an HP structure on a slightly thinner manifold M0 ⊂M .

Remark 13. We note that the assumption that Dt is differentiable in t at time t = 0

implies an injectivity radius bound from above

Rmax(M,ht) ≤ Ct
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where C can be taken to be any number larger than the maximum norm of the derivative of

Dt at t = 0. So our assumptions require that the injectivity radius is collapsing uniformly.

Proof. For the sake of avoiding fractions of c all over the place, we assume c = 7 throughout

the proof. Naively, we attempt to rescale the developing maps and take the limit. Let

F : M̃ → HPn be defined by

F (·) = lim
t→0

rtDt(·)

The xn+1 coordinate of F is just the t-derivative of the xn+1 coordinate of Dt, so F is well de-

fined and C 1. Further, F is equivariant with respect to the rescaled limit ρ = limt→0 rtρtr
−1
t

of the holonomy representations. However, F might not be a local diffeomorphism. Let us

assume it is not.

Although F is not a local diffeomorphism everywhere, we can still use it to measure

lengths along fibers in HPn. We have p ◦ F = D0, where p : HPn → P is the projection

defined in Section 3.4. As D0 is a local submersion, it defines a smooth one-dimensional

foliation on M (and in fact the foliation has a tranverse hyperbolic structure). Let γ :

[0, 1]→M be a path tangent to this foliation. Define the F -length of γ by

LF (γ) = Lfiber(F (γ̃))

where γ̃ is any lift of γ. Using the diffeomorphism (p, L) : HPn → Hn−1 × R defined in

Section 3.4, we note that LF (γ) = L(γ̃(1)) − L(γ̃(0)). The following is easy to check in

coordinates.

Lemma 2. LF (γ) can be calculated as follows. Choose any lift γ̃ to M̃ . Let n̂ be the unit

length vector field normal to Pn−1 pointing up out of P, extended via parallel translation

along normal geodesics to all of Hn. Then

LF (γ) =
d

dt

∫
(Dtγ̃)′(s) · n̂ ds.

Let S be the set of all smooth embedded (n − 1)-dimensional disks B in M such that

D0 maps (a lift of) B diffeomorphically onto a geodesic (n − 1)-ball in P. Every point in

M is contained in infinitely many of these disks, and all such disks are transverse to the

fiber direction. Now for each B ∈ S define a corresponding neighborhood UB by

UB = {p ∈M : ∃γ(s) tangent to the fiber, with γ(0) ∈ B, γ(1) = p, LF (γ) < 1}.
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In other words UB is the set of points with LF distance (along fibers) to B less than one.

Lemma 3. For each B ∈ S, and for sufficiently small t, UB lies inside a 3t neighborhood

of B (with respect to ht).

Proof of Lemma. Given B ∈ S, the function that measures LF distance to B along fibers,

defined on D−1
0 (D0(B)), is continuous. So, UB is open. Let ŨB be a lift of UB to the

universal cover. Then ŨB is a product of the corresponding lift B̃ of B with an interval in

the fiber direction, ŨB = B̃ × (−1, 1). Dt(B̃) converges in C 2 to a geodesic (n − 1) disk

in P. Thus the normal direction to Dt(B̃) is very close to n̂ and we can use Lemma 2 to

bound the distance dt(·, B̃) to B̃. Let b ∈ B̃, and let γ(s) = (b, s) ∈ ŨB be a fiber. Then,

for t sufficiently small there is an ε > 0 so that,

dt(γ(s), B̃) ≤ (1 + ε)

∣∣∣∣∫ 1

−1
(Dtγ̃)′(u) · n̂ du

∣∣∣∣
≤ (1 + ε)2tLF (γ)

= 2(1 + ε)2t.

Hence, ŨB lies inside a 3t neighborhood of B̃ with respect to the metric at time t.

Lemma 4. Every point x ∈ M is the center of some UB which is an embedded product

neighborhood UB = B × (−1, 1).

Proof. Let B ∈ S with x as its center. Let t > 0 be such that UB is contained in a 3t

neighborhood of B with respect to the metric at time t. UB may not have the desired

properties. So, let B′ be a sub-disk of B with diameter t. Then UB′ ⊂ UB has diameter

less than or equal to 7t. By the injectivity radius assumption, UB′ must be embedded. In

this case, the fibration is trivial.

Now, let B ∈ S have the properties of Lemma 4 and let ŨB ⊂ M̃ be a lift of UB. Let Y be

a vector field tangent to the fiber, supported in ŨB. Note that dLF (Y ) may be zero at some

points. These are precisely the points where F fails to be a local diffeomorphism. Next,

ŨB = B̃×(−1, 1), with the second factor giving coordinates along the fiber. The submersion

D0 only depends on the factor B̃. By definition of UB, LF ({b} × (−1, 1)) = 2. Replace LF

by a different smooth function L (which also measures lengths in the fiber direction) so

that dL(Y ) is non-zero, while preserving the condition L({b} × (−1, 1)) = 2. We use the
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smoothed out version to modify F on ŨB. Recall the coordinates (p, L) : HPn ∼= Hn−1 ×R
from Section 3.4. Then,

F (b, s) = (D0(b), L(b) + LF (b, s)).

So replace F with the local diffeomorphism F on ŨB

F(b, s) = (D0(b), L(b) + L(b, s)).

As ŨB maps diffeomorphically to UB ⊂ M , we can perform this adjustment equivariantly

to all lifts of UB.

We use this process on a finite cover to produce D. Specifically, cover a thinner sub-

manifold M0 by finitely many UB1, . . . , UBk having the properties of Lemma 4. Perform the

process of smoothing out the length function along the fiber sequentially on each neighbor-

hood UBi, one at a time. The resulting map D is a local diffeomorphism when restricted

to M0 and is still equivariant with respect to ρ. It is clear from the construction that D is

homotopic to F equivariantly with respect to ρ.

3.6 Regeneration

In this section, we show how to regenerate Hn and AdSn structures from HPn structures.

We begin with a useful Lemma, familiar from Thurston’s notes, about deformations of

(X,G) structures.

Lemma 5. Let M0 be a compact n-manifold with boundary and let M be a thickening of

M0, so that M \M0 is a collar neighborhood of ∂M0. Consider an (X,G) structure on M0

which extends to M . Then any small deformation of the holonomy representation produces

a nearby geometric structure on M0.

Proof. Let D : M̃ → X be a developing map for the given (X,G) structure on M , and let

σ : π1M → G be the corresponding holonomy representation. Let σt be a path of nearby G

representations such that σt → σ. We will produce, for short time, nearby developing maps

Dt with σt as holonomy.

Cover M0 by finitely many open balls U1, . . . , Un ⊂M , and then choose lifts Ũ1, . . . , Ũn

to the universal cover M̃ . These lifts, together with all of their translates cover M̃0 ⊂ M̃ .

We may assume that D maps each Ũj diffeomorphically onto a ball in X. We define Dt as
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follows: For each Ũj , simply let Dt = D on Ũj . Now, we would like to extend to all of M̃0

equivariantly using σt. Of course, there is a problem: For any γ ∈ π1M , with γŨi ∩ Ũj 6= ∅,
it will most likely happen that σt(γ)Dt

∣∣
Ũi

and Dt

∣∣
Ũj

do not agree on the overlap. As such

overlaps are finite in number, we can use standard bump function techniques to resolve this

problem and produce maps Dt : M̃0 → X which are equivariant with respect to σt. Further,

we can arrange that Dt depends smoothly on t and converges to D on every compact set in

M̃0 in the C 1 topology. Thus, by the inverse function theorem, Dt is a local diffeomorphism

for small enough t.

Proposition 15 (Regeneration). Let M0 be a compact n-manifold with boundary and let

M be a thickening of M0, so that M \M0 is a collar neighborhood of ∂M0. Suppose M

has an HP structure defined by developing map DHP, and holonomy representation σHP.

Let X be either Hn or AdSn and let ρt : π1M0 → Isom(X) be a family of representations

compatible to first order at time t = 0 with σHP (in the sense of Equation 3.1). Then we

can construct a family of X structures on M0 with holonomy ρt for short time.

Proof. If X = H3, we take ρt to be defined for t ≥ 0, while if X = AdS3 then we take ρt

to be defined for t ≤ 0. This allows us to use the notation from Section 3.1 and treat both

cases at once.

The representations

σt := rtρtr
−1
t : π1M0 → Gt ⊂ PGL(n+ 1,R)

converge, by assumption, to σHP in PGL(n + 1,R). Thus, thinking of the HP structure

as a projective structure, Lemma 5 above gives that for small time, we have a family of

nearby projective structures with holonomies σt. These projective structures are given by

developing maps Ft : M̃0 → RPn which converge (in the compact open topology) to D as

t → 0. We show now that Ft is the developing map for an (Xt, Gt) structure. We will use

the following easy lemma.

Lemma 6. Let K be a compact set and let Ft : K → RP3 be any continuous family of

functions. Suppose F0(K) is contained in Xs. Then there is an ε > 0 such that |t| < ε and

|r − s| < ε implies that Ft(K) is contained in Xr.

Consider a compact fundamental domain K ⊂ M̃0. D(K) is a compact set contained
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in HPn = X0 ⊂ RPn. By the lemma, Ft(K) is also contained in Xt for all t sufficiently

small. Now, since Ft is equivariant with respect to σt : π1M → Gt, we have that the

entire image of Ft is contained in Xt. Thus (for small t), Ft determines an Xt structure

with holonomy σt. Now, applying the inverse of the rescaling map gives developing maps

Dt = r−1
t Ft into X which are equivariant with respect to ρt = r−1

t σtrt. These define the

desired X structures.

3.7 Transitions

Definition 11. Let M be an n-dimensional manifold. A geometric transition from Hn

structures to AdSn structures is a C 1 path of projective structures Pt on M so that

• for t > 0, Pt is projectively equivalent to a hyperbolic structure

• for t < 0, Pt is projectively equivalent to an AdS structure.

There is no mention of half-pipe geometry in the above definition. However, the main

tool for building a geometric transition is an HP structure. The following is a corollary of

Proposition 15:

Theorem 3. Let M be a compact manifold with boundary and let ht be a path of hyperbolic

(resp anti de Sitter) structures on M that degenerate to a transverse hyperbolic foliation.

Suppose the ht limit projectively (after rescaling by rt) to an HP structure. Then a transition

to anti de Sitter (resp. hyperbolic) structures can be constructed if and only if the transition

can be constructed on the level of representations.

Note that while this theorem applies in broader generality than Theorem 6 from the

Introduction, it does not guarantee any control of the geometry at the boundary. We study

behavior near the boundary in Chapter 4.



Chapter 4

Singular three dimensional

structures

In this section, our goal is to build transitions from hyperbolic cone structures to their

AdS analogues, tachyon structures. To do this, we generalize the notion of cone singularity

to projective structures. Before studying the three-dimensional case, we start with a brief

description of the two-dimensional case.

4.1 Cone-like singularities on projective surfaces

Consider a cone point on a Riemannian surface. The Riemannian metric is un-defined at

this point, but much of the local geometry extends to the cone point. For example, there

are geodesic segments connecting the cone point to all nearby points. Motivated by this,

we make the following definition.

Definition 12. Let S be a surface, with o ∈ S. A projective structure with a cone-like

singularity on (S, o) is a smooth (incomplete) projective structure on S \ o determined by

charts (ϕα, Uα) with the following properties:

• Every chart ϕα : Uα → RP2 extends continuously to the closure Uα.

• There are finitely many charts (ϕ1, U1), . . . , (ϕk, Uk) such that the union

U1 ∪ · · · ∪ Uk ∪ {o}

51
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is an open neighborhood of o.

S \ o is called the smooth part and o is called the cone point. Note that in the case Uα ∩ Uβ
contains o, the transition function gαβ ∈ PGL(3,R) maps ϕβ(o) to ϕα(o).

U1 U2

o

E2

ϕ1(U1) ϕ2(U2)

Figure 4.1: A Euclidean cone is the model example of a projective surface with a cone-like
point. In this example, a neighborhood of the cone point is covered by two wedge shaped
chart neighborhoods U1, U2. The respective charts ϕ1, ϕ2 map U1, U2 to wedges in the
Euclidean plane. Each ϕi extends to Ui, mapping o to the corner of the wedge.

Definition 13. Let (S, o) and (S′, o′) be two projective surfaces with cone-like singularities.

An isomorphism (S, o) ∼= (S′, o′) is an isomorphism of projective structures

Φ : S \ o→ S′ \ o′

that extends continuously over o.

The developing map for a projective structure with a cone-like singularity extends to

the cone point in the following sense.

Proposition 16. Let (S, o) be a projective surface with a cone-like singularity. Let B be a

small neighborhood of the cone point o. Then:

• The developing map D on B̃ \ o extends to the universal branched cover

B̃ = B̃ \ o ∪ {o} of B branched over o.

• The holonomy ρ(π1(B \ o)) fixes p := D(o).

In particular, there are “polar coordinates” (r, x) ∈ (0, 1)× R/Z on B which lift to coordi-

nates on B̃ so that for a fixed x, D(r, x) is a radial line segment with limr→0D(x, r) = p.
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r = 0

r = 1

o

D

x

Figure 4.2: The developing map of a cone-like projective surface.

Proof. From the definition, there exist finitely many chart neighborhoods U1, . . . , Uk whose

union with o forms a neighborhood of o in S. Let V1, . . . , Vk be the intersections with B.

By restricting to a smaller neighborhood, we may assume that the following holds:

• Vi ∩ Vj is either empty or Vi ∩ Vj contains o.

We construct the developing map using V1, . . . , Vk by first lifting V1 to Ñ \ o and mapping

into RP2 with the corresponding chart map ϕ1. Then, the usual analytic continuation

process defines D on the rest of Ñ \ o. Note that if Vi ∩ Vj contains o, then the transition

function gij maps ϕj(o) to ϕi(o). Hence D extends continuously to the universal branched

cover B̃, with D(o) = ϕ1(o). The coordinates (r, x) are easily obtained by pulling back any

choice of polar coordinates around p in RP2.

Let Gp denote the elements of PGL(3,R) which fix p and preserve the local orientation

near p. We define the rotation angle map R : Gp → S1 as follows. Given [A] ∈ Gp, there is

a representative A so that the eigenvalue corresponding to p is one. Let λ2, λ3 be the other

eigenvalues. If λ2, λ3 = λ, λ̄ are complex, then A is similar in SL(3,R) to the block diagonal

form

A =

(
1 0

0 |λ|R(θ)

)
,

where R(θ) rotates by angle θ in the positive direction. In this case define R(A) = eiθ. If

λ2, λ3 are real, then they both have the same sign and we define R(A) = sign(λ2).

Proposition 17. The rotation angle function R : Gp → S1 is a homotopy equivalence.

Proof. A homotopy inverse for R is given by eiθ 7−→

(
1 0

0 R(θ)

)
.
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Now, consider D and ρ as in Proposition 16 and let γ(t) ∈ π1(B \o). We can find a path

g(t) ∈ Gp such that D(γ(t)) = g(t) ·D(γ(0)) with g(0) = 1 and g(1) = ρ(γ). The path g(t)

is unique up to homotopy and defines the lifted holonomy ρ̃(γ) ∈ G̃p. The lifted rotation

angle map R̃ : G̃p → R defines the total rotational part of γ:

R̃(γ) = R̃([g(t)]).

The map R̃ : π1(B \ o) → R is a homomorphism. Note that it does not in general extend

to a representation of π1(S \ o). Now take γ to be the generator of π1(B \ o) that encircles

o in the direction consistent with the local orientation of S.

Definition 14. The quantity α := R̃(γ) is the rotational part of the holonomy at o. Note

that the rotational part of the holonomy must satisfy eiα = R(ρ(γ)). In the case that the

eigenvalues of ρ(γ) are real, α is an integer multiple of π and we call α the discrete rotational

part of the holonomy at o.

In the case of a Riemannian cone point, the rotational part of the holonomy is exactly

the cone angle. However, in the case that the local geometry is Lorentzian, the rotational

part must be an integer multiple of π. In this case the holonomy around the cone point will

be a discrete rotation plus a Lorentz tranformation.

4.2 Cone-like singularities for RP3 structures

We define cone-like singularities in three dimensions in a similar manner. Let N be an

orientable three-manifold with Σ ⊂ N an embedded circle. Let M = N \ Σ.

Definition 15. A projective structure with a cone-like singularity on (N,Σ) is a smooth

projective structure on M defined by charts (Uα, ϕα) such that

• Every chart ϕα : Uα → RP3 extends continuously to the closure Uα. In the case Uα

contains points of Σ, we require that ϕα maps Uα ∩Σ diffeomorphically to a segment

of a line Lα in RP3.

• For every point p ∈ Σ, there is a neighborhood B of p and finitely many charts

(ϕ1, U1), . . . , (ϕk, Uk) such that B is covered by U1, . . . , Uk and for each j,

B ∩ Σ ⊂ Uj ∩ Σ.
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M is called the smooth part and Σ is called the singular locus. Note that in the case Uα ∩ Uβ
contains points of Σ, the transition function gαβ ∈ PGL(3,R) maps Lβ to Lα.

We note that a projective structure with cone-like singularities on (N,Σ) induces an

RP1 structure on Σ, which is compatible with the projective structure on M = N \ Σ.

Definition 16. Let (N,Σ) and (N ′,Σ′) be two projective three-manifolds with cone-like

singularities. An isomorphism (N,Σ) ∼= (N ′,Σ′) is an isomorphism of projective structures

Φ : N \ Σ→ N ′ \ Σ′

which extends to a diffeomorphism N → N ′. We note that Φ
∣∣
Σ

is an isomorphism of the

induced RP1 structures on Σ and Σ′.

Proposition 18. Let (N,Σ) be a projective manifold with a cone-like singularity. Let B be

a small neighborhood of a point p ∈ Σ, with ΣB = Σ ∩B. Then:

• The developing map D on B̃ \ ΣB extends to the universal branched cover B̃ =

B̃ \ ΣB ∪ ΣB of B branched over ΣB.

• D maps ΣB diffeomorphically onto an interval of a line L in RP3.

• The holonomy ρ(π1(B \ ΣB)) point-wise fixes L.

In particular, there are “cylindrical” coordinates (r, x, y) ∈ (0, 1)×R/Z× (0, 1) around ΣB

which lift to coordinates on B̃ so that limr→0D(r, x, y) =: f(y) is a local submersion to L

independent of x.

Proof. From the definition of cone-like singularity we may choose B and charts (ϕ1, U1), . . . ,

(ϕk, Uk) so that

B = U1 ∪ · · · ∪ Uk ∪ ΣB

and ∩ki=1Ui = ΣB. By restricting to a smaller neighborhood, we may assume that the

following holds:

• Ui ∩ Uj is either empty or Ui ∩ Uj ∩ Σ = ΣB.

• The Ui are arranged in order around Σ.
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r = 0

r = 1

D

y

L
x

Figure 4.3: The developing map near a cone-like singularity.

We construct the developing map using U1, . . . , Uk by first lifting U1 to B̃ \ Σ and mapping

into RP3 with ϕ1. Then, the usual analytic continuation process defines D on the rest

of B̃ \ Σ. Note that, by our assumptions Ui ∩ Ui+1 ∩ Σ must be non-empty, and so the

transition function gi,i+1 maps Li+1 to Li. Since ΣB ∈ Ui for all i, D extends continuously

mapping ΣB to L1 by a diffeomorphism. Hence D extends to the universal branched cover

B̃ = B̃ \ ΣB ∪ ΣB. The coordinates (r, x, y) are easily obtained by pulling back any choice

of cylindrical coordinates around L1 in RP3.

Remark 14. The converse of the proposition is also true: Suppose there is a projective

structure on M and assume that Σ is covered by neighborhoods B so that the developing

mapD on B̃ \ Σ extends to the universal branched cover B̃, mapping B∩Σ diffeomorphically

to a line. Then it is easy to construct charts satisfying the requirements of Definition 15.

So (N,Σ) is a projective structure with a cone-like singularity.

LetGL denote the elements of PGL(4,R) which point-wise fix L and preserve orientation.

We fix an orientation of L and an orientation RP3 which determines a positive direction of

rotation around L. Similar to the two-dimensional case. we define the rotation angle map

R : GL → S1 as follows. Given [A] ∈ GL, there is a representative A so that the eigenvalues

corresponding to L are both one. Let λ3, λ4 be the other eigenvalues. If λ3, λ4 = λ, λ̄ are

complex, then A is similar in SL(4,R) to the block diagonal form

A =

(
I2 0

0 |λ|R(θ)

)
,

where R(θ) rotates by angle θ in the positive direction. In this case define R(A) = eiθ. If
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λ3, λ4 are real, then they both have the same sign and we define R(A) = sign(λ2). We again

have that the rotation angle function R : GL → S1 is a homotopy equivalence.

Now, consider D and ρ as in Proposition 18 and let γ(t) ∈ π1(B \L). We can find a path

g(t) ∈ GL such that D(γ(t)) = g(t) ·D(γ(0)) with g(0) = 1 and g(1) = ρ(γ). The path g(t)

is unique up to homotopy and defines the lifted holonomy ρ̃(γ) ∈ G̃L. Let m be a meridian

encircling Σ in the direction consistent with the local orientation of Σ. The geometry in a

neighborhood of a point of Σ is determined by the lifted holonomy ρ̃(m). There is extra

information contained in the lifted holonomy ρ̃(m) that is missing from ρ(m): ρ(m) does

not detect how many times D(m) winds around L. This information is contained in the

total rotational part of γ defined by the lifted rotation angle map R̃ : G̃L → R:

R̃(γ) := R̃([g(t)]).

The map R̃ : π1B \Σ→ R is a homomorphism. Note that it does not in general extend to

a representation of π1M .

Definition 17. The quantity α := R̃(m) is the rotational part of the holonomy at L. Note

that the rotational part of the holonomy must satisfy eiα = R(ρ(γ)). In the case that the

eigenvalues of ρ(γ) are real, α is an integer multiple of π and we call α the discrete rotational

part of the holonomy at L.

