
Hypergraph Partitioning With Fixed Vertices�

Charles J. Alpert, Andrew E. Caldwell, Andrew B. Kahng and Igor L. Markov

UCLA Computer Science Department, Los Angeles, CA 90095-1596

Abstract

We empirically assess the implications of �xed terminals for hypergraph partitioning heuristics.
Our experimental testbed incorporates a leading-edge multilevel hypergraph partitioner [12] [3]
and IBM-internal circuits that have recently been released as part of the ISPD-98 Benchmark Suite
[2, 1]. We �nd that the presence of �xed terminals can make a partitioning instance considerably
easier (possibly to the point of being \trivial"); much less e�ort is needed to stably reach solution
qualities that are near best-achievable. Toward development of partitioning heuristics speci�c to the
�xed-terminals regime, we study the pass statistics of
at FM-based partitioning heuristics. Our
data suggest that more �xed terminals implies that the improvements within a pass will more likely
occur near the beginning of the pass. Restricting the length of passes { which degrades solution
quality in the classic (free-hypergraph) context { is relatively safe for the �xed-terminals regime
and considerably reduces the run times of our FM-based heuristic implementations. The distinct
nature of partitioning in the �xed-terminals regime has deep implications (i) for the design and use
of partitioners in top-down placement, (ii) for the context in which VLSI hypergraph partitioning
research is pursued, and (iii) for the development of new benchmark instances for the research
community.

1 Introduction

Hypergraph partitioning research in VLSI CAD has been primarily motivated by the gate-level

top-down placement context, which in modern ASIC design methodology can demand extremely

e�cient and high-quality solutions for netlist sizes exceeding 1 million vertices. New heuristics for

hypergraph partitioning are typically evaluated in the context of free hypergraphs, where all vertices

are free to move into any partition [4, 2]. Every benchmark, and every benchmark result reported in

the literature, is for the free-hypergraph context. Even when I/O pad locations are speci�ed in the

.vpnr or .yal source for early ACM/SIGDA benchmarks, the partitioning benchmarks (in .net/.are

format; see [1]) do not indicate how these pads correspond to �xed vertices in partitions.

Our study is motivated by the following observation: In top-down placement, the input to the

partitioner is never a free hypergraph. Rather, the input contains �xed terminals that arise from

the chip I/Os or from the propagated terminals of other sub-problems in the partitioning hierarchy

[8, 14]. The number of these �xed terminals can be estimated from Rent's rule [13, 7], which states

�Research supported by a grant from Cadence Design Systems, Inc.

1

Rent Parameter 5% 10% 20%

p = 0:60 40992 7250 1281

p = 0:65 186943 25800 3561

p = 0:70 1413600 140250 13915

Table 1: Block sizes below which the expected number of �xed vertices due to propagated

terminals will exceed a speci�ed percentage (5%, 10% or 20%) of the total number of vertices

in a top-down placement when the design has given Rent parameter p. We assume that the

average pins per cell in the design is k = 3:5.

that in a layout with Rent parameter p, on average a block of C cells will have T = k �Cp propagated

or external terminals. This corresponds to a partitioning instance of C+T vertices, of which T are

�xed. Here, k is a constant equal to the average number of pins per cell, and is approximately 3.5

for modern designs; Rent parameter values for modern designs have been estimated at around 0.68

[7, 15]. Table 1 shows the maximum block sizes below which we expect all blocks (in a design with

Rent parameter p) to have a given percentage of their vertices �xed.1 We observe that even rather

sizable sub-blocks of the design can be expected to have a high proportion of �xed terminals.

With this paper, we bring attention to the problem of partitioning with �xed terminals, and

demonstrate that unique aspects of the �xed-terminals regime may require new partitioning heuris-

tics. Hence, the nature of partitioning in the �xed-terminals regime can have deep implications

(i) for the design and use of partitioners in top-down placement, (ii) for the context in which

VLSI hypergraph partitioning research is pursued, and (iii) for the development of new benchmark

instances for the research community.

