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Abstract
Three experimental environments traditionally support
network and distributed systems research: network emu-
lators, network simulators, and live networks. The con-
tinued use of multiple approaches highlights both the
value and inadequacy of each. Netbed, a descendant of
Emulab, provides an experimentation facility that inte-
grates these approaches, allowing researchers to config-
ure and access networks composed of emulated, simu-
lated, and wide-area nodes and links. Netbed’s primary
goals areease of use, control, and realism, achieved
through consistent use of virtualization and abstraction.

By providing operating system-like services, such as
resource allocation and scheduling, and by virtualizing
heterogeneous resources, Netbed acts as a virtual ma-
chine for network experimentation. This paper presents
Netbed’s overall design and implementation and demon-
strates its ability to improve experimental automation
and efficiency. These, in turn, lead to new methods of
experimentation, including automated parameter-space
studies within emulation and straightforward compar-
isons of simulated, emulated, and wide-area scenarios.

1 Introduction
The diverse requirements of network and distributed sys-
tems research are not well met by any single experimen-
tal environment. Competing approaches remain popular
because each covers a different point in a space defined
by levels ofease of use, control, and realism. Packet-
level discrete event simulation and live network experi-
mentation represent two extremes. Simulation presents
a controlled, repeatable environment. However, its level
of abstraction may be too high to capture low-level ef-
fects such as the impact of interrupts under heavy load.
Live networks achieve realism, but surrender repeata-
bility and the ability to modify or even monitor inter-
nal router behavior. Emulation [1, 27, 36, 42] is a hy-
brid approach that subjects real applications, protocols,
and operating systems to a synthetic network environ-
ment. While single-node WAN emulators, such as Dum-
mynet [36], introduce artificial delays, losses, and band-

width constraints in a controlled manner, they require te-
dious manual configuration.

Netbed complements existing experimental environ-
ments. It spans simulation, emulation, and live net-
work experimentation by integrating them into a com-
mon framework. This integration brings the control and
ease of use usually associated with simulation to emula-
tion and live network experimentation without sacrificing
realism. It gives users the individual benefits of simula-
tion, emulation, and live network experimentation, con-
figured and controlled in a consistent manner. Further,
integration facilitates interaction, comparison, and vali-
dation across the three domains.

Netbed is a software system that provides a time- and
space-shared platform for research, education, or devel-
opment in distributed systems and networks. It leverages
local nodes, allocated from clusters and temporarily ded-
icated to individual users, for emulation; this paper often
refers to these as emulated nodes. Netbed also employs
geographically-distributed nodes that are simultaneously
shared amongst users; this paper frequently refers to such
resources as wide-area nodes. Researchers access these
resources by specifying a virtual topology graphically or
via an ns script [40], causing Netbed to automatically
configure a physical topology. Anexperimentis defined
by this configuration and any run-time dynamics, such
as traffic generation, specified via the general-purposens
interface. When realizing the virtual topology, Netbed
virtualizes host names, IP addresses, links, and nodes.
Virtual nodes may be instantiated from a large set of local
nodes, from a smaller set of distributed nodes, or within
ns simulation. Virtual links may map directly to local-
area links, may be matched to similar wide-area links,
or may be emulated by interposing Dummynet nodes to
regulate bandwidth, latency, loss, and queuing behavior.

Netbed’s framework provides integrated abstractions,
services, and name spaces common to all three envi-
ronments, mapping them into domain-specific mecha-
nisms and internal names. Netbed’s operating system-
like services include node and link allocation and nam-
ing, scheduling and idle experiment preemption, experi-
ment “swapping,” and disk image loading.



Given these services, an analogy between an experi-
ment and a Unix process seems natural. This metaphor
illustrates the life cycle of an experiment and Netbed’s
role in automating and controlling the procedure. Thens
specification serves as the “program text,” which Netbed
compiles to synthesize a hardware realization of the vir-
tual topology. The specification is first parsed into an in-
termediate representation that is stored in a database and
later allocated and loaded onto hardware. During experi-
ment execution, Netbed provides interfaces and tools for
experiment control and interaction. Finally, Netbed may
preempt and swap out an experiment. Because Netbed
gives experimenters run-time control over node and link
characteristics and an ability to interpose traffic-shaping
and monitoring nodes, we view the system as a virtual
machine for heterogeneous node, link, and topology al-
location and control. While traditional virtual machines
target an architecture’s instruction set, Netbed instead ab-
stracts the network.

The analogy is not merely cosmetic; experiments de-
rive key benefits from Netbed’s design, namely automa-
tion and time- and space-efficiency. Experiment creation
involves a large number of steps including, for exam-
ple, configuring network interfaces and routing tables,
installing operating systems, exporting file trees, and ad-
ministering user accounts. Netbed removes the tedium of
manual configuration through automation. Netbed was
designed to make efficient use of physical resources and
to enhance experimenter productivity. It manages the
shared use of physical resources to provide their great-
est possible utilization, while ensuring inter-experiment
isolation. Netbed performs experiment creation and ter-
mination in a few minutes, enabling an interactive style
of use. Attention to efficiency of disk reloading, re-
source allocation, and experiment creation maximizes
time spent executing experiments and minimizes effort
expended configuring them.

This paper makes the following contributions:� It introduces the notion of a virtual machine for con-
trolled network experimentation and shows how it
integrates heterogeneous resources.� It outlines the key obstacles to virtual machine effi-
ciency and how they were overcome.� It shows that Netbed’s automation, efficiency, and
services inspire qualitatively new methods of exper-
imentation.� It provides data validating Netbed’s emulation ca-
pabilities.

Section 2 continues by outlining the heterogeneous re-
sources managed by Netbed. Section 3 outlines the life

cycle of an experiment, using the virtual machine anal-
ogy to describe the system’s design, and Section 4 shows
the benefits of this approach. Section 5 details the chal-
lenges overcome by Netbed’s experiment services, in-
cluding the mapping of virtual to physical resources and
disk loading, and their efficiency. Section 6 validates the
emulation facilities. Section 7 illustrates unique experi-
mental techniques facilitated by Netbed. Finally, related
work is addressed in Section 8 and Section 9 concludes.

2 Resources
As its original name, “Emulab,” suggests, Netbed was
conceived as an emulation platform. Through its flexible
design, it has evolved to support a diverse set of physi-
cal node and link types. These resources are virtualized
in the sense that they may be allocated and controlled
largely independently of their physical realization.

Local-Area Resources: Netbed software currently
controls two clusters: one at the University of Utah com-
prised of 168 PCs and another at the University of Ken-
tucky containing 50 PCs. The two sites are configured
in a nearly identical fashion. Any of these nodes can
function as an edge node, a traffic generator, or a router.
Each machine has five 100Mb Ethernet interfaces: one
is on a dedicated control and data acquisition network
and the others are for arbitrary use by experiments. At
each node, local memory and disk provide ample room
for computation and logging of monitoring data.

All local nodes are connected using high-end switches
that function as a “programmable patch panel.” To sup-
port arbitrary and isolated topologies and to provide se-
curity to Netbed users, we employ Virtual LANs. A
VLAN is a switch technology that restricts traffic to the
subnet defined by its members. We have verified empiri-
cally that our switches provide inter-VLAN performance
isolation, in the face of both traffic and control operations
(VLAN creation, deletion, and modification).

Netbed’s local nodes and wealth of available band-
width can be configured into switched LAN topologies.
This, coupled with its rapid and automated configuration
of operating systems, makes Netbed an attractive plat-
form for kernel development and research within local-
area networks. Root privileges, remotely accessible con-
soles, and remote power cycling help make kernel devel-
opment convenient.

Emulated Resources: Netbed uses Dummynet and
VLANs to emulate wide-area links within the local-area
environment. A Dummynet node is automatically in-
serted between two physical nodes and enforces queue
and bandwidth limitations, introducing delays and packet
loss. Dummynet nodes act as Ethernet bridges and are
transparent to experimental traffic.

