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ABSTRACT
How do we build multiagent algorithms for agent interactions with
human adversaries? Stackelberg games are natural models for many
important applications that involve human interaction, such as oligo-
polistic markets and security domains. In Stackelberg games, one
player, the leader, commits to a strategy and the follower makes
their decision with knowledge of the leader’s commitment. Exist-
ing algorithms for Stackelberg games efficiently find optimal solu-
tions (leader strategy), but they critically assume that the follower
plays optimally. Unfortunately, in real-world applications, agents
face human followers who — because of their bounded rationality
and limited observation of the leader strategy — may deviate from
their expected optimal response. Not taking into account these
likely deviations when dealing with human adversaries can cause
an unacceptable degradation in the leader’s reward, particularly in
security applications where these algorithms have seen real-world
deployment. To address this crucial problem, this paper introduces
three new mixed-integer linear programs (MILPs) for Stackelberg
games to consider human followers, incorporating: (i) novel an-
choring theories on human perception of probability distributions
and (ii) robustness approaches for MILPs to address human impre-
cision. Since these new approaches consider human followers, tra-
ditional proofs of correctness or optimality are insufficient; instead,
it is necessary to rely on empirical validation. To that end, this pa-
per considers two settings based on real deployed security systems,
and compares 6 different approaches (three new with three previ-
ous approaches), in 4 different observability conditions, involving
98 human subjects playing 1360 games in total. The final conclu-
sion was that a model which incorporates both the ideas of robust-
ness and anchoring achieves statistically significant better rewards
and also maintains equivalent or faster solution speeds compared to
existing approaches.

1. INTRODUCTION
In Stackelberg games, one player, the leader, commits to a strat-

egy publicly before the remaining players, the followers, make their
decision [8]. There are many multiagent security domains, such
as attacker-defender scenarios and patrolling, where these types
of commitments are necessary by the security agent [3, 4, 15, 10]
and it has been shown that Stackelberg games appropriately model
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these commitments [14, 16]. For example, security personnel pa-
trolling an infrastructure decide on a patrolling strategy first, be-
fore their adversaries act taking this committed strategy into ac-
count. Indeed, Stackelberg games are at the heart of the ARMOR
system deployed at the Los Angeles International Airport (LAX)
for over a year to schedule security personnel [14, 16] and have
recently seen application for the Federal Air Marshals [10]. More-
over, these games have potential applications for network routing,
pricing in transportation systems and many others [5, 11].

Existing algorithms for Bayesian Stackelberg games find optimal
solutions considering an a priori probability distribution over pos-
sible follower types [6, 14]. Unfortunately, to guarantee optimality,
these algorithms make strict assumptions on the underlying games,
namely that the players are perfectly rational and that the followers
perfectly observe the leader’s strategy. However, these assumptions
rarely hold in real-world domains, particularly when dealing with
humans. Of specific interest are the security domains mentioned
earlier (e.g. LAX) — even though an automated program may de-
termine an optimal leader (security personnel) strategy, it must take
into account a human follower (adversary). Such human adver-
saries may not be utility maximizers, computing optimal decisions.
Instead, their decisions may be governed by their bounded rational-
ity [19] which causes them to deviate from their expected optimal.
Humans may also suffer from limited observability of the security
personnel’s strategy, giving them a false impression of that strategy.
Thus, a human follower may not respond with the game theoretic
optimal choice, but may make a decision based on boundedly ra-
tional reasoning or observational limitations and cause the leader
to face uncertainty over the gamut of follower’s actions. There-
fore, in general, the leader in a Stackelberg game must commit to
a strategy considering three different types of uncertainty, where
currently applied techniques do not address the first two types: (i)
follower response uncertainty due to his bounded rationality where
the follower may not choose the utility maximizing optimal strat-
egy; (ii) follower response uncertainty due to his limitations in ap-
propriately observing the leader strategy; (iii) follower reward un-
certainty modeled as different reward matrices with a Bayesian a
priori distribution assumption, i.e. a Bayesian Stackelberg game.
While existing algorithms handle the third type of uncertainty [6,
14], these models can give a severely under performing strategy
when the follower deviates because of the first two types of uncer-
tainty. This degradation in leader rewards may be unacceptable in
certain domains.

To overcome this limitation, this paper proposes three new al-
gorithms based on mixed-integer linear programs (MILPs). The
major contribution of these new MILPs is in providing a fundamen-
tally novel integration of key ideas from: (i) previous best known
algorithms from the multiagent literature for solving Bayesian Stack-



elberg games; (ii) robustness approaches from robust optimization
literature [2, 13]; (iii) anchoring theories on human perception of
probability distributions from psychology [18]. While the robust-
ness approach addresses human response imprecision, anchoring,
which is an expansion of general support theory [20] on how hu-
mans attribute probabilities to a discrete set of events, addresses
limited observational capabilities. To the best of our knowledge,
the effectiveness of the combination of these ideas from separate
fields has not been explored in the context of Stackelberg games
(or any other games). By uniquely incorporating these ideas our
goal is to defend against the sub-optimal choices that humans may
make due to bounded rationality or observational limitations. These
new MILPs complement the prior algorithms for Bayesian Stack-
elberg games, handling all three types of uncertainty mentioned
previously.