In Section 2, we empirically assess the implications of �xed terminals for hypergraph partition-

ing heuristics using a leading-edge multilevel [12, 3] hypergraph partitioner and ISPD-98 circuit

benchmarks released by IBM [2, 1]. We conclude that the presence of �xed terminals can make

a partitioning instance considerably easier (possibly to the point of being \trivial"): less e�ort is

needed to stably reach solution qualities near best-seen. Section 3 presents early studies aimed at

developing partitioning heuristics speci�c to the �xed-terminals regime. We study the pass statis-

tics of
at FM-based partitioning heuristics, and demonstrate that with more �xed terminals, the

improvements in a pass are more likely to occur near the beginning of the pass. A heuristic that

restricts the length of passes { which would degrade solution quality in the classic (free-hypergraph)

context { is relatively safe for the �xed-terminals regime and considerably reduces runtime of our

FM-based implementations. The existence of this heuristic demonstrates the need for improved

1This assumes that the blocks are in \Region I" of the Rent parameter �t [13].

2

heuristics that speci�cally exploit the �xed-terminals regime. Section 4 concludes with directions

for future work.

2 E�ect of Fixed Terminals on Instance Di�culty

Our experimental studies address the following questions.

1. Can we identify and quantify the e�ects (with respect to runtime, solution quality relative

to best-achievable, etc.) of �xed terminals in the instance on the performance of modern

partitioning heuristics?

2. In particular, do partitioning instances with �xed terminals require less e�ort to \solve well"

(using modern partitioning heuristics) than similarly-sized instances without �xed terminals?

3. Can we develop guidelines as to the e�ort (e.g., with respect to a multistart regime) re-

quired for modern partitioning heuristics to achieve good partitioning solutions when a given

proportion of vertices in the instance are �xed?

Partitioner

We use an internally developed partitioning engine that implements the multilevel FM approach

described in [3] and [12]. Implementation details generally follow the parameters established in

[3] (use of CLIP [9], heavy-edge matching, clustering ratio, etc.). The partitioning engine does

not perform V-cycling as in [12], since we have determined that V-cycling is a net loss in terms

of overall cost-runtime pro�le of our partitioner. The partitioning engine achieves solution quality

and runtimes on a per-start basis that are somewhat better than those reported for MLC [3] and

hMetis [12] in the 1998 paper of Alpert [2] and on Alpert's web page [1]. This is con�rmed by the

experimental data reported in the next section.

Test Data

We have run experiments with the IBM01 through IBM05 test cases from the ISPD-98 Benchmark

Suite developed by Alpert [2, 1]. We use actual areas of cells, and a 2% balance constraint. Because

the cell areas vary considerably in the IBM benchmarks (there are often individual cells that occupy

several percent of the total area [1]), there is little point in doing unit-area studies for the real-life

placement context. Moreover, tight balance constraints are more appropriate to the top-down cell

placement application.

3

Experimental Protocol

In our experiments we choose to �x a subset of random vertices from the netlist. We either (i) �x

the chosen vertices independently into random partitions (\rand" in Figures 1 and 2), or (ii) �x

the chosen vertices according to where they are assigned in the best min-cut solution we could �nd

for the instance when no vertices were �xed (\good"). For each of the resulting four regimes we �x

a number of vertices equal to 0%, 0.1%, 0.5%, 1.0%, 2.0%, 5%, 10%, 15%, 20%, 30%, 40% and 50%

of the total number of vertices in the instance.2 We apply the multilevel CLIP FM engine noted in

the previous subsection (using LIFO FM instead of CLIP FM results in very similar results to what

we report in this paper). A single trial applies this partitioner to the given partitioning instance

for 1, 2, 4 or 8 independent starts and returns both the best cutsize obtained and the number of

CPU seconds used. (All CPU times are for a 140MHz Sun Ultra-1 workstation running Solaris2.6.)

All of our data represent averages of 50 trials.

Experimental Results

Figures 1 and 2 show detailed results for the IBM01 and IBM03 test cases, respectively. All data

shown are for experiments where �xed vertices are chosen randomly from the set of all vertices in

the instance.

� Each �gure contains six plots, with four traces in each plot corresponding to 1, 2, 4 and 8

starts of the multilevel partitioning engine.