Remark 15. One motivating example behind the definition of cone-like singularities is that

of cone singularities in a uniform Riemannian geometry. In that case, the rotational part

of the holonomy at Σ is exactly the cone angle and determines the local geometry entirely.

However, in this more general setting, there can be many geometrically different cones with

the same rotational holonomy.

Remark 16. A projective structure with cone-singularities along a multiple component

link Σ can be defined analogously. Over the next few sections we will assume Σ has one

component; this will be the case in the main theorem we are heading towards, and it also

keeps the discussion tidy. However, all of the basic theory we develop can easily be extended

to the multiple component case.
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4.3 Cone singularities in H3

Let N be a closed oriented three-manifold, with Σ a knot in N . Let M = N \ Σ. Recall

the definition of a hyperbolic cone-manifold:

Definition 18. A hyperbolic cone structure on (N,Σ) is given by a smooth hyperbolic

structure on M such that the geodesic completion is topologically N . The singular locus Σ

is totally geodesic and the holonomy of a meridian m around Σ is a rotation.

glue

α

Σ

Figure 4.4: Schematic of a cone singularity in H3 (or any Riemannian model geometry).
Perpendicular to the singular locus, the geometry is that of a cone-point on a surface.

Consider a tubular neighborhood T of Σ. The developing map D on T̃ \ Σ extends to

the geodesic completion T̃ \ Σ ∪ Σ̃, which is the universal branched cover of T branched

over Σ. The image D(Σ̃) is a one-dimensional set in H3 which must be fixed point-wise by

the holonomy ρ(m) of a meridian m around Σ. We will assume ρ(m) is non-trivial. Then

ρ(m) is a rotation about a geodesic L in H3 and D maps Σ̃ isometrically onto L (this is one

sense in which Σ is totally geodesic). Hence from Remark 14:

Proposition 19 (cone singularities are cone-like). The underlying projective structure of a

hyperbolic cone structure on (N,Σ) has a cone-like singularity at Σ.

We denote the group of rotations around L by GL. The fundamental group π1T \ Σ is

generated by the meridian m and a longitude ` (which runs once around Σ). ρ(π1T \Σ) must

lie in the group HL of isometries that preserve L, the orientation of L, and the orientation

of H3. Note that HL is a product

HL = GL × TL

where TL is the subgroup of pure translations along L (See Section 2.2.4). The longitude

ρ(`) must have non-trivial translational part, for the translational part of ρ(`) determines
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the length of Σ. It follows that π1(T \ Σ) ↪→ π1M. In general ρ(`) may also have some

rotational part.

The local geometry at points of Σ is determined by the cone angle α at Σ. Consider a

ray orthogonal to Σ, and based at a point p ∈ Σ. Then α is the total angle that the ray

must rotate through in order to rotate exactly once around Σ. It can be defined to be the

rotational part of the holonomy around Σ as in Defintion 17.

Although the hyperbolic metric is not defined on the tangent spaces of points on Σ,

much of the local geometry extends up to Σ. For example, for any point q nearby Σ, there

is a unique length minimizing geodesic segment connecting q to Σ. This segment meets Σ

at a right angle. Let Cp denote the union of all sufficiently short rays that are perpendicular

to Σ at a given point p. Then C \ p is a totally geodesic embedded hyperbolic surface. The

geometry of Cp is exactly that of a two-dimensional hyperbolic cone with cone angle α. For

varying p in a small interval I of Σ, the disks Cp are naturally identified with one another

via parallel translation along Σ.

Let W be a geodesic wedge in Cp with angle β < α, 2π. Define the product wedge U

as the union of all translates of W along I. U maps isometrically into the region in H3

defined in cylindrical coordinates (z, r, θ) around L by 0 < θ < β, 0 < z < L, where L is

the length of I. By covering Cp by wedges W1, . . . ,Wk, we construct product wedge charts

ϕi : (Ui, I)→ (H3,L) with the desired properties at I (as in Definition 15). We can do this

for every interval I in Σ. Note that all transition maps will lie in HL.

L

L

β

Figure 4.5: Left: A product wedge in H3, drawn in the upper half-space model. A local
neighborhood around a point on the singular locus is covered by product wedge charts.
Right: A perpendicular cross section is covered by two-dimensional wedges.
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Alternatively, we can construct the geometry around an interval I by dividing a neigh-

borhood of I into product wedges which meet only along their faces. Thus the local ge-

ometry of a hyperbolic cone singularity is modeled on the union of finitely many product

wedges in H3 glued together along their faces. In the case that the cone angle α < 2π, this

construction can be performed with just one wedge.

4.4 Tachyons in AdS3

Let N be a closed three-manifold, with Σ a knot in N . Let M = N \Σ. We give the following

definition of an AdS3 manifold with tachyon singularities. Barbot-Bonsante-Schlenker give

an equivalent definition in [BBS09] as well as a detailed discussion of tachyons and other

singularities in AdS.

Definition 19. An AdS3 structure on N with a tachyon at Σ is given by a smooth AdS3

structure on M such that the geodesic completion is topologically N . The singular locus Σ

is required to be space-like, and the local future and local past at points of Σ must each be

connected and non-empty.

Σ

glueϕ

Figure 4.6: Schematic of a tachyon singularity in AdS3. The geometry orthogonal to the
space-like singular locus can be constructed by glueing a wedge in AdS2 together with a
Lorentz boost. The glueing depicted produces a tachyon of mass −|ϕ|.

Consider a tubular neighborhood T of Σ. The developing map D on T̃ \ Σ extends to

the geodesic completion T̃ \ Σ ∪ Σ̃, which is the universal branched cover of T branched

over Σ. The image D(Σ̃) is (locally) a one-dimensional set in AdS3 which must be fixed by

the holonomy ρ(m) of a meridian m around Σ. Assuming ρ(m) is non-trivial, it point-wise
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fixes a geodesic L in AdS3 and D maps Σ̃ isometrically onto L (this is one sense in which

Σ is totally geodesic). Hence, by Remark 14:

Proposition 20 (tachyons are cone-like). The underlying projective structure of an AdS

structure with a tachyon on (N,Σ) has a cone-like singularity at Σ.

By definition, L is required to be space-like. The group GL of isometries fixing a space-

like geodesic is isomorphic to R. It is non-compact, in contrast to the Riemannian case. An

element A of GL acts as a Lorentz boost on each (time-like) tangent plane L⊥ perpendicular

to L. We choose an orientation of L which then determines an orientation on the tangent

planes L⊥. The hyperbolic angle ϕ is determined by

coshϕ =< v,Av >

where v ∈ L⊥ is any space-like unit vector. The sign of ϕ is determined from the orientation

of L⊥ by the convention: ϕ > 0 if {v,Av} matches the orientation of L⊥. The tachyon mass

is the hyperbolic angle of ρ(m), provided that m is chosen to wind around Σ in the direction

consistent with the chosen orientation of L. Note that if the opposite orientation of L is

chosen, the sign of the tachyon mass remains unchanged.

The holonomy representation ρ must map π1T \Σ = 〈m, `〉 into the group HL of isome-

tries of AdS3 that preserve L, the orientation of L, and the orientation of AdS3 (See Sec-

tion 2.3.3). Note that HL is a product

HL = GL × TL × Z/2

where TL is the subgroup of pure translations along L and the Z/2 factor is a rotation

by π around L that reverses time orientation. The longitude ρ(`) must have non-trivial

translational part, for the translational part of ρ(`) determines the length of Σ. It follows

that π1T \Σ injects into π1M . Note that in general ρ(`) may also have a component in GL

and may rotate by π.

The local geometry at points of Σ is determined by the lifted holonomy ρ̃(m). We know

that ρ(m) is a Lorentz boost by the tachyon mass ϕ. Hence, to determine the geometry we

just need to determine the discrete rotational part of the holonomy around Σ.

Proposition 21. The discrete rotational part of the holonomy around Σ is 2π (in the sense

of Definition 17).
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Proof. This follows from the condition that the local future and local past at points of Σ

must be connected and non-empty. Choose a representative m(t) for the meridian so that

for every t, m(t) lies on a ray orthogonal to Σ emanating from p. Then D(m(t)) lies entirely

in the plane L⊥ orthogonal to L at the point q = D(p). As the future of p and the past of p

each have one component, D(m(t)) crosses the four light-like rays emanating from q in L⊥

exactly once (counted with sign).

As in the hyperbolic case, many local geometric quantities are defined at Σ. In a

neighborhood of Σ, the union of rays orthogonal to Σ at a point p ∈ Σ forms a totally

geodesic disk Cp. The geometry of Cp is that of a disk in AdS2 with a cone-like point (see

Figure 4.6 and 4.8). For varying p in a small interval I of Σ, the disks Cp are naturally

identified with one another via parallel translation along Σ. This defines a product tubular

neighborhood of I, foliated by the singular disks Cp. There are four light like rays emanating

from p which divide Cp into four regions. Two of the regions are unions of time-like rays,

while the other two are unions of space-like rays. Locally, one of the time-like regions

can be labeled as the future of p, and the other as the past of p. Let W be a geodesic

wedge in Cp bounded by two geodesic rays. The product wedge U is again defined as the

Σ
L

Figure 4.7: A neighborhood of a point on the singular locus is covered by two space-like
product wedges. These are mapped to product wedges along L in AdS3 by the developing
map. The tachyon mass is negative in this picture.

union of all translates of W along I. As long as W is small enough, U maps isometrically

to a model product wedge along L in AdS3. By covering Cp by wedges W1, . . . ,Wk, we

construct product wedge charts ϕi : (Ui, I) → (AdS,L) with the desired properties at I
(as in Definition 15). In fact two wedges are enough in this case. We can do this for every
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interval I in Σ. Note that all transition maps will lie in HL.

Alternatively, we can construct the geometry around an interval I by dividing a neigh-

borhood of I into product wedges which meet only along their faces. Thus the local geom-

etry of a tachyon is modeled on the union of finitely many product wedges in AdS3 glued

together along their faces. Note that two wedges may only be glued together if the signature

of the metric is the same along the faces to be glued. In the case that the mass ϕ < 0, this

construction can be performed with one wedge that has space-like faces. If the mass ϕ > 0,

this construction can be performed with one wedge that has time-like phases. In either

case, there is a useful alternative model. Construct a “wedge” W by cutting a slit in the

L
light

space

past

future

s+

s−

Figure 4.8: A two-dimensional cross-section of a tachyon can be constructed by cutting
along a light-like ray and then glueing back together with a Lorentz boost, which act as a
dilation along the ray. The figure depicts a tachyon of negative mass. This construction
should be compared with the construction of Figure 4.6, which produces the same geometry.

disk Cp along a light-like ray r emanating from p. We let r+ and r− denote the two sides

of the slit which are identified in Cp. Then W embeds via the developing map in the plane

perpendicular to L at the point q = D(p). D(W) is slit along the light-like ray s emanating

from q = D(p). We denote the two sides of the slit by s+ and s−. The identification of r−

with r+ in Cp corresponds to glueing s− to s+ using a Lorentz boost of hyperbolic angle

ϕ as depicted in Figure 4.8. Note that the action of the boost on the ray s− is dilation by

eϕ. A model for a tachyon is given by the product of this construction with the space-like

geodesic L.

Remark 17 (Generalized tachyons). A more general class of singularities is produced if

we allow for the points of Σ to have disconnected local future and/or local past. These

generalized tachyons are determined by a hyperbolic angle ϕ and a discrete rotational part

of the holonomy equal to kπ, where k 6= 0 could be any non-zero integer. In the case that

k is odd, the resulting AdS structure will not be locally time-orientable.



64 CHAPTER 4. SINGULAR THREE DIMENSIONAL STRUCTURES

4.5 Infinitesimal cone singularities in HP3

In order to develop a theory of geometric transitions with singularities, we consider HP

structures with a singularity that is cone-like with respect to the underlying projective

structure. These singularities arise naturally as rescaled limits of collapsing neighborhoods

of cone singularities (resp. tachyons) in H3 (resp. AdS3).

Definition 20. Let N be an oriented three-manifold with Σ ⊂ N a knot. Let M = N \Σ.

An HP structure with infinitesimal cone singularity on (N,Σ) is a smooth HP structure

on M whose underlying projective structure has a cone-like singularity at Σ. Further, we

require that there are exactly two degenerate rays emanating from each point of Σ. Hence

Σ is a non-degenerate line and the discrete rotational part of the holonomy around Σ is 2π.

In this section, we describe model neighborhoods around an infinitesimal cone singularity

using the HP geometry. We will show that the local geometry of any infinitesimal cone

singularity is realized as the rescaled limit of a model collapsing neighborhood of a cone

(resp. tachyon) singularity in hyperbolic (resp. AdS) geometry. We begin by demonstrating

this on the level of holonomy representations.

Let T be a solid torus with core curve Σ and assume that T has an HP structure with

infinitesimal cone singularity at Σ. Let m be a meridian encircling Σ in the positive direction

with respect to the orientation of Σ. If the holonomy ρ(m) is trivial, then the HP structure

extends smoothly over Σ, i.e. there is no singularity. This follows from the requirement

that the rotational part of the holonomy around Σ be 2π. So, we assume that ρ(m) is non-

trivial. Then ρ(m) lies in the group GL of HP isometries that fix a non-degenerate line L

and preserve both orientation and the direction along degenerate fibers. The holonomy ρ(`)

of a longitude ` will lie in the group HL of HP isometries that preserve L, the orientation

of L, and the orientation of HP3.

By conjugating in GHP, we may assume ρ(m) and ρ(`) have the following forms:

ρ(m) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 ω 1

 , ρ(`) =


cosh d sinh d 0 0

sinh d cosh d 0 0

0 0 ±1 0

0 0 µ ±1

 .

The general form of ρ(m) describes GL
∼= Rω, while the general form of ρ(`) describes
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Σ glue

Figure 4.9: Orthogonal to the singular locus, the geometry can be constructed by glueing
together the two non-degenerate boundary rays of a wedge with an infinitesimal rotation.

HL
∼= Rd × Rω × Z/2. The Rd factor consists of pure translations along L and the Z/2

factor is a rotation by π around L which reverses direction along degenerate fibers. We

will see how to interpret the Rω factor shortly. Recall that there is a hyperbolic plane

P2 ⊂ HP3, which we think of as simultaneously lying in each of our family of models Xs
(refer to Section 3.1 for notation). Note that if ρ(m), ρ(`) are in the form given above, then

the preserved line L lies in P. If ρ is the limit of rescaled PO(3, 1) representations ρt, then

assuming that L lies in P corresponds to assuming that the axis of ρt(m), ρt(`) in H3 lies

in P (at least to first order). Without loss in generality we will assume this throughout the

section.

It is easy to construct a path ρt : 〈m, `〉 → PO(3, 1) whose rescaled limit agrees with ρ.

Define the path as follows:

ρt(m) =


1 0 0 0

0 1 0 0

0 0 cosωt − sinωt

0 0 sinωt cosωt

 , ρt(`) =


cosh d sinh d 0 0

sinh d cosh d 0 0

0 0 ± cosµt − sinµt

0 0 sinµt ± cosµt

 .

These representations describe hyperbolic cone structures on a tubular neighborhood of Σ

with cone angles approaching 2π. One easily checks that conjugating ρt by the rescaling
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map rt produces the desired limit as t→ 0. For example:

rtρt(m)r−1
t =


1 0 0 0

0 1 0 0

0 0 cosωt −t sinωt

0 0 sinωt/t cosωt

 −−→
t→0


1 0 0 0

0 1 0 0

0 0 1 0

0 0 ω 1

 .

The quantity ω describes the first order change in rotation angle of ρt(m) at t = 0.

Hence we call ρ(m) an infinitesimal rotation. We note that if ω > 0, the cone angle of

nearby hyperbolic cone structures must be increasing, while if ω < 0, the cone angle of

nearby hyperbolic structures will be decreasing.

Definition 21. The infinitesimal cone angle around Σ is defined to be the quantity ω.

Note that the sign is well-defined and that the lifted holonomy ρ̃(m) is a rotation by 2π

plus an infinitesimal rotation by ω.

It is just as easy to construct a path of representations ρt : 〈m, `〉 → PO(2, 2) whose

rescaled limit agrees with ρ. Define the path as follows:

ρt(m) =


1 0 0 0

0 1 0 0

0 0 coshωt sinhωt

0 0 sinhωt coshωt

 , ρt(`) =


cosh d sinh d 0 0

sinh d cosh d 0 0

0 0 ± coshµt sinhµt

0 0 sinhµt ± coshµt

 .

These representations describe AdS structures on a tubular neighborhood of Σ with a

tachyon at Σ of mass ωt. One easily checks that conjugating ρt by the rescaling map rt

produces the desired limit as t → 0. Hence, the infinitesimal angle ω can also be thought

of as an infinitesimal tachyon mass.

Next, we work directly with the HP geometry at Σ. Let p ∈ Σ and consider a neigh-

borhood B of p. The developing map D on B \ Σ extends to the universal branched cover

B̃, branched over B ∩ Σ. The image of B ∩ Σ is a segment of a non-degenerate line L,

which we may assume lies in P. Consider the plane P orthogonal to L and passing through

D(p). As P is spanned by the fiber direction and a non-degenerate direction orthogonal

to L, the restricted metric is degenerate on P . The inverse image Cp := D−1(P ) is a disk

in B. Away from p, Cp is locally modeled on HP2. The singularity at p is a cone-like

HP2 singularity. We may, as in the H3 and AdS3 cases, parallel translate Cp (or at least
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a smaller neighborhood of p in Cp) along the interval I = B ∩ Σ, giving the identification

B = Cp ×I near I. Let W be a wedge in Cp (modeled on a wedge in HP2), and define the

product wedge U = W × I. Product wedges are, as in the hyperbolic and AdS case, the

most natural geometric charts at the singular locus.

We now construct some particularly useful wedges. For simplicity, this part of the

discussion will take place in dimension two. The corresponding three-dimensional behavior

is easily described by taking the product with a non-degenerate geodesic. Consider the HP2

cone Cp defined above. By assumption, there are two degenerate rays emanating from p.

Pick one of these rays, r, and let W be Cp, but with a slit along the ray r, so that the

boundary of W contains two copies r+, r− of r with opposite orientation. Though it is a

bit of an abuse, we count W as a wedge. It is isomorphic to a disk V in HP2 with a slit

along a degenerate ray s emanating from the center q of V . The boundary of V contains

two copies s+, s− of s. We take s+ to be the positive ray, meaning that it is adjacent to

the portion of V containing a small positive rotation of s. The glueing map g identifies s+

to s− by an infinitesimal rotation fixing q. Note that g fixes s point-wise. Nonetheless, the

geometry at q is singular, for the glueing map does not preserve the lines transverse to s

(see Figure 4.10). The holonomy around p is a rotation by 2π composed with g.

degenerate direction

non-degenerate lines

s+
s−

q

Figure 4.10: A disk V is slit along a ray in the degenerate direction. It is then glued
back together using a non-trivial infinitesimal rotation to produce an infinitesimal cone
singularity. This construction should be compared with the construction of Figure 4.9,
which produces the same geometry.

Next, we construct a model degeneration of hyperbolic cones which when rescaled con-

verge to a given HP cone. Again, we give the construction in two dimensions; the three-

dimensional case is described by taking the product with a geodesic. We will assume that

the infinitesimal cone angle ω < 0, so that we can easily draw a picture. Let θ(t) = 2π−|ω|t.
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Construct a polygonal wedge V (t) in H2 with seven sides, six right angles and a seventh

(concave) angle θ at the center point of the wedge as in Figure 4.11. Glueing V (t) together

along the sides adjacent to the center point produces a rectangle with a cone point at the

center. We arrange for V (t) to be long and skinny, with width roughly equal to one, and

thickness |ω|t+O(t2). Further, we arrange one ray s+ of the concave part of the wedge to

be aligned with the collapsing direction. The glueing map g(t) is a rotation by ωt. Now,

the rescaled limit of these collapsing wedges V (t) produces an HP wedge V of the type

described in the previous paragraph. The glueing map g is the rescaled limit of a rotation

by ωt, which is an infinitesimal rotation by ω (as demonstrated explicitly above).

ωt|ω|t

O(1)

fiber

collapse

rescale

H2

V

HP2

Figure 4.11: Polygonal hyperbolic wedges collapse onto a line as the (interior) wedge angle
2π − |ω|t approaches 2π. Each wedge is glued together to form a rectangle with a cone
point at the center. The rescaled limit of the wedges V is an HP polygon with a slit along
the fiber direction. Glueing the slit together with the rescaled limit of the glueing maps
produces an HP infinitesimal cone singularity with infinitesimal angle ω.

Next, we construct a model degeneration of AdS tachyons that when rescaled converge

to the given HP cone. Let ϕ(t) = ωt. Let V (t) be a wedge in AdS2 bounded by seven

edges as in Figure 4.12. The five edges along the convex part of the perimeter should

alternate space-like, time-like, space-like, time-like, space-like meeting at four right angles.

We arrange for the space-like edges to be of roughly constant length, while the time-like
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edges have (time-like) length |ω|t + O(t2). The two remaining edges s+, s− border a slit

along a light-like ray emanating from the center q of the wedge. The glueing map g(t),

which a is Lorentz boost of hyperbolic angle ϕ, identifies s− with s+; the action of g(t) on

s− is a dilation by eϕ. Now, the rescaled limit of these collapsing wedges V (t) produces an

HP wedge V of the type described in the previous paragraph. The glueing map g is the

rescaled limit of a boost by hyperbolic angle ωt, which is an infinitesimal rotation by ω,

alternatively thought of as an infinitesimal boost.

light

fiber direction

Xt

AdS

HP

collapse

rt
O(1)

|ωt|

time

Figure 4.12: Polygons with a slit along a light-like ray in AdS2 are glued together with a
Lorentz boost of hyperbolic angle ϕ(t) = ωt to form rectangles with a singular point at the
center. After rescaling the collapsing time-like direction, these polygons converge to an HP
polygon with a slit along a degenerate ray. This “wedge” is glued together with the rescaled
limit of the Lorentz boosts: an infinitesimal rotation (thought of as an infinitesimal boost)
by angle ω.