Since these algorithms are centered on addressing non-optimal
and uncertain human responses, traditional proofs of correctness
and optimality are insufficient: it is necessary to experimentally
test these new approaches against existing approaches. Experimen-
tal analysis against human subjects allows us to show exactly how
these algorithms are expected to perform against human follow-
ers compared to previous approaches. To that end, we experimen-
tally tested our new approaches to determine their success by con-
sidering two settings based on real deployed security systems. In
both settings, 6 different approaches were compared (three new ap-
proaches, one existing approach, and two baseline approaches), in
4 different observability conditions. These experiments involved
98 human subjects playing 1360 games in total and yielded sta-
tistically significant results showing that one of our new algorithms
substantially outperformed existing methods when dealing with hu-
man followers. Runtime results were also gathered from our new
algorithms against previous approaches showing that their solutions
speeds are equivalent to or faster than previous approaches. Based
on these results we concluded that, while theoretically optimal, ex-
isting algorithms for Bayesian Stackelberg games may need to be
significantly modified for real-world security domains. They are
not only outperformed by one of our new algorithms, which in-
corporates both robustness approaches and anchoring theories, but
also may be outperformed by simple baseline algorithms in certain
cases. This is an important conclusion since existing algorithms
have seen real deployment such as at Los Angeles International
Airport (LAX) [16]. Indeed our new algorithms for addressing
human followers in Stackelberg games suggest significant poten-
tial improvements for wherever existing algorithms are deployed in
real-world domains and leaders will face human followers.

2. BACKGROUND
Stackelberg Game: In a Stackelberg game, a leader commits to

a strategy first, and then a follower optimizes its reward, consider-
ing the action chosen by the leader. To see the advantage of being
the leader in a Stackelberg game, consider the game with the payoff
as shown in Table 1. The leader is the row player and the follower
is the column player. If this were a simultaneous move game, the
pure strategy Nash equilibrium for this game is when the leader
plays a and the follower plays c which gives the leader a payoff of
2. However, in this Stackelberg game if the leader commits to a
mixed strategy of playing a and b with equal (0.5) probability, then
the follower will play d, leading to a higher expected payoff for the
leader of 3.5.

Bayesian Stackelberg Game: In a Bayesian game of N agents,
each agent n must be one of a given set of types. This paper con-
siders a Bayesian Stackelberg game that was inspired by a security
domain presented for LAX [16]. This game has two agents, the

c d
a 2,1 4,0
b 1,0 3,2

Table 1: Payoff table for example Stackelberg game.

leader and the follower. It is assumed there is only one leader type
(e.g. only one police force enforcing security), although there are
multiple follower types (e.g. multiple types of adversaries), de-
noted by l ∈ L. However, the leader does not know the follower’s
type. For each agent (leader or follower) n, there is a set of strate-
gies σn and a utility function un : L × σ1 × σ2 → <. The goal
is to find the optimal mixed strategy for the leader given that the
follower knows this strategy when choosing its own strategy.

DOBSS: While the problem of choosing an optimal strategy for
the leader in a Stackelberg game is NP-hard for a Bayesian game
with multiple follower types [6], researchers have continued to pro-
vide practical improvements. DOBSS is currently the most efficient
algorithm for such games [14] and in use for security scheduling at
the Los Angeles International Airport. It operates directly on the
compact Bayesian representation, giving speedups over the multi-
ple linear programs method [6] which requires conversion of the
Bayesian game into a normal-form game by the Harsanyi transfor-
mation [9].

We now discuss DOBSS, which provides the optimal mixed strat-
egy for the leader while considering an optimal follower response
for this leader strategy. Note that it needs to consider only the
reward-maximizing pure strategies of the followers, since if a mixed
strategy is optimal for the follower, then so are all the pure strate-
gies in the support of that mixed strategy. The leader’s mixed strat-
egy is denoted by x, a probability distribution over the vector of the
leader’s pure strategies. The value xi is the proportion of times in
which pure strategy i is used in the strategy. The vector of strategies
of follower l ∈ L is denoted by ql. The index sets of leader and
follower type l’s pure strategies are denoted by X and Q respec-
tively. The payoff matrices of the leader and each of the followers
l is indexed by the matrices Rl and Cl. DOBSS assumes a priori
probabilities pl, with l ∈ L of facing each follower type. Consid-
ering auxiliary variable zl

ij = xiq
l
j , DOBSS computes the leader’s

optimal decision problem using the following MILP formulation
[14]:

maxq,z,a

P
i∈X

P
l∈L

P
j∈Q plRl

ijz
l
ij

s.t.
P

i∈X

P
j∈Q zl

ij = 1
P

j∈Q zl
ij ≤ 1

ql
j ≤

P
i∈X zl

ij ≤ 1
P

j∈Q ql
j = 1

0 ≤ (al −
P

i∈X Cl
ij(
P

h∈Q zl
ih)) ≤ (1− ql

j)MP
j∈Q zl

ij =
P

j∈Q z1
ij

zl
ij ∈ [0 . . . 1]

ql
j ∈ {0, 1}

a ∈ <
(1)

For future discussion it is important to understand the following
set of constraints. The fourth and eighth constraints limit the vector
ql of actions of follower type l to be a pure distribution over the
set Q (i.e., each ql has exactly one coordinate equal to one and
the rest equal to zero). The two inequalities in the fifth constraint
ensure that ql

j = 1 only for a strategy j that is optimal for follower



type l. Therefore, in the current formulation each follower type
l is allowed to choose exactly one optimal action from its set of
possible actions.

Baseline Algorithms: For completeness this paper includes both
a uniformly random strategy and a MAXIMIN strategy against hu-
man opponents as a baseline against the performance of both ex-
isting algorithms, such as DOBSS, and our new algorithms. Al-
gorithms must outperform the two baseline algorithms to provide
benefits.

UNIFORM: UNIFORM is the most basic method of randomiza-
tion which just assigns an equal probability of taking each action
i ∈ X (a uniform distribution).

MAXIMIN: MAXIMIN is a traditional approach which assumes
the follower may take any of the available actions. The objective of
the following LP is to maximize the minimum reward γ the leader
will obtain irrespective of the follower’s action.

max
P

l∈L plγl

s.t.
P

i∈X xi = 1
P

i∈X Rl
ijxi ≥ γl

xi ∈ [0 . . . 1]

(2)

3. ROBUST ALGORITHMS
There are two fundamental assumptions underlying current al-

gorithms for Stackelberg games, including DOBSS. First, the fol-
lower is assumed to act with infallible utility maximizing rational-
ity, choosing the absolute optimal among its strategies. Second, if
the follower faces a tie in its strategies’ rewards, it will break it in
favor of the leader, choosing the one that gives a higher reward to
the leader. This standard assumption is also shown to follow from
the follower’s rationality and optimal response under some condi-
tions [21]. Unfortunately, in many real-world domains, agents can
face human followers who may not respond optimally: this may be
caused by their bounded rationality, or their uncertainty regarding
the leader strategy. In essence, the leader faces uncertainty over
follower responses — the follower may not choose the optimal but
from a range of possible responses — potentially significantly de-
grading leader rewards. No a priori probability distributions are
available or assumed for this follower response uncertainty.