Distributed Resources: Netbed integrates both the



MIT-owned testbed nodes first used for the RON [4] re-
search, as well as nodes contributed by other organi-
zations that run our special CD-based Unix configura-
tion. These resources today provide Netbed with approx-
imately 40 nodes at 30 different sites around the world,
including nodes connected via Internet2, DSL, and cable
modems. These nodes are valuable to experimenters per-
forming Internet measurement or who require the charac-
teristics of a live network. Experimenters may request a
random set of nodes, specific nodes, nodes having a spe-
cific class of network connection (e.g., via a cable mo-
dem), or nodes connected via specified latencies, band-
widths, and loss rates. In the latter case, Netbed provides
a best-effort mapping of a user-specified virtual topology
onto physical distributed nodes.

Distributed nodes support many of Netbed’s key fea-
tures, including account establishment and automated
traffic generation, subject to their particular policies and
mechanisms. For example, distributed nodes typically
have only one network interface, so do not have a physi-
cally separate control network. Due to their scarcity, by
policy—not limitation of mechanism—distributed nodes
currently are shared; multiple experiments may use a
node simultaneously. Netbed provides some isolation be-
tween experiments through the FreeBSD Jail [18] mech-
anism, which provides a primitive form of virtual ma-
chine and restricts root privileges. Our modifications to
Jail provide access to raw sockets, while preventing pro-
cesses from spoofing IP addresses. Multiplexing is sup-
ported by providing a (currently fixed) number of jailed
virtual machines per node. Extending this mechanism to
provide fair sharing of CPU, memory, and network re-
sources is a subject of future work.

Netbed provides flexibility in specifying interconnec-
tions between distributed nodes. By default, the nodes
retain full, unmediated access to the Internet. How-
ever, if links are specified between the nodes, Netbed
sets up IP tunnels so that distributed nodes can use “pri-
vate” IP addresses. In conjunction with Netbed’s au-
tomated routing setup, this creates an overlay network
configured to the experimenter’s specifications. These
tunnels also allow transparent communication between
distributed nodes and experimental interfaces on local
nodes, so that networks can contain both Internet and
emulated links. Thus, distributed nodes may be treated
the same as local nodes with respect to traffic generation,
routes, and IP addresses.

Simulated Resources:Netbed integrates simulation
throughns’s emulation facility,nse[10], allowing sim-
ulated nodes, links, and traffic to interact with applica-
tion traffic. Though simulation abstracts detail [15, 11],
it can provide scalability beyond the limits of physical
resources; many virtual simulated nodes can be multi-
plexed on one physical node.
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Figure 1: Netbed Architecture

Netbed’s deployment ofns brings a wealth of simu-
lation infrastructure to emulated and distributed experi-
ments, includingns’s rich and diverse protocol suite, var-
ied statistical models, and support for wireless devices.
nsecan also be used to simulate a large-scale network
within emulation. The close interaction between simula-
tion and live protocols presents an opportunity to validate
ns’s abstractions.

Planned Extensions:Plans are underway to integrate
additional virtual resource types: we are constructing a
WAN emulator based on the Intel IXP1200 network pro-
cessor [17] that provides improved features and perfor-
mance over Dummynet. Second, we plan to control and
configure ModelNet [42] through Netbed’s existing in-
terfaces.

3 Experiment Life Cycle

An experiment is Netbed’s central operational entity. It
represents a network configuration, including links and
VLANs; node state, including operating system images;
and database entries, including event sequences. The in-
tended duration of an experiment ranges from a few min-
utes, to many days, to months or years on distributed
nodes. This section follows the life cycle of an experi-
ment to illustrate Netbed’s operation and further develop
its role as a virtual machine for network experimentation.

The Netbed virtual machine is architected around in-
teracting state machines, monitored by a state manage-
ment daemon. A primary state machine represents the
experiment, while subsidiary state machines handle node
allocation, configuration, and disk reloading. The state
daemon catches illegal or tardy state transitions. For ex-
ample, if a node hangs while rebooting, the state daemon
times out and attempts an alternate reboot mechanism.
This approach copes reasonably well with the reliability
challenges of large-scale distributed systems which are
composed of often unstable commodity hardware, but
further work on reliability is needed.



3.1 Accessing Netbed
To minimize administrative overhead, Netbed employs a
hierarchical structure for authorization: To begin a new
project, a “leader,” e.g., a faculty member or senior stu-
dent, submits a simple web form. Once the project has
been approved by Netbed staff, accountability and abil-
ity to authorize other project members are delegated to
the project leader. The web interface then serves as a
universally-accessible portal to Netbed, through which
an experimenter may create or terminate an experiment,
view the corresponding virtual topology, or configure
node properties.

After experiment creation, experimenters may log di-
rectly into their allocated nodes, or in tousershost,
depicted in Figure 1, which serves as a centralized point
of control. This node is alsofileserver, which stores
operating system images, exports home and project di-
rectories to local nodes via NFS and to distributed nodes
via SFS, the Secure File System [20].masterhost is a
secure server for many of our critical systems, including
the web server, database, and switch management.

3.2 Specification
Just as program text is the concrete specification of a
run-time process, annsscript written in Tcl configures a
Netbed experiment. This choice facilitates validation and
comparison sincens-specified topologies, traffic gener-
ation, and events can be reproduced in an emulated or
wide-area environment. For the large community of re-
searchers familiar withns, it provides a graceful transi-
tion from simulation and an opportunity to leverage ex-
isting scripts. Since Tcl is a general-purpose program-
ming language, a researcher is empowered with looping
constructs, conditionals, and arbitrary functions to drive
experiment configuration and execution.

Emulated nodes and links enjoy full implementation
transparency. By default, links specified in thensexperi-
ment file are realized as interposed Dummynet nodes. To
instead incorporate distributed nodes, an experimenter
need only specify an appropriate node type. For ex-
ample, Figure 2 requests an Internet-connected node
by specifying apc-inet hardware type. A simu-
lated topology can be embedded within an emulated
topology by wrapping standardns syntax in amake-
simulated block, a Netbed-specific construct.

Any constant bit rate traffic flow identified via stan-
dardns syntax automatically instantiates traffic sources
and sinks using the TG Tool Set [21]. Simulated FTP
and Telnet flows are rendered usingns’s emulation fa-
cility, nse. This mechanism injects traffic generated by
models, such as the tcplib telnet distribution, into a live
network. Such cross traffic is important for studying pro-
tocol behavior in the face of congestion.

Netbed defines a small set ofnsextensions, including

set ns [new Simulator] # Create the simulator
source tb_compat.tcl # Add Netbed commands
$ns rtproto Static # Netbed computes routes

set source [$ns node] # define new nodes
set router [$ns node]
set dest [$ns node]

# Connect source to router and router to dest
$ns duplex-link $source $router 10Mb 0ms RED
$ns duplex-link $router $dest 1.5Mb 20ms DropTail

tb-set-node-os $source FBSD45-STD # Set OS on local node
tb-set-hardware $dest pc-inet # Request distributed node

$ns run # "run" on Netbed

Figure 2: Annsfile showing a linear topology with routing and a dis-
tributed node

procedures to configure a node’s operating system and
to specify its hardware type. These procedures are not
required; Netbed supplies default behavior in their ab-
sence. A stub library defines null procedures so that the
same script may be executed on Netbed and withinns.

Program objects are a Netbed-specificns extension
that provides a rudimentary remote execution facility. A
program object is associated with annsnode in the script
and attaches arbitrary applications to the corresponding
local node. It may be independently controlled during an
experiment’s execution. Program objects are currently
not available on distributed nodes, until we finish secur-
ing the distributed event system.

Experimenters unfamiliar withns syntax may create
topologies graphically via a Java GUI, which generates
annsconfiguration file. Alternatively, a standard topol-
ogy generator such as GT-ITM or BRITE may be used to
generate annsscript. This highlights one of the primary
benefits of integration: application of tools intended for
one experimental domain, in this case simulation, to an-
other.