� The upper (\good") row of each �gure presents plots for the regime where all �xed vertices

are consistent with the best solution that we know for the unconstrained (no �xed vertices)

instance. The lower (\rand") row of each Figure presents plots for the regime where the �xed

vertices are randomly assigned to partitions.

� The left two plots in each �gure show the raw solution costs (best cutsize obtained with the

given number of starts, averaged over 50 trials) versus the percentage of �xed vertices.

� Plots in the middle column in each �gure show the normalized solution costs versus the per-

centage of �xed vertices. In the \good" regime, the normalization is to a single constant value

(since all instances have �xed vertices consistent with the same good solution), so the shape

of the traces is similar to the plot of raw solution costs. However, in the \rand" regime, the

raw solution costs increase drastically with the percentage of randomly chosen/�xed vertices,

and each percentage of �xed vertices corresponds to a distinct partitioning instance. Thus,

2We incrementally �x additional vertices, e.g., all vertices �xed at 1.0% are also �xed at 2.0%.

4

for each instance in the \rand" regime, solution costs are normalized to the best solution cost

seen over all (1 + 2 + 4 + 8)� 50 = 750 starts of the multilevel partitioner for that instance.

� The right two plots in each Figure show the per-start CPU time versus the percentage of �xed

vertices.

We performed similar experiments where �xed vertices are chosen randomly from the set of

identi�ed I/Os (pads) in the netlist.3 However, we do not discuss these results, for several reasons.

First, the number of I/Os is typically very small (less than one percent of all vertices). Second,

for those percentages of �xed vertices that could be chosen from I/Os we could �nd no di�erence

in any experiment between �xing identi�ed I/Os and �xing random vertices. Finally, for the vast

majority of hierarchical block partitioning instances in top-down placement, the �xed terminals do

not correspond to chip I/O pads anyway.

Results for other IBM benchmarks looked similar.

From the Figures, we make the following observations.

� The raw solution costs4 indicate that as more �xed vertices are (randomly) selected and

assigned to partitions, the achievable solution cost increases rapidly. This addresses the �rst

experimental question: the presence of �xed vertices matters.

� The normalized solution costs indicate that if the netlist has many terminals �xed in partitions

(which is is what we believe distinguishes real-life partitioning instances generated during top-

down placement), then the partitioning problem is indeed \easy".

{ When 0% of the vertices are �xed in partitions, more starts (e.g., 4 or 8) are required for

the average best cutsize to approach the value that the multilevel partitioner is capable

of achieving for the given instance.

{ When larger percentages of the vertices are �xed in partitions, fewer starts (e.g., 1 or 2)

are required for the average best cutsize to approach the \good solution cost".

{ In the normalized traces, the curves are \
atter" (and there is less di�erence between

the 1-start and 8-start traces) as the percentage of �xed vertices increases.

{ In all of our experiments, an instance with 20% or more vertices �xed is essentially

solvable to very high quality in one or two starts, i.e., further starts are unnecessary.

3When the �xed vertices are chosen from pads in the netlist, the percentage is limited by the total number of pads,
and we do not �x any further vertices.

4These raw solution costs suggest that our multilevel partitioner is (at least) on par with [3] [12] in terms of solution
quality.

5

This suggests that most hierarchical block partitioning instances in placement are easy;

recall Table 1 from Section 1.5

� Runtimes decrease substantially when the percentage of �xed vertices increases; this is ex-

pected since the partitioner has less freedom and a smaller number of movable vertices.

� Solution quality for \good" instances, and runtime for \rand" instances, are non-monotonic in

the percentage of �xed vertices. We suspect that this indicates \relatively overconstrained"

instances where the in
exibility of the instance hurts the ability of the partitioner to �nd

\trajectories to good solutions" more than it helps the partitioner by reducing the solution

space. An interesting direction for future work is to attempt to demonstrate this e�ect. As

discussed below, the data also suggest that current partitioning technology is not well-tuned

to the �xed-terminals regime.