To remedy this situation, we draw inspiration from robust op-
timization methodology, in which the decision maker optimizes
against the worst outcome over the uncertainty [2, 12], as well
as psychological support theory for human decision making when
they are given a discrete set of actions and an unknown probabil-
ity function over those actions [18, 20]. In the presented Stack-
elberg problem, the leader will make a robust decision by consid-
ering that the boundedly rational follower could choose a strategy
from its range of possible responses that degrades the leader re-
wards the most or that he could choose a strategy that is based
on limited observations. This approach differs from standard ro-
bust optimization methodology in that it makes predictions about
how and why the human adversary’s response will deviate and ro-
bustly guards against those predictions, as opposed to considering
arbitrary deviations in the responses. This paper introduces three
mixed-integer linear programs (MILPs) to that end. The first MILP,
BRASS (Bounded Rationality Assumption in Stackelberg Solver)
addresses the uncertainty that may arise from human imprecision
in choosing the expected optimal strategy due to bounded rational-
ity. The second MILP, GUARD (Guarding Using Alpha Ranges in
DOBSS) utilizes the anchoring biases to protect against limited ob-
servation conditions. The third MILP, COBRA (Combined Observ-
ability and Rationality Assumption), provides a robust response for

all three types of uncertainty previously mentioned. We first de-
scribe in depth the key ideas behind our new approaches and then
define the MILPs that use them.

Bounded Rationality: Some of our new algorithms assume that
the follower is boundedly rational and may not strictly maximize
utility. As a result, the follower may select an ε-optimal response
strategy, i.e. the follower may choose any of the responses within ε-
reward of the optimal strategy. Given multiple ε-optimal responses,
the robust approach is to assume that the follower could choose the
one that provides the leader the worst reward — not necessarily
because the follower attends to the leader reward, but to robustly
guard against the worst case outcome. This worst case assumption
contrasts with those of other Stackelberg solvers that given a tie
the follower will choose a strategy that favors the leader [6, 14],
making this new approach novel for human followers.

Anchoring Theory: Support theory is a theory of subjective
probability [20] and has been used to introduce anchoring biases
[18]. An anchoring bias is when, given no information about the
occurrence of a discrete set of events, humans will assign an equal
weight to the occurrence of each event (a uniform distribution).
It has been shown that humans are particularly susceptible to an-
choring on the uniform distribution before they are given any in-
formation and that, once given information, they are slow to update
away from this assumption [18]. Thus they leave some weight,
α ∈ [0 . . . 1], on the uniform distribution and the rest, 1−α, on the
occurrence they have actually viewed. As humans become more
confident in what they are viewing this bias begins to diminish, de-
creasing the value of α. Models have been proposed to address this
bias and predict what probability a human will assign to a particular
event x from a set of events X . One proposed model is written in
odds form as R(x, X\x) = (|x|/|X\x|)α∗(P (x)/P (X\x))1−α,
however, a linear model is also possible [1, 20]. The linear model
introduces a new term P (x′), which is the probability the human
assigns to event x as opposed to the real probability of event x oc-
curring: P (x′) = (1/|X|) ∗ (α) + (1−α) ∗P (x). The parameter
α dictates how much support the human will give to the uniform
probability distribution and how much support he will give to the
real probability (P (x)). The end result is the predicted probability
the human will assign to event x. We commandeer this anchor-
ing bias for Stackelberg games to determine how a human follower
may perceive the leader strategy. For example, in the game shown
in Table 1, suppose the leader strategy was to play a with a prob-
ability of 0.8 and b with 0.2. Anchoring bias would predict that
in the absence of any information (α = 1), humans will assign a
probability of 0.5 to each of a and b, and will only update this belief
(alter the value of α) after observing the leader strategy for some
time.

3.1 BRASS
BRASS considers the case of a boundedly rational follower, where

it maximizes the minimum reward it obtains from any ε-optimal re-
sponse. In the following MILP, we use the same variable notation
as in DOBSS. In addition, the variables hl

j identify the optimal
strategy for follower type l with a value of al in the third and fourth
constraints. Variables ql

j represent all ε-optimal strategies for fol-
lower type l; the second constraint now allows selection of more
than one strategy per follower type. The fifth constraint ensures
that ql

j = 1 for every action j such that al −
P

i∈X Cl
ij < ε, since

in this case the middle term in the inequality is less than ε and the
left inequality is then only satisfied if ql

j = 1. This robust approach
required the design of a new objective and additional constraint.
The sixth constraint helps define the objective value against fol-
lower type l, γl, which must be lower than any leader reward for all



actions ql
j = 1, as opposed to the DOBSS formulation which has

only one action ql
j = 1. Setting γl to the minimum leader reward

allows BRASS to robustly guard against the worst case scenario.
The new MILP is as follows:

maxx,q,h,a,γ

X

l∈L

plγl

s.t.
P

i∈X xi = 1P
j∈Q ql

j ≥ 1P
j∈Q hl

j = 1

0 ≤ (al −
P

i∈X Cl
ijxi) ≤ (1− hl

j)M

ε(1− ql
j) ≤ al −

P
i∈X Cl

ijxi ≤ ε + (1− ql
j)M

M(1− ql
j) +

P
i∈X Rl

ijxi ≥ γl

hl
j ≤ ql

j

xi ∈ [0 . . . 1]
ql

j , h
l
j ∈ {0, 1}

a ∈ <
(3)