3.3 Parsing
A traditional compiler is separated into front and back
ends whose interactions are mediated by an intermedi-
ate representation. This aids portability since the same
front end can be reused with back ends supporting dif-
ferent hardware architectures. Since Netbed targets mul-
tiple, heterogeneous physical resources simultaneously,
it uses an analogous split-phase style of compilation.
A database serves as the shared repository between the
front-end Tcl/ns parser and resource-specific back-end
mechanisms. Thus, a single experiment may incorporate
simulated, emulated, and wide-area links without requir-
ing excessive resource-specific knowledge in the specifi-
cation language or front-end parser.

Netbed’s parser recognizes the subset ofnsrelevant to
topology and traffic generation. Written in Tcl, it oper-
ates by overriding and interposing on standardns pro-
cedures and Tcl primitives. Netbed executes the experi-



ment configuration script in the context of these new def-
initions. Unrecognizednscommands output a warning,
while ns syntax configuring links and traffic endpoints
triggers the overloaded procedures.ns-specified event
generation is performed at this time, storing the events
in the database. Therefore,ns-specified events are static
and have a (large) limit on their number.

Both overloaded and Netbed-specific procedures pop-
ulate the database, which also stores information about
hardware, users, and experiments. The database
presents a consistent abstraction of heterogeneous re-
sources to higher layers of Netbed and to experimenters.
For example, the front-end database representations of
distributed and emulated nodes differ only in a type tag.
The database provides a single name space for all exper-
imental entities. Thus, in most cases, experimenters can
interact with them using the same commands, tools, and
naming conventions regardless of their implementation.
As an example, nodes of any type may host traffic gener-
ators, despite the fact that the traffic may flow over links
simulated byns, emulated by Dummynet, or across the
Internet between distributed nodes.

3.4 Global Resource Allocation
The global resource allocation phase is responsible for
binding abstractions created during previous stages to
physical entities. It corresponds to the resource alloca-
tion performed during back-end compilation and linker-
directed name binding. For overall simplicity, resources
are currently allocated on demand rather than reserved
by experimenters in advance.

Netbed uses general combinatorial optimization tech-
niques to perform resource allocation. The algorithms
map a target configuration, stored in the database, onto
available physical resources. Such a mapping respects
the interconnections of the virtual topology, including
their latency, bandwidth, and loss rates. As further ex-
plained in Sections 5.2 and 5.3, we use separate algo-
rithms for local and distributed nodes due to their differ-
ing constraints. The mapping program for local nodes,
assign, uses simulated annealing, while thewanas-
sign program uses a genetic algorithm for distributed
resources. Based on the output ofassign andwanas-
sign, Netbed reserves nodes and links and updates the
database with resource mappings and user-supplied pa-
rameters.

Although within an experiment we follow our prin-
ciple of conservative resource allocation, we’ve found it
impractical to do so between experiments on local nodes.
We currently have only 2 Gbps inter-switch bandwidth,
much of which is theoretically consumed by single ex-
periments, preventing other experiments from mapping
successfully. However, our traffic monitoring has shown
that, in practice, experiments rarely use their allocated

inter-switch bandwidth. Therefore we have adopted a
policy of over-reserving these bottleneck links while
continuously monitoring them for high bandwidth use.
Thus far, that has never occurred.

Occasionally, there is a need to dynamically change
node membership in an experiment. This can happen,
for example, if a node fails and must be replaced, or if
nodes are no longer needed because of a change in appli-
cation demands. Netbed supports the dynamic addition
or removal of nodes in any active experiment, and can
graft added nodes into LAN-connected topologies.

To ensure consistent naming across instantiations of
annsconfiguration, Netbed virtualizes IP addresses and
host names. This level of indirection is necessary since a
configuration is unlikely to be mapped to the same phys-
ical resources upon re-creation. While experimenters are
free to manually assign IP addresses, this task is most of-
ten left to Netbed. Netbed deterministically names nodes
and links for consistency across experiment creations.

3.5 Node Self-Configuration
Node configuration is driven by the nodes themselves,
but entirely controlled by state stored centrally in the
database. This is accomplished in a manner reminiscent
of Unix dynamic linking and loading. A traditional dy-
namic linker is responsible for establishing the proper
context for a process, loading it, and then invoking it.
Netbed applies this strategy at the node level to achieve
distributed self-configuration, which includes obtaining
a host name, loading a disk image, and executing exper-
iment startup scripts.

Intelligent node statemanagement is crucial in real-
izing our robustness and security goals. Nodes are kept
free of persistent configuration state; their memory and
local disks are considered volatile soft state. This allows
an experiment to be “swapped out” and its resources re-
claimed. If experimenters wish to retain local disk mod-
ifications, such as kernel revisions, they can easily save
an image of their disk on persistent store. A reference
to the image is stored in the database and becomes hard
state. While an experiment is swapped out, Netbed stores
its virtual topology, host name, and general setup in the
database. “Swap in” reconstitutes this hard state on an
equivalent set of physical resources and brings the node
to a fully-known state.

For local nodes, Netbed ensures that a clean disk im-
age is installed on every node before experiment swap-in
or creation. Then, in parallel, Netbed attempts to reboot
all the nodes using increasingly aggressive techniques.
First, it issues areboot command viassh; any nodes
that fail to boot in a timely manner are sent a secure
authenticated “ping of death”; should that fail, they are
power-cycled. Nodes boot using Intel’s PXE [34] net-
work bootstrap protocol. Each node’s PXE BIOS con-



tactsmasterhost, which loads a first level kernel as
directed by the database. This first level kernel might be
a fast disk image loader, a memory file system-based op-
erating system, or typically, a larger second level boot-
strap program. This second level loader again contacts
the database to determine the next step, either booting
from an on-disk partition or downloading an OSKit [12]
kernel. This multi-phase approach permits flexible con-
figuration and customization of the OS that runs on each
node. The system then waits for the nodes to come
back up. If a node does not come up in a timely man-
ner, one more attempt is made; if it still fails, the entire
experiment swap-in fails. To improve resilience, over-
allocation of nodes is an obvious avenue for future work.
It is not entirely straightforward, due to topological con-
straints and heterogeneous node types.

Distributed nodes use an analogous disk loading
mechanism. Each time a distributed node reboots, it does
so from a CD-ROM which then negotiates withmas-
terhost to, if necessary, securely apply software up-
dates or reload the disk over the network. On each dis-
tributed node, Netbed instantiates a new Jail in a known
initial state, analogous to the known initial state of a lo-
cal node after disk loading and booting. In addition, a Jail
can be “powered off” by terminating it or “rebooted” by
restarting it.

Once a node or Jail has booted, our initialization se-
quence invokes a node configuration script that uses
a program called the Testbed Master Control Client,
TMCC, to securely communicate with a daemon onmas-
terhost that fronts the database. Using this script and
TMCC, a node obtains and initializes its hostname, ex-
perimental network IP addresses, routes, software pack-
ages, user accounts, and other configuration informa-
tion. Local nodes NFS-mount the appropriate project
tree and users’ home directories fromfileserver; in
the wide-area, SFS is used instead.

3.6 Experiment Control
Traditional operating systems provide signals as a rudi-
mentary form of control over local processes. Whereas
users often start, stop, and resume processes, experi-
menters want to start, stop, and resume traffic generators
and network monitors. To support dynamic experiment
control, Netbed uses an event system to extend the no-
tion of signals across sets of nodes and links. This fa-
cility closely mirrors the style of event schedulers found
in network simulators. Just as simulation allows exper-
imenters to manipulate link characteristics at prescribed
times, so too can experimenters dynamically change la-
tencies, bandwidths, and loss rates on emulated links.
For example, to bring down a link namedlink0 10.5
seconds after experiment creation, a script would spec-
ify: $ns at 10.5 "$link0 down".

Our event system is built on top of Elvin [38], a pub-
lish/subscribe system that supports federation. Static
events are extracted from the database and fed into Elvin
at experiment creation time. Dynamic events may be cre-
ated through library interfaces and a command-line tool.
Current clients of the event system include traffic gener-
ators, a WAN emulator control agent, a general remote
execution facility, and Netbed’s own management pro-
grams.

The event system is used extensively on local nodes
but sparingly on distributed nodes, due to its current in-
secure deployment. Well-known solutions exist to se-
cure the system; we are exploring a number of them, in-
cluding using Elvin’s “security keys,” which limit the ex-
change of subscriptions and events to specific producers
and consumers.