210

220

230

240

250

260

270

280

290

300

0 5 10 15 20 25 30 35 40 45 50

IBM01 / good / costs

1
2
4
8

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

0 5 10 15 20 25 30 35 40 45 50

IBM01 / good / norm costs

1
2
4
8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

0 5 10 15 20 25 30 35 40 45 50

IBM01 / good / run time

1
2
4
8

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25 30 35 40 45 50

IBM01 / rand / costs

1
2
4
8

1

1.1

1.2

1.3

1.4

1.5

1.6

0 5 10 15 20 25 30 35 40 45 50

IBM01 / rand / norm costs

1
2
4
8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

0 5 10 15 20 25 30 35 40 45 50

IBM01 / rand / run time

1
2
4
8

Figure 1: Experimental results for IBM01 test case, actual cell areas, 2% balance tolerance.

The four traces in each plot correspond to 1, 2, 4 and 8 starts of the multilevel partitioner.
We report raw best solution costs (left column), normalized best solution costs (middle

column) and total CPU times (right column) for both the \good" (upper row) and \rand"

(lower row) regimes. In all plots, the given parameter is plotted against the percentage of

�xed vertices in the instance.

6

800

850

900

950

1000

1050

1100

1150

1200

1250

0 5 10 15 20 25 30 35 40 45 50

IBM03 / good / costs

1
2
4
8

1

1.1

1.2

1.3

1.4

1.5

1.6

0 5 10 15 20 25 30 35 40 45 50

IBM03 / good / norm costs

1
2
4
8

5

5.5

6

6.5

7

7.5

0 5 10 15 20 25 30 35 40 45 50

IBM03 / good / run time

1
2
4
8

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20 25 30 35 40 45 50

IBM03 / rand / costs

1
2
4
8

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

0 5 10 15 20 25 30 35 40 45 50

IBM03 / rand / norm costs

1
2
4
8

6.5

7

7.5

8

8.5

9

9.5

0 5 10 15 20 25 30 35 40 45 50

IBM03 / rand / run time

1
2
4
8

Figure 2: Experimental results for IBM03 test case, actual cell areas, 2% balance tolerance.

The four traces in each plot correspond to 1, 2, 4 and 8 starts of the multilevel partitioner.

We report raw best solution costs (left column), normalized best solution costs (middle

column) and total CPU times (right column) for both the \good" (upper row) and \rand"

(lower row) regimes. In all plots, the given parameter is plotted against the percentage of

�xed vertices in the instance.

3 Toward Partitioners for the Fixed-Terminals Regime

A motivating observation is that in the absence of su�cient �xed terminals, FM may occasionally

produce passes in which nearly every vertex is moved. Recall that during an FM pass, vertices are

moved one at a time until each vertex has been moved; for bipartitioning, all vertices have been

\
ipped" when the end of the pass is reached. Then, the best solution found during the pass (i.e.,

best pre�x of the move sequence) is restored. Any move \undone" in this process has essentially

been wasted. Without terminals, FM will occasionally produce passes in which almost no moves

are wasted { the pass
ips almost all vertices between partition 0 and partition 1. However, if there

are su�ciently many vertices adjacent to �xed terminals, such a \near-
ip" is very unlikely to be

improving. Table 2 documents the average number of passes per run and the average percentage of

vertices moved per pass: increasingly higher percentages of the moves in the FM passes are wasted

as the proportion of �xed terminals increases. This strongly suggests that in the �xed-terminals

regime, FM-style heuristics can pro�tably impose a hard cut-o� on pass lengths.

Since the �rst FM pass traditionally begins with a random partitioning, many vertices will be

5The bene�t from additional starts decreases more noticeably in the \rand" regime than in the \good" regime. Since
propagated terminals are not likely assigned to their ideal locations, the bene�t from starts in the top-down placement
context is likely somewhere between the \rand" and \good" portraits.