3.2 GUARD
GUARD considers the case where the human follower is per-

fectly rational, but faces limited observations. GUARD draws upon
the theory of anchoring biases mentioned above to help address the
human uncertainty that arises from such limited observation. It
deals with two strategies: (i) the real leader strategy (x) and (ii) the
leader strategy the follower believes (x′), where x′ is defined by the
linear model presented earlier. Given the follower’s belief strategy,
xi is replaced in the third constraint with x′i and x′i is accordingly
defined as x′i = (1/|X|) ∗ (α) + (1 − α) ∗ xi. The justification
for this replacement is as follows. First, this particular constraint
ensures that the follower maximizes his reward. Since the follower
believes x′i to be the leader strategy then he will choose his strat-
egy according to x′i and not xi. Second, given this knowledge, the
leader can find the follower’s responses based on x′i and optimize
its actual strategy xi against this strategy. Since x′i is a combina-
tion of xi and the bias toward the uniform probability distribution
GUARD is able to find a strategy xi that will maximize the leader’s
reward based on how the follower will update his beliefs. The new
MILP then is as follows:

maxl

P
l∈L plγl

s.t.
P

i∈X xi = 1
P

j∈Q ql
j = 1

0 ≤ (al −
P

i∈X Cl
ij ∗ x′i) ≤ (1− ql

j)M

M(1− ql
j) +

P
i∈X Rl

ijxi ≥ γl

xi ∈ [0 . . . 1]
ql

j ∈ {0, 1}
a ∈ <
x′i = (1/|X|) ∗ (α) + (1− α) ∗ xi

(4)

3.3 COBRA
COBRA is an MILP that combines both a bounded rational-

ity assumption and an observational uncertainty assumption. This
is achieved by incorporating the alterations made in BRASS and
GUARD into a single MILP. Namely, COBRA includes both the ε
parameter and the α parameter from MILP (3) and MILP (4) re-
spectively. The MILP that follows is identical to MILP (3) except
that in the fourth and fifth constraints, xi is replaced with x′i as it
is in MILP (4). The justification for this replacement is the same as
in MILP (4). The new MILP then is as follows:

maxx,q,h,a,γ

X

l∈L

plγl

s.t.
P

i∈X xi = 1P
j∈Q ql

j ≥ 1P
j∈Q hl

j = 1

0 ≤ (al −
P

i∈X Cl
ij ∗ x′i) ≤ (1− hl

j)M

ε(1− ql
j) ≤ al −

P
i∈X Cl

ij ∗ x′i ≤ ε + (1− ql
j)M

M(1− ql
j) +

P
i∈X Rl

ijxi ≥ γl

hl
j ≤ ql

j

xi ∈ [0 . . . 1]
ql

j , h
l
j ∈ {0, 1}

a ∈ <
x′i = (1/|X|) ∗ (α) + (1− α) ∗ xi

(5)

PROPOSITION 1. When ε = 0 and α = 0 then MILPs (1) and
(5) are equivalent.

Proof sketch: It follows from the definition of x′i that when
α = 0 then x′i = xi since the follower is assumed to once again
perfectly observe and believe the leader strategy xi. Note that if
ε = 0 the inequality in the fifth constraint of (5) is the same ex-
pression as the inequality in the fourth constraint with ql

j substi-
tuted for hl

j . We will show that the two problems attain the same
optimal objective function value.

To show that solution to (5) ≥ solution to (1), consider (q, z, a)
a feasible solution for (1). We define x̄i =

P
j∈Q z1

ij , q̄ = h̄ = q,
ā = a, and γ̄l =

P
i∈X

P
j∈Q Rl

ijz
l
ij . From the first through third

constraints and the sixth constraint in (1) we can show that zl
ij = 0

for all j such that ql
j = 0 and thus that x̄i = zl

ij for all j such that
ql

j = 1. This implies that γ̄l =
P

i∈X Rl
ij x̄i for the j such that

ql
j = 1 and it is then easy to verify that (x̄, q̄, h̄, ā, γ̄) is feasible for

(5) with the same objective function value of (q, z, a) in (1).
For solution to (1) ≥ solution to (5), consider (x, q, h, a, γ) fea-

sible for (5). Define q̄ = h, z̄l
ij = xih

l
j , and ā = a. Then we

can show that (q̄, z̄, ā) is feasible for (1) by construction. Since
hl

j ≤ ql
j it follows that γl ≤

P
i∈X Rl

ijxi for the j such that
hl

j = 1. This implies that γl ≤
P

i∈X

P
j∈Q Rl

ij z̄
l
ij and that the

objective function value of (q̄, z̄, ā) in (1) greater than or equal to
the objective value of (x, q, h, a, γ) in (5). �

The key implication of the above proposition is that when ε = 0,
COBRA loses its robustness feature, so that once again when the
follower faces a tie, it selects a strategy favoring the leader, as in
DOBSS. Based on this proposition, a few observations that can be
made surrounding the COBRA algorithm are the following: (i) if
α = 0, COBRA is equivalent to BRASS, (ii) if ε = 0, COBRA
is equivalent to GUARD, (iii) if both α = 0 and ε = 0, COBRA
is equivalent to DOBSS. Based on these observations the proposi-
tions presented in this paper can be generalized to the other three
algorithms (DOBSS, GUARD, and BRASS) accordingly.

PROPOSITION 2. When α is held constant, the optimal reward
COBRA can obtain is decreasing in ε.

Proof sketch: Since the fifth constraint in (5) makes ql
j = 1 when

that action has a follower reward between (al − ε, al], increasing
ε would increase the number of follower strategies set to 1. Hav-
ing more active follower actions in the sixth constraint can only
decrease the minimum value γl. �

PROPOSITION 3. Regardless of α, if 1
3
ε ≥ C ≥ |Cl

ij | for all
i, j, l, then COBRA is equivalent to MAXIMIN.