The event system controls high-level abstractions as
defined in thens configuration file, including links,
nodes, and program objects. If experimenters were re-
stricted to such high-level interfaces and tools, Netbed
would limit the granularity of their control. Therefore, to
the extent allowed by local policy, Netbed provides low-
level and open access to resources, including root priv-
ileges on local nodes and Jail-restricted root privileges
on distributed nodes. Of course, with such privileges
experimenters can unwittingly corrupt their resources.
Netbed’s ability to quickly restore an experiment’s hard
state from the database and reload disk images makes it
easy to recover from such accidents.

Root access on local nodes has proven to be an es-
pecially valued aspect of control, since it enables exper-
iments requiring kernel modifications or access to raw
sockets. To maintain security and isolation in the face
of root access, Netbed prevents MAC and IP spoofing
on local nodes through switch mechanisms. Since priv-
ileged access is mediated by Jail on shared, distributed
nodes, these issues are not a concern there: though a pro-
cess “in jail” can access raw sockets, it can only bind to
its assigned IP address. This gives experimenters access
to tools such astcpdump andtraceroute, without
exposing insecurities.

Since the local nodes currently in use have serial con-
sole lines, power controllers, multiple network inter-
faces, and are dedicated to an experiment, they provide
additional control mechanisms. Each local node is con-
nected to a separate control network, isolated from the
networks that are used for experimental traffic. This sep-
arate network provides three important features: more
reliable control, cleaner experimental data, and greater
security. Unless a program requires the use of a dis-
play or mouse attached directly to the node, Netbed does
not penalize remote experimenters—with only minor ex-
ceptions, remote users have as much control over these
nodes as they do over desk-side machines. For exam-



ple, node consoles are virtualized so that an experimenter
need not be logged into the server that physically hosts
the serial console lines. Instead, all consoles can be se-
curely accessed from any Unix or Windows machine via
a local telnet session, connected through a transparent
application-level SSL tunnel. We find that most kernel
developers, once they have tried it, prefer remote use of
Netbed machines to using desk-side test boxes.

3.7 Preemption and Scheduling

Traditional operating systems preempt and schedule pro-
cesses for better system throughput and CPU utilization.
Because Netbed manages shared community resources,
efficient utilization is also a priority. Local nodes cur-
rently use a conservative allocation policy: each virtual
node is mapped to a separate physical node. Therefore,
Netbed can preempt idle experiments on local nodes to
reacquire physical resources and to satisfy “runnable”
experiments. Distributed nodes typically run each vir-
tual node within a Jail, and are not currently subject to
preemption. This policy is used because an idle dis-
tributed virtual node consumes only a single Jail rather
than an entire physical node, and additional OS resource
accounting mechanisms would be needed to accurately
detect idle virtual nodes.

Local nodes are often idle despite being assigned to
experiments. Determining idleness in Netbed is diffi-
cult; the indicators used in standard clusters are not suffi-
ciently sensitive, since activity may constitute something
as simple as infrequent network probes. Netbed’s idle
detection system currently monitors three metrics: traf-
fic on the experimental networks, use of pseudo-terminal
devices, and CPU load averages.

To avoid inconveniencing users, we manually con-
firm idle indications with them before swapping out their
experiments. With recent tuning of the idle detection
heuristics, Netbed has not experienced false positives
and appears to find all truly idle experiments. Since our
current swapping mechanism preserves only hard state,
users with experiments dependent on soft state may man-
ually disable preemption. With planned future work in
disk state saving, Netbed should be able to safely pre-
empt such experiments.

When experimenter interaction is not required, Netbed
can fully automate the experimentation process by
scheduling batch experiments, which execute whenever
resources become available. Batch processing allows an
experimenter to iterate over a large problem space with-
out manual interaction. It also helps accommodate large
experiments that may only find sufficient resources at
low-usage, inconvenient times. Such off-peak schedul-
ing further improves Netbed utilization.

4 Improving Network Experimentation
While Netbed provides most of the benefits of emulation,
simulation, and wide-area experimentation, it is more
than a simple sum of services. Netbed’s common set
of tools and abstractions have important practical ben-
efits for experimentation, including: automated and effi-
cient realization of virtual topologies, efficient use of re-
sources through time- and space-sharing, and increased
fault-tolerance through resource virtualization.

The savings afforded by automated mapping of a vir-
tual topology to physical devices removes a significant
experimentation barrier. Our user experiments show that
after learning and rehearsing the task of manually con-
figuring a 6-node “dumbbell” network, a student with
significant Linux system administration experience took
3.25 hours to accomplish what Netbed accomplished in
less than 3 minutes. This factor of 70 improvement
and the subsequent programmatic control over links and
nodes encourage “what if” experiments that were previ-
ously too time- and labor-intensive even to consider.

Efficient use of scarce and expensive infrastructure is
also important and a sophisticated testbed system can
markedly improve utilization. For example, analysis of
12 months of Netbed’s historical logs gave quantitative
estimates of the value of time-sharing (i.e., swapping
out idle experiments) and space-sharing (i.e., isolating
multiple active experiments). Although the behavior of
both users and facility management would change with-
out such features, the estimate is still revealing. Without
Netbed’s ability to time-share its 168 local Utah nodes,
a testbed of 1064 nodes would have been required to
provide equivalent service. Similarly, without space-
sharing, 19.1 years, instead of one, would be required.
These are order-of-magnitude improvements.

Netbed virtualizes node names and IP addresses such
that equivalent nodes can be used interchangeably. For
example, when an experiment is swapped in, it need not
execute on the same set of physical nodes. Any nodes
exhibiting the same properties and interconnection char-
acteristics are suitable candidates. The flexibility to allo-
cate from an equivalence class provides fault tolerance.
If a node or link fails, an experimenter need not wait un-
til the node or link partition is available again, but may
instead re-map the experiment to an equivalent set of ma-
chines. This feature is valuable wherever node or link
failures are anticipated, such as within large-scale clus-
ters or wide-area networks.

5 Key Services and Evaluation
Much of ns’s popularity and power result from the flex-
ibility it gives experimenters to efficiently change pa-
rameters and network scenarios. Netbed aims to bring
a similar level of control and ease of use to emulated and
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Figure 3: Time to create an experiment without disk loading.Times
shown are cumulative, i.e., the difference between adjacent lines repre-
sents the time for that step.

wide-area experimentation, through automation and effi-
ciency. In this section we describe the main challenges to
Netbed’s efficiency, and evaluate how well Netbed meets
those performance challenges. These challenges include
experiment creation and swapping, disk loading, map-
ping of virtual resources to local and distributed physical
resources, and multiplexing simulated nodes.

5.1 Experiment Creation and Swapping
This subsection quantifies the time spent in experiment
creation, which is comprised of parsing, global resource
allocation, and local self-configuration, as described in
Section 3. These results apply only to local resources;
since distributed nodes are typically shared resources,
Netbed does not routinely reboot them or re-install disk
images on experiment creation. As shown in Figures 3
and 4, disk loading and node rebooting dominate ex-
periment creation time. Therefore, configuration of dis-
tributed nodes is lightweight and not examined here.

The top line in Figure 3 shows the total time to cre-
ate typical experiments. The duration of experiment cre-
ation is essentially equal to the swap-in duration, since
the one-time expenses unique to experiment creation are
insignificant compared to the cost of mechanisms shared
by both, such as node rebooting. A single-node exper-
iment takes 135 seconds. The majority of this time is
spent rebooting the node and waiting for it to finish boot-
ing. As experiment sizes grow, creation time remains
linear, with a marginal cost per node of approximately
3.4 seconds. Throughout the process, Netbed exploits
parallelism as much as possible. For example, although
it takes non-negligible time, VLAN setup does not con-
tribute to creation time because it occurs in parallel with
the longer node reboot stage.