7

Testcase Percent Fixed Terminals
0% 5% 10% 15% 20% 30% 50%

IBM01 12.0,20.5% 12.6,10.8% 9.9,9.1% 8.9,7.6% 8.0,4.8% 6.1,2.6% 4.6,0.8%
IBM02 9.6,12.4% 8.3,10.0% 8.1,6.1% 7.7,3.7% 6.7,2.7% 6.7,2.4% 6.4,3.2%
IBM03 10.4,6.8% 9.8,6.5% 8.3,5.7% 7.6,4.8% 6.4,3.3% 6.4,4.1% 6.0,3.7%
IBM04 12.9,8.3% 10.9,7.0% 9.9,4.4% 7.4,3.5% 8.1,2.6% 7.4,3.5% 6.1,1.0%
IBM05 32.6,37.0% 16.4,5.3% 13.0,4.7% 10.1,4.0% 8.6,3.5% 7.9,2.3% 5.3,1.5%

Table 2: Average number of passes per run, and average percentage of nodes moved

per pass (excluding the �rst pass), for 50 runs of LIFO-FM. Partitions are allowed

to deviate from exact bisection by 2%.

moved, regardless of the number of �xed terminals. However, we may limit the number of moves

per pass { after the �rst pass { in order to reduce overhead when the best solution found is near

the beginning of the pass. Table 3 documents the e�ects on average cutsize and average CPU time

for single LIFO FM starts, when FM passes are cut o� after 50%, 25%, 10% or 5% of the moves

have been made. For instances without su�cient terminals, early stopping has a detrimental e�ect

on solution quality, but with su�cient terminals no e�ect on solution quality is seen. In all cases,

limiting the number of moves in a pass improves runtime without noticeable impact on solution

quality. A surprising observation is that current partitioners appear to struggle when faced with

only a small proportion (e.g., 5% or 10%) of �xed terminals. Because all terminals are �xed in

a \good" location and because �xed terminals are added only to produce problems with a higher

percentage of �xed vertices, any solution for the cases of 20% or 0% �xed is also feasible for the

case of 10% �xed. The fact that the partitioner produces better results for both the 20% and the

0% cases than for the 10% case on IBM01 and IBM03 may point to a failing of current partitioners

on those instances.

4 Toward benchmarks for the �xed-terminals regime

Our experiments indicate that the nature of the partitioning problem may be changed by the

presense of su�ciently many terminals. Since several e�ects cannot be presently explained, further

research is required. To facilitate collaborative research on partitioning with �xed terminals, we

propose a new type of benchmarks that capture su�cient information to make them a reasonable

substitute to partitioning calls from running a top-down placer. We require the following features:

� Multiple partition geometries and capacities, �xed modules and terminal propagation, in vir-

tually any combination. Su�ciently intelligent parsers will not require redundant information.

� Flexible balance constraints represented using absolute or relative (percentage) semantics.

8

Test Max % Percent Fixed Terminals
case to move 0% 5% 10% 20% 30% 50%

IBM01 nolimit 596.2(2.81) 1274.7(2.8) 1041.8(2.03) 513.8(1.51) 303.4(1.09) 247.0(0.724)
50% 855.9(1.66) 1458.1(1.84) 1027.3(1.62) 555.2(1.28) 290.3(0.999) 244.6(0.672)
25% 959.4(1.49) 1702.8(1.5) 1249.1(1.26) 521.7(0.98) 297.4(0.77) 245.0(0.593)
10% 1233.6(1.47) 1811.4(1.39) 1435.3(1.18) 514.7(0.832) 298.0(0.665) 242.8(0.496)
5% 1533.9(1.61) 2154.7(1.41) 1707.7(1.21) 631.5(0.845) 305.4(0.639) 247.4(0.462)

IBM03 nolimit 1929.7(4.46) 2544.7(4.03) 2867.0(3.31) 1709.0(2.22) 1509.8(2.1) 1713.3(1.8)
50% 2327.9(3.61) 2831.0(3.22) 2870.5(2.62) 1666.8(2.01) 1524.5(2.11) 1811.2(1.94)
25% 2160.5(2.56) 2896.8(2.75) 2643.2(2.32) 1729.3(1.72) 1653.0(1.88) 1412.7(1.45)
10% 2250.4(2.35) 2967.4(2.25) 3054.5(1.95) 1403.2(1.37) 1456.1(1.41) 1728.1(1.37)
5% 2198.7(2.17) 2985.4(2.05) 3100.4(1.98) 1634.4(1.3) 1711.6(1.4) 1633.3(1.25)