Proof sketch: Note that |al| in (5) ≤ C. The leftmost inequality
of the fifth constraint in (5) shows that all ql

j must equal 1, which
makes COBRA equivalent to MAXIMIN. Suppose some ql

j = 0,
then that inequality states that −C ≤

P
i∈X Cl

ijxi ≤ al − ε <
C − 3C = −2C a contradiction. �

Deciding α and ε: To decide the value of ε we employed a
heuristic where ε is decided based on how close to the optimal re-
sponse the follower is expected to come, e.g. if we expect human
followers to play within 20% of the optimal, we set ε to 20% of
the optimal reward. We try two different techniques to determine
α, leading to two different versions of COBRA. The first approach
is to vary α based on the number of observations that human fol-
lowers are anticipated to have. This standard version of COBRA
implies that when deploying it, α is adjusted per anticipated obser-
vation capability. In this case, if a human follower has had zero
observations, we assume that he would be entirely guided by the
anchoring bias to uniform probability, and hence set α = 1, i.e.
x′ = 1/|X|. In contrast, if a follower has infinite observations, he
would correctly determine the actual leader strategy, i.e. x′ = x,
and hence α = 0. When a follower has only a limited number of
observations, we heuristically select α, decreasing it with increas-
ing number of follower’s observations — choosing the right α re-
mains an issue for future work. The second approach is to assume
a constant α, leading to a version of COBRA that we will refer to
as COBRA-C (COBRA with constant α). We discuss the choice of
α for COBRA-C in Section 4.1

Complexity: DOBSS, BRASS, GUARD and COBRA require
the solution of a MILP, whereas MAXIMIN is a linear program-
ming problem. Therefore the complexity of MAXIMIN is polyno-
mial while DOBSS, BRASS, GUARD and COBRA face an NP-
hard problem [6]. A number of effective solution packages for
MILPs can be used, but their performance depends on the number
of integer variables. DOBSS and GUARD consider |Q| |L| integer
variables, while BRASS and COBRA double that. Thus we antic-
ipated MAXIMIN will have the lowest running time per problem
instance, followed by DOBSS and GUARD with BRASS and CO-
BRA close behind. However, as shown in runtime results, this was
not the final result.

4. EXPERIMENTS
We now present results comparing the quality and runtime of

strategies introduced in the previous two sections. The goal of our
new algorithms was to improve interactions between agents and
humans by addressing the bounded rationality that humans may
exhibit and the limited observations they may experience in real-
world settings. To that end, experiments were set up to play against
human subjects as followers, with varying observability conditions.

First, we constructed a domain inspired by the security domain
at LAX [14, 16], but converted it into a pirate-and-treasure theme.
The domain had three pirates — jointly acting as the leader —
guarding 8 doors, and each individual subject acted as a follower.
The subject’s goal was to steal treasure from behind a door with-
out getting caught. Each of the 8 doors would have a unique reward
and penalty associated with it for both the subjects as well as the pi-
rates – a non zero-sum game. If a subject chose a door that a pirate
was guarding, the subject would incur the unique subject penalty
for that door and the pirate would receive the unique pirate reward
for that door, else vice-versa. This setup led to a Stackelberg game
with

�
8
3

�
= 56 leader actions, and 8 follower actions.

4.1 Quality Comparison
Experimental Structure and Setup: Given the 8-door 3-pirate

domain described, we constructed two unique reward structures
corresponding to the eight doors. The second reward structure in-
creased the penalty structure for the leader — to test its effect on our
robust algorithms. For each reward structure there were also four
separate observability conditions that the subjects were exposed to.
The subject observed the pirates’ strategy under the current ob-
servability condition and reward structure and then was allowed to
make his decision. A single observation consisted of seeing where
the three pirates were stationed behind the eight doors, having the
doors close, and then having the pirates restation themselves ac-
cording to their mixed strategy. The four different observation con-
ditions tested were: (i) The subject does not get any observations;
(ii) the subject gets 5 observations; (iii) the subject gets 20 obser-
vations; (iv) the subject gets infinite observations — simulated by
revealing the exact mixed strategy of the pirate to the subject. Sub-
jects were given full knowledge of their rewards and penalties and
those of the pirates in all situations.

Algorithms: These experiments only compare DOBSS, BRASS,
COBRA, MAXIMIN, and UNIFORM. We reiterate that GUARD
refers to a special case of COBRA, where ε is set to zero. On closer
examination it is clear that GUARD is dominated by COBRA: (i)
GUARD is equivalent to DOBSS when α = 0; thus when α = 0,
our results will show that COBRA is superior to DOBSS and con-
sequently to GUARD; (ii) On the other extreme when α = 1 in the
unobserved observation condition it has also been concluded by
experimental tests that GUARD once again performs worse than
COBRA, obtaining an expected reward of -.65 in reward structure
one and -2.15 in reward structure two compared to the expected re-
ward .205 and .7 obtained by COBRA. Furthermore, in both cases
these results were statistically significant. Since at both extremes
GUARD is dominated by COBRA, we do not include GUARD in
our experimental analysis and results. We could make a similar
argument for not including BRASS, however, it is important to
include either BRASS or GUARD to demonstrate that the results
obtained by COBRA are not only due to handling human bounded
rationality but to handling both human bounded rationality and lim-
ited observation conditions.

For these experiments ε was set to 2.5. This choice for ε was
made because the follower’s reward for each door ranged from 1
to 10 and we wanted to robustly guard against boundedly rational
strategies within 25% of the optimal strategy. We employed our
heuristic for deciding the α parameters of COBRA, which was ex-
plained in Section 3. For COBRA-C α was set to the same α value
as the 5 observation cases from the two reward structures with the
expectation that it would perform poorly in higher observation con-
ditions since it was not appropriately adjusted.