Remark 18 (Generalized infinitesimal cone singularities). A more general class of singular-

ities is produced if we allow for an arbitrary number of degenerate rays to meet each point

p ∈ Σ. These generalized infinitesimal cone singularities are determined by the infinitesimal

angle ω and a discrete rotational part of the holonomy equal to kπ, where k 6= 0 could be

any non-negative integer. In the case that k is odd, the fibers of the resulting HP structure

can be not be consistently oriented. These generalized singularities naturally appear in the

context of geometric transitions: The rescaled limit of collapsing hyperbolic cone manifolds
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with cone angle approaching kπ should be an HP structure with a generalized infinitesimal

cone singularity (under appropriate conditions). Similarly collapsing generalized tachyons

(see Remark 17) should have rescaled limit a generalized infinitesimal cone singularity.

4.6 Deforming cone-like projective structures

In order to prove a regeneration theorem for hyperbolic cone (resp. AdS tachyon) struc-

tures, we need to extend Lemma 5 of Section 3.6 to the case of projective structures with

cone-like singularities. That is we must show that an appropriate deformation of the holon-

omy representation of a cone-like projective structure produces nearby cone-like projective

structures.

Let N be a three-manifold, with Σ ⊂ N a knot, and let M = N \ Σ. Let T ⊂ M be a

neighborhood of ∂M (so T is the result of removing Σ from a tubular neighborhood of Σ

in N). Let T̃ be the universal cover of T . We assume that π1T ↪→ π1M , so that T̃ embeds

in M̃ . The fundamental group π1T ∼= Z× Z is generated by the meridian m around Σ and

a longitude `.

Remark 19. The assumption π1T ↪→ π1M holds in every application that we are interested

in. However, the assumption is not necessary. Everything done below can be easily modified

if a longitude ` 7→ 1 in π1M .

Suppose (N,Σ) has a projective structure with cone-like singularity. Let D : T̃ → RP3

be the developing map on a chosen lift T̃ of T , and let ρ : π1T → PGL(4,R) be the holonomy.

Using Proposition 18 we can construct convenient coordinates (r, x, y) ∈ (0, 1)× R× R for

T̃ with the following properties:

• The action of π1T by deck translations is given by

m : (r, x, y) 7→ (r, x+ 1, y) ` : (r, x, y) 7→ (r, x, y + 1).

• The limit limr→0D(r, x, y) =: f(y), is a local submersion, independent of x, to a line

L in RP3. The line L represents the lift of Σ corresponding to the chosen lift of T .

• ρ(m) point-wise fixes L and ρ(`) preserves (but does not fix) L.

These coordinates will be useful for proving the following proposition.
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Proposition 22. Suppose ρt : π1M → PGL(4,R) is a path of representations such that

1. ρ0 is the holonomy representation of a projective structure with cone-like singularities

on (N,Σ). Let L be the line in RP3 fixed by ρ(π1∂M).

2. ρt(m) point-wise fixes a line Lt, with Lt → L.

Then, for all t sufficiently small, ρt is the holonomy representation for a projective structure

with cone-like singularities on (N,Σ).

Proof. First, we let D0 : M̃ → RP3 denote the developing map of our projective structure

at time t = 0. Let M0 ⊂ M be the result of removing a smaller tubular neighborhood

T ′ ⊂ T of Σ from M , so that M0 and T overlap in a neighborhood of ∂M0. By Lemma 5,

we can deform the projective structure on M0 to get developing maps Dt : M̃0 → RP3 that

are equivariant with respect to ρt. Further, by the proof of the lemma, we may assume that

Dt converges uniformly in the C 1 topology on compacts in M̃0. Now we must extend Dt to

the rest of M̃ .

We may assume, by conjugating ρt in PGL(4,R), that ρt(m) also fixes L, for all t. That

is, we assume Lt = L. In order to define Dt on T̃ we will need a quick lemma.

Lemma 7. For each γ ∈ π1T , we can take arbitrary powers ρt(γ)z in a way that depends

smoothly on z, t.

Proof of Lemma. First ρt(π1T ) ⊂ PSL(4,R). So for each γ ∈ π1T , we can find a path g(t)

in PSL(4,R) with g(0) = Id and g(1) = ρ0(γ). The log function is well-defined sufficiently

near to the identity and can be defined by analytic continuation along the path g(s) (this

amounts to choosing a branch of log for the eigenvalues; note that we can not have an odd

number of negative real eigenvalues). Next, analytically continue log along the path ρt(γ).

Thus ρt(γ)z := exp(z log ρt(γ)) depends smoothly on z, t.

Next, using the coordinates defined above, define Dt on T̃ as follows:

Dt(r, x, y) = ρt(m)xρt(`)
yρ0(m)−xρ0(`)−yD0(r, x, y)
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We check that

Dt(r, x+ k, y + j) = ρt(m)x+kρt(`)
y+jρ0(m)−x−kρ0(`)−y−jD0(r, x+ k, y + j)

= ρt(m)x+kρt(`)
y+jρ0(m)−x−kρ0(`)−y−jρ0(m)kρ0(`)jD0(r, x, y)

= ρt(m)x+kρt(`)
y+jρ0(m)−xρ0(`)−yD0(r, x, y)

= ρt(m)kρt(`)
jρt(m)xρt(`)

yρ0(m)−xρ0(`)−yD0(r, x, y)

= ρt(m)kρt(`)
jDt(r, x, y),

so Dt satisfies the right equivariance properties. Next, since ρt(m) fixes L pointwise, we

still have that limr→0Dt(r, x, y) is independent of x. Further, for small t, limr→0Dt(r, x, y)

will still be a local submersion to L. So, Dt is the developing map for a structure with

cone-like singularities on a neighborhood of the singular locus Σ. Further, Dt converges to

D0 in the C 1 topology (in fact, in C∞) on compacts of T̃ . Now, the definition of Dt on T̃

and the definition of Dt on M̃0 may not agree on the overlap. So, we glue these two maps

together using a bump function which is supported away from the singular locus. Finally,

extend Dt to the other lifts of T in M̃ by ρt equivariance. This gives globally defined maps

Dt : M̃ → RP3 which converge in C 1, on compacts, to D0. Thus for sufficiently small t, the

Dt are local diffeomorphisms.

4.7 Regeneration of H3 and AdS3 structures from HP3

As the class of cone-like singularities specializes to cone singularities in the H3 case, tachyons

in the AdS3 case, and infinitesimal cone singularities in the HP3 case, we get the following

regeneration statement immediately from Proposition 22.

Proposition 23 (Regeneration with cone-like singularities). Let N be a closed three-

manifold, with Σ a knot, and let M = N \ Σ with m ∈ π1M the meridian around Σ.

Let X be either X1 = Hn or X−1 = AdSn. Let ρt : π1M → Isom(X) be a family of

representations defined for t ≥ 0 such that

• The path of rescaled representations rtρtr
−1
t converges as t → 0 in C 1 to a represen-

tation ρHP,

• ρHP is the holonomy of an HP structure with infinitesimal cone singularities on (N,Σ).
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• ρt(m) is a rotation if X = H3, or a boost if X = AdS3.

Then, for sufficiently small t > 0, we can construct a family of X structures on N with

singularities at Σ. For each t, the holonomy representation of the smooth part is ρt, and

the structures have cone singularities if X = H3 or tachyon singularities if X = AdS3.

Proof. The proof is the same as the proof of Proposition 15. At time t = 0 we have an

HP structure with infinitesimal cone singularity. We regard this as a projective structure

with cone-like singularities. If X = H3, then σt = rtρtr
−1
t is a representation landing in

Gt = Isom(Xt). The σt limit to ρHP. By Proposition 22 there is a family of cone-like

projective structures very close to the HP structure that realize the σt as holonomy (for

short time). The developing maps of these structures map a compact fundamental domain

K (which includes the singularity) to a compact region inside of RP3 that for small t is

very close to the image of K by the developing map of the HP structure. Thus, for all

sufficiently small t, the image will lie inside of Xt ensuring the developing maps define a

family of (Xt, Gt) structures. Applying the inverse of the rescaling map r−1
t gives a family

of X1 = H3 structures with cone singularities. If X = AdS3 everything works the same,

except that σt lands in G−t and we get (X−t, G−t) structures that, by applying r−1
t , are

equivalent to AdS structures with tachyons.

This proposition says that we can recover collapsing hyperbolic cone and AdS tachyon

structures from an HP structure and a suitable path of representations. We use this propo-

sition to prove the following regeneration theorem.

Theorem 4. Let (N,Σ) be a closed HP3 three-manifold with infinitesimal cone singularity

of infinitesimal angle −ω along the knot Σ. Let M = N \ Σ be the smooth part and

let ρHP : π1M → GHP be the holonomy representation with ρ0 its O(2, 1) part. Suppose

that H1(π1M, so(2, 1)Adρ0) = R. Then there exists singular geometric structures on (N,Σ)

parametrized by t ∈ (−δ, δ) which are

• hyperbolic cone structures with cone angle 2π − ωt for t > 0

• AdS structures with a tachyon of mass ωt for t < 0.

To prove this theorem, we use the condition H1(π1M, so(2, 1)Adρ0) = R to get repre-

sentations into PSO(3, 1) and PSO(2, 2) satisfying the conditions of Proposition 23. In
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the hyperbolic case, the proof of this makes use of the complex structure of the variety

of PSO(3, 1) representations coming from the isomorphism PSO(3, 1) ∼= PSL(2,C). This

isomorphism can be generalized to give PGL(2, ·) descriptions of all of the isometry groups

Gs. Working with the PGL(2, ·) description of isometry groups allows for the most natural

proof of Theorem 23. So, we take a detour in the next section and give the proof of the

Theorem in Section 4.9.

4.8 The PGL(2) description of isometry groups

In dimension three, there is a useful alternative description of the isometry groups Gt of

our models Xt which generalizes the isomorphism PSO(3, 1) ∼= PSL(2,C).

Let Bs = R + Rκs be the real two-dimensional (commutative) algebra generated by a

non-real element κs with κ2
s = −sign(s)s2. As a vector space Bs is spanned by 1 and κs.

There is a conjugation action:

(a+ bκs) 7→ (a+ bκs) := a− bκs

which defines a square-norm

|a+ bκs|2 := (a+ bκs)(a+ bκs) = a2 − b2κ2
s ∈ R.

Note that | · |2 may not be positive definite. We refer to a as the real part and b as the

imaginary part of a+ bκs. It easy to check that Bs is isomorphic to C when s > 0.

Remark 20. In the case s = −1, we will denote κs by the letter τ . The algebra R + Rτ
plays a central role in the study of ideal triangulations of AdS manifolds in Chapter 5. It

is also easy to check that when s < 0, Bs is isomorphic to R + Rτ .

Remark 21. In the case s = 0, we will denote κs by the letter σ. The algebra R + Rσ
plays a central role in the study of ideal triangulations of HP manifolds in Chapter 5.

Now consider the 2× 2 matrices M2(Bs). There is an adjoint operation A 7→ A∗ which

simply takes the conjugate transpose of A. Let Herm(2,Bs) denote the 2 × 2 Hermitian

matrices,

Herm(2,Bs) = {A ∈M2(Bs) : A∗ = A}.
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As a real vector space, Herm(2,Bs) ∼= R4. We define the following (real) inner product on

Herm(2,Bs): 〈[
a z

z̄ d

]
,

[
e w

w̄ h

]〉
= −1

2
tr

([
a z

z̄ d

][
h −w
−w̄ e

])
.

The signature of this metric depends on s.

Proposition 24. The convex region Xs in RP3 defined in Section 3.1 can be alternately

defined by

Xs = {X ∈ Herm(2,Bs) : 〈X,X〉 < 0} /X ∼ λX for λ ∈ R∗

where we use the coordinates X =

(
x1 + x2 x3 + x4κs

x3 − x4κs x1 − x2

)
on Herm(2,Bs). Note that

〈X,X〉 = −det(X) = −x2
1 + x2

2 + x2
3 − κ2

sx
2
4.

The ideal boundary ∂∞Xs, given by the projectivized light cone with respect to this

metric, is exactly the projectivized rank one Hermitian matrices, where for a Hermitian

matrix X, rank one means det(X) = 0, X 6= 0. Any rank one Hermitian matrix X can be

decomposed (uniquely up to ±) as

X = vv∗

where v ∈ B2
s is a two-dimensional column vector with entries in Bs (and v∗ denotes the

transpose conjugate). Further v must satisfy that λv = 0 for λ ∈ Bs if and only if λ = 0.

This gives the identification

∂∞X = P1Bs =

{[
x

y

]
: x · α = 0 and y · α = 0 for α ∈ Bs ⇐⇒ α = 0

}
/ ∼

where

[
x

y

]
∼

[
xλ

yλ

]
for λ ∈ B×s .

Definition 22. We denote by PGL+(2,Bs) the 2 × 2 matrices A with entries in Bs such

that |det(A)|2 > 0, up to the equivalence A ∼ λA for any λ ∈ B×s .

Remark 22. The condition | det(A)|2 > 0 is only needed in the case s < 0. For s ≥ 0,

PGL+ and PGL are the same. For s > 0, PGL+ is the same as PSL.

We will think of PGL+(2,Bs) as determinant ±1 matrices with entries in Bs up to

multiplication by a square root of 1 (if s < 0, there will be four such square roots). We note
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that PGL+(2,Bs) acts by Mobius transformations on ∂∞Xs = P1Bs. This action extends

to all of Xs, giving a map PGL+(2,Bs)→ Gs = Isom(Xs), as follows:

A ·X := AXA∗ where X ∈ Xs and det(A) = ±1.

Proposition 25. For s 6= 0 The map PGL+(2,Bs)→ Gs = Isom+(Xs) is an isomorphism.

Note that in the case s = 1, this is the usual isomorphism PSL(2,C) ∼= PSO(3, 1).

Proof. The proof is not hard. Use the coordinates X =

(
x1 + x2 x3 + x4κs

x3 − x4κs x1 − x2

)
on

Herm(2,Bs).

Remark 23. In fact, the orientation reversing isometries are also described by PGL+(2,B)

acting by X 7→ AXA∗.

Note that with the coordinates X =

(
x1 + x2 x3 + x4κs

x3 − x4κs x1 − x2

)
on Herm(2,Bs), the

rescaling map rs : X1 → Xs defined in Section 3.1 corresponds to the algebraic rescal-

ing map as : C = B1 → Bs defined by i 7→ κs/|s|. This observation gives the following

proposition:

Proposition 26. For s > 0, as defines an isomorphism PSL(2,B1) → PSL(2,Bs) which

corresponds to the isomorphism G1 → Gs given by conjugation by rs.

PSL(2,C)

∼=
��

as // PSL(2,Bs)
∼=

��
PSO(3, 1)

rs // Gs

(4.1)

Similarly, for s < 0, the rescaling map rs : X−1 → Xs defined in Section 3.1 corresponds

to the algebraic rescaling map as : B−1 → Bs defined by τ 7→ κs/|s|. Again, we get

Proposition 27. For s < 0, as defines an isomorphism PGL+(2,B−1) → PGL+(2,Bs),
which corresponds to the isomorphism G1 → Gs given by conjugation by rs.

PGL+(2,R + Rτ)

∼=
��

as // PGL+(2,Bs)
∼=

��
PSO(2, 2)

rs // Gs

(4.2)
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Recall that in the case s = 0, the metric on X0 is degenerate, so that the isometries of

X0 ended up being too large to be of use. The half-pipe group GHP was defined to be a

strict subgroup giving a useful structure for the purposes of geometric transitions.

Proposition 28. The map PGL(2,R + Rσ) → G0 = Isom(X0) maps PGL(2,R + Rσ)

isomorphically onto G+
HP.

Proof. To begin, we think of R + Rσ as the cotangent bundle of R. The element σ should

be thought of as a differential quantity, whose square is zero. Similarly, PGL(2,R + Rσ) is

the cotangent bundle of PGL(2,R):

Lemma 8. Let A + Bσ have determinant ±1. Then detA = det(A + Bσ) = ±1 and

trA−1B = 0. In other words B is in the tangent space at A of the matrices of constant

determinant ±1.

Any element of Herm(2,R + Rσ) can be expressed uniquely in the form X + Y σ where

X =

(
x1 + x2 x3

x3 x1 − x2

)
= XT is symmetric and Y =

(
0 x4

−x4 0

)
= −Y T is skew-

symmetric. Then

(A+Bσ)(X + Y σ)(A+Bσ)∗ = (A+Bσ)(X + Y σ)(AT −BTσ)

= AXAT + (BXAT −AXBT +AY AT )σ

where we note that AXAT is symmetric and (BXAT −AXBT +AY AT ) is skew-symmetric.

The symmetric part X 7→ AXAT , written in coordinates gives the familiar isomorphism

Φ : PGL(2,R) → O(2, 1). In (x1, x2, x3, x4) coordinates the transformation defined by

A+Bσ has matrix (
Φ(A) 0

v(A,B) c(A,B)

)

The skew-symmetric part X+Y σ 7→ (BXAT−AXBT +AY AT )σ, written in (x1, x2, x3, x4)

coordinates gives the bottom row of this matrix:

v(A,B) =
(

(be+ df − ag − ch) (be− df − ag + ch) (bf + de− ah− cg)
)

c(A,B) = det(A) = det(Φ(A)) = ±1

where A =

(
a b

c d

)
, B =

(
e f

g h

)
. To show that PGL(2,R+Rσ)→ G+

HP is an isomorphism,
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one must simply check that for any given A, the map B → v(A,B) is a linear isomorphism

to R3.

Finally, we restate the condition of compatibility to first order in these terms. In order

to make sense of continuity and limits for paths of representations over the varying algebras

Bs, we can embed all of the Bs in a larger Clifford algebra C (see Section 5.4). For our

purposes here, assume that κs → κ0 as s→ 0.

In the hyperbolic case:

Proposition 29. Let ρt : π1M → G+1 be a path of representations, defined for t ≥ 0,

converging to a representation ρ0 with image in the subgroup H0 =

(
O(2, 1) 0

0 ±1

)
. Then

the corresponding representations ρ̃t : π1M → PGL(2,C) limit to a representation ρ̃0 into

PGL(2,R). Suppose further that rtρtr
−1
t limit to a representation ρHP. Then

atρ̃ta
−1
t −−→

t→0
ρ̃HP

where ρ̃HP is the representation into PGL(2,R+Rσ) corresponding to ρHP. Further ρ̃HP is

defined by

Re ρ̃HP = ρ̃0 Im ρ̃HP =
d

dt
Im ρ̃t

∣∣∣
t=0

.

Similarly, in the AdS case:

Proposition 30. Let ρt : π1M → G−1 be a path of representations, defined for t ≤ 0,

converging to a representation ρ0 with image in the subgroup H0 =

(
O(2, 1) 0

0 ±1

)
. Then

the corresponding representations ρ̃t : π1M → PGL(2,R + Rτ) limit to a representation ρ̃0

into PGL(2,R). Suppose further that rtρtr
−1
t limit to a representation ρHP. Then

atρ̃ta
−1
t −−→

t→0
ρ̃HP

where ρ̃HP is the representation into PGL(2,R+Rσ) corresponding to ρHP. Further ρ̃HP is

defined by

Re ρ̃HP = ρ̃0 Im ρ̃HP =
d

dt
Im ρ̃t

∣∣∣
t=0

.
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4.9 Proof of regeneration theorem

We restate Theorem 4 in terms of PGL(2,Bs) isometry groups.

Theorem 5. Let (N,Σ) be a closed HP3 three-manifold with infinitesimal cone singularity

of infinitesimal angle −ω along the knot Σ. Let M = N \ Σ be the smooth part and let

ρHP : π1M → PGL(2,R + Rσ) be the holonomy representation. Suppose that the real part

ρ0 of ρHP satisfies the condition H1(π1M, sl(2,R)Adρ0) = R. Then there exists singular

geometric structures on (N,Σ) parametrized by t ∈ (−δ, δ) which are

• hyperbolic cone structures with cone angle 2π − ωt for t > 0

• AdS structures with a tachyon of mass −ωt for t < 0.

Proof. We begin with a lemma about the representation variety R(π1M,SL(2,R)) of rep-

resentations modulo conjugation.

Lemma 9. The condition H1(π1M, sl(2,R)Adρ0) = R guarantees that the representation

variety R(π1M,SL(2,R)) is smooth at ρ0.

Proof. It is a standard fact that H1(π1M, sl(2,R)Adρ) → H1(π1∂M, sl(2,R)Adρ) has half-

dimensional image (see for example [HK05]). In this case, ρ0(m) = 1 and ρ0(`) is a non-

trivial translation (possibly plus a rotation by π), so any nearby representation ϕ of π1(∂M)

preserves an axis and has dimH1(π1∂M, sl(2,R)Adϕ) = 2. So, dimH1(π1M, sl(2,R)Adρ) ≥ 1

for all ρ nearby ρ0. It follows that ρ0 is a smooth point of R(π1M,PSL(2,R)), and that

the tangent space at ρ0 is one dimensional.

Let m be a meridian around Σ in the direction consistent with the orientation of Σ (so

that in particular, the discrete rotational part of the holonomy of m is +2π).

Hyperbolic case (t > 0): In order to use Proposition 23, we must produce for t > 0 a

path of representations ρt into PGL(2,C) with the following properties:

1. ρt → ρ0

2. ρt(m) is a rotation by 2π − ωt

3. rtρtr
−1
t converges to ρHP as t→ 0. By Proposition 29 this is equivalent to

d

dt
Im ρt

∣∣∣
t=0

= Im ρHP.
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Now, our HP representation gives a PSL(2,R) tangent vector at ρ0 as follows: ρHP(γ) =

ρ0(γ) + Y (γ) σ. Define z(γ) = Y (γ)ρ0(γ)−1. Then z is an sl(2,R)Adρ0 co-cycle. It spans

the tangent space of R(π1M,PSL(2,R)). As the structure is singular, we must have

z(m) 6= 0. Thus the translation length of m increases (or decreases) away from zero. The

complexified variety R(π1M,PSL(2,C)) is also smooth at ρ0 and R(π1M,PSL(2,C)) →
R(π1∂M,PSL(2,C)) is a local immersion at ρ0. The variety R(π1∂M,PSL(2,C)) has com-

plex dimension 2.