IBM05 nolimit 3455.6(18.7) 3324.3(9.53) 2461.4(7.21) 1972.1(4.48) 1854.3(4.07) 1793.5(2.16)
50% 4726.8(7.96) 3254.0(6.43) 2486.2(4.94) 1979.4(3.83) 1857.6(3.28) 1793.3(2.23)
25% 4954.4(6.31) 3336.3(5.99) 2432.0(4.37) 1970.3(3.11) 1856.2(2.57) 1793.2(1.75)
10% 5234.6(6.31) 3528.6(4.72) 2545.3(3.93) 1991.8(2.45) 1850.6(2.25) 1793.0(1.48)
5% 5730.7(6.51) 3676.0(5.99) 2576.1(4.06) 2010.5(2.45) 1849.8(2.06) 1794.0(1.47)

Table 3: E�ects of cutting o� all passes (after the �rst pass) at the given move limit during LIFO-FM

partitioning. Partitions are allowed to deviate from exact bisection by 2%. Data is expressed as

average cut(average CPU time). CPU seconds measured on a 300MHz Sun Ultra-10.

� Straightforward facilities to represent \multi-balanced" partitioning problems where each

module supplies the same number (k > 1) of resource types.6 A corresponding set of k

capacities and tolerances must be speci�ed for each partition. In a new \multi-area" �le type,

each \area" corresponds to a given resource type; this is a straightforward extension of the

.are �le format with multiple module \areas" repeated on the same line.

� Flexible assignment of �xed terminals to partitions, which enables study of placement-speci�c

partitioning objectives.7 Terminals can be assigned to regions or to exact locations (via

degenerate regions). Terminals can also be �xed in more than one partition while still retaining

their \atomic" nature, i.e., the multiple assignment is interpreted as an \or". For example, a

propagated terminal can be �xed in the two left-side quadrants of a quadrisection instance,

so that the partitioner is free to assign it to either left-side quadrant.

Detailed descriptions of new �le formats are available in the GSRC bookshelf for VLSI CAD

algorithms [5] on the Web.

As a starting point in the development of a new benchmark suite, the IBM Corporation has

supplied (x; y) location data for each cell and pad, corresponding to the actual placements of circuits

in the ISPD-98 Benchmark Suite. From these placements, we develop partitioning instances with

6A hypothetical example with k = 3 might include cell area, cell pin count, and cell power dissipation resource types
| all of which must be evenly distributed between the partitions.

7E.g., based on net bounding boxes and Steiner tree estimators, etc.

9

�xed terminals as follows.8 A block is de�ned by a rectangular axis-parallel bounding box. An

axis-parallel cutline bisects a given block. Each cell contained in the block induces a movable

vertex of the hypergraph. Each pad adjacent to some cell in the block induces a zero-area terminal

vertex of the hypergraph, �xed in the closest partition; adjacent cells not in the block similarly

induce terminal vertices. From the placement of each IBMxx benchmark circuit, we extract four

benchmark netlists IBMxxA - IBMxxD, each with two sets of terminal assignments (corresponding

to vertical and horizontal cutlines). Each partitioning instance is named with the level at which it

occurs (L0,L1,etc.) and the partitioning choices at higher levels which de�ne it.9 Obviously, there

are many possible regions that could be de�ned by laying a slicing
oorplan over the placement. We

believe that our methodology for generation of benchmark instances allows us to select a manageable

set of instances that re
ects the top-down placement process while achieving a wide range of sizes

and other instance characteristics. Parameters of the resulting instances are summarized in Table

4, showing the size of the largest cell in the instance as a percentage (Max%) of the total cell area.

Also, both (i) the number of \pads", and (ii) the number of external nets (nets that are incident to

at least one \pad") are given. Our construction creates more \pad" vertices in the hypergraph than

there are external nets (the latter correspond to propagated terminals, as in [8]). This does not

a�ect the partitioning problem since \pads" have zero areas. We have veri�ed that the numbers of

external nets in our benchmarks correspond reasonably to the statistics in Table 1. The benchmarks

can be downloaded from [5] together with information about best known solutions, partitioner run

times for hMetis-1.5.3 [12] etc.