Figure 3 also breaks out the costs of the most time-
consuming stages of experiment creation, in the order
those steps occur. The bottom line represents the time
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Figure 4: Time to create an experiment with disk loading. Time without
disk loading from Figure 3 is also shown for comparison; notethat the
y-axis scale is different here.

taken byassign to map physical resources. The next
line is for reservation of those resources, which turns out
to be dominated by reassigning serial console lines and
logs. The next line is for issuing reboots to the nodes.
They are rebooted in parallel, with a ten second pause
every eight nodes so as not to over-stress network re-
sources and lose too many control-related UDP packets,
typically manifested by nodes failing to boot.1 Finally,
in the slowest step, Netbed waits for all nodes to come
back up. The PC’s BIOS is the biggest culprit; average
time spent in the BIOS was 55 seconds for the nodes used
in this experiment. Netbed also has 40 nodes that spend
only 20 seconds in the BIOS, but in order to achieve con-
sistency up to large scales, we limited these experiments
to the more numerous nodes.

Figure 4 shows the additional expense of automatic
disk loading, performed when an experimenter requests
a custom disk image. Since our default dual-boot
FreeBSD/Linux disk images prove sufficient for most ex-
perimenters, the majority of experiments do not incur
this cost. Though much of the added time comes from
transferring and writing the new disk image, a significant
amount comes from rebooting each node twice (once to
enter the disk loader, and again into the newly-loaded op-
erating system). Although the absolute time for experi-
ment creation is higher when loading disks, it is similarly
scalable; the marginal cost per node is comparable.

5.2 Mapping Local Resources
Netbed’s local assignment phase must not only realize
user-specified node types, features, link characteristics,
and topologies, but must also respect the limitations of
available bandwidth. That is, Netbed ensures that the
physical hardware will support the emulated traffic flows

1The PXE ROMs use UDP and a fixed timeout that we cannot
change; hence we are forced to work around the problem.
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without introducing any bottlenecks, with their accompa-
nying experimental artifacts. To map the desired virtual
topology of Figure 5 onto the physical topology shown to
its right, Netbed should pick a physical realization which
groups A, B, and C together on one switch, and D, E,
and F on the other switch; any other configuration will
attempt to send excess traffic across the inter-switch link.

Thistestbed mapping problemproblem is trivial in this
six-node example, but in the general case, is NP-hard
(by reduction to the multiway separator problem or the
minimum-degree graph partitioning problem [13]). In
conjunction with aggressive abstraction techniques to re-
duce the search space,assign uses simulated anneal-
ing [16], a randomized heuristic algorithm, to map vir-
tual nodes and links to local nodes and VLANs. In ad-
dition to satisfying the individual experiment’s require-
ments, the algorithm also attempts to minimize the re-
quired inter-switch bandwidth and the number of in-
volved switches, in order to promote efficient utilization
of the cluster.

Netbed has kept detailed logs of every experiment sub-
mitted since June 2001. We analyzed the following 12
months’ data, covering over 2000 experiments. Figure 6
shows that a reliable indicator of the difficulty of a map-
ping problem, as measured by the runtime ofassign, is
the number of virtual nodes the user requests. We added
a general notion of resource equivalence classes toas-
sign in December 2001; the strikingly bimodal distri-
bution in the figure demonstrates the resulting improve-
ments. Grouping nodes into equivalence classes greatly
reduces the search space sinceassign need only search
the small number of equivalence classes rather than the
large number of nodes. The new version takes less than
13 seconds on even the largest topologies and less than 5
seconds for most experiments.

5.3 Mapping Distributed Resources
The distributed case has different constraints. First, the
underlying physical nodes are treated as fully connected,
via the Internet. Second, distributed nodes are fairly well
characterized by the nature of their “last-mile” link, e.g.,
cable modem, commodity Internet, or Internet2. There-
fore, Netbed assigns corresponding intuitive subtypes
to distributed nodes, e.g.,pc-cable, pc-inet, pc-
inet2. This typing lets experimenters request virtual
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Figure 6: Performance and Scaling ofassign

nodes by their type or subtype, rather than specify a par-
ticular topology connecting them. Netbed’s generic re-
source assignment code, identical for both local and dis-
tributed resources, handles this common situation.

However, some experimenters may want more
precisely-matched resources or a particular virtual topol-
ogy. Netbed allows them to request a virtual topol-
ogy with wide-area links of specific latency, loss, and
bandwidth characteristics. They may assign weights to
each of the three attributes, based on their perceived
importance. Unlike the highly configurable local links
in a Netbed cluster, connections between distributed
nodes traverse the Internet through uncontrollable links.
Therefore, our challenge is to map virtual nodes to phys-
ical resources such that the requested links best match
the actual characteristics of the corresponding inter-
node Internet paths. (Netbed’s database is updated fre-
quently with the measured latency and loss on theNxN
paths, and occasionally updated with bandwidth mea-
surements.)

This mapping is a variation of the NP-hard Quadratic
Assignment Problem. To provide an efficient, best-effort
solution, Netbed’swanassign is implemented as a ge-
netic algorithm [39]. Possible solutions are scored based
on how closely they match desired link characteristics.
For each solution, a normalized sum of errors-squared
is found for latency, loss rate, and bandwidth. A ge-
ometric mean of the three errors results in an overall
score. Wanassign evolves its answer by propagating
solutions with the least error.

We conducted two experiments to testwanassign’s
performance. The first mapped a wide variety of virtual
topologies onto a set of 16 physical, distributed nodes.
We varied the number of requested nodes from 4 to 16
and the number of requested links from 4 to 120, ex-
amining 48 pairs from this set to present a cross section
of experiment complexities. For each of these pairs, we
ran hundreds of tests on automatically-generated topolo-
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gies. Figure 7 shows the average time to find a solution
for each complexity. Interestingly, mappings using all
16 nodes were found much faster than mappings using
most, but not all, of the nodes. The results show that for
modestly-sized experiments, the algorithm does not con-
tribute noticeably to the total experiment setup time, nor
is it prohibitively slow for experiments involving most of
the available nodes.

The second experiment explored further scalability,
mapping a range of virtual topologies onto a synthetic
set of 256 distributed nodes. All experiments request-
ing 32 virtual nodes, as well as all sparse topologies,
mapped in a few minutes. For larger and denser topolo-
gies, up to 256 nodes and approximately 40 edges/node,
mapping time ranged from 10 minutes to 2 hours. We
expect to improve these results by an order of magnitude
using the following three techniques: less stringent and
more clever termination conditions; standard optimiza-
tion techniques, in particular memoizing; and paralleliz-
ing the algorithm, which is practical in either a shared
memory multiprocessor or on a cluster [39]. Finally, we
expect major additional improvement to come from “bin-
ning” the nodes and links into groups with similar char-
acteristics, dramatically reducing the search space.

5.4 Disk Reloading
An important feature of testbed control is the ability to
reload the contents of node local disks automatically.
This not only ensures node integrity, but also allows cus-
tom OS configurations. The two common approaches
for achieving this goal are to load complete disk im-
ages [14, 32, 35] or to work through the file system to
incrementally synchronize a target hierarchy with a ref-
erence copy (rsync [37], Unison [41]). There are five
reasons for preferring disk imaging. (1) While some-
times more efficient in terms of network bandwidth, on
our images, at least, the synchronization approach is

slower. rsync takes over 50% longer to compare file
timestamps on our typical image (80K inodes, 500MB
data) than Netbed’s disk loader takes to copy all the allo-
cated blocks. Comparing hashes of file contents takes
much longer. (2) Approaches that rely solely on file
timestamps cannot be used for security reasons, as fal-
sified timestamps allow modified files to corrupt the next
experiment. (3) Approaches working through the file
system cannot be used on corrupt target file systems, nor
(4) to install custom OS’s with unknown file systems. (5)
Bulk disk imaging is scalable through multicast-based
approaches. A third approach based on content hashes
of blocks, as in LBFS [23], may be worth investigating.

Policy: The policy for disk reloading presents a ten-
sion between the latency of typical experiment creation,
overall Netbed throughput, Netbed system complexity,
node robustness, and experiments’ security. Our policies
have evolved over time, driven by our tools, pressure on
resources, and experience.