Experiments: Each of our 48 game settings (two reward struc-
tures, six algorithms, and four observability conditions) were played
by 40 subjects, i.e. in total there were 1360 total trials. Notice that
the unobserved case only needed to be played by one set of 40 sub-
jects as the choices made without any observation would be similar
regardless of the algorithm. This follows from the fact that the sub-
ject had no information regarding the strategy he was facing and
thus his decisions for this particular condition were solely based on
the reward structure. Given this setup, each subject played a total
of 14 unique games and the games were presented in random order-
ings to avoid any order bias. In total there were 98 different sub-
jects that played. For a given algorithm we computed the expected
leader reward for each follower action, i.e. for each choice of door
by subject. We then found the average expected reward for a given
algorithm using the actual door selections from the 40 subject tri-
als. For each game, the objective of a subject was to earn as many
points as possible by choosing the highest value door he thought



would be unguarded; and once a door was chosen that game was
over and the subject played the next game. Starting with a base of
8 dollars, each reward point within the game was worth 15 cents
for the subject and each penalty point deducted 15 cents. This was
incorporated to give the subjects incentive to play as optimally as
possible. On average, subjects earned $13.13.

Results: Figure 1(a) shows the average expected leader reward
for our first reward structure, with each data-point averaged over
40 human responses. Figure 1(b) shows the same for the second
reward structure. Notice that a lower bar is better since all strate-
gies have a negative average with the exception of COBRA in the
unobserved case. In both figures, the x-axis shows the observation
condition for each strategy and y-axis shows the average expected
reward each strategy obtained. For example, examining Figure 1(b)
in the unlimited observation case, COBRA-C scores an average
expected leader reward of -0.33, whereas DOBSS suffers a 663%
degradation of reward, obtaining an average score of -2.19.

(a) Reward Structure One

(b) Reward Structure Two

Figure 1: Expected Average Reward

Statistical Significance: Since our results critically depend on
significant differences among DOBSS, BRASS, COBRA, MAX-
IMIN, and UNIFORM, we ran the Friedman test for repeated ob-
servations [7] in the unobserved case and Yuen’s test for comparing
trimmed means [22] for the 5, 20, and infinite observation cases1.
For our tests we used a standard 20% trimmed mean to test for
significant differences in group means. The maximum p-value ob-
tained for COBRA-C versus any other strategy was .033 showing
that under all conditions the results obtained for COBRA-C are sta-
tistically significantly different than the results obtained by other

1Yuen’s test was run on the combined data from both reward struc-
tures since a two-way Friedman test reveals that structure is in-
significant to the results.

strategies. COBRA also obtained statistical significance in all cases
against other strategies except the 20 observation case with a maxi-
mum p-value of .029. It is evident from these values and the results
presented that COBRA-C is statistically significantly better than
all other strategies in every observation condition except the unob-
served case.

Conclusions and Analysis: Analysis of the reported results yields
the following conclusions: (i) COBRA, which adjusts its strategy
based on observations, performs significantly better when dealing
with humans than DOBSS. The main implication being that if we
know approximately how many observations the adversary will ob-
tain, then we can exploit the variable α in COBRA to our advan-
tage. (ii) Dealing with both bounded rationality and limited obser-
vations are important when designing an algorithm that performs
well against humans. Our results demonstrate that only utilizing α
or ε is not enough, but rather the combination of the two is nec-
essary for superior performance under all observation conditions.
(iii) COBRA-C surprisingly performs better than COBRA under
high observation conditions. This finding is particularly impor-
tant since in many real-world domains the observational limitations
may be unknown making it difficult to decide α. (iv) COBRA and
COBRA-C both perform better than our baseline algorithms mak-
ing the extra computation worthwhile.

Next we discuss the key implications of these conclusions and
why they were reached. We include two tables for reference in the
following discussion, Tables 2 and 3. Table 2 shows the percentage
of times the follower chose a response that the current algorithm
predicted he would choose for different observation conditions in
reward structure one, which we will refer to as a predicted response.
The predicted responses are the ones the leader optimized against.
Table 3 shows the expected rewards (for a subset of the algorithms
tested) the leader should obtain for each door selection by the fol-
lower in reward structure one. For instance, if the follower selected
Door 2 when playing against DOBSS the leader would expect to
obtain a reward of -.97.

Structure One Unobserved 5 20 Infinite
DOBSS 20% 7.5% 17.5% 12.5%
BRASS 65% 65% 65% 70%
COBRA 57.5% 92.5% 72.5% 70%

COBRA-C 92.5% 92.5% 87.5% 95%
MAXIMIN 100% 100% 100% 100%

Table 2: Percentage of Times Follower Chose a Leader Pre-
dicted Response in Reward Structure One

DOBSS BRASS MAXIMIN COBRA-C COBRA-20
COBRA-5

Door 1 -5 -4.58 -1.63 -5 -4.61
Door 2 -.97 -.42 -1.63 -.30 -.37
Door 3 .36 -.36 -1 -.30 -.37
Door 4 -1.38 -.79 -1.63 -.30 -.73
Door 5 .06 -.36 -1.63 -.30 -.37
Door 6 -1 -.86 -1 -1 -.87
Door 7 .39 -.36 -1.63 -.30 -.37
Door 8 -4.57 -3.69 -1.63 -3.32 -3.67

Table 3: Leader Expected Rewards for Reward Structure One

Why does COBRA perform better than DOBSS? The simple
answer is that by incorporating a bounded rationality assumption
along with anchoring theory for limited observation conditions CO-



BRA more accurately predicts human responses. If followers played
according to the expectations of DOBSS, it would be the superior
strategy, however, they do not. Looking at Table 2 for instance, we
see that in the 5 observation case of DOBSS the follower chooses
a predicted response only 7.5% of the time while in COBRA he
chose a predicted response 92.5% of the time. The predicted re-
sponse by DOBSS is that the follower plays door 7 and for CO-
BRA it is all doors where it obtains -.3. Notice in Table 3 if the
human follower had played the predicted response of Door 7 100%
of the time then DOBSS would have obtained a reward of .39 while
COBRA in the 5 observation case can only obtain a meager -.30.
Further examination of Table 3, however, reveals that DOBSS can
suffer tremendously depending on what non-optimal response is
chosen. In Door 1 for example, DOBSS can obtain a reward of
-5. This shows why DOBSS can suffer if followers stray from
the predicted response. Since followers rarely stray from the pre-
dicted response in COBRA we expect to obtain a reward around the
predicted reward of -.30 and indeed COBRA in the 5 observation
condition gives an expected reward of -.65, lower than expected,
but much better than the -.81 that DOBSS obtained compared to
the predicted of .39. In fact, under high observation conditions,
DOBSS is seen performing even worse than our simple baseline of
MAXIMIN.