5 Conclusions and Ongoing Work

We have empirically demonstrated a mismatch between the top-down placement context and current

directions in VLSI CAD hypergraph partitioning research and benchmarking. We point out how

easy the partitioning problem becomes when �xed terminals are present. We believe that there

is a great deal of work remaining to be done in the area of extremely fast partitioning for the

�xed-terminals regime, i.e., the real-world placement context.

Our early e�orts have entailed per-pass analyses of
at FM-based partitioning heuristics, con-

�rming that the presence of �xed terminals limits the improvements in a pass to moves made at

the beginning of the pass. Imposing hard cut-o�s on pass length { which degrades solution qual-

8Because the circuits from the original ISPD-98 Benchmark Suite have been placed by di�erent
ows throughout
IBM, the intermediate states of the placement process are not available as sources from which partitioning benchmarks
with �xed terminals may be derived.

9For instance, L1 V0 is the left block of a top-level vertical bisection. See [5, 6] for more details.

10

ity in the classical \free-hypergraph" context { is relatively safe in the presence of terminals, and

considerably reduces runtime of our FM-based implementations.

An open and rather pragmatic issue is whether faster algorithms can be developed that exploit

the presence of �xed terminals, e.g., in top-down placement. Further analysis of the e�ects of

�xed terminals may be useful. In particular, it is not yet clear how to measure the \strength"

of �xed terminals, or alternatively the \degree of constraint" in particular problem instances.

While our experiments �x random terminals from known hypergraphs where most vertices have

low degree, it is always possible to �x vertices of very high degree to yield qualitatively di�erent

problem instances with similar numbers of �xed terminals. Indeed, a bipartitioning instance with

an arbitrary number/percent of �xed terminals can be represented by an equivalent instance with

only two terminals, by clustering all terminals �xed in a given partition into one single terminal.

For common partitioning heuristics, such a representation is likely to be just as easy or hard as

the original instance; we therefore need to quantify the \degree of constraint" in an invariant

way. Additional points of interest in partitioning with �xed terminals include: (i) determining

whether multi-way partitioning is as a�ected by �xed terminals and (ii) con�rming the existence

of \relatively overconstrained" instances. Our new results on the topic will be posted at [5] as they

become available.

References

[1] C. J. Alpert, \Partitioning Benchmarks for VLSI CAD Community",
http://vlsicad.cs.ucla.edu/~cheese/benchmarks.html

[2] C. J. Alpert, \The ISPD-98 Circuit Benchmark Suite", Proc. ACM/IEEE International Sym-
posium on Physical Design, April 98, pp. 80-85. See errata at
http://vlsicad.cs.ucla.edu/~cheese/errata.html

[3] C. J. Alpert, J.-H. Huang and A. B. Kahng,\Multilevel Circuit Partitioning", ACM/IEEE
Design Automation Conference, pp. 530-533.

[4] C. J. Alpert and A. B. Kahng, \Recent Directions in Netlist Partitioning: A Survey", Inte-
gration, 19(1995) 1-81.

[5] A. E. Caldwell, A. B. Kahng and I. L. Markov, \GSRC bookshelf for VLSI CAD algorithms",
http://vlsicad.cs.ucla.edu/GSRC/bookshelf.

[6] A. E. Caldwell, A. B. Kahng and I. L. Markov, \Partitioning With Terminals: A \New"
Problem and New Benchmarks", ISPD-99.

[7] J. A. Davis, V. K. De and J. D. Meindl, \A Stochastic Wire-Length Distribution for Gigascale
Integration (GSI) - Part I: Derivation and Validation", IEEE Transactions on Electron Devices,
vol. 45(3), pp. 580-589.