Lemma 10. The subset

S = {ρ ∈ R(π1∂M,PSL(2,C)) : ρ(m) is elliptic}

is locally a smooth real sub-manifold of dimension three. The image of R(π1M,PSL(2,C))

in R(π1∂M,PSL(2,C)) is transverse to S.

Proof of lemma. That S is smooth of dimension three follows immediately from the fact

that R(π1∂M,PSL(2,C)) is parameterized (near ρ0) by the complex lengths of m, `. The

image of R(π1M,PSL(2,C)) in R(π1∂M,PSL(2,C)) is transverse to S because z increases

translation length of m away from zero.

Now, from the lemma, we have that the PSL(2,C) representations of π1M with m elliptic

near ρ0 form a smooth real one-dimensional manifold. The tangent space at ρ0 is spanned

by iz(·). Thus the rotation angle of m is changing along this manifold and we can choose

ρt as desired.

AdS case (t < 0): We obtain, from the argument above, a path ϕt : π1M → PSL(2,R)

defined in a neighborhood of t = 0 with ϕ0 = ρ0, d
dtϕt

∣∣
t=0

= ImρHP and z(m) = d
dtϕt(m) is

an infinitesimal translation by −ω along the axis L of ρ0(`). We may assume that the axis

in H2 preserved by ϕt(∂M) is also L (constant). Now, define ρt : π1M → PSL(2,R + Rτ)

by

ρt(·) =
1 + τ

2
ϕt(·) +

1− τ
2

ϕ−t(·).

A quick computation shows that d
dtρt

∣∣
t=0

= τ d
dtϕt

∣∣
t=0

. Further, ρt(m) is a boost around

the axis L by hyperbolic angle ωt. So Proposition 23 implies the result for t < 0.
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4.10 Cone/Tachyon transitions

The regeneration theorem 4 can be stated as a theorem about geometric transitions.

Theorem 6. Let N be a closed three-manifold, with Σ a knot, and let M = N \ Σ. Let ht

be a path of hyperbolic cone structures on (N,Σ) defined for t > 0. Suppose that:

• As t → 0, the cone angle approaches 2π and ht limits to a transversely hyperbolic

foliation with holonomy ρ : π1M → O(2, 1).

• There are projective structures Pt, defined for t > 0, equivalent to ht, and which

converge to an HP structure with an infinitesimal cone singularity.

• H1(π1M, so(2, 1)Adρ) = R.

Then a transition to AdS structures with tachyons exists: We can continue the path Pt to

t < 0 so that Pt is projectively equivalent to an AdS structure with a tachyon singularity

(of mass O(t)). The same result holds when the roles of hyperbolic and AdS structures are

interchanged.

Remark 24. By an argument using the Schlafli formula, collapsing hyperbolic cone man-

ifolds must have increasing cone angle (see [Hod86, Por98]). So the cone manifolds in the

theorem will have cone angle approaching 2π from below. Hence, the AdS tachyon manifolds

produced by the theorem will have negative mass.

Remark 25. The assumption that the cone angles limit to 2π is not necessary. Indeed

a similar version of theorem holds when the cone angles limit to any multiple of π. The

statement of this version involves generalized tachyons (Remark 17) and generalized in-

finitesimal cone singularities (Remark 18). As we have not given a formal discussion of

these generalized singularities, we leave this version of the theorem for a later article.

4.11 Borromean Rings Example

Here we will construct examples of transitioning structures on the Borromean rings comple-

ment M (with one boundary component required to be a parabolic cusp). In this case, the

SO(2, 1) representation variety is singular at the locus of degenerated structures, so Theo-

rem 6 does not apply. We will see that a transitional HP structure on M can be deformed
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to nearby HP structures that do not regenerate to hyperbolic structures. However, in this

case these nearby HP structures do regenerate to AdS structures. Such examples can be

constructed using ideal tetrahedra and the methods of Chapter 5 (in fact, M is the union

of eight tetrahedra). However, for brevity, we observe this phenomenon only at the level of

representations.

4.11.1 Representation variety

Consider the three-torus T 3 defined by identifying opposite faces of a cube. Now, define

M3 = T 3 − {α, β, γ}, where α, β, γ are disjoint curves freely homotopic to the generators

a, b, c of π1T
3 as shown in Figure 4.13. Then M is homeomorphic to the complement of the

Figure 4.13: We remove the three curves α, β, γ shown in the diagram from the three-torus
T 3 (opposite sides of the cube are identified). The resulting manifold M is homeomorphic
to the complement of the Borromean rings in S3.

Borromean rings in S3 (this is stated in [Hod86]). A presentation for π1M is given by:

π1M = 〈a, b, c : [[a, b], c] = [[c, b−1], a] = 1〉.

We study the representation variety Rpar(M) of representations ρ : π1M → PSL(2,R) up to

conjugacy such that ρ[a, b] is parabolic (and so ρ(c) is parabolic with the same fixed point).

These representations correspond to transversely hyperbolic foliations which are “cusped”

at one boundary component and have Dehn surgery type singularities at the other two

boundary components (see [Hod86]).

Let T denote the punctured torus, with π1T = 〈a, b〉. Then π1T ↪→ π1M , so that
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Rpar(M) → Rpar(T ). The elements of Rpar(T ) correspond to hyperbolic punctured tori

(with a cusp at the puncture). A representation ρ : π1T → PSL2 R satisfies the parabolic

condition if and only if ρ(a), ρ(b) are hyperbolic elements with

sinh
l(a)

2
sinh

l(b)

2
sinϕ = 1

where l(a), l(b) are the translation lengths of ρ(a), ρ(b) respectively and ϕ is the angle

between the axes. To lift such a representation to a representation of π1M , we must assign

ρ(c) so that the relations of π1M are satisfied. Since ρ(c) must commute with the parabolic

ρ[a, b], ρ(c) is parabolic with the same fixed point. Let x denote the amount of parabolic

translation of ρ(c) relative to ρ[a, b], so if ρ[a, b] =
(−1 1

0 −1

)
, then ρ(c) =

(−1 x
0 −1

)
. It turns

out (by a nice geometric argument) that there are exactly two solutions for x:

x = 0 or x =
1

2
sech

l(a)

2
sech

l(b)

2
cotϕ.

This describes the representation variety Rpar rather explicitly as the union of two irre-

ducible two-dimensional components RT and RR. The first component RT (‘T’ for Te-

ichmuller) consists of the obvious representations with ρ(c) = 1 and ρ(a), ρ(b) generating

a hyperbolic punctured torus group. The associated transversely hyperbolic foliations are

products (with two fillable singularities at α and β). The second component RR (‘R’

for regenerate) describes transversely hyperbolic foliations with more interesting structure.

This component, in fact its complexification, is the relevant one for regenerating hyperbolic

structures. Note that RT and RR meet (transversely) exactly at the locus of “rectangular”

punctured tori (cotϕ = 0).

Remark 26. If we identify RT with the Teichmuller space T1,1 of the punctured torus, then

the singular set of Rpar, given by RT ∩ RR, is exactly the line of minima for the curves

a and b. In other words, RT ∩RR consists of the representations in RT where there is a

relation between the differentials dl(a) and dl(b). The relevance of such a relation in the

context of regeneration questions is discussed in Section 3.17 of [Hod86].

4.11.2 Regenerating 3D structures

Fix a particular rectangular punctured torus ρ0 : π1T → PSL(2,R)R, and lift ρ0 to π1M by

setting ρ0(c) = 1 (this is the only possible lift). Let v be a tangent vector at ρ0, tangent to
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the component RR but transverse to RT . For suitably chosen v, the representation ρ0 +σv :

π1M → PSL2(R+Rσ) is the holonomy of a robust HP structure (which can be constructed

from eight tetrahedra). Now, as the variety RR is smooth, the complexified variety RC
R is

smooth at ρ0. Thus the Zariski tangent vector iv is tangent to a path ρt : π1M → PSL(2,C)

which is compatible to first order with ρ0 + σv. By Proposition 15, the HP structure

regenerates to a path of hyperbolic structures with holonomy ρt (or alternatively, this path

of hyperbolic structures can be constructed directly using tetrahedra). Similarly, the variety

RR+Rτ
R is smooth at ρ0 yielding a path of holonomies ρt : π1M → PSL(2,R+Rτ) with ρ′0 =

τv so that Proposition 15 then produces a regeneration to AdS structures with holonomy

ρt. Thus, our HP structure is transitional. Actually, in the AdS case, the representations

can be constructed directly. Let σt : π1M → PSL(2,R) be a path with σ′0 = v. Then, a

path ρt of PSL(2,R + Rτ) representations with ρ′0 = τv is defined by

ρt =
1 + τ

2
σt +

1− τ
2

σ−t.

4.11.3 An interesting flexibility phenomenon

The transitional HP structure from the previous sub-section, with holonomy ρ0 + σv, can

be deformed in an interesting way. By Lemma 5, nearby HP structures are determined by

nearby holonomy representations. We consider a deformation of the form

ρ0 + σ(v + εu)

where εu is a small tangent vector at ρ0, tangent to the component RT and transverse to

RR (see Figure 4.14). Now, RC
par(M) is the union of its irreducible components RC

T and RC
R

(locally at ρ0). So, as u and v are tangent to different components of Rpar(M), any Zariski

tangent vector of the form w+i(v+εu), for w real, is not integrable. Thus, the deformed HP

structure does not regenerate to hyperbolic structures. However, it does regenerate to AdS

structures. To see this, consider paths σt and µt with derivatives 2v and 2εu respectively

at t = 0. Then,

ρt =
1 + τ

2
σt +

1− τ
2

µ−t

gives a family of PSL(2,R+Rτ) representations with ρ′0 = (v−εu)+τ(v+εu). Proposition 15

now implies that the deformed HP structure regenerates to AdS structures.
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RR

RT

u

v

ρ0

Figure 4.14: A schematic picture of the PSL(2,R) representation variety Rpar(M). The
variety is the union of two irreducible two-dimensional components which meet at the
locus of rectangular punctured torus representations (with c = 1). We let ρ0 be one such
representation, with v tangent to one component, and u tangent to the other.

Remark 27. The author thanks Joan Porti for suggesting the possibility of this phe-

nomenon.
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Chapter 5

Ideal triangulations

In this chapter, we construct and deform transversely hyperbolic foliations, anti de Sitter

structures, and half-pipe structures by building them out of ideal tetrahedra. This general-

izes Thurston’s construction of deformation spaces of triangulated hyperbolic structures (see

[Thu80] or 2.2.4). Assume throughout that M3 has a fixed topological ideal triangulation

T = {T1, . . . , Tn} and that ∂M is a union of tori.

5.1 General construction of ideal tetrahedra

The following construction takes place in (real) projective space and is a bit more algebraic

than the construction in H3 on which it is based. The generality of this construction is

its main advantage. Geometric interpretations for the cases of interest will be given in the

following sections.

We begin by recalling the construction from Section 4.8. Let B be a real two-dimensional

(commutative) algebra with a (nontrivial) conjugation action:

z 7→ z̄

|z|2 := zz̄ ∈ R.

Note that we do not assume | · |2 is positive definite. It is easy to check that

B ∼= R + Rα

where α is a non-real element with square equal to −1,+1, or 0.

87
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Consider the 2×2 matrices M2(B). There is an adjoint operation A 7→ A∗ which simply

takes the conjugate transpose of A. Let Herm2 denote the 2× 2 Hermitian matrices,

Herm2 = {A ∈M2(B) : A∗ = A}.

As a real vector space, Herm2
∼= R4. We define the following (real) inner product on Herm2:〈[

a z

z̄ d

]
,

[
e w

w̄ h

]〉
= −1

2
tr

([
a z

z̄ d

][
h −w
−w̄ e

])
.

The signature of this metric depends on B. The following defines a convex region in pro-

jective space:

X = {X ∈ Herm2 : 〈X,X〉 < 0} / ∼

where ∼ represents the equivalence X ∼ λX with λ ∈ R∗. Note that 〈X,X〉 = −det(X).

The ideal boundary ∂∞X, given by the projectivized light cone with respect to this

metric, is exactly the projectivized rank one Hermitian matrices, where for a Hermitian

matrix X, rank one means det(X) = 0, X 6= 0. Any rank one Hermitian matrix X can (up

to ±) be decomposed uniquely as

X = vv∗

where v ∈ B2 is a two-dimensional column vector with entries in B (and v∗ denotes the

transpose conjugate). Further v must satisfy that λv = 0 for λ ∈ B if and only if λ = 0.

This gives the identification

∂∞X = P1B =

{[
x

y

]
: αx = αy = 0 for α ∈ B ⇐⇒ α = 0

}
/ ∼

where

[
x

y

]
∼

[
λx

λy

]
for λ ∈ B×.

The orientation preserving isometries of X are described by PGL+(2,B) (see Defini-

tion 22), which we think of as determinant ±1 matrices with entries in B, acting as follows:

A ·X := AXA∗ where X ∈ X and det(A) = ±1.

We also note that PGL+(2,B) acts by Mobius transformations on ∂∞X = P1B.
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5.1.1 ideal tetrahedra

Now consider four points in the ideal boundary represented by rank one hermitian matrices

Z1, Z2, Z3, Z4. From this data we define the following region in Herm2(B):

T = {t1Z1 + t2Z2 + t3Z3 + t4Z4 : all ti have the same sign and not all ti = 0} .

Definition 23. T defines an ideal tetrahedron in X if T projects (under ∼) to a re-

gion contained in X ∪ ∂X whose intersection with ∂X is exactly the four ideal points

[Z1], [Z2], [Z3], [Z4].

Proposition 31. T defines an ideal tetrahedron if and only if the following condition is

met:

〈Zi, Zj〉 < 0 for all i 6= j (5.1)

Remark 28. In the case B = C, X = H3, the signs of the Zi can always be chosen to satisfy

condition 5.1. This is achieved by choosing the Zi to have positive trace.

5.1.2 shape parameters

Let T be a tetrahedron defined by the rank one hermitian matrices Z1, Z2, Z3, Z4. Let the

corresponding P1B elements be z1, z2, z3, z4.

Proposition 32. If z1, z2, z3, z4 define an ideal tetrahedron, then using an element of

PGL+(2,B), these points can be put in standard position so that

z1 =∞ :=

[
1

0

]
, z2 = 0 :=

[
0

1

]
, z3 = 1 :=

[
1

1

]
and z4 = z.

Proof. Without loss in generality, we may assume z1 =

[
1

0

]
. Then, if z2 =

[
x2

y2

]
, we have

〈Z1, Z2〉 =

〈[
1 0

0 0

]
,

[
|x2|2 x2ȳ2

x̄2y2 |y2|2

]〉
=
−|y2|2

2

So, 〈Z1, Z2〉 < 0 implies that |y2|2 > 0 so that

[
x2

y2

]
∼

[
x′2

1

]
. Using an element of
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PGL+(2,B) that fixes ∞, we move z2 to 0 :=

[
0

1

]
. Next, if z3 =

[
x3

y3

]
, then

〈Z1, Z3〉 =
−|y3|2

2

〈Z2, Z3〉 =
−|x3|2

2

So,

[
x3

y3

]
∼

[
x′3

1

]
with |x′3|2 > 0. We can now solve for a PGL+(2,B) element that fixes

0,∞ and moves z3 to 1: [
±a 0

0 1/a

][
x′3

1

]
∼

[
1

1

]
using the following easy lemma:

Lemma 11. Let c ∈ B. Then if |c|2 > 0, the equation x2 = c or x2 = −c can be solved

over B.

Definition 24. The parameter z determines the geometry of the tetrahedron, so it is called

the shape parameter.

Remark 29. The shape parameter is a generalized cross ratio z = (z1 : z2; z3 : z4). Some

care is needed in defining such a cross ratio, as P1B \ B contains more than just the point

∞ in general.

Proposition 33. z1, z2, z3, z4 define an ideal tetrahedron in X if and only if the shape

parameter z lies in B ⊂ P1B and satisfies:

|z|2, |1− z|2 > 0 (5.2)
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Proof. Assume the zi are in standard position, and choose representatives

Z1 =

[
1

0

] [
1 0

]
=

[
1 0

0 0

]

Z2 =

[
0

1

] [
0 1

]
=

[
0 0

0 1

]

Z3 =

[
1

1

] [
1 1

]
=

[
1 1

1 1

]

Z4 =

[
a

b

] [
ā b̄

]
=

[
|a|2 ab̄

āb |b|2

]

where we are free to change the signs (or even multiply by a non-zero real number). We

desire the Zi to satisfy condition 5.1. First, note that

〈Z1, Z2〉, 〈Z1, Z3〉, 〈Z2, Z3〉 = −1

2
< 0

so it will not be fruitful to change the signs of Z1, Z2 or Z3. Next,

〈Z1, Z4〉 = −|b|
2

2

〈Z2, Z4〉 = −|a|
2

2

〈Z3, Z4〉 = −1

2
(|a|2 + |b|2 − ab̄− āb) = |a− b|2.

Condition 5.1 is satisfied if and only if |a|2, |b|2 and |a− b|2 > 0, which is true if and only if[
a

b

]
∼

[
z

1

]

with |z|2, |z − 1|2 > 0.

Remark 30. Using the language of Lorentzian geometry, we say that z and z − 1 are

space-like. In fact, all facets of an ideal tetrahedron are space-like and totally geodesic with

respect to the metric induced by 〈·, ·〉 on X.
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Figure 5.1: The ideal tetrahedron defined by the ideal points 0, 1,∞, z ∈ B. In this picture
B = C and X = H3.

The ordering of the vertices determines an orientation of the tetrahedron. Any face of

the tetrahedron, which is determined by three vertices, inherits an orientation from the order

of the zi according to the familiar rules from (simplicial/singular) homology. Specifically:

4z1z2z3,4z1z3z4,4z2z4z3,4z1z4z2 are given the orientation coming from the cyclic order

of the vertices.

Definition 25. The ideal tetrahedron T determined by z1, z2, z3, z4 is positively oriented if

the induced orientation on the faces is such that the normal to each face points toward the

exterior of the tetrahedron.

Proposition 34. The ideal tetrahedron T determined by z1, z2, z3, z4 is positively oriented

if and only if its shape parameter z has positive imaginary part.

Proof. We orient ∂∞X so that the direction pointing toward X is positive. Then B ⊂ ∂X
inherits an orientation allowing us to make sense of the notion of positive imaginary part

(use any oriented basis {1, v}). The proof of the proposition is straightforward.

Definition 26. The ideal tetrahedron T determined by z1, z2, z3, z4 is called a degenerate

H2 tetrahedron if T is contained in a hyperbolic plane.

Proposition 35. The ideal tetrahedron T determined by z1, z2, z3, z4 is degenerate if and

only if its shape parameter z is real.

The shape parameter z determines the isometry type of T . We think of the shape

parameter of T (z1, z2, z3, z4) as corresponding to the edge z1z2. In other words, if we

switch the ordering of the zi (but maintain the orientation of T ), and consider for example
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T (z1, z3, z4, z2), we get a different shape parameter, the one corresponding to z1z3, which

is 1
1−z . Figure 5.2 summarizes the relationship between the shape parameters of the six

edges of an ideal tetrahedron. There is a geometric interpretation of this, familiar from

z

z

1
1−z

1
1−z

z−1
z

z−1
z

Figure 5.2: The shape parameters corresponding to the six edges of an ideal tetrahedron.

Thurston’s notes. Let us assume z1 = ∞ and z2, z3, z4 ∈ B ⊂ P1B. Think of B as a plane

with metric induced by | · |2 and with origin at z2. The edge z1z2 is a line connecting z2 to

∞, drawn as a vertical line emanating from the origin of B. The elements of PGL+(2,B)

that preserve this edge are described exactly by the group of space-like elements of B, which

can be thought of as similarities of (B, | · |2) which fix z2. The shape parameter z should be

thought of as the element of this group which transforms the edge z2z3 to z2z4. It can be

be computed by

z =
z4 − z2

z3 − z2
.

If we instead focus on the edge z1z3, so that z3 is the origin, the new shape parameter is

given by
z2 − z3

z4 − z3
=

1

1− z
and similarly the shape parameter corresponding to the edge z1z4 is given by

z3 − z4

z2 − z4
=
z − 1

z
.

5.1.3 Glueing tetrahedra together

The faces of an ideal tetrahedron are hyperbolic ideal triangles. Given two tetrahedra T, S

and a face 4v1v2v4,4w1w2w3 on each such that the orientations are opposite, there is a
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z2

z3

z4

0 1

z

z

1−z
0−z

0−1
z−1

z

Figure 5.3: calculation of shape parameters corresponding to the various edges of T .

unique isometry A ∈ PGL+(2,B) mapping

w1 7→ v1

w2 7→ v2

w3 7→ v4

that glues S to T along the given faces. Suppose T, S are in standard position so that

v1 = w1 =∞, v2 = v2 = 0, v3 = w3 = 1 and v4 = z. Then the glueing map A fixes ∞ and

0 and acts as a (linear) similarity of (B, | · |2). This similarity is exactly multiplication by

the shape parameter z associated to the edge v1v2 of T . Composition of glueing maps for

tetrahedra T1, T2, . . . , Tn in standard position about the common edge 0∞ is described by

the product of shape parameters z1z2 . . . zn−1 (this describes the map that glues Tn on to

the other n−1 tetrahedra which have already been glued together). Hence, in order for the

geometric structure to extend over an interior edge e of a union of tetrahedra, our shape

parameters must satisfy:

∏
Ti meets edge e

zi = 1 (5.3)

where zi is the shape parameter of Ti with respect to the edge of Ti being identified to e. In

fact we need that the development of the tetrahedra around the edge e winds around the

edge exactly once (in other words
∏
zi is a rotation by 2π rather than 2πn for some n 6= 1).

The terminology we will use for this condition is the following:

Definition 27. Given ideal tetrahedra T1, . . . , Tn glued together around and edge e, we say

that the edge e has total dihedral angle 2π if the development of the tetrahedra in X \ e has
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z1z2z3z4 = 1

z1

z1z2

z1z2z3

0

Figure 5.4: Glueing tetrahedra together around an edge.

rotational part exactly 2π. Note that in some cases, X will not have a continuous group

of isometries which rotate around e. Nonetheless, rotations by multiples of π are always

defined in X \ e.

z2

z3

z4

z1

Figure 5.5: The shape parameters going around an edge must have product one and total
dihedral angle 2π.