Now we examine why dealing with both bounded rationality and
observational limitations are necessary for performance. BRASS
is equivalent to COBRA with α = 0, showing how COBRA per-
forms without an α parameter. As shown in Figure 1(a), BRASS is
outperformed by COBRA (obtains lower expected rewards) in the
unobserved and 5 observation cases when observations are limited.
This demonstrates that by varying α COBRA has significantly im-
proved its strategies and expected rewards in limited observation
conditions. When observation is perfect, COBRA and BRASS are
equivalent. Both outperform DOBSS in the infinite observation
conditions. This demonstrates that ε is also important even when α
is not present (since α = 0 in this case). These results clearly show
that dealing with both bounded rationality and observational limi-
tations are necessary to achieve a superior performing algorithm.

Why does COBRA-C outperform COBRA? The simple answer
is that COBRA-C utilizes its resources better, by being better able
to predict human responses. Looking at Table 2, COBRA-C ac-
curately predicts human responses 87.5% of the time in the worse
case. COBRA-C makes use of the concept that even though the hu-
man follower may not have seen a guard on a particular door he will
still attribute some probability, even if it is low, that a guard may
appear on that door at some point. Although the strategies are not
presented here, in the 20 observation case COBRA assigns a guard
to Doors 1 and 6 7% of the time. COBRA-C on the other hand
uses this 14% (7% from each door) and distributes it among other
choices assuming the follower will assign some probability to these
doors regardless of what the actual strategy is. Thus, COBRA-C in-
creases the expected value of other doors (-.3 rather than -.37 for
COBRA-20). Even in the infinite observation case, COBRA-C is
found to be a better predictor of human responses with followers
choosing a predicted response 95% of the time as opposed to the
70% against COBRA. Although this was not expected, it was a
welcome surprise.

Why do COBRA and COBRA-C perform better than our base-
line algorithms? The main reason is they make more intelligent use
of the resources available. UNIFORM is a naive strategy that does
not make use of the reward structure and MAXIMIN is too defen-
sive, trying to make all doors of equal value so it can be safe regard-
less of the follower’s choice. COBRA and COBRA-C exploit game
theoretic reasoning to solve the problem at hand, utilizing their re-

sources to better deal with the imprecise decisions of humans, but
not trivially wasting resources as in MAXIMIN and UNIFORM.

Given the analysis presented, COBRA and COBRA-C, with ap-
propriately chosen α values, appear to be the best performing among
our new algorithms. The performance of DOBSS in these experi-
ments also illustrates the need for the novel approaches presented
in this paper for dealing with humans. Indeed, with DOBSS having
been deployed for over a year at Los Angeles International Airport
(LAX) [16], these results show that security at LAX could poten-
tially be improved by incorporating our new methods for dealing
with human followers.

4.2 Runtime Results
For our runtime results, in addition to the original 8-door game,

we constructed a 10-door game with
�
10
3

�
= 120 leader actions,

and 10 follower actions. To average our run-times over multiple
instances, we created 19 additional reward structures for each of
the 8-door and 10-door games. Furthermore, since our algorithms
handle Bayesian games, we created 8 variations of each of the re-
sulting 20 games to test scale-up in number of follower types. We
assume each follower occurs with a 10% probability except the last
which occurs with 1 − .10 ∗ (n − 1) where n is the number of
follower types. Experiments were run using CPLEX 8.1 on an In-
tel(R) Xeon(TM) CPU 3.20GHz processor with 2 GB RDRAM.

In Figure 2, we summarize the runtime results for our Bayesian
game using DOBSS, BRASS, COBRA and MAXIMIN. The 8-
door results are marked with solid figures and the 10-door results
are marked with open figures. The value of α was varied to show
the impact on solution speed. We include α = .25 and α = .75 in
the graph, denoted by COBRA_25 and COBRA_75 respectively.
The x-axis in Figure 2 varies the number of follower types from 1
to 8. The y-axis of the graph shows the runtime of each algorithm
in seconds. All experiments that were not concluded in 20 minutes
(1200 seconds) were cut off. As expected, MAXIMIN is the fastest
among the algorithms with a maximum runtime of 0.054 seconds
on average in the 10-door case. Not anticipated was the approxi-
mately equivalent runtime of DOBSS and BRASS and even more
surprising were the significant speedups of COBRA over DOBSS
and BRASS depending on the value of α. As shown in Figure 2
as α increases, the runtime of COBRA decreases. For example, in
the 10-door 8 follower type case when α = .25 COBRA is unable
to reach a solution within 1200 on average, however, when we in-
crease α to .75 COBRA is able to find a solution in 327.5 seconds
on average. In fact, every strategy except COBRA with α = .75
reached the maximum runtime in the 10-door 8 follower type do-
main.