Each node in a new experiment requires a clean
disk. However, disk reloading remains the most time-
consuming aspect of experiment creation and swap-in,
even though we have reduced it to less than 100 seconds.
Netbed’s current policy reloads each node’s disk with
the default image containing both FreeBSD and Linux.
This works well since most users request one of these
OSes, and if there are sufficient free nodes, the disks are
reloaded in the background and are immediately avail-
able for the next swap-in.

A troubling effect occurs, however, in the common
case of a single experimenter creating and tearing down
very similar experiments, in quick succession; this fre-
quently also happens with the batch queue. The nodes
are not available for the few (typically wasted) minutes
while reloading, during which time the user requests a
similar number of nodes for their next experiment. To
avoid this anomaly we currently pace the reloading of
freed nodes, instead of reloading them all at once. For
security reasons, we allow an un-reloaded node to be as-
signed only to an experiment in the same project as the
node’s previous experiment. This approach, however,
has robustness vulnerabilities, since the disk’s soft state
will not be reinitialized, and may have been changed by
the previous experiment—though that is rare.

Users can also specify an alternate disk image or par-
tition. In this case, the background disk reloading is
wasted, as the default image is overwritten by the user’s
custom one. Automated analysis of historical and ongo-
ing experiment creation and swap patterns is one promis-
ing way to attack this challenge.

Process: The procedure for disk reloading follows
the initial steps described in Section 3.5: the PXE BIOS
loads the initial bootstrap which in turn loads a small,
memory file system-based FreeBSD system used to run



the disk loader client. This client contacts an instance of
the disk loader server, downloading, uncompressing and
writing out the disk image. After completion, the node
reboots from the newly installed image.

We currently provide a small set of images containing
various versions of Linux and FreeBSD; we will soon
add Windows XP. Custom disk images can be used to
boot an unsupported OS, to load a newer (or older) ver-
sion of a supported OS, or to install a specialized version
of an existing image on multiple nodes.

The Netbed disk loader, termed “Frisbee” (the flying
disk) uses three main techniques to improve performance
from Netbed’s first loader, which took 29 minutes per
image. First, it carefully overlaps block decompression
and device I/O. Second, it uses a domain-specific com-
pression algorithm that uses file system information to
identify which parts of the disk need to be saved; it com-
presses these portions with standardzlib-based com-
pression. Third, it uses a custom reliable multicast proto-
col to deliver compressed images to clients, dramatically
reducing the required server bandwidth and improving
scalability. The result is that a standard FreeBSD im-
age requires 88 seconds to load onto a single node. It
also scales well; 80 nodes can be loaded simultaneously
with an average of only 97 seconds per node, and with all
nodes completing in 117 seconds. Frisbee’s performance
also compares favorably to commercial tools; in our ini-
tial tests, it was able to load our standard Linux image on
a single node in 77% of the time taken by Norton Ghost.

The compression algorithm exploits the fact that many
disks contain large swap partitions and mostly-empty file
systems, and looks at partition types and file system free-
block lists to find these. For example, one of our standard
FreeBSD images for a 3GB partition is over 80% unused,
and reduces to 156MB using Frisbee image compres-
sion, versus 473MB using naivezlib compression. In
addition to saving network bandwidth when transferring
the file, the file system-specific compression enables the
Frisbee decompression program to optionally skip, rather
than zero, the free file system blocks when writing the
disk image. This turned out to be very important: once
we had done standard compression and implemented a
multicast mechanism, writing to the disk became the bot-
tleneck. For the aforementioned FreeBSD disk image,
Frisbee wrote 550MB of actual decompressed data rather
than the full 3GB.

5.5 Scaling of Simulated Resources
Experiments can leverage simulation to multiplex sim-
ulated nodes onto a single physical node and to obtain
greater scalability. Since the simulator interacts with the
physical world throughnse, it must keep pace with real
time. Its ability to do so is dependent on the rate of
events that need to be processed, rather than the num-

ber of nodes or links per se. Towards achieving greater
scale, we have made several improvements and con-
tributed fixes tonse. We describe here a simple study
that achieves greater scale through simulation.

An instance ofnsesimulated 2Mb constant bit rate
UDP flows between pairs of nodes on 2Mb links with
50ms latencies. To measurense’s ability to keep pace
with real time, and thus with live traffic, a similar
link was instantiated inside the samensesimulation, to
forward live TCP traffic between two physical Netbed
nodes, again at a rate of 2Mb. On an 850MHz PC, we
were able to scale the number of simulated flows up
to 150 simulated links and 300 simulated nodes, while
maintaining the full throughput of the live TCP con-
nection. With additional simulated links, the through-
put dropped precipitously. We also measurednse’s TCP
model on the simulated links: the performance dropped
after 80 simulated links due to a higher event rate from
the acknowledgment traffic in the return path.

More complex hybrid topologies exposed unantici-
pated routing behavior. Incorrect routing arises when
an nsesimulation, running on a multihomed host, re-
lies on its kernel’s routing tables. The solution re-
quired Netbed’s global system perspective; it computes
the overall routes, using Unix policy routing mechanisms
(ipfw andipchains) to control the packet routes.

6 Validation and Testing
This section validates Netbed’s emulation capabilities
through micro- and macro-benchmarks. Since Netbed
is itself a complex and evolving distributed system, it
requires continual testing and validation. This section
therefore outlines a testing methodology intended to en-
sure Netbed’s continued accuracy.

6.1 WAN Emulator Validation
There are two concerns with using off-the-shelf PCs and
a general purpose operating system for emulation: first,
machines must be able to keep pace when emulated links
are operating at full speed; second, delays, bandwidths,
and packet loss rates should be emulated accurately.

Emulation nodes in Netbed run a FreeBSD 4.6 kernel
with Dummynet and polling device drivers. We run these
kernels with a clock frequency of 10000HZ to allow sub-
millisecond delay granularity, while the polling drivers
reduce interrupt load and provide improved precision.

As a capacity test, we generated streams of UDP
round-trip traffic between two nodes, with and without
an interposed emulator node. The emulator node showed
no adverse effects on 1518-byte packets; either configu-
ration easily saturated a 100Mb link. With 64-byte pack-
ets, the two nodes exchanged 55000 packets (3.5MB) per
second when connected directly versus 37000 packets



delay packet observed Dummynet adjusted Dummynet observednse adjustednse
(ms) size RTT stdev % err RTT % err RTT stdev % err RTT % err

0 64 0.177 0.003 N/A N/A N/A 0.238 0.004 N/A N/A N/A
1518 1.225 0.004 N/A N/A N/A 1.554 0.025 N/A N/A N/A

5 64 10.183 0.041 1.83 10.006 0.06 10.251 0.295 2.51 10.013 0.13
1518 11.187 0.008 11.87 9.962 0.38 11.586 0.067 15.86 10.032 0.32

10 64 20.190 0.063 0.95 20.013 0.06 20.255 0.014 1.28 20.017 0.09
1518 21.185 0.008 5.92 19.960 0.20 21.675 0.093 8.38 20.121 0.61

50 64 100.185 0.086 0.18 100.008 0.00 100.474 0.029 0.47 100.236 0.24
1518 101.169 0.013 1.16 99.943 0.05 102.394 3.440 2.39 100.840 0.84

300 64 600.126 0.133 0.02 599.949 0.0 601.690 0.546 0.28 601.452 0.24
1518 600.953 0.014 0.15 599.728 0.04 602.999 0.093 0.49 601.445 0.24

Table 1: Accuracy of Dummynet andnsedelay at maximum packet rate as a function of packet size and link delay. The 0ms measurement represents
the base overhead of the link. Adjusted RTT is the observed value minus the base overhead.

bandwidth packet observed Dummynet observednse
(Kbps) size bw (Kbps) % err bw (Kbps) % err

56 64 56.06 0.11 55.60 0.71
1518 56.67 1.89 56.63 1.12

384 64 384.2 0.05 376.3 2.00
1518 385.2 0.34 382.1 0.49

1544 64 1544.7 0.04 1444.5 6.44
1518 1545.8 0.11 1531.0 0.84

10000 64 10004 0.04 N/A N/A
1518 10005 0.05 9659.6 3.40

45000 1518 45019 0.04 39857 11.43

Table 2: Accuracy of Dummynet andnsebandwidth as a function of
link bandwidth and packet size.