Let M be a three-manifold with a fixed topological ideal triangulation T = {T1, . . . , Tn},
that is M is the union of tetrahedra Ti glued together along faces, with vertices removed. A

triangulated X structure on M is a realization of all the tetrahedra comprising M as geomet-

ric tetrahedra so that the structure extends over all interior edges of the triangulation. This
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amounts to assigning each tetrahedron Ti a shape parameter zi. For each interior edge e of

our union of tetrahedra, we get an equation of the form 5.3. All of these equations together

make up Thurston’s equations (also commonly called the edge consistency equations). The

solutions of these equations (with total dihedral angle 2π around each edge) make up the

deformation variety of triangulated X structures on M .

5.2 Triangulated geometric structures

We apply the general construction just described to build triangulated geometric structures

for the cases X = H3,H2,AdS3,HP3.

5.2.1 tetrahedra in H3

Assume that our algebra B = C. In this case, the inner product 〈·, ·〉 on Herm2(C) is of type

(3, 1) and X is the projective model for H3. Since |z|2 ≥ 0 holds for any z with equality if

and only if z = 0, Proposition 33 gives the well-known fact that any z ∈ C \ {0, 1} is a valid

shape parameter defining an ideal tetrahedron in H3.

Thus, if M is a three-manifold with fixed ideal triangulation T = {T1, . . . , Tn}, hyper-

bolic structures on (M, T ) are obtained by solving Thurston’s equations (5.3) over C with

all shape parameters zi having positive imaginary part.

Cone manifolds

Consider a triangulated manifold (M, T ). Let us assume that there is only one ideal vertex

v in T (after identification). Then ∂M , which is naturally identified with L(v), has only

one component. Assume that ∂M is a torus and that M has a fixed hyperbolic structure

determined by a positively oriented solution to Thurston’s equations. Let N (v) be a deleted

neighborhood of v in M . The hyperbolic structure on M induces a Euclidean similarity

structure on L(v). In [Thu80], it is shown that the geodesic completion of N (v) can be

understood in terms of this similarity structure. We briefly recall the main idea here. Let

D∂ : L̃(v) → C be the developing map for the similarity structure on L(v). If M is not

complete near v, then the holonomy H of the similarity structure on L(v) fixes a point,

which we may assume to be the origin. Then H : π1L(v) → C∗ is the exponential complex

length function restricted to π1∂M . The lift H̃ of this representation to C̃∗ = C via analytic
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continuation of log gives the complex length of π1∂M elements:

H̃(γ) = log |H(γ)|+ iR̃(γ)

where R̃(γ) is the total rotational part of the holonomy of γ (see Definition 17 of Section 4.2),

which measures the total angle around 0 swept out by developing along γ. Now, some curves

γ ∈ π1L(v) have a non-trivial dilation component |H(γ)| and some others have a non-trivial

rotational part R̃(γ) (this follows from the more general theory of affine structures on the

torus [NY74]). It follows that the image of D∂ is all of C∗. In the upper half-space model,

the developing map D∂ is the “shadow” of the developing map D : Ñ (v) → H3. So the

image of D is I \L, where I is a neighborhood of the geodesic L with endpoints 0,∞. The

completion of Ñ (v) is then given by adjoining a copy of L. So the completion of N (v) is

N (v) =
(
Ĩ \ L ∪ L

)
/H̃(π1∂M)

= N (v) ∪ (L/H(π1∂M)).

In particular, if the moduli |H(π1∂M)| form a discrete subgroup of the multiplicative

group R+, then L/H(π1∂M) is a circle and N (v) is a manifold. This is the case if and

only if there exists a generator α of π1∂M such that H̃(α) is a rotation. In this case the

completion M (which is given near the boundary by N (v)) is topologically the Dehn filled

manifold Mα, gotten by Dehn filling along the curve α. The cone angle is the total rotation

angle R̃(α) of α.

Remark 31. If the moduli |H(π1∂M)| are dense in R+, the geodesic completion of M near

v has a topological singularity, called a Dehn surgery type singularity. We do not address

this case here.

Example 1. (Figure eight knot complement) Let M be the figure eight knot complement.

Let T be the decomposition of M into two ideal tetrahedra (four faces, two edges, and

one ideal vertex) well-known from [Thu80]. The edge consistency equations reduce to the

following:

z1(1− z1)z2(1− z2) = 1. (5.4)

The exponential complex length of the longitude ` and the meridian m, which can be read
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Figure 5.6: The figure eight knot complement is the union of two ideal tetrahedra. In the
diagram, identify two faces if the boundary edges and their orientations match.

off from the triangulation of ∂M (see Figure 5.7), are given by

H(`) = z2
1(1− z1)2

H(m) = z2(1− z1).

e

d

f

cb

h

a

x1

y2

y1

x2
z1

x2

x1

z2y2

z1

x = z−1
z , y = 1

1−z

H(m) = y2z
−1
1

H(`) = z−1
2 x1x

−1
2 z1x2y

−1
1 y2x

−1
1

g

gh

a
d

c

f

b e

e

d

Figure 5.7: The exponential complex lengths of ` and m can be read off from a picture of
the tessellation of ∂M . The triangles are labeled as in [Thu80, Ch. 4]

Let θ ∈ (0, 2π) and consider solutions to the Equation (5.4) with the added condition

that

H(`) = z2
1(1− z1)2 = eiθ.
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A positively oriented solution is given by

z1 =
1±

√
1− 4eiθ/2

2

z2 =
1±

√
1− 4e−iθ/2

2

where we may choose the root with positive imaginary part. The solution gives a hyperbolic

structure whose completion M̄ is topologically the manifold M` gotten by Dehn filling M

along `. The completed hyperbolic structure has a cone singularity with cone angle θ. Note

that M̄ is a torus bundle over the circle with monodromy

(
2 1

1 1

)
and the singular locus is

a curve running once around the circle direction.

5.2.2 Flattened tetrahedra and transversely hyperbolic foliations

Consider the degenerate case B = R. Then Herm2(R) is the symmetric real matrices (which

is R3 as a vector space) and 〈·, ·〉 is of signature (2, 1). The resulting geometry is X = H2.

Proposition 33 gives that any z ∈ R \ {0, 1} is a valid shape parameter defining an ideal

tetrahedron in H2. Such tetrahedra are degenerate. However, we may still think of the faces

as being oriented, so that we can tell which side of a given triangle faces outward from the

tetrahedron. In figure 5.8, edge crossings are drawn in such a way as to indicate which faces

are in front and which faces are in back.

Figure 5.8: A degenerate tetrahedron drawn in the Klein model on the left. Two degenerate
tetrahedra glued together along faces with opposite orientation on the right.

Proposition 36. A solution to Thurston’s equations (5.3) over R defines a transversely

hyperbolic foliation on M . Such a structure will be referred to as a triangulated transversely



100 CHAPTER 5. IDEAL TRIANGULATIONS

hyperbolic foliation on (M, T ). The deformation variety DR of these structures is called

the real deformation variety.

Proof. A degenerate tetrahedron T (∞, 0, 1, z), with z ∈ R, should be thought of as map

from a topological ideal tetrahedron Tj into H2 which is a local submersion and sends facets

of Tj to the corresponding geodesic facets of the degenerate ideal tetrahedron T (∞, 0, 1, z).
Such local submersions of the topological tetrahedra Tj ∈ T can be developed to produce a

globally defined local submersion

D : M̃ → H2

which is equivariant with respect to a representation

ρ : π1M → PGL(2,R).

That the shape parameters satisfy Thurston’s equations guarantees that the map D can be

made a local submersion at the edges of the triangulation. The map D can be thought of

as a degenerate developing map defining a transversely hyperbolic foliation on M .

Note that, in this case, the condition that the development of tetrahedra around an edge

be of winding number one is equivalent to requiring that exactly two of the zi at that edge

be negative. Such negative real shape parameters are thought of as having dihedral angle

π, while positive real shape parameters have dihedral angle zero.

Remark 32. In the case of non-positively oriented solutions to Thurston’s equations over

C (which do not directly determine H3 structures), it is possible for the dihedral angle at an

edge of some tetrahedron, defined via analytic continuation, to lie outside the range (0, π).

In the case that a path of such solutions converges to a real solution, each dihedral angle

converges to kπ for some k, possibly with k 6= 0, 1. We ignore these real solutions; there

are no positively oriented solutions nearby.

Example 2. (Figure eight knot complement) Let M be the complement of the figure eight

knot as defined in Example (1). To find transversely hyperbolic foliations on M , we solve

the edge consistency equations

z1(1− z1)z2(1− z2) = 1. (5.5)

over R. The variety of solutions to (5.5) has four (topological) components:
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1. z1 < 0 and z2 < 0

2. z1 < 0 and z2 > 1

3. z1 > 1 and z2 < 0

4. z1 > 1 and z2 > 1

Cases 1 and 4 determine solutions with angular holonomy 4π around one edge and zero

around the other edge. So these solutions are discarded. Cases 2 and 3 are symmetric under

switching z1 and z2. So, the transversely hyperbolic structures on (M, T ) are parametrized

by z1 < 0 (which determines z2 > 1). It follows that the structures are also parametrized

by H(`) = z2
1(1− z1)2. This is a special case of Theorem 7.

5.2.3 tetrahedra in AdS3

Let B be the real algebra generated by an element τ , with τ2 = +1. As a vector space

B = R + Rτ is two dimensional over R. The conjugation operation is given by

a+ bτ 7−→ a+ bτ = a− bτ.

In this case, the form 〈·, ·〉 on Herm2(B) is of signature (2, 2) and X = AdS3. Before con-

structing triangulated AdS structures, we discuss some important properties of the algebra

B = R + Rτ .

The algebra B = R + Rτ

First, note that B is not a field as e.g.

(1 + τ) · (1− τ) = 0.

The square-norm defined by the conjugation operation

|a+ bτ |2 = (a+ bτ)(a+ bτ) = a2 − b2,

comes from the (1, 1) Minkowski inner product on R2 (with basis {1, τ}). The space-like

elements of B (i.e. square-norm > 0), acting by multiplication on B form a group and can

be thought of as the similarities of the Minkowski plane that fix the origin. Note that if
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|a+ bτ |2 = 0 then b = ±a and multiplication by a+ bτ collapses all of B onto the light-like

line spanned by a+ bτ .

The elements 1+τ
2 and 1−τ

2 are two spanning idempotents which annihilate one another:

(
1± τ

2

)2

=
1± τ

2
, and

(
1 + τ

2

)
·
(

1− τ
2

)
= 0.

Thus B ∼= R⊕ R as R algebras via the isomorphism

a

(
1 + τ

2

)
+ b

(
1− τ

2

)
7−→ (a, b). (5.6)

We have a similar splitting for M2(B):(
1 + τ

2
A+

1− τ
2

B

)
·
(

1 + τ

2
C +

1− τ
2

D

)
=

(
1 + τ

2
AC +

1− τ
2

BD

)
and also

det

(
1 + τ

2
A+

1− τ
2

B

)
=

1 + τ

2
det(A) +

1− τ
2

det(B).

Therefore PSL(2,B) ∼= PSL(2,R)× PSL(2,R). Isom+ AdS3 = PGL+(2,B) is the subgroup

of PGL(2,R)× PGL(2,R) such that the determinant has the same sign in both factors.

Proposition 37. P1B ∼= P1R×P1R and the isomorphism (given below) identifies the action

of PGL(2,B) on P1B with that of PGL(2,R)× PGL(2,R) on P1R× P1R.

Proof. The isomorphism P1R× P1R→ P1B is given by[
a

b

]
,

[
c

d

]
7−→ 1 + τ

2

[
a

b

]
+

1− τ
2

[
c

d

]

Now, P1B is the Lorentz compactification of B =

{[
x

1

]
: x ∈ B

}
. The added points

make up a wedge of circles, so that P1B is topologically a torus. The square-norm | · |2 on B
induces a flat conformal Lorentzian structure on P1B that is preserved by PGL+(2,B). We

refer to PGL+(2,B) as the Lorentz Mobius transformations. With its conformal structure

P1B is the (1 + 1)-dimensional Einstein universe Ein1,1 (see e.g. [BCD+08]).
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Thurston’s equations for AdS3

We think of R + Rτ as the Lorentzian plane equipped with the metric induced by | · |2.

Proposition 33 immediately implies:

Proposition 38. The following are equivalent:

1. The ideal tetrahedron T (z1, z2, z3, z4) is defined.

2. The shape parameter z of the edge z1z2 of T satisfies |z|2, |1− z|2 > 0.

3. The shape parameters z, 1
1−z ,

z−1
z of all edges of T are each space-like.

4. Placing z1 at ∞, the triangle 4z2z3z4 has space-like edges in the Lorentzian plane.

z2
z3

z4

v

Figure 5.9: left: Placing one vertex z1 at infinity, the other three vertices z2, z3, z4 determine
a spacelike triangle in the Lorentzian plane: |z2 − z3|2, |z3 − z4|2, |z4 − z2|2 > 0. right: if
tetrahedra are glued together along an interior edge (connecting∞ to v), the corresponding
space-like triangles must fit together around the vertex v.

Similar to the case of degenerate tetrahedra, the total dihedral angle condition is discrete

for AdS tetrahedra:

Proposition 39. The condition of Definition 27, that the total dihedral angle around an

interior edge be 2π, is equivalent to the condition that exactly two of the zi at that edge have

negative real part.

Using the isomorphism (5.6), a shape parameter z ∈ R + Rτ can be described as a pair

(λ, µ) of real numbers:

z =
1 + τ

2
λ+

1− τ
2

µ

Proposition 40. z is the shape parameter for an ideal tetrahedron in AdS if and only if

λ, µ lie in the same component of R \ {0, 1}.

Proof. We have

|z|2 = λµ,

|1− z|2 = (1− λ)(1− µ).
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Hence |z|2, |1− z|2 > 0 if and only if λ and µ have the same sign and 1− λ and 1− µ have

the same sign.

Proposition 41. A tetrahedron with shape parameter z is positively oriented if and only

λ > µ.

Proof. The imaginary part of z is λ−µ
2 .

These propositions combine to give:

Proposition 42. The shape parameters zi = 1+τ
2 λi + 1−τ

2 µi, for i = 1, . . . , n, define posi-

tively oriented ideal tetrahedra that glue together compatibly around an edge in AdS3 if and

only if:

•
∏n
i=1 λi = 1 and

∏n
i=1 µi = 1.

• λi, µi lie in the same component of R \ {0, 1} for each i = 1, . . . , n,

• λi > µi for each i = 1, . . . , n.

• For exactly two i ∈ {1, . . . , n}, we have λi, µi < 0.

Thus a triangulated AdS structure on (M, T ) is determined by two triangulated trans-

versely hyperbolic foliations on (M, T ) whose shape parameters (λi) and (µi) obey the

conditions set out in the above Propositions. This gives a concrete method for regenerating

AdS structures from transversely hyperbolic foliations:

Corollary. Let (λi) be shape parameters defining a transversely hyperbolic foliation on

(M, T ). Suppose this structure can be deformed to a new one with shape parameters λ′i > λi.

Then zi = 1+τ
2 λi + 1−τ

2 λ′i defines an AdS structure on (M, T ).

Question. When and how do two transversely hyperbolic foliations on M determine an

AdS structure in the absence of an ideal triangulation?

Tachyons

Consider a triangulated manifold (M, T ). Let us assume that there is only one ideal vertex

v in T (after identification). Then ∂M , which is naturally identified with L(v), has only one

component. Assume that ∂M is a torus and that M has a fixed AdS structure determined
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by a positively oriented solution to Thurston’s equations over B = R + Rτ . Let N (v) be

a deleted neighborhood of v in M . Similar to the hyperbolic case, the AdS structure on

M induces a structure on L(v) modeled on the similarities of the Minkowski plane R1,1

which we identify with B. The similarities of B that fix the origin are exactly the space-like

elements B+ (i.e. the elements with positive square-norm). Just as in the hyperbolic case,

the geodesic completion of N (v) can be understood in terms of this similarity structure.

Let D∂ : L̃(v)→ B be the developing map. If M is not complete near v, then the holonomy

H of the similarity structure on L(v) fixes a point, which we may assume to be the origin.

Then H : π1L(v)→ B+ is the exponential B-length function restricted to π1∂M . The image

of D∂ does not contain the origin, so D∂ determines a lift H̃ of H to the similarities B̃+ of

R̃1,1 \ 0:

H̃(γ) = log |H(γ)|+ τϕ(γ) + iR̃(γ)

∈ R + τR + iπZ

where ϕ(γ) is the hyperbolic angle of the boost part of H(γ) and R̃(γ) is the total rotational

part of the holonomy of γ (see Definition 17 of Section 4.2), which is an integer multiple of π

measuring the number of half rotations around 0 swept out by developing along γ. Assume

that there is some element of π1∂M with non-zero discrete rotational part. Then D∂ is a

covering map onto B \ 0 (this follows from the more general theory of affine structures on

the torus [NY74]). In the half-space model for AdS (see Appendix A), the developing map

D∂ is the “shadow” of the developing map D : Ñ (v) → AdS3. So the image of D is I \ L,

where I is a neighborhood of the geodesic L with endpoints 0,∞ (note that I is no longer

a cone as it was in the hyperbolic case). The completion of Ñ (v) is then given by adjoining

a copy of L. So the completion of N (v) is

N (v) =
(
Ĩ \ L ∪ L

)
/H̃(π1∂M)

= N (v) ∪ (L/H(π1∂M)).

In particular, if the moduli |H(π1∂M)| form a discrete subgroup of the multiplicative

group R+, then L/H(π1∂M) is a circle and N (v) is a manifold. This is the case if and only

if there exists a generator α of π1∂M such that H̃(α) is a rotation by kπ 6= 0 plus a boost.

In this case, the completion M (which is given near the boundary by N (v)) is topologically
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the manifold Mα obtained by Dehn filling M along the curve α. If the discrete rotational

part R̃(α) = 2π, then M has a tachyon singularity (see Section 4.4) with mass equal to the

hyperbolic angle ϕ(α) of the boost part of H(α).

Remark 33. If the moduli |H(π1∂M)| are dense in R+, the geodesic completion of M near

v has a topological singularity that resembles a Dehn surgery type singularity in hyperbolic

geometry. This more general singularity has not yet been studied to the knowledge of the

author.

Example 3. (figure eight knot complement) Let M be the complement of the figure eight

knot from Examples 1 and 2. We use Proposition 42 and the analysis in Example 2 to

build AdS structures on (M, T ). Consider the connected component of real solutions to the

edge consistency Equation (5.5) with z1 < 0 and z2 > 1. Taking the differential of log of

Equation (5.5), we obtain

2z1

z1(1− z1)
dz1 +

2z2

z2(1− z2)
dz2 = 0 (5.7)

which implies that dz2
dz1

> 0 at any point of (this connected component) of the variety. Thus,

any two distinct solutions (λ1, λ2) and (µ1, µ2) satisfy (up to switching the λ’s with the µ’s)

λ1 > µ1 and λ2 > µ2

and give a positively oriented solution

z1 =
1 + τ

2
λ1 +

1− τ
2

µ1

z2 =
1 + τ

2
λ2 +

1− τ
2

µ2

to the edge consistency equations over R + Rτ determining AdS structures on M . It is

straight forward to show that the discrete rotational part of the holonomy of ` is R̃(`) =

+2π.

Now impose the additional condition

H(`) = z2
1(1− z1)2 = eτϕ
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which is equivalent to

λ2
1(1− λ1)2 = cosh(ϕ) + sinh(ϕ) = eϕ

µ2
1(1− µ1)2 = cosh(ϕ)− sinh(ϕ) = e−ϕ.

The geodesic completion of the AdS structure determined by (z1, z2) is an AdS tachyon

structure on the Dehn filled manifold M`. Note that as µ1 < λ1 < 0, we must have that

the tachyon mass ϕ < 0.

5.2.4 Triangulated HP structures

Next let B = R + Rσ where σ2 = 0. The conjugation action is given by

a+ bσ 7−→ a+ bσ = a− bσ.

Then the form 〈·, ·〉 on Herm2(B) is degenerate (with the eigenvalue signs being +,+,−, 0).

In this case, X = HP3 and PGL+(2,R + Rσ) ∼= GHP acts by half-pipe isometries.

The algebra R+Rσ should be thought of as the cotangent bundle of R: Letting x be the

standard coordinate function on R, the element σ can be thought of as a differential quantity

dx whose square is zero. This point of view is particularly appropriate for the purposes

of constructing geometric transitions. For example, given collapsing hyperbolic structures

with holonomy representations ρt : π1M → PSL(2,C) converging to ρ0 : π1M → PGL(2,R),

then the rescaling process described in Section 3.2 produces an HP representation

ρHP(·) = ρ0(·) + σA(·)

where A(γ) ∈ Tρ0(γ) PSL(2,R) is the imaginary part of the derivative of ρt

A(·) = Im
d

dt
ρt(·)

and satisfies the product rule: A(γ1γ2) = A(γ1)ρ0(γ2) + ρ0(γ1)A(γ2). The exact same

interpretation is possible in the context of collapsing AdS structures with holonomy repre-

sentations ρt : π1M → PGL+(2,R + Rτ) whose imaginary parts are going to zero.

We equip R+Rσ with the degenerate metric induced by |·|2. Proposition 33 immediately

implies:



108 CHAPTER 5. IDEAL TRIANGULATIONS

Proposition 43. The following are equivalent:

1. The ideal tetrahedron T (z1, z2, z3, z4) is defined.

2. The shape parameter z of the edge z1z2 of T satisfies Re z 6= 0, 1.

3. The shape parameters z, 1
1−z ,

z−1
z of all edges of T have real parts not equal to 0, 1.

4. Placing z1 at ∞, 4z2z3z4 is a triangle in the R + Rσ plane that has non-degenerate

edges.