[8] A. E. Dunlop and B. W. Kernighan, \A Procedure for Placement of Standard Cell VLSI
Circuits", IEEE Transactions on Computer-Aided Design 4(1) (1985), pp. 92-98

[9] S. Dutt and W. Deng, \VLSI Circuit Partitioning by Cluster-Removal Using Iterative Improve-
ment Techniques", Proc. IEEE International Conference on Computer-Aided Design, 1996, pp.
194-200

[10] C. M. Fiduccia and R. M. Mattheyses, \A Linear Time Heuristic for Improving Network
Partitions", Proc. ACM/IEEE Design Automation Conference, 1982, pp. 175-181.

11

[11] D. J. Huang and A. B. Kahng, \Partitioning-Based Standard Cell Global Placement with an
Exact Objective", Proc. ACM/IEEE International Symposium on Physical Design, 1997, pp.
18-25.

[12] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, \Multilevel Hypergraph Partitioning:
Applications in VLSI Design", Proc. ACM/IEEE Design Automation Conference, 1997, pp.
526-529.

[13] B. Landman and R. Russo, \On a Pin Versus Block Relationship for Partitioning of Logic
Graphs", IEEE Transactions on Computers C-20(12) (1971), pp. 1469-1479.

[14] P. R. Suaris and G. Kedem, \Quadrisection: A New Approach to Standard Cell Layout",
Proc. IEEE/ACM International Conference on Computer-Aided Design, 1987, pp. 474-477.

[15] D. Sylvester and K. Keutzer, \Getting to the Bottom of Deep-Submicron", Proc. IEEE Intl.
Conference on Computer-Aided Design, November 1998.

Circuit Cells Pads ExtNets Nets Pins Max%

IBM01A L0 12506 246 246 14111 50566 6.37

IBM01B L1 V0 6388 1392 761 7384 27236 9.34

IBM01C L1 V1 6121 1377 763 7370 26951 10.03

IBM01D L3 C11-33 6739 2155 1227 7330 28661 9.54

IBM06A L0 32332 166 166 34826 128182 13.56

IBM06B L1 V0 13245 4360 1867 14786 58809 17.28

IBM06C L1 V1 19094 4086 1851 21824 81997 16.11

IBM06D L3 C11-33 10314 7553 3482 12438 55640 18.88

IBM09A L0 53110 285 285 60902 222088 5.42

IBM09B L1 V0 23461 28764 40003 47740 192358 5.49

IBM09C L1 V1 29649 23211 40038 53040 204928 5.45

IBM09D L3 C11-33 25099 27303 40137 49200 195924 5.50

IBM10A L0 68685 744 744 75196 297567 4.80

IBM10B L1 V0 25467 4971 3459 30072 115065 6.91

IBM10C L1 V1 43231 5260 3506 48246 197408 5.78

IBM10D L3 C11-33 26954 9376 6556 31529 129409 6.09

IBM11A L0 70152 406 406 81454 280786 4.48

IBM11B L1 V0 33506 4970 3323 40623 142760 6.40

IBM11C L1 V1 36646 5036 3291 43935 152703 6.29

IBM11D L3 C11-33 30971 9968 6068 36273 129724 6.92

IBM12A L0 70439 637 637 77240 317760 6.43

IBM12B L1 V0 38904 5233 3669 43660 179596 9.17

IBM12C L1 V1 31544 5218 3610 36907 152863 9.90

IBM12D L3 C11-33 27490 12411 8101 33215 142965 8.59

IBM13A L0 83709 490 490 99666 357075 4.23

IBM13B L1 V0 40582 6589 3578 49757 179870 6.09

IBM13C L1 V1 43127 5895 3586 53246 196549 6.41

IBM13D L3 C11-33 37193 12745 7754 45756 171864 6.42

IBM16A L0 182980 504 504 190048 778823 1.89

IBM16B L1 V0 99102 9083 5200 103816 432680 2.88

IBM16C L1 V1 83884 10491 5211 91190 375500 2.81

IBM16D L3 C11-33 65041 18326 8581 70899 300966 2.82

IBM17A L0 184752 743 743 189581 860036 0.94

IBM17B L1 V0 100763 10834 6684 106877 485785 1.58

IBM17C L1 V1 84015 12290 6716 89052 409926 1.19

IBM17D L3 C11-33 51714 23033 11444 58988 263516 2.10

Table 4: Parameters of new benchmarks with �xed terminals.

12