Figure 2: Comparing Runtimes



5. SUMMARY AND RELATED WORK
Stackelberg games are crucial in many multiagent applications,

and particularly for security applications [4, 14]; the DOBSS al-
gorithm, for instance, is applied for security scheduling at the Los
Angeles International Airport [16]. In such applications automated
Stackelberg solvers may create an optimal leader strategy. Unfortu-
nately, the bounded rationality and limited observations of human
followers challenge a critical assumption — that followers will act
optimally — in DOBSS or any other existing Stackelberg solver,
which may lead to a severely under performing strategy when the
follower deviates from the optimal strategy. To apply Stackelberg
games to any setting with people, this limitation must be addressed.
This paper provides the following key contributions. First, it pro-
vides three new robust algorithms, BRASS, GUARD and COBRA,
based on two key ideas: (i) human anchoring biases drawn from
support theory; (ii) robust approaches for MILPs to address hu-
man imprecision. To the best of our knowledge, the effectiveness
of each of these key ideas against human adversaries had not been
explored in the context of Stackelberg games. These algorithms
take a robust approach to solving Stackelberg games according to
predictions on how and why human followers’ responses will de-
viate from the optimal. Second, this paper provides experimental
evidence that these new algorithms, in particular COBRA, perform
statistically significantly better than existing algorithms and base-
line algorithms when dealing with human followers. These conclu-
sions are drawn from experiments done on two settings based on
real deployed security systems, in 4 different observability condi-
tions, involving 98 human subjects playing 1360 games in total.
These results show that COBRA is likely better suited for real-
world applications dealing with human adversaries. Lastly, runtime
analysis is provided for these algorithms showing that they main-
tain equivalent solution speeds compared to existing approaches.

In terms of related work, other non-game theoretic models have
also been explored for security. The patrolling problem itself has
received significant attention in multi-agent literature due to its
wide variety of applications ranging from robot patrol to border
patrolling of large areas [3, 10, 15]. We complement these works
by applying Bayesian Stackelberg games to these domains. In par-
ticular, we turn to robust game theory, which was first introduced
for Nash equilibria [2] and adapted to Wardrop network equilibria
[13]. These prior works show that an equilibrium exists and how
to compute it when players act robustly to parameter uncertainty.
We also draw inspiration from approaches to bounded rationality
in game theory [17] — the key question remains how to precisely
model it in game theoretic settings. Limited observability provides
a different challenge which we addressed via support theory [20].
Related work in support theory has shown that people exhibit an-
choring biases and that they are slow to update away from these
biases [18]. Combining these concepts in a novel context (Stackel-
berg games) we are able to address human followers.

6. ACKNOWLEDGMENTS
This research was supported by the United States Department

of Homeland Security through the Center for Risk and Economic
Analysis of Terrorism Events (CREATE) under grant number 2007-
ST-061-000001. However, any opinions, findings, and conclusions
or recommendations in this document are those of the authors and
do not necessarily reflect views of the United States Department
of Homeland Security. This work was also supported in part by
the National Science Foundation grant number IIS0705587 and the
Israel Science Foundation.

7. REFERENCES
[1] Fox, C. personal communication.
[2] M. Aghassi and D. Bertsimas. Robust game theory. Math.

Program., 107(1-2):231–273, 2006.
[3] N. Agmon, V. Sadov, S. Kraus, and G. Kaminka. The impact

of adversarial knowledge on adversarial planning in
perimeter patrol. In AAMAS, 2008.

[4] G. Brown, M. Carlyle, J. Salmerón, and K. Wood. Defending
Critical Infrastructure. Interfaces, 2006.

[5] J. Cardinal, M. Labbé, S. Langerman, and B. Palop. Pricing
of geometric transportation networks. In 17th Canadian
Conference on Computational Geometry, 2005.

[6] V. Conitzer and T. Sandholm. Computing the optimal
strategy to commit to. In EC, 2006.

[7] M. Friedman. The use of ranks to avoid the assumption of
normality implicit in the analysis of variance. Journal of the
American Statistical Association, 32 No. 100:675–701, 1937.

[8] D. Fudenberg and J. Tirole. Game Theory. MIT Press, 1991.
[9] J. C. Harsanyi and R. Selten. A generalized Nash solution for

two-person bargaining games with incomplete information.
Management Science, 18(5):80–106, 1972.

[10] C. Kiekintveld, M. Jain, J. Tsai, J. Pita, M. Tambe, and
F. Ordóñez. Computing Optimal Randomized Resource
Allocations for Massive Security Games. In AAMAS, 2009.

[11] Y. A. Korilis, A. A. Lazar, and A. Orda. Achieving network
optima using stackelberg routing strategies. In IEEE/ACM
Transactions on Networking, 1997.

[12] A. Nilim and L. E. Ghaoui. Robustness in markov decision
problems with uncertain transition matrices. In NIPS, 2004.

[13] F. Ordóñez and N. E. Stier-Moses. Robust wardrop
equilibrium. In NET-COOP, 2007.

[14] P. Paruchuri, J. Marecki, J. Pearce, M. Tambe, F. Ordóñez,
and S. Kraus. Playing games for security: An efficient exact
algorithm for solving bayesian stackelberg games. In
AAMAS, 2008.

[15] P. Paruchuri, M. Tambe, F. Ordonez, and S. Kraus. Security
in multiagent systems by policy randomization. In AAMAS,
2006.

[16] J. Pita, M. Jain, J. Marecki, F. Ordóñez, C. Portway,
M. Tambe, C. Western, P. Paruchuri, and S. Kraus. Deployed
armor protection: The application of a game theoretic model
for security at the los angeles international airport. In
AAMAS, 2008.

[17] A. Rubinstein. Modeling Bounded Rationality. MIT Press,
1998.

[18] K. E. See, C. R. Fox, and Y. S. Rottenstreich. Between
ignorance and truth: Partition dependence and learning in
judgment under uncertainty. Journal of Experimental
Psychology: Learning, Memory, and Cognition,
32:1385–1402, 2006.

[19] H. Simon. Rational choice and the structure of the
environment. Psychological Review, 63:129–138, 1956.

[20] A. Tversky and D. J. Koehler. Support thoery: A
nonextensional representation of subjective probability.
Psychological Review, 101:547–567, 1994.

[21] B. von Stengel and S. Zamir. Leadership with commitment to
mixed strategies. In CDAM Research Report
LSE-CDAM-2004-01, London School of Economics, 2004.

[22] K. K. Yuen. The two-sample trimmed t for unequal
population variances. Biometrika, 61:165–170, 1974.