The real part a of z = a + bσ describes a degenerate tetrahedron in H2, while the

imaginary part bσ describes an infinitesimal “thickness”. If b > 0, then the tetrahedron is

positively oriented; In this case z is thought of as being tangent to a path of complex (resp.

R+Rτ) shape parameters describing a degenerating family of positively oriented hyperbolic

(resp. AdS) tetrahedra.

Proposition 44. The shape parameters zi = ai+biσ, for i = 1, . . . , n, define ideal tetrahedra

that glue together compatibly around an edge in HP3 if and only if:

• (a1, . . . , an) ∈ Rn satisfy the equation
∏n
i=1 ai = 1,

• (b1, . . . , bn) ∈ TaRn satisfy the differential of that equation

d(

n∏
i=1

zi)
∣∣∣
zi=ai

(b1, . . . , bn) = 0,

• and exactly two of the ai are negative.

Thus the real part of a solution to Thurston’s equations over R + Rσ defines a triangu-

lated transversely hyperbolic foliation, and the imaginary (σ) part defines an infinitesimal

deformation of this structure.

5.3 Regeneration of H3 and AdS3 structures

In [Hod86], Hodgson studies the problem of regenerating hyperbolic structures from trans-

versely hyperbolic foliations. In the context of ideal triangulations, the problem of regener-

ating hyperbolic and AdS structures from transversely hyperbolic foliations becomes more

straight-forward, especially in the presence of smoothness assumptions.
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Proposition 45. If the real deformation variety DR is smooth at a point (zj) ∈ RN , then

any positive tangent vector (vj) ∈ RN determines regenerations to robust hyperbolic and

anti de Sitter structures.

Proof. The imaginary tangent vector (ivj) can be integrated to give a path of complex

solutions to the edge consistency equations. Similarly, the imaginary tangent vector (τvj)

can be integrated to give a path of R + Rτ solutions. In both cases the solutions have

positive imaginary part, so they determine robust structures.

In light of this proposition, we ask the following question:

Question. Given a triangulated three-manifold (M, T ), which points of the real deforma-

tion variety DR are smooth with positive tangent vectors?

We give a partial answer to this question in the case that M is a punctured torus bundle.

Theorem 7. Let M3 be a punctured torus bundle with anosov monodromy and let T be the

monodromy ideal triangulation on M . Let DR be the deformation variety of of transversely

hyperbolic foliations on (M, T ). Then, there are two canonical smooth, one dimensional,

connected components V+ of DR with positive tangent vectors at every point. Further, each

component of V+ is parameterized by the (signed) length of the puncture curve.

Chapter 6 is dedicated to the proof of this theorem.

Corollary. Any transversely hyperbolic foliation on (M, T ) belonging to V+ regenerates to

both hyperbolic and anti de Sitter structures.

Corollary. The deformation variety of anti de Sitter structures on (M, T ) contains a

smooth one R+Rτ dimensional component parametrized by the R+Rτ length of the punc-

ture curve. In particular, tachyon structures are parametrized by their (negative) tachyon

mass and the mass can be decreased without bound.

Remark 34. The R+Rτ length, referred to in the above corollary, of an AdS3 isometry is

defined analogously to the complex length of a hyperbolic isometry. See the discussion of

Tachyons in Section 5.2.3
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5.4 Triangulated transitions

The shape parameter algebra of hyperbolic tetrahedra intersects that of AdS tetrahedra

exactly in the shape parameter algebra of degenerate H2 tetrahedra: C ∩ (R + Rτ) = R.

In some sense, this intersection is tranverse. In order to construct smooth transitions on

(M, T ), we enlarge the shape parameter coefficient algebra to the generalized Clifford algebra

C generated by i and τ :

C = 〈1, i, τ : i2 = −1, τ2 = +1, iτ = −τi〉.

Consider the following path in C (defined for t 6= 0):

I(t) =
(1 + t|t|)i+ (1− t|t|)τ

2|t|
.

Note that for t > 0, I2 = −1, while for t < 0, I2 = +1. We define the following C 1 path of

two dimensional sub-algebras:

Bt = R + R|t|I(t).

The path Bt satisfies the following properties:

• If t > 0 then Bt ∼= C via the isomorphism I(t) 7→ i.

• If t < 0 then Bt ∼= R + Rτ via the isomorphism I(t) 7→ τ .

• B0 = R + Rσ, where σ = i+τ
2 . Note that σ2 = 0.

To describe geometric transitions of triangulated structures, one constructs a smooth path

of solutions to the edge consistency equations over the varying algebra Bt. A solution for

some t 6= 0 is interpreted as an assignment of shape parameters for either hyperbolic (if

t > 0) or anti de Sitter (if t < 0) ideal tetrahedra via the isomorphisms given above. The

transitional shape parameter algebra B0 = R+Rσ describes shape parameters for half-pipe

ideal tetrahedra or HP tetrahedra (see Section 5.2.4).

We formalize the discussion of transitioning shape parameters with the following defi-

nition:

Definition 28. A geometric transition on (M, T ) is described by a C 1 path of shape

parameters (zj(t)) that solve the edge consistency equations over the varying algebra Bt
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such that for t > 0, (zj(t)) determines a hyperbolic structure, for t < 0, (zj(t)) determines

an AdS structure, and (zj(0)) determines an HP structure.

Proposition 46. A geometric transition on (M, T ) determines a transition on M in the

sense of Theorem 6, except that the singularities at the boundary may lie in the more general

class of Dehn surgery singularities (see [Thu80, Hod86]).

Proof. Applying the formalism of Section 5.1, a solution to Thurston’s equations over Bt
determines a three-dimensional real projective structure. Choose a base tetrahedron in

(M̃, T̃ ), and for each t build a developing mapDt into RP3 by placing the base tetrahedron in

standard position and developing from there. The construction of Dt depends smoothly on

the shape parameters zj(t). Thus we get a smooth path of projective structures transitioning

from hyperbolic to AdS geometry passing through HP geoemtry.

Proposition 47. The data of a geometric transition on (M, T ) is equivalent to the follow-

ing:

1. A path of hyperbolic structures on (M, T ), defined for t > 0, determined by shape

parameters zj(t) = cj(t) + dj(t)i.

2. A path of AdS structures on (M, T ), defined for t < 0, determined by shape parameters

zj(t) = cj(t)− dj(t)τ .

3. An HP structure determined by shape parameters zj(0) = cj(0) + d′j(0)σ

where, for all j, cj and dj are C 1 functions on a neighborhood of t = 0 with dj(0) = 0.

Proof. To convert from the data given in the proposition to a C 1 geometric transition,

simply replace i (resp. τ) with I(t) when t > 0 (resp. t < 0).

The above proposition and proposition 45 give the following corollary.

Corollary. If the real deformation variety is smooth at a point (zj) ∈ RN , then any positive

tangent vector (vj) ∈ RN determines a geometric transition on (M, T ).

5.4.1 Example: figure eight knot complement

Let M be the figure eight knot complement, discussed in Examples 1, 2, and 3. Let T
be the decomposition of M into two ideal tetrahedra (four faces, two edges, and one ideal
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vertex) well-known from [Thu80] (see Figure 5.6). The edge consistency equations reduce

to the following:

z1(1− z1)z2(1− z2) = 1. (5.8)

In Example 2, we showed that the variety of real solutions to (5.8) (with total dihedral angle

2π around each edge) is a smooth one-dimensional variety with positive tangent vectors.

Thus, any transversely hyperbolic foliation on (M, T ) regenerates to robust hyperbolic and

AdS structures by Proposition 45. As M is a punctured torus bundle, this is a special case

of Theorem 7.

Next, we consider hyperbolic cone structures on M , with singular meridian being the

longitude ` of the knot (this is also the curve around the puncture in a torus fiber). Recall

from Example 1 that such a structure, with cone angle θ < 2π, is constructed by solving

the equations

H(`) = z2
1(1− z1)2 = eiθ (5.9)

= e−i(2π−θ)

over C. Recall from Example 3 that AdS tachyon structures with mass ϕ < 0 are constructed

by solving the equations

H(`) = z2
1(1− z1)2 = eτϕ (5.10)

= e−τ(−ϕ)

over R+Rτ . In order to construct a smooth transition between these two types of structures,

we consider a generalized version of these equations defined over the transitioning family Bt
of sub-algebras of C. The idea is to replace i in (5.9) (resp. τ in (5.10)) by the algebraically

equivalent elements I(t). The generalized version of (5.9) and (5.10) that we wish to solve

is

H(`) = z2
1(1− z1)2 = −e−I(t)|t|. (5.11)

Note that the right hand side (which can be defined in terms of Taylor series) is a smooth

function of t. In fact, solving (5.11) over the varying algebra Bt = R + R|t|I(t) for small

t, gives a smooth path (z1(t), z2(t)) of shape parameters for transitioning structures. For
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t > 0, (z1, z2) determines a hyperbolic cone structure with cone angle θ = 2π − |t|. For

t < 0, (z1, z2) determines a AdS tachyon structure with hyperbolic angle ϕ = −|t|. At t = 0,

interpreting |t|I(t) as σ = i+τ
2 , we get shape parameters for a half-pipe structure:

z1(0) = 1−
√

5
2 + 1

2
√

5
σ, z2(0) = 1+

√
5

2 + 1
2
√

5
σ.

The exponential R + Rσ-length of the curve ` around the singular locus is

H(`) = z2
1(1− z1)2 =

(
1−
√

5
2 + 1

2
√

5
σ
)2 (

1+
√

5
2 − 1

2
√

5
σ
)2

= (−1 + 1
2σ)2

= 1− σ = e−1·σ.

In fact, the solution (z1(0), z2(0)) defines an HP structure whose completion has an in-

finitesimal cone singularity of infinitesimal cone angle ω = −1 (see Section 4.5).

hyperbolic
structures

AdS
structures

HP
structure

hyperbolic
foliation

real parti part

Τ

part

Figure 5.10: The C-length of the singular curve is plotted as hyperbolic cone structures (red)
transition to AdS tachyon structures (blue). After rescaling (solid lines), the transition is
realized as a C 1 path passing through a half-pipe structure.



114 CHAPTER 5. IDEAL TRIANGULATIONS



Chapter 6

Punctured Torus Bundles

In this chapter we prove:

Theorem 7. Let M3 be a punctured torus bundle with Anosov monodromy and let T be

the monodromy ideal triangulation on M . Let DR be the deformation variety of transversely

hyperbolic foliations on (M, T ). Then, there are two canonical smooth, one dimensional,

connected components V+ of DR with positive tangent vectors at every point. Further, each

component of V+ is parameterized by the (signed) length of the puncture curve.

Via the discussion in Section 5.3, this theorem gives a large class of examples of geometric

transitions.

We begin with a brief description of the monodromy triangulation (sometimes referred

to as the Floyd-Hatcher triangulation) and Gueritaud’s convenient description of Thurston’s

equations. See [Ga06] for an elegant and self-contained introduction to this material.

6.1 The monodromy triangulation

We think of the punctured torus T as R2 \ Z2 quotiented out by the lattice of integer

translations Z2. Any element of SL(2,Z) acts on T since it normalizes the lattice Z2. An

element ϕ ∈ SL(2,Z) with distinct real eigenvalues λ+, λ− is called Anosov. We focus on

the case that ϕ has positive eigenvalues. If ϕ has negative eigenvalues, then the following

construction can be performed using −ϕ in place of ϕ with some small modifications; the

resulting edge consistency equations will be the same. The following is a well-known fact.

115
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Proposition 48. An Anosov ϕ ∈ SL(2,Z) with positive eigenvalues can be conjugated to

have the following form:

AϕA−1 = Rm1Ln1Rm2Ln2 · · ·RmkLmk

where m1, n1 . . . ,mk, nk are positive integers and R,L are the standard transvection matrices

R =

(
1 1

0 1

)
and L =

(
1 0

1 1

)
.

This form is unique up to cyclic permutation of the factors.

This fact gives a canonical triangulation of the mapping torus M = T×I/(x, 0) ∼ (ϕx, 1)

as follows. Since ϕ and AϕA−1 produce homeomorphic mapping tori, we will henceforth

assume ϕ is given exactly by the form described in the proposition. Further we think of ϕ

as a word W of length N = m1 +n1 + . . .+mk +nk in the letters L and R. Now, we begin

with the standard ideal triangulation τ0 of T having edges (1, 0), (0, 1), (−1, 1) (see figure

below). Apply the first (left-most) letter of the word, which is R, to τ0 to get a new ideal

triangulation τ1 = Rτ0. These triangulations differ by a diagonal exchange. Realize this

diagonal exchange as an ideal tetrahedron as follows. Let T1 be an affine ideal tetrahedron

in T 2×R with two bottom faces that project to the ideal triangles of τ0 in T 2 and two top

faces that project to the ideal triangles of τ1 in T 2.

τ0 τ1 = Rτ0 T1

Figure 6.1: A diagonal exchange determines an ideal tetrahedron.

Next, we apply the first (left-most) two letters of W to τ0 in order to get another ideal

triangulation τ2. We note that τ1 and τ2 differ by a diagonal exchange and we let T2 be

the ideal tetrahedron with bottom faces τ1 and top faces τ2. The bottom faces of T2 are

glued to the top faces of T1. We proceed in this way to produce a sequence of N + 1 ideal

triangulations τ0, . . . , τN with τk = Wkτ0, where Wk are the first (left-most) k letters of W .
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It is easy to see that τk and τk+1 differ by a diagonal exchange: for example if Wk+1 = WkR,

then Wk+1τ0 and Wkτ0 differ by a diagonal exchange because Rτ0 and τ0 differ by a diagonal

exchange. For consecutive τk, τk+1 define a tetrahedron Tk+1 which has τk as its bottom

faces and τk+1 as its top faces. Tk+1 is glued to Tk along τk. Note that the top ideal

triangulation τN of the top tetrahedron TN is given exactly by τN = ϕτ0. So we glue TN
along its top faces τN to T1 along its bottom faces τ0 using the Anosov map ϕ. The resulting

manifold is readily seen to be M , the mapping torus of ϕ. This decomposition into ideal

tetrahedra is called the monodromy triangulation or the monodromy tetrahedralization.

We note that the ideal triangulation τk of T 2 is naturally realized as a pleated surface

inside M , at which the tetrahedra Tk and Tk+1 are glued together. Further, we may label

each τk with the kth letter of W . Hence, each tetrahedron Tk+1 can be labeled with two

letters, the letter corresponding to its bottom pleated surface τk followed by the letter

corresponding to its top pleated surface τk+1. If Tk is labeled RL or LR it is called a

hinge tetrahedron. Consecutive LL tetrahedra make up an LL-fan, while consecutive RR

tetrahedra make up an RR-fan.

In order to build geometric structures using the monodromy triangulation, we assign

shape parameters to the edges of the tetrahedra as follows: For tetrahedron Ti, we assign

the shape parameter zi to the (opposite) edges corresponding to the diagonal exchange

taking τi to τi+1. The shape parameters xi = zi−1
zi

and yi = 1
1−zi are assigned to the other

edges according to the orientation of the tetrahedron.

Tj

zj

zj

yjyj

xj

xj

Figure 6.2: The edges corresponding to the diagonal exchange are labeled z.

The reader should note that throughout this chapter indices that are out of range will

be interpreted cyclically. For example zN+1 := z1 and z0 := zN . This convention allows for

a much more efficient description of the equations.
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Thurston’s Equations

Many of the edges in the monodromy tetrahedralization meet exactly four faces. This

happens when a given edge in T 2 lies in two consecutive triangulations τj−1, τj , but does

not lie in either τj−2 or τj+1. This will be the case if Wj = Wj−2RR, in other words if Tj
is labeled RR.

zj−1 yj yj

zj+1

Tj+1Tj−1 Tj

Figure 6.3: A four-valent edge.

In this case, the holonomy around the given edge takes the form

gj = zj−1zj+1y
2
j (6.1)

For every j such that Wj = Wj−2RR, the corresponding edge holonomy gj has the form

(6.1). Similarly, for every k such that Wk = Wk−2LL, the corresponding edge holonomy

has the form

gj = zj−1zj+1x
2
j = 1 (6.2)

The other edge holonomies can be read off from the hinge tetrahedra. A hinge edge is an

edge e that occurs in more than two consecutive triangulations τj−1, . . . , τk, where we take

p = k − j + 2 to be the maximal number of consecutive τi containing the edge e. In this

case, Tj and Tk are both hinge tetrahedra. Note also that each hinge tetrahedron contains

two distinct hinge edges. The edge e is common to the tetrahedra Tj−1, Tj , . . . , Tk, Tk+1. In

Tj−1, e corresponds to the top edge of the diagonal exchange. In Tk+1, e corresponds to the

bottom edge of the diagonal exchange. In the case Tj is an LR hinge, we have

Wk = Wj−2LRRR . . . RL
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and the edge holonomy for e is given by

gj = zj−1x
2
jx

2
j+1 . . . x

2
kzk+1. (6.3)

For example, if p = k − j + 2 = 4 the picture is as shown in Figure 6.4.

Tj−1

Tj Tj+1

Tj+2 = Tk Tj+3 = Tk+1

zj−1

xj

xj

xj+1

xj+1

xj+2

xj+2

zk+1

Figure 6.4: A hinge edge.

If Tj is an RL hinge, then we have

Wk = Wj−2RLLL . . . LR

and the edge holonomy for e is given by

gj = zj−1y
2
j y

2
j+1 . . . y

2
kzj+1 = 1. (6.4)

Every edge in the monodromy tetrahedralization has an edge holonomy expression which

is either of the form (6.1), (6.2) if the edge is valence four or of the form (6.3), (6.4) if the

edge is hinge.

All ideal vertices of the tetrahedra Tk are identified with one another. The link of the

ideal vertex gives a triangulation of ∂M . The edge consistency equations can be read off

directly from a picture of this triangulation. Vertices in ∂M correspond to edges in M . The

interior angles of the triangles in ∂M are labeled with the shape parameters corresponding to

the edges of the associated tetrahedra in M . Figure 6.5 gives a picture of the combinatorics

of ∂M in the case that W = R4L5.
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Figure 6.5: The edge consistency equations can be read off from a picture of the induced
triangulation of ∂M . This figure, drawn in the style of Segerman [Seg11], depicts the case
W = R4L5. The circles and long ovals each represent a vertex of the triangulation. One
should imagine the long ovals collapsed down to a point, so that the adjacent quadrilaterals
become a fan of triangles around the vertex. The picture is four-periodic going left to right.
At any given level of this diagram, the four triangles that touch all come from the same
tetrahedron.
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To conclude this section we summarize the edge consistency equations as follows:

Proposition 49. Let ϕ : T 2 → T 2 be an Anosov map which is decomposed as

ϕ = W = Rm1Ln1Rm2Ln2 · · ·RmkLmk .

Then Thurston’s edge consistency equations for the canonical ideal triangulation of Mϕ

associated to W are described as follows:

Thinking of W as a string of R’s and L’s, let {j, . . . , k = j +mp − 1} be the indices of

a maximal string of mp R’s. The corresponding mp equations are:

gj = zj−1x
2
jx

2
j+1 · · ·x2

k+1zk+2 = 1 (R-fan)

and for each q = j + 1, . . . , k gq = zq−1y
2
qzq+1 = 1 (R-4-valent).

Let {j, . . . , k = j + np − 1} be the indices of a maximal string of np L’s. The corresponding

np equations are:

gj = zj−1y
2
j y

2
j+1 · · · y2

k+1zk+2 = 1 (L-fan)

and for each q = j + 1, . . . , k gq = zq−1x
2
qzq+1 = 1 (L-4-valent).

For notation purposes, we write these equations in terms of {xj , yj , zj}. However, we

remind the reader that for each j = 1, . . . , N , xj =
zj−1
zj

, and yj = 1
1−zj . Thus, we think of

these equations as depending on the N variables {zj}.

6.2 The real deformation variety

We look for solutions to the equations of Proposition 49 over R that represent transversely

hyperbolic foliations. Requiring that the total dihedral angle around each edge be 2π

amounts to requiring that exactly two of the shape parameters appearing in each equation

be negative (see Section 5.2.2). Recall that in the equations of Proposition 49, xj =
zj−1
zj

and yj = 1
1−zj , so that in particular xjyjzj = −1 and exactly one of xj , yj , zj lies in each

of the components of R \ {0, 1}. A real shape parameter which is negative is said to have

dihedral angle π, while a positive shape parameter is said to have dihedral angle 0.

The construction of the monodromy triangulation involved stacking tetrahedra in T 2×R,

with each tetrahedron corresponding to a diagonal exchange. From this picture, it would
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be natural to guess that the edges with dihedral angle π should be the edges corresponding

to diagonal exchanges, which are labeled zj . This, however, is not the case.

Proposition 50. There is no solution to the equations of Proposition 49 with all zj < 0.

Proof. Suppose all zj < 0. Then for all j, xj > 1 and 0 < yj < 1. Take all the equations

involving xj ’s and multiply them together. The result is the following:

N∏
j=1

x2
j ·

N∏
j=1

z
εj
j = 1

where each εj = 0, 1, or 2. This implies that

N∏
j=1

x
2−εj
j = ±

N∏
j=1

y
εj
j

which is a contradiction, since the left hand side must be greater than one, while the right

hand side must be less than one.

Due to the structure of the equations, having one of the zj positive actually implies that

many other zj ’s will be positive as well. In many cases, it can be shown that all zj must

be positive. Therefore, a natural subset of solutions to consider is:

V+ = { real solutions to the equations of Proposition 49 with zj > 0 for all j } (6.5)

This set is a union of connected components of the deformation variety. It is also a semi-

algebraic set. There are only two possible assignments of dihedral angles (signs) for V+:

Proposition 51. Consider an element (z1, . . . , zN ) of V+. Then yj < 0 if Tj is RR, and

xk < 0 if Tk is LL. If Tj is a hinge tetrahedron, then one of the following two cases holds:

1. xj < 0 if Tj is an LR hinge tetrahedron. yk < 0 if Tk is an RL hinge tetrahedron.

2. xj < 0 if Tj is an RL hinge tetrahedron. yk < 0 if Tk is an LR hinge tetrahedron.