(2.4MB) when joined by an emulator node. Since these
are round trip measurements, the packet rates are actually
twice the numbers reported.

To bound the accuracy and precision of emulation
nodes, we performed a series of experiments using a rep-
resentative range of delay, bandwidth, and packet loss
rate values coupled with high packet rates for both large
and small packets.

After establishing maximum emulation rates for large
and small packets, we ran a series of tests using those
packet rates with various delay, bandwidth, and loss rate
values, measuring both accuracy and precision. The de-
lay results are presented in Table 1. The 0ms rows rep-
resent the base overhead associated with interposition of
an emulation node. These results seem to indicate, and
further experimentation confirmed, that emulation node
overhead is proportional to the packet size. As indicated
in the “observed” column, small packets show noticeable
error with delays less than 10ms and large packets suffer
with delays less than 50ms. While both are tolerable for
wide-area emulation, we can improve accuracy by ad-
justing delays to compensate for emulation overhead. As
a first approximation, we scaled delays by the base over-
head shown in the 0ms case. The adjusted results, shown
in the “adjusted” column, are both accurate and precise.

To measure the bandwidth limiting capabilities of an
emulation node, we used one-way traffic. A sender node
sent packets through an emulation node to a consumer
node, which calculated bandwidth. Results are summa-

packet loss packet observed Dummynet observednse
rate (%) size loss rate % err loss rate % err

(%) (%)
0.8 64 0.802 0.2 0.819 2.37

1518 0.803 0.3 0.820 2.50
2.5 64 2.51 0.4 2.477 0.92

1518 2.47 1.1 2.477 0.92
12 64 12.05 0.4 11.88 1.00

1518 12.09 0.7 11.89 0.91

Table 3: Accuracy of Dummynet andnsepacket loss rate as a function
of link loss rate and packet size.

rized in Table 2.

Finally, using the same setup, we instead measured
packet loss rates as observed by the consumer. Results
are summarized in Table 3.

6.2 nseValidation

This section uses the methodology of Section 6.1 to val-
idate the observed latencies, bandwidths, and loss rates
induced byns’s emulation facility,nse, against their ex-
pected values.nse runs on a FreeBSD 4.5 kernel at
1000HZ. The simulation is configured with two nodes
and a duplex link connecting them. The physical node
runningnseinterposes two other traffic-generating phys-
ical nodes. This setup mimics Section 6.1, differing
only in packet rate. A maximum stable packet rate of
4000 packets per second was determined over a range of
packet rates and link delays using 64-byte and 1518-byte
packets. Note that the actual capacity is twice this value
due to the duplex link. With this capacity, we performed
experiments to measure the delay, bandwidth and loss
rates for representative values. The results are summa-
rized in Tables 1, 2 and 3. Netbed’s integration ofnseis
much less mature than its support for Dummynet. This
is reflected in the larger relative error rates ofnseband-
width and loss rates with respect to Dummynet. Integrat-
ing nsehas already uncovered a number of problems that
have since been solved; as we continue to gain experi-
ence withnse, we expect the situation to improve.



Live Internet Emulated
tics stddev retransmits tics stddev retransmits

Fast 29 0.00 1.10 28 0.67 1.10
Slow 21 0.73 1.70 21 0.52 2.80

Table 4: Median “tic” rates and packet retransmission counts achieved
by DOOM clients, both on live Internet and emulated links. Numbers
are repeated both for nodes with uniformly fast links and with some
intermixed slower links.

6.3 Validation Against a Wide-Area Network

This section validates Netbed’s emulation mechanisms
against a wide-area network: it compares two macro-
benchmarks run on a set of live Internet nodes and then
within a corresponding emulation. The first example
also demonstrates the transparency of Netbed’s hetero-
geneous resource specification and its ability to provide
a best-fit mapping between requested wide-area links and
live Internet links.

Distributed Multiplayer Game: This benchmark
evaluates a derivative of DOOM on four network config-
urations, making at least four repeated runs on each. In
these scenarios, five synthetic clients communicate using
a simple protocol. At a target rate of 30 times per sec-
ond, each client sends unicast packets to all other clients,
doing so only after receiving all packets from the prior
period. We specified the desired latency and bandwidth
of the ten links comprising a fully-connected graph be-
tween the five clients.

The first configuration specified a node type of
pcvremote to obtain wide-area “virtual” nodes. In this
sense, virtual means the nodes may be multiplexed onto
a single physical distributed node. Netbed’s distributed
mapping service, the genetic algorithm described in Sec-
tion 5.3, found the best-matching fit from among the dis-
tributed nodes with available virtual node “slots.”

The second configuration used the same link specifi-
cation, but instead of mapping to the live Internet, re-
quested emulation on local nodes and links. Making that
switch to an entirely different experimental environment
required changing only one line within a Tcl loop that set
the node type. The third and fourth configurations were
analogous to the first two configurations, but requested a
few substantially slower links.

The results were similar between emulation and the
live Internet, as presented in Table 4. The two key met-
rics in DOOM are “tic rate” and packet retransmission.
Tic rate in this example is affected primarily by latency,
and represents the rate at which progress is made in
the system—a higher tic rate indicates faster progress.
Packet retransmission rates are governed by bandwidth
and packet loss rate; there are typically only a handful of
retransmitted packets per trial.

Wide-Area Database Replication: Researchers at
Johns Hopkins University are studying group com-
munication mechanisms for wide-area replication of
databases. In the course of their research, they com-
pared results from the CAIRN wide-area network [7]
to those obtained emulating the observed CAIRN de-
lay and bandwidth characteristics with Netbed. Their
application-level measurements of communication char-
acteristics matched well [3]. Netbed offered two advan-
tages over CAIRN: First, with Netbed’s control, they
were able to study the system-wide effects caused by
varying network characteristics. Second, they were able
to obtain a set of nodes of a consistent type.

6.4 Testing

Netbed presents unusual testing challenges: First, it is in-
herently coupled to physical artifacts which, unlike soft-
ware state, can not be cloned. This makes full test and
regression runs impossible. Second, its mission is to pro-
vide a public evaluation platform for arbitrary programs.
This mission simultaneously puts a premium on accu-
racy and precision, while presenting a fundamentally un-
knowable workload. Combined, these two reasons also
mean that Netbed must run continuously, even as its soft-
ware radically evolves.

We have countered with the following procedures.
First, we have created a separate 8-node Netbed,
Minibed. As an independent Netbed instance, Minibed
is also important to our future work on federation.

Second, we have integrated support for testing
throughout the Netbed software suite. In addition to the
normal operating mode, all of our software supports a
“test mode” in which any operations that normally affect
hardware are prevented. It allows us to make duplicate
installations of Netbed databases and software, includ-
ing web interfaces and daemons, and to run tests of the
software without requiring exclusive access to hardware.
We also have incorporated a “full-test mode,” in which
we can reserve hardware in the master Netbed database
and use that hardware in conjunction with the duplicate
database and software. This enables the test environ-
ment to affect this hardware, which is ignored by the
“main” Netbed system. This feature is made possible
by database-driven, node-specific redirection to alternate
daemons and databases.

Third, we have developed a comprehensive regression
test suite that is run nightly and optionally at compile
time. However, we currently only systematically test
for software bugs. To monitor Netbed accuracy, we are
adding additional point tests as well as end-to-end tests.



7 New Experimental Techniques
This section showcases the novel experimental opportu-
nities made possible by Netbed. The first case study cap-
italizes on Netbed’sns compatibility to automate com-
parison of emulated and simulated results. Other systems
have leveraged a similar synergy between simulation and
live experimentation [6], but required adoption of a non-
standard programming interface. The second case study
shows the importance of automation.