Proof. Begin with the tetrahedron T1 which is an LR hinge tetrahedron. Since z1 is not

negative, we must have x1 < 0 or y1 < 0. Assume, as in case 1, that x1 < 0. Since x1
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appears twice in the first fan equation, choosing x1 < 0 forces all other terms in the first

R-fan equation,

zNx
2
1x

2
2 · · ·x2

m1+1zm1+2 = 1,

to be positive (by the 2π total dihedral angle condition). In particular, xm1+1 > 0. Thus,

as zm1+1 > 0, we must have ym1+1 < 0. Note that Tm1+1 is the second hinge tetrahedron,

of type RL. Examining the second fan equation (this one is an L-fan),

zm1y
2
m1+1 · · · y2

m1+m2+1zm1+m2+2 = 1,

we find that ym1+1 < 0. This implies in particular that ym1+m2+1 > 0. So, we get that

xm1+m2+1 < 0. Note that Tm1+m2+1 is the third hinge tetrahedron, of type LR. This

process continues to determine the sign of all hinge shape parameters to be as in case 1. It

then follows that the signs of all shape parameters for RR and LL tetrahedra are determined

as specified in the Proposotion as well.

Similarly, if we begin by choosing y1 < 0, the signs of all other shape parameters are

determined to be as in case 2.

We will focus on the behavior of the variety V+. Over the course of the next four

sub-sections, we show the following

1. V+ is smooth of dimension one.

2. All tangent vectors to V+ have positive entries (or negative entries).

3. V+ is non-empty. In particular V+ contains a canonical solution corresponding to the

Sol geometry of the torus bundle gotten by Dehn filling the puncture curve in M .

4. V+ is locally parameterized by the exponential length of the puncture curve.

The particularly nice form of the equations allows us to prove these properties with

relatively un-sophisticated methods.
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6.2.1 V+ is smooth of dimension one.

We assume case 1 of Proposition 51. The other case is symmetric. So, we have

• xj < 0 if and only if either Tj is an LR hinge tetrahedron or Tj is LL.

• yk < 0 if and only if either Tk is an RL hinge tetrahedron or Tk is RR.

Recall that the edge holonomy expressions, described in Proposition 49, are enumerated

according to the index of the first x2
j or y2

j term appearing in the equation:

g1(z1, . . . , zN ) := zNx
2
1x

2
2 . . . x

2
m1+1zm1+2

g2(z1, . . . , zN ) := z1y
2
2z3

...

gm1(z1, . . . , zN ) := zm1y
2
m1+1y

2
m1+2 . . . y

2
m1+m2+1zm1+m2+2

gm1+1(z1, . . . , zN ) := zm1x
2
m1+1zm1+2

...

The edge consistency equations are given by gj = 1 for all j = 1, . . . , N . In order to

determine smoothness and the local dimension, we work with the differentials dgj of these

expressions. Actually, it will be more convenient to work with d log gj = dgj/gj . For

convenience we note the differential relationship between x, y, z (leaving off the indices):

d log z = −1

y
d log x = −xd log y

d log y = −zd log x.

We choose the following convenient basis for the cotangent space RN∗ at our point (z1, . . . , zN ) ∈
V+. For indices j such that xj < 0, define ξj = d log xj , cj = zj , and tj = (1− zj) so that

d log xj = ξj

d log yj = −cjξj

d log zj = −tjξj .
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For indices j such that yj < 0, define ξj = d log yj , cj = 1/zj , and tj = (1− zj) so that

d log xj = −cjξj

d log yj = ξj

d log zj = −tjξj .

Note that in both cases 0 < cj , tj < 1. The differential of a fan equation is given by

d log gj = −tj−1ξj−1 + 2ξj − 2(cj+1ξj+1 + . . .+ ck+1ξk+1)− tk+2ξk+2 (6.6)

while the differential of a 4-valent equation is given by

d log gq = −tq−1ξq−1 + 2ξq − tq+1ξq+1. (6.7)

We think of (d log g1, . . . , d log gN ) as a map RN → RN . The kernel of this (linear) map

is the Zariski tangent space to V+. Using the dual basis to {ξj} for the domain we let A

be the matrix of this map. The matrix A is nearly block diagonal, having a block for each

string of R’s and a block for each string of L’s in the word W . A block corresponding to

mp R’s will be mp× (mp + 3). It overlaps with the following np× (np + 3) L-block in three

columns.

R-block

L-block

R-block

0

0

A =
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Both R-blocks and L-blocks have the same form. Indexing the variables to match

Proposition 49, each block is described as follows:

−tj−1 2 −2cj+1 −2cj+2 −2cj+3 . . . −2ck −2ck+1 −tk+2

0 −tj 2 −tj+2 0 . . . 0 0 0

0 0 −tj+1 2 −tj+3 . . . 0 0 0

0 0 0 −tj+2 2 . . . 0 0 0
...

. . .
...

0 0 0 0 0 . . . 2 −tk+1 0


where the 2’s lie on the diagonal of A.

Example: W = R4L5

If we take W = R4L5 as in Figure 6.5, the matrix A is made up of two blocks, an

R-block of size 3× 6 and an L-block of size 5× 8 (note: in general the first and last blocks

“spill” over to the other side of the matrix).

A =



2 −2c2 −2c3 −2c4 −2c5 −t6 0 0 −t9
−t1 2 −t3 0 0 0 0 0 0

0 −t2 2 −t4 0 0 0 0 0

0 0 −t3 2 −t5 0 0 0 0

−2c1 −t2 0 −t4 2 −2c6 −2c7 −2c8 −2c9

0 0 0 0 −t5 2 −t7 0 0

0 0 0 0 0 −t6 2 −t8 0

0 0 0 0 0 0 −t7 2 −t9
−t1 0 0 0 0 0 0 −t8 2


The crucial things to notice about A are:

• All diagonal entries are equal to 2.

• All entries away from the diagonal are non-positive.

• The entries one off of the diagonal are strictly negative.

• Each column sums to zero. This is the differential version of the fact that the product

of all gj ’s is identically equal to one.
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Proposition 52. The matrix A has one dimensional kernel.

Proof. It will be more convenient to work with the transpose AT , which also has the prop-

erties listed above, except that the rows sum to zero rather than the columns. We write

AT = 2I −B − C

where I is the N×N identity matrix, B is a matrix with positive entries one off the diagonal

and zeros otherwise, and C is a matrix with non-negative entries that is zero within one

place of the diagonal. That is bij , cij ≥ 0 for all indices, bij > 0 if and only if |i − j| = 1,

and cij = 0 if |i− j| ≤ 1. Now, since the rows of AT sum to zero, we have that

v =


1
...

1

 ∈ ker AT .

Suppose w is another non-zero vector with w ∈ kerAT . Then, let u = w−min(w)v ∈ ker AT .

Note that all entries of u are non-negative and at least one entry up = 0. Next, consider

the pth entry of ATu:

0 = −(ATu)p = −2up + (Bu)p + (Cu)p

= 0 + bp,p−1up−1 + bp,p+1up+1 + (Cu)p

≥ bp,p−1up−1 + bp,p+1up+1.

This implies that up−1 = up+1 = 0. It follows by induction that u = 0 and so w is a multiple

of v. Thus AT has one dimensional kernel and so does A.

6.2.2 Positive tangent vectors

Actually, we can spiff up the proof of Proposition 52 to get the following:

Proposition 53. The kernel of A is spanned by a vector with strictly positive entries.

Proof. Again, we work with AT . We will make use of the following:

Lemma 12. The range of AT does not contain any vectors with non-negative entries (other

than the zero vector).
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Proof. Let h ∈ RN have non-negative entries and suppose there is w ∈ RN such that

ATw = h. Set u = w −min(w)v, where v ∈ kerAT is, as above, the vector of all 1’s. Then

all entries of u are non-negative, ATu = h, and at least one up = 0. Following the same

argument from above, we have

0 = −(ATu− h)p = −2up + (Bu)p + (Cu)p + hp

= 0 + bp,p−1up−1 + bp,p+1up+1 + (Cu)p + hp

≥ bp,p−1up−1 + bp,p+1up+1 + hp.

which shows up−1, up+1, and hp are equal to zero. Proceeding inductively, we get that each

entry of u and each entry of h is zero.

The lemma implies that kerA is spanned by a vector with positive components. One

way to see this is as follows. The the reduced row echelon form R for A is (possibly after

relabeling indices in the domain):

R = UA =



1 0 . . . 0 α1

0 1 . . . 0 α2

...
. . .

...

0 0 . . . 1 αN−1

0 0 . . . 0 0


Each row of R is in the range of AT . So the lemma implies that each αi < 0. It is now easy

to see that kerA is spanned by a vector with strictly positive components.

We have (nearly) shown:

Theorem 8. The deformation variety is smooth with dimension equal to one at all points

of V+. Further, the tangent space at a point of V+ is spanned by a vector with positive

components (with respect to zj-coordinates).

Proof. The smoothness follows from Proposition 52. Proposition 53 gives that the tangent

space to the deformation variety is spanned by a vector u in RN , whose coordinates with

respect to the basis dual to {ξj} are positive. Recall that ξj = d log xj if xj < 0, or
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ξj = d log yj if yj < 0. Hence, if xj < 0, then

dxj(u) = xjξj(u) < 0

and if yj < 0, then

dyj(u) = yjξj(u) < 0.

Let v = −u. We remind the reader that

dx = d

(
z − 1

z

)
=

1

z2
dz

and similarly

dy = d

(
1

1− z

)
=

1

(1− z)2
dz

so that dzj(v) > 0 if and only if dxj(v) > 0 if and only if dyj(v) > 0. That is, zj increases

in the direction of v if and only if xj increases in the direction of v if and only yj increases

in the direction of v. Hence v has positive coordinates in the standard (zj) basis.

6.2.3 V+ is non-empty

In this section we construct two “canonical” solutions to the edge consistency equations

which lie in different (connected) components of V+, showing in particular that V+ is non-

empty. These solutions correspond to certain projections of the Sol geometry of the torus

bundle associated to ϕ. We construct them directly from the natural affine R2 structure of

the layered triangulations used to construct the monodromy tetrahedralization of M .

By construction, the punctured torus bundle M comes equipped with a projection map

π : M̃ → R2 which induces a one dimensional foliation of M with a transverse affine linear

structure. Think of π as a developing map for the transverse structure. The holonomy

σ : π1M → Aff+R2 can be described as follows:

σ(α) : (x, y) 7→ (x+ 1, y)

σ(β) : (x, y) 7→ (x, y + 1)

σ(γ) : (x, y) 7→ ϕ(x, y)

where α, β generate the fiber π1T
2 and γ is a lift of the base circle. We can use π to



130 CHAPTER 6. PUNCTURED TORUS BUNDLES

project our tetrahedra onto parallelograms in R2. Begin by choosing a lift T̃1 of the first

tetrahedron. We can choose the lift that projects onto the square P1 with bottom left

corner at the origin. We then “develop” consecutive tetrahedra into R2 along a path in M̃ .

The result is a sequence of parallelograms Pj , with each consecutive pair overlapping in a

triangle.

P1

P2

P3

Figure 6.6: The development of tetrahedra into R2 is a union of parallelograms.

The bottom faces of T̃j map to triangles of τ̃j−1 and the top faces map to triangles of τ̃j ,

where τ̃j is the lift of the triangulation τj to R2. The face glueing maps are realized in R2

as combinations of the affine linear transformations σ(α), σ(β), and σ(γ).

We now construct H2 tetrahedra as follows. Let v+, v− be the eigenvectors of ϕ corre-

sponding to the eigenvalues λ+ > 1, and λ− < 1 respectively. Let r+, r− : R2 → R be the

coordinate functions with respect to the basis {v+, v−}. For each j, project the vertices of

Pj to R using, e.g., r+. The vertices project to four distinct real numbers which we use to

build an H2 tetrahedron. Orient the resulting H2 ideal tetrahedron compatibly with the

original tetrahedron. It is an easy exercise to show that this process always produces H2

tetrahedra that are folded along the z-edges corresponding to diagonal exchanges (i.e. the

shape parameter z has zero dihedral angle). See Figure 6.7.

Next, note that r+ takes translations in R2 to translations in R and r+ converts the

action of ϕ into scaling by λ+ on R. Hence, the map r+ ◦ π : M̃ → R is equivariant,

converting covering transformations to similarities of R. In other words, the face glueing

maps for our H2 tetrahedra are realized by hyperbolic isometries which fix ∞. Hence, the

shape parameters for these H2 tetrahedra are well-defined. Using r− in place of r+ we get

a different set of H2 shape parameters. The following proposition shows that the condition

on dihedral angles is satisfied so that the r+ and r− shape parameters each determine a

solution to Thurston’s equation lying in V+. It is a corollary of the proof that these solutions
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v−

v+
z

y

x

z

x

y

r+

Figure 6.7: The projection r+ determines flattened tetrahedra in H2.

lie in distinct components of V+.

Proposition 54. The H2 tetrahedralizations determined by r+, r− have total dihedral angle

2π around each edge in T .

Proof. Let e be an edge of the triangulation T . Recall that e is an edge of consecutive

tetrahedra Tj−1, . . . , Tk+1, for k ≥ j (with k = j if e is 4-valent, and k > j if e is a hinge

edge). In M̃ , (a lift of) e is bordered by one lift each of Tj−1, Tk+1, and two lifts of each Ti
for i = j, . . . , k. The tetrahedra are represented by 2(k− j+ 2) parallelograms Pi which are

layered around the corresponding edge e′ in R2. We number the parallelograms in cyclic

order around e′ so that P1 is the image of Tj−1, and Pk−j+3 is the image of Tk+1. For i =

j, . . . , k, the two lifts of Ti that border e map to Pi−j+2 and P2k−j+4−i, which are translates

of one another. Let the endpoints of e′ be p, q ∈ Z2. For each s = 1, . . . , 2(k − j + 2), let

e′s be the edge opposite e′ in Ps with endpoints ps, qs. Note that in the cases s = 1 and

s = k − j + 3, the edges e′, e′s are diagonals of Ps. Let e+ (resp. e−) be the geodesic in

H2 connecting r+(p) to r+(q) (resp. r−(p) to r−(q)). For each s, the H2 ideal tetrahedron

T+
s with vertices r+(p), r+(q), r+(ps), r+(qs) has dihedral angle π at e′′ if and only if the

intervals r+(e′) and r+(e′s) overlap partially (with neither one contained in the other). We

will use this characterization to show that the total dihedral angle around e+ is 2π (and

similarly for e−).
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The union of the e′s is a closed polygonal loop in R2 with a particularly nice structure.

The three edges e′, e′1, e
′
k−j+3 share a common midpoint. The edges e′2, . . . , e

′
k−j+2 are each

parallel to e′; their union forms a straight line segment I1 ⊂ R2. Similarly, the edges

e′k−j+4, . . . , e
′
2(k−j+2) are each parallel to e′ and their union forms a straight line segment

I2. Orienting I1, I2 in the direction of increasing s, we have that I2 is a translate of I1 with

the same orientation. Hence the union of the e′s is a closed polygonal loop with four straight

sides e′1, I1, e
′
k−j+3, I2. In light of this, the proof will be complete after demonstrating the

following lemma.

e′k−j+3

e′1

I1

I2

e′

Figure 6.8: The development of tetrahedra around an edge.

Lemma 13. The images of the edges e′1, e
′, e′k−j+3 are nested as follows:

r+(e′1) ⊂ r+(e′) ⊂ r+(e′k−j+3)

r−(e′k−j+3) ⊂ r−(e′) ⊂ r−(e′1).

Proof. Let P0 be the base parallelogram (actually a square) with vertices (0, 0), (1, 0), (1, 1),

and (0, 1). By construction, the parallelogram P1, which corresponds to Tj−1 is given by a

translate of Wj−2P0 where Ws is the product of the first (left-most) s letters in the word W

describing ϕ. The edge e′1 is the bottom diagonal of P1, which is a translate of the vector

Wj−2

(
1

−1

)
and the edge e′ is the top diagonal of P1, which is a translate of the vector

Wj−2

(
1

1

)
. Similarly, Pk−j+3, which corresponds to Tk+1 is a translate of WkP0. So e′,
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which is the bottom diagonal of Pk−j+3, is a translate of Wk

(
1

−1

)
and e′k−j+3, which is

the top diagonal of Pk−j+3, is a translate of Wk

(
1

1

)
. Recall that either Wk = Wj−2RL

k−jR

or Wk = Wj−2LR
k−jL. From this it is easy to check that Wj−2

(
1

1

)
= ±Wk

(
1

−1

)
, so

they determine the same line segment up to translation in R2.

Next, we may assume that v+ lies in the positive quadrant and that v− has negative

first coordinate and positive second coordinate (this is easy to check). Hence Ws

(
0

1

)
and

Ws

(
1

0

)
, which lie in the positive quadrant, have r+ > 0. Thus we have that for any s,

r+Ws

(
1

1

)
− r+Ws

(
1

−1

)
= 2r+Ws

(
0

1

)
> 0

r+Ws

(
1

1

)
+ r+Ws

(
1

−1

)
= 2r+Ws

(
1

0

)
> 0.

This implies that ∣∣∣∣∣r+Ws

(
1

1

)∣∣∣∣∣ >
∣∣∣∣∣r+Ws

(
1

−1

)∣∣∣∣∣ .
Applying this fact with s = j − 2 and s = k implies that the lengths of the intervals r+(e′),

r+(e′1), and r+(e′k−j+3) are ordered as follows:

|r+(e′k−j+3)| > |r+(e′)| > |r+(e′1)|.

Thus, as e′,e′1, and e′k−j+3 share a common midpoint, the r+ statement of the Lemma

follows.
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e′k−j+3

e′1

I1

I2

v+

e′

Figure 6.9: The r+ projection of the edges opposite e′.

The r− statement is similar. In this case r−Ws

(
0

1

)
> 0 while r−Ws

(
1

0

)
< 0. Thus

r−Ws

(
1

1

)
− r−Ws

(
1

−1

)
= 2r−Ws

(
0

1

)
> 0

r−Ws

(
1

1

)
+ r−Ws

(
1

−1

)
= 2r−Ws

(
1

0

)
< 0.

It follows that for any s, ∣∣∣∣∣r−Ws

(
1

1

)∣∣∣∣∣ <
∣∣∣∣∣r−Ws

(
1

−1

)∣∣∣∣∣ .
So the lengths of the intervals r−(e′), r−(e′1), and r−(e′k−j+3) are ordered like so:

|r−(e′k−j+3)| < |r−(e′)| < |r−(e′1)|.

The r− part of the Lemma now follows.

By the Lemma, and the above characterization of the edges e′s, we must have that r+(e′s)

partially overlaps r+(e′) if and only if s = 2 or s = 2(k − j + 2). Hence the H2 tetrahedron

T+
s has dihedral angle π at e+ if and only if s = 2, or s = 2(k − j + 2). Similarly, the H2

tetrahedron T−s in the r− tetrahedralization has dihedral angle π if and only if s = k− j+2
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or s = k−j+4. Note that this shows that r+ produces a solution in case 1 of Proposition 51,

while r− produces a solution in case 2.

We note that r+ ◦ π and r− ◦ π give maps to R ⊂ RP1 which are invariant under

representations ρ+, ρ− : π1M → PSL(2,R) which fix ∞ (so ρ+, ρ− are reducible). The

tetrahedra construction just performed determines (degenerate) developing maps D+, D−

for two transversely hyperbolic foliations with respective holonomies ρ+, ρ−. These two

transversely hyperbolic foliations correspond to projecting the Sol geometry of M onto the

two vertical hyperbolic planes in Sol.

6.2.4 A local parameter

Let ε represent the curve encircling the puncture in T 2 ⊂M . We show in this section that

the length of ε is a local parameter for V+. This will follow, after some calculation, from the

fact that the tangent direction to V+ must increase all shape parameters. As the general

calculation is notationally cumbersome, we start with an example.

Example: W = R4L5

Let W = R4L5 as in Figure 6.5. The puncture curve ε is the curve going across the

diagram from left to right (see Figure 6.10). The exponential length of ε can be read off

from the diagram:

H(ε) = (z9x1z
−1
2 y−1

1 )2.

L
R

z
x

y
yz

zx

x

x

z
x

x

x

x
y

yz

z
1

3

R
y

yz

z y
yz

zx
x x

x

2

L
y

y

y

y
z

x
x z

z
y

y

y

y
z

x
x z

z

8

9

Figure 6.10: The puncture curve ε is drawn in blue
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We assume (as the other case is similar) that we are in case 1 of Proposition 51. That

is, x1 < 0, y2, . . . , y5 < 0 and x6, . . . , x9 < 0. We adopt the following notation:

αj =

{
xj if xj < 0,

yj if yj < 0.

βj =

{
xj if xj > 0,

yj if yj > 0.

Note that, in either case, we have αjβjzj = −1. Using this notation, H(ε) = (z9α1z
−1
2 β−1

1 )2,

and the edge consistency equations are given by

1 = g1 = z9α
2
1β

2
2β

2
3β

2
4β

2
5z6 1 = g5 = z4α

2
5β

2
6β

2
7β

2
8β

2
9β

2
1z2

1 = g2 = z1α
2
2z3 1 = g6 = z5α

2
6z7

1 = g3 = z2α
2
3z4 1 = g7 = z6α

2
7z8

1 = g4 = z3α
2
4z5 1 = g8 = z7α

2
8z9

1 = g9 = z8α
2
9z1

The following trick produces a useful description of H(ε). We remind the reader to

interpret the indices cyclically, e.g. z10 := z1.

8∏
i=1

gii+1 =

(
8∏
i=1

(ziα
2
i+1zi+2)i

)
z−4

6 z4
2

10∏
i=6

β8
i

= z−9
9 z9

1

(
8∏
i=1

α2i
i+1z

2i
i+1

)
z−4

6 z4
2

10∏
i=6

β8
i

= z−9
9 z9

1z
−4
6 z4

2

9∏
i=2

β−2i+2
i

10∏
i=6

β8
i

= z−9
9 z9

1z
−4
6 z4

2β
18
1

5∏
i=2

β−2i+2
i

10∏
i=6

β−2i+10
i

= (z−9
9 α−9

1 z9
2β

9
1)z−4

6 z−5
2

5∏
i=2

β−2i+2
i

10∏
i=6

β−2i+10
i .
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and therefore a solution to the glueing equations satisfies

H(ε)9/2 =

(
4∏
i=1

β−2i
i+1

)(
9∏
i=5

β−2i+8
i+1

)
z−5

2 z−4
6 .