7.1 TCP Dynamics
Network simulators, such asns, have proven invaluable
in studying TCP behavioral dynamics [11]. Neverthe-
less, with its abstractions such as one-way protocols with
simplified window and ACK behavior, simulation should
be validated empirically. Ironically, the potential for
bugs and unspecified design parameters mean that real
implementations do not necessarily define valid behav-
ior, either. Fortunately, the notion of “deviant behav-
ior” [9] allows an experimenter simultaneously to gain
confidence in the validity of simulation and the correct-
ness of implementation. This case study leverages exist-
ing simulation experiments to drive emulated scenarios.
This approach makes an existing corpus of test scenar-
ios amenable to live experimentation. Thus, corner cases
with known results can be applied as regression tests to
real network stacks to evaluate their conformance.

The ns maintainers run nightly regression tests [24].
Netbed’s ability to parsens scripts means these scripts
can instead be used to validatens behavior against em-
ulation. Further, the tests may drive regression testing
of a kernel implementation or a comparison across sev-
eral implementations. This section presents preliminary
results that show the feasibility of automating this pro-
cess. The study of low-level, fine-grained TCP dynamics
shows Netbed’s flexibility in modulating a virtual net-
work at various scales.

Our framework executes a test script withinns and
parses output trace files to determine where to gener-
ate traffic, which packets are dropped, and which links
suffer losses. It then configures a network topology
via Netbed’s event system and passes a list of target
drop packets to the correct Dummynet node (we have
extended Dummynet to drop packets by ordinal packet
number). Again via the event system, the framework
starts a program object to record packet traces and finally
invokes the traffic generators.

Figure 8 shows a simple test from thens validation
suite that drops a single packet in a TCP New Reno
stream. Thensand FreeBSD 4.5 senders detect a Triple
Duplicate ACK and perform a Fast Retransmit imme-
diately. They behave similarly; over 10 experiments
FreeBSD 4.5 achieves a mean throughput of 50232Bps
(standard deviation 4.09) andns achieved 48090Bps.

By contrast, we discovered that FreeBSD 4.3 does not
retransmit until triggered by a timer expiration, which
greatly degrades throughput. The behavior in FreeBSD
4.3 is caused by an uninitialized variable. A thorough
application of the full suite of TCP tests may well un-
cover additional subtle bugs that would be exceedingly
difficult to detect and reproduce without Netbed’s fine-
grained control.

7.2 The Armada I/O Framework
Simulation allows an experimenter to effortlessly explore
a large parameter space. Using Netbed’s programmatic
ns interface to loop over a configuration space and exer-
cising its distributed event system to affect link character-
istics, an experimenter has similar power over emulation.
Oldfield and Kotz [30] used these techniques in evaluat-
ing Armada [29], a file system for computational grids.
Armada’s performance is highly dependent on link band-
width, latency, and packet loss rate. The authors used
Netbed’s batch system to evaluate every possible com-
bination of 7 bandwidths, 5 latencies, and 3 application
parameter settings on four different configurations on a
set of 20 nodes, performing a total of 420 different tests
in 30 hours, averaging 4.3 minutes each.

8 Related Efforts
Network Emulation: ModelNet [42] is a new net-
work emulation system focused on scalability. It uses
a small gigabit cluster, running a much extended ver-
sion of Dummynet, which is able accurately to emulate
an impressively large number of moderate speed links.
This core routes packets between applications running
on additional “edge nodes.” Applications can be multi-
plexed on edge nodes, without resource isolation. Mod-
elNet shares some of Netbed’s automatic configuration
of physical resources by including tools to take a target
topology specified in a high-level format and map it into
ModelNet mechanisms; it provides the added capability
of optionally distilling the topology to trade accuracy for
scalability.

ModelNet emphasizes scalability through a high-
performance implementation of emulated links. This
contrasts with our emphasis on complete accuracy
through conservative resource allocation, exposure of all
resources (including link emulation mechanisms) to ma-
nipulation by experimenters, and integration of disparate
techniques into a common framework.

ModelNet’s core contributions are complementary to
Netbed’s; indeed, we intend to work together to integrate
ModelNet into Netbed. This combination should bring
Netbed’s rich user interface and ease of use to Model-
Net, while adding a scalable new mechanism to those
available through Netbed’s common abstractions.
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Figure 8: New Reno One Drop Test: (a)ns (b) FreeBSD 4.5 (c) FreeBSD 4.3 (different y-axis scale)

Yet another link emulation technique is trace modu-
lation [27], which recreates observed end-to-end charac-
teristics of a wireless network. Interposing trace modu-
lation instead of Dummynet would bring wireless emu-
lation to Netbed.

There have been a large number of single-node net-
work emulation efforts. These include hitbox [1],
ONE [2], NIST Net [26], and Rice’s support for evaluat-
ing their OS optimizations [31]. Another category is rep-
resented by the “Orchestra” fault-injection system [8].
With a few exceptions, these single node emulators were
tailored for a specific research application. A few multi-
node network emulators have been planned or built, but
only for specific projects. One of the earliest and largest
was a particular configuration of 12 workstations at USC
in 1994, used to study TCP Vegas [1]. They cite an emu-
lator effort at Bell Labs [19], which apparently started to
build a more general emulator.

Distributed Network Testbeds: The “Access” vi-
sion [5] originated the idea of a set of small testbeds,
distributed over dozens of sites. The Access vision over-
lapped with Netbed in our shared emphasis on com-
pletely replaceable node software and our operational
model of a Web-accessible master control host. How-
ever, Access did not intend to provide an emulation fa-
cility nor did it intend to offer integration. They did rec-
ognize a need we identified only later, for real wide-area
links for some experimenters.

PlanetLab [33] is a new effort that plans to provide
to researchers a large number (1000) of centrally ad-
ministered, geographically distributed PCs, along with
a modest number of clusters. This testbed, currently in
its initial phase, would be used for arbitrary research,
yet provide a transition avenue to production deployment
of overlay network services. Unlike Netbed, PlanetLab
plans to emphasize the design of APIs and services that
can be shared by higher-level services.

Netbed’s distributed node support is similar to what
is planned for PlanetLab’s next phase. Although with
a different primary goal, PlanetLab’s notion of a “ser-
vice” across a “slice” of PlanetLab nodes is similar to
Netbed’s “experiment,” since Netbed experiments can be

of arbitrary duration. An experiment is richer in that
it contains flexible notions of topology, swapping, hard
state, soft state, and optional shared persistent storage.
Like Netbed, PlanetLab’s current testbed management
is centralized. Their future plans emphasize unbundled
management in order to facilitate research into manage-
ment; our plans emphasize federation, in order to achieve
greater scalability and another route to overlay service
deployment. In fact, we are jointly exploring providing
access to PlanetLab through Netbed’s interface.

Network Simulators: Network simulators success-
fully isolate protocol dynamics but may do so at the
expense of accuracy. Therefore, results from simula-
tors may not be valid indicators of deployed perfor-
mance [11]. Brakmo and Peterson [6] highlight differ-
ences between simulated and implemented TCP proto-
cols. Theirx-kernel-based simulator avoids inaccuracies
by using actual protocol code, as does recent work inte-
grating Click elements intons [25]. However, both sys-
tems rely on non-standard protocol implementations.

Cluster Management: Through its virtualization
of cluster hardware and software, “Emulab Classic”—
Netbed’s cluster-based emulation portion that has been
in public production use since October 2000—is rele-
vant far beyond network experimentation. In its flexi-
ble and efficient allocation of all hardware and software
resources (except shared persistent storage) and ability
to isolate virtual sub-clusters, Emulab overlaps many or
most of the low level facilities in “computing utility” ef-
forts such as IBM’s Océano [28], HP’s Utility Data Cen-
ters, and Duke’s Cluster-on-Demand [22]. Netbed has
the flexible interfaces and all the needed mechanisms—
including dynamically adding or removing nodes in an
experiment—to support reconfiguration by Service Level
Agreements or by sub-cluster management systems.

9 Conclusion
Acting as a virtual machine for network experimenta-
tion, Netbed virtualizes and integrates simulated, emu-
lated, and distributed nodes and links. Through a rich
user interface, efficiency, and automation, Netbed en-
ables qualitatively new kinds of experimentation across



these mechanisms.
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