This shows that H(ε) is a product of negative powers of βj ’s and zj ’s. Now, by Theorem 8,

the tangent direction to V+ increases all βj ’s and zj ’s and so it decreases H(ε). Hence, H(ε)

is a local parameter for V+. In fact, H(ε) can be made arbitrarily small or increased to

infinity. The argument will be given below.

Remark 35. The trick of considering
∏8
i=1 g

i
i+1 seems to come out of nowhere. Indeed,

the author knows of no geometric interpretation of the quantity that would suggest it has

any importance. However, the trick readily extends to give a (relatively) succinct proof in

the general case.

The general case. Recall that our Anosov map ϕ is decomposed as:

AϕA−1 = W = Rs1Ls2Rs3Ls4 · · ·RsK−1LsK .

Note that we have changed notation slightly in order to ease the upcoming computation.

Let Mp denote the index of the pth hinge tetrahedron:

Mp = 1 +

p−1∑
j=1

sj ,

where we define MK+1 = N + 1 where N =
∑
sj is the total length of the word W .

Note, as usual, that indices i of the αi, βi, zi are interpreted cyclically so that, for example,

βN+1 := β1. Then,

Proposition 55. H(ε) can be expressed in the following form (generalizing the form in the

above example):

H(ε)N/2 =
K∏
p=1

z−sp1+Mp+1

Mp+1∏
j=1+Mp

β
−2j+2Mp

j

 . (6.8)

In particular, H(ε) is a local parameter for V+.
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Proof. We follow the same general procedure as in the above example:

N−1∏
i=1

gii+1 =
N−1∏
i=1

(ziα
2
i+1zi+2)i

K∏
p=2

z−(Mp−1)
1+Mp

z
(Mp−1)
1+Mp+1

Mp+1∏
j=1+Mp

β
2(Mp−1)
j


= zN1 z

−N
N

N−1∏
i=1

(
z2i
i+1α

2i
i+1

) K∏
p=2

z
1−Mp

1+Mp

Mp+1∏
j=1+Mp

β
2Mp−2
j

K+1∏
p=3

(
z
−1+Mp−1

1+Mp

)

= zN1 z
−N
N

N−1∏
i=1

β−2i
i+1

 K∏
p=2

Mp+1∏
j=1+Mp

β
2Mp−2
j

 zN2

K+1∏
p=2

(
z
Mp−1−Mp

1+Mp

)

= zN1 z
−N
N zN2 β

2N
1

 K∏
p=1

Mp+1∏
j=1+Mp

β
−2(j−1)+2Mp−2
j

K+1∏
p=2

(
z
−sp−1

1+Mp

)

= (z−1
N α−1

1 z2β1)N
K∏
p=1

z−sp1+Mp+1

Mp+1∏
j=1+Mp

β
−2j+2Mp

j

 .

So, as H(ε) = (zNα1z
−1
2 β−1

2 )2, we have the result:

H(ε)N/2 =

K∏
p=1

z−sp1+Mp+1

Mp+1∏
j=1+Mp

β
−2j+2Mp

j

 .

Corollary. The exponential length of the puncture curve, H(ε), can be made arbitrarily

small or arbitrarily large .

Proof. We show that H(ε) can be made arbitrarily small; the second statement is similar.

By Theorem 8, any point (z1, . . . , zN ) ∈ V+ is a smooth point of the deformation variety,

and all shape parameters can be increased locally. They can be increased globally until some

of them go to infinity. Consider such a path. Recall that for some j, βj = xj while for other

k, βk = yk. We show that one of the βi must approach infinity. Assume not. Then some

zj → ∞, for recall that all αj < 0. Examining the (j + 1)st glueing equation, we see that

αj+1 → 0 as all other terms are positive and increasing. If βj+1 > 1 ( ⇐⇒ βj = yj), then

we must have βj+1 →∞. If not then zj+1 > 1 and zj+1 →∞. We continue inductively and

eventually reach an index i such that βi > 1 and βi → ∞. It is clear from the expression

(6.8) that H(ε)→ 0.
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Remark 36. It is straightforward to check that the discrete rotational part of the holonomy

of ε must be +2π. Hence by the argument from Example 3 in Chapter 5, AdS tachyon

structures regenerated from the canonical solution in V+ must have negative mass. The

corollary implies that the mass of these structures can be decreased to −∞.
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Appendix A

A half-space model for AdS3

In [Ahl85] Ahlfors describes a general construction of n-dimensional hyperbolic space as a

half-space inside a Clifford algebra Cn. The isometries in this model are Mobius transfor-

mations with coefficients in a sub-algebra Cn−1. In the case n = 3, C3 is the Hamiltonian

quaternions, C2 is the complex numbers and the construction gives the standard upper

half-space model of H3. Following Ahlfors, we construct a half-space model of AdS3 using

generalized Clifford numbers. The isometries in this model will be PSL(2,R + Rτ) acting

by Mobius transformations. This construction can (surely) be extended to higher anti de

Sitter spaces.

A.1 AdS3 via Clifford numbers

Starting with our algebra B = R + Rτ from Sections 4.8 and 5.2.3, we add an element j

with j2 = −1 and jτ = −τj. This defines a Clifford algebra A that is four dimensional

over the reals. In fact, in this low dimensional case A is isomorphic to the algebra of real

two-by-two matrices. There are many different copies of C lying inside A, one distinguished

copy being R + Rj, just as there are many isomorphic copies of B. There is a conjugation

operation on A, z 7→ z defined by

1 = 1, j = −j, τ = −τ, and (zw) = w z.

141
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The conjugation defines a square-norm

|z|2 = zz = zz ∈ R.

Let V = span{1, j, τ} be the subspace of elements of A having degree ≤ 1, the so-called

vectors of A. The square-norm restricted to V comes from the (2, 1) Minkowski product on

R2,1 (with basis {1, j, τ}). In Section 5.2.3, we showed that SL(2,B) acts on the compacti-

fication P1B of B. Our goal here is to extend to a suitable compactification of V in a way

that allows SL(2,B) to act naturally.

Define P1V as follows:

P1V =

{(
x

y

)
∈ A2 : xy ∈ V, xα = 0 and yα = 0 for α ∈ A ⇐⇒ α = 0

}
/ ∼

where

(
x

y

)
∼

(
xλ

yλ

)
for λ ∈ A×.

Note that when y is invertible we have xy−1 = xy/|y|2, so that the condition xy ∈ V allows

us to think of

(
x

y

)
∼

(
xy−1

1

)
as the vector xy−1 in V ⊂ P1V . Let us examine the extra

points in P1V . Consider

[(
x

y

)]
∈ P1V with y not invertible (so yy = 0). There are several

cases

1. y = 0, and so x is invertible. Thus

(
x

y

)
∼

(
1

0

)
=∞.

2. x is invertible and y 6= 0. Then

(
x

y

)
∼

(
a

ejθ+τ
2

)
for some a ∈ R and some ejθ =

cos θ + j sin θ on the unit circle in R + Rj.

3. x is not invertible ( =⇒ y 6= 0). Then

(
x

y

)
∼

(
1− e−jθτ
ejθ + τ

)
∼

(
e−jθ − τ
1 + ejθτ

)
.

These added points are all endpoints of lines in V . Space-like and time-like lines all limit

to ∞. Light-like lines limit to the points described in cases 2 and 3. Indeed, any light-like
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line can be written in orthogonal coordinates as

r(t) = bjejθ + a
ejθ + τ

2
+ t

ejθ − τ
2

where a, b ∈ R. If a 6= 0, then in P1V

r(t) =

(
bjejθ + a ejθ+τ

2 + t e
jθ−τ

2

1

)(
e−jθ − τ

2
· a− bj

t
+
e−jθ + τ

2

)

=

(
1+ejθτ

2 · abj+b
2

t + 1−ejθ
2 bj + 1+ejθ

2 a+ 1−ejθ
2 (a− bj)

e−jθ−τ
2 · a−bjt + e−jθ+τ

2

)

−→

(
a

e−jθ+τ
2

)
as t→ ±∞

and we see that we are in case 2. If a = 0 a similar calculation shows that

r(t) −→

(
1− ejθτ
e−jθ + τ

)
as t→ ±∞

which is of the form in case 3. In fact P1V is the conformal compactification of V , the so

called Einstein universe Ein2,1 (see [BCD+08]).

The description of Ein2,1 as P1V is nice because we can easily see that SL(2,B) acts

on P1V (and indeed PSL(2,B) acts faithfully). For consider

(
a b

c d

)
∈ SL(2,B) and

(
x

y

)
with xy = e+ αj where e ∈ R + Rτ and α ∈ R. Then yx = xy = e− αj and so(

a b

c d

)(
x

y

)
=

(
ax+ by

cx+ dy

)

has

(ax+ by)(cx+ dy) = (ax+ by)(x c+ y d)

= |x|2ac+ |y|2bd+ a(e+ αj)d+ b(e− αj)c

= |x|2ac+ |y|2bd+ aed+ be c+ α(ad− bc)j

= ( something in R + Rτ ) + αj ∈ V.
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Though P1B sits inside P1V , P1B does not divide P1V into two components. In fact

points in the upper half of V (i.e. j component > 0) can easily be sent to points in the lower

half (i.e. j component < 0) by an element of SL(2,B). The Einstein universe P1V is actually

a non-orientable three manifold, homeomorphic to the mapping torus of the antipodal map

of the two sphere. So, breaking from the analogy to the hyperbolic upper half-space model,

we will define our model for AdS3 as the quotient of P1V by an involution fixing P1B.

Define the algebra homomorphism I on A by I(1) = 1, I(τ) = τ , I(j) = −j. It is clear

that I is an involution whose fixed set is B. I also defines an involution of P1V by

I

[(
x

y

)]
=

[(
I(x)

I(y)

)]

which has fixed set P1B. It is easy to check that the action of PSL(2,B) commutes with I,

so PSL(2,B) acts on the quotient X = P1V/I. It is an entertaining exercise to check the

following proposition.

Proposition 56. X = P1V/I is a solid torus with boundary P1B.

Note that after taking the quotient by I, many of the added points in P1V −V lie in the

interior of X. A line ` in V has closure in P1V given by a circle ` ∪ q. If ` is, for example,

light-like with non-constant j-component then q descends to a point in the interior of X.

A.2 The AdS metric

For simplicity, we will work out the metric aspects in the space V −B. We let x1, x2, x3 be

real coordinates for V by the formula x = x1 + x2τ + x3j. Consider the metric obtained by

rescaling the (2, 1) Lorentzian metric on V by 1/|x3|:

ds2 =
|dx|2

x2
3

=
dx2

1 − dx2
2 + dx2

3

x2
3

.

Now consider a transformation g =

(
a b

c d

)
∈ SL(2,B). Assume that x is in a neighborhood

where cx+ d is invertible so that

g(x) = (ax+ b)(cx+ d)−1 ∈ V.
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Differentiating the expression g(x)(cx + d) = ax + b and applying it to a tangent vector

u ∈ V we obtain

Dg(x)u(cx+ d) = (a− g(x)c)u

= (ac−1(cx+ d)− (ax+ b))(cx+ d)−1cu

= c−1(ad− bc)(cx+ d)−1cu

= (xc+ d)−1u

where we’ve assumed c invertible (to avoid a more painful calculation). Anyway, we get the

formula

Dg(x) · u = (xc+ d)−1u(cx+ d)−1 (A.1)

from which we see that g is conformal (with respect to the Minkowski (2, 1) metric on V )

with rate of magnification (|cx + d|2)−2. Next, writing g(x) = g1 + g2τ + g3j, a quick

computation shows

g3 =
x3

|cx+ d|2

which gives that the metric ds2 is preserved by g:

|Dg · u|2

g2
3

=
|u|2

x2
3

.

The curvature of our metric ds2 is −1 (the calculation should be the same as in the hyper-

bolic case).

Proposition 57. X = P1V/I with the metric ds2 is isometric to PSL(2,R) with the AdS

metric.

Proof. We now know X is locally isometric to AdS. In fact, X is geodesically complete

(geodesics will be explicitly computed in the next section). The proposition follows by

calculating the length of a time-like geodesic.

A.3 Geodesics

Let P be the (closure of the) plane spanned by {1, j} passing through the origin. The

(euclidean) reflection about P is clearly an isometry of our metric ds2. It follows that P
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is a totally geodesic plane in X. Of course, P is the upper half-plane model of H2, so

in particular the curve γ0(t) = etj is a unit speed space-like geodesic. We translate γ0

around by SL(2,B) to obtain a description of all space-like geodesics in this model. Given

A =

(
a b

c d

)
∈ SL(2,B), consider

γ(t) = Aγ0(t) = (aetj + b)(cetj + d)−1.

For ease of demonstration, we will assume here and in the subsequent computation that c, d

are invertible and that t is such that cetj+d is invertible (this is true for all except possibly

one value of t). Then

γ(t) =
acet + bde−t + j

|c|2et + |d|2e−t

and we note that the endpoints of γ are γ(−∞) = bd−1 and γ(∞) = ac−1. Now, by analogy

with the hyperbolic case we expect γ to be some sort of conic section in V perpendicular

to the boundary with midpoint equal to 1
2(ac−1 + bd−1). In fact, a calculation shows that

γ(t)− ac−1 + bd−1

2
=

(
|c|2et − |d|2e−t

|c|2et + |d|2e−t

)
1

2cd
+

(
1

|c|2et + |d|2e−t

)
j

and so we see that γ(t) lies in the affine plane centered at ac−1+bd−1

2 and spanned by the

directions j and 1/(2cd) = (ac−1 − bd−1)/2. Further γ(t) satisfies

∣∣∣∣γ(t)− ac−1 + bd−1

2

∣∣∣∣2 =
1

4|c|2|d|2

showing that γ parametrizes an ellipse if |c|2, |d|2 have the same sign, or a hyperbola if

|c|2, |d|2 have opposite sign. Note that in the latter case γ is still a smooth path through

P1V/I though it appears discontinuous when we draw it in V . We have demonstrated the

following:

Proposition 58 (Space-like geodesics). Let p1, p2 ∈ B such that the displacement ∆ =

(p1 − p2)/2 is not light-like. Let p be the midpoint p = (p1 + p2)/2. Then the AdS geodesic

γ connecting p1 to p2 is the conic lying in the affine plane p + span{∆, j} defined by the
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equation

|γ − p|2 = |∆|2.

If |∆|2 > 0 then γ is a (euclidean) ellipse, and if |∆|2 < 0 then γ is a hyperbola. In either

case, γ meets the R + Rτ plane at right angles.

Figure A.1: A space-like geodesic is either an ellipse or a hyperbola depending on the
displacement between its endpoints. In the hyperbola case, the geodesic comes out from
the boundary along one branch of the hyperbola, passes though an “added” point of P1V
and then returns to the boundary along the other branch.

Time-like geodesics have a similar description, though we won’t give a detailed proof:

Proposition 59 (Time-like geodesics). Let p,∆ ∈ B with |∆|2 < 0. Then, the locus of

points γ in the affine plane p+ span{∆, j} satisfying

|γ − p|2 = −|∆|2

defines a time-like geodesic. All time-like geodesics are described in this way.

We note that each time-like geodesic closes up after passing through exactly one “added”

point in P1V .

Proposition 60 (Light-like geodesics). The parametrized light-like geodesics are described

by

γ(t) = p+
1

t
`

where p ∈ R + Rτ , and ` is a lightlike vector in V .

Note that in this light-like case γ(∞) = γ(−∞) and that after performing the quotient

by I, the two ends of γ appear to meet at an angle at the boundary. This is in contrast
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with the projective model of AdS in RP3 in which lightlike geodesics are tangent to the

boundary.

Figure A.2: A light-like geodesic. The light cone is drawn (in red) for reference.

Proposition 61 (Space-like Planes). Both of the following are space-like planes in this

model:

1. A two-sheeted hyperboloid in V meeting the boundary B at right angles, described by

an equation of the form

|x− p|2 = −R2

where p ∈ B. Note that the two components of the hyperboloid actually meet up in

P1V .

2. a vertical affine plane of the form p+span{v, j} where p, v ∈ R+Rτ with v space-like.

A.4 AdS ideal tetrahedra

Let z1, z2, z3, z4 be four points in the ideal boundary P1B of AdS. Recalling the isomorphism

P1B ∼= RP1 × RP1, we write each zi as

zi = λi
1 + τ

2
+ µi

1− τ
2

where λi, µi ∈ RP1. If the λi are distinct and the µi are distinct, then taking the zi

three at a time, we get four space-like hyperbolic ideal triangles 41,42,43,44. If further

(λ1, λ2, λ3, λ4) and (µ1, µ2, µ3, µ4) have the same cyclic order in RP1, then the 4i bound an

AdS ideal tetrahedron.
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Every AdS ideal tetrahedron can be put into standard position, with ideal vertices

0, 1,∞, z where z satisfies |z|2 > 0, |1 − z|2 > 0 so that in particular all of the R + Rτ
ratios

z,
1

1− z
,
z − 1

z

assigned to the edges are defined and space-like (see Section 5.2.3). We describe this ideal

tetrahedron in our half-space model. The three faces containing ∞ are vertical planes,

while the fourth bottom face is a hyperboloid |x− p|2 = −R2. Writing z = a+ bτ , a simple

calculation gives

p =
1

2
+
a− |z|2

2b
τ

R2 =
|z|2 |1− z|2

b2
.

Note that in the case b→ 0, our tetrahedron degenerates and all four faces lie in a common

plane.

Figure A.3: The ideal AdS tetrahedron defined by the points 0, 1,∞, z ∈ P1B = ∂AdS.
Each of the three side faces lies in an affine plane in V , while the bottom face lies in a
hyperboloid. Each face is a totally geodesic ideal triangle isometric to an ideal triangle in
the hyperbolic plane.



150 APPENDIX A. A HALF-SPACE MODEL FOR ADS3



Bibliography

[ABB+07] Lars Andersson, Thierry Barbot, Riccardo Benedetti, Francesco Bonsante, William M.

Goldman, Francois Labourie, Kevin P. Scannell, and Jean-Marc Schlenker, Notes on a

paper of Mess, Geometriae Dedicata 126 (2007), no. 1, 47–70.

[Ahl85] Lars V. Ahlfors, Mobius transformations and clifford numbers, Differential Geometry and

Complex Analysis, H.E. Rauch Memorial Volume (1985), 65–73.

[BB09] Riccardo Benedetti and Francesco Bonsante, Canonical wick rotations in 3-dimensional

gravity, Memoirs of the American Mathematical Society, 2009.

[BBS09] Thierry Barbot, Francesco Bonsante, and Jean-Marc Schlenker, Collisions of particles in

locally AdS spacetimes, preprint (2009).

[BCD+08] Thierry Barbot, Virginie Charette, Todd A. Drumm, William M. Goldman, and Karin

Melnick, A primer on the (2 + 1) Einstein universe, Recent developments in pseudo-

Riemannian geometry (Dmitri V. Alekseevsky and Helga Baum, eds.), ESI Lectures in

Mathematics and Physics, 2008, pp. 179–229.

[BEE96] John K. Beem, Paul E. Ehrlich, and Kevin L. Easley, Global lorentzian geometry, 2nd

ed., Marcel Dekker, New York, 1996.

[Ber60] Lipman Bers, Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960), 94–97.

[BLP05] Michel Boileau, Bernhard Leeb, and Joan Porti, Geometrization of 3-dimensional orb-

ifolds, Annals of Math 162 (2005), no. 1, 195–250.

[Bro07] Ken Bromberg, Projective structures with degenerate holonomy and the bers density con-

jecture, Annals of Math 166 (2007), 77–93.

[CG97] Suhyoung Choi and William M. Goldman, The classification of real projective structures

on surfaces, Bulletin of the American Math Society 34 (1997), 161–171.

[CHK00] Daryl Cooper, Craig Hodgson, and Steven Kerckhoff, Three-dimensional orbifolds and

cone manifolds, MSJ Memoirs, vol. 5, Mathematical Society of Japan, Tokyo, 2000.

151



152 BIBLIOGRAPHY

[CLT07] Daryl Cooper, Darren D. Long, and Morwin B. Thistlethwaite, Flexing closed hyperbolic

structures, Geometry and topology 11 (2007), 2413–2440.

[Ehr36] Charles Ehresmann, Sur les espaces localement homogenes, L’Enseignement Mathma-

tique 35 (1936), 317–333.

[FG07] V.V. Fock and A.B. Goncharov, Moduli spaces of convex projective structures on surface,

Advances in Mathematics 208 (2007), no. 1, 249–273.

[Ga06] Francois Gueritaud and David Futer (appendix), On canonical triangulations of once

punctured torus bundles and two-bridge link complements, Geometry and Topology 10

(2006), 1239–1284.

[Gol85] William M. Goldman, Nonstandard lorentz space forms, Journal of Differential Geometry

21 (1985), 301–308.

[Gol90] , Convex real projective structures on compact surfaces, Journal of Differential

Geometry 31 (1990), 791–845.

[Gol10] , Locally homogeneous geometric manifolds, Proceedings of the International

Congress of Mathematicians, Hyderabad, India (2010).

[HK98] Craig Hodgson and Steven Kerckhoff, Rigidity of hyperbolic cone manifolds and hyperbolic

dehn surgery, Journal of Differential Geometry 48 (1998), 1–60.

[HK05] , Universal bounds for hyperbolic dehn surgery, Annals of Mathematics 162

(2005), no. 1, 367–421.

[Hod86] Craig Hodgson, Degeneration and regeneration of hyperbolic structures on three-

manifolds, Ph.D. thesis, Princeton University, 1986.

[HPS01] Michel Huesener, Joan Porti, and Eva Suárez, Regenerating singular hyperbolic structures
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