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1. Introduction 

1.1. Analytic Function Spaces  
In [17], Wulan and Wu introduced the so called 𝑄𝑄𝐾𝐾 

spaces. These spaces consist of analytic functions on the 
unit open complex disk 𝔻𝔻 = {𝑧𝑧 ∈  ℂ: |𝑧𝑧| < 1} such that 

 ( ) ( )( )' 2| | , ,f z K g z a dxdy < ∞  

where 𝐾𝐾: [0,∞) → [0,∞) is a non-decreasing and righ-
continuous function. 

Green's function 𝑔𝑔(𝑧𝑧,𝑎𝑎)  in the unit disk with 
logarithmic singularity at 𝑎𝑎 ∈ 𝔻𝔻 is given by 

 ( ) 1, ln ,
| ( ) |a

g z a
zϕ

=  

where 𝜑𝜑𝑎𝑎(𝑧𝑧) = 𝑎𝑎−𝑧𝑧
1−𝑎𝑎�𝑧𝑧

. 
Moreover, 𝑓𝑓 ∈ 𝑄𝑄𝐾𝐾,0 if 

 ( ) ( )( )' 2
| | 1
lim | | , 0.

Da
f z K g z a dxdy

→
=∫  

For more results of 𝑄𝑄𝐾𝐾 spaces see [5,6,11] and [16]. It 
is known that the spaces 𝑄𝑄𝐾𝐾 are Banach spaces under the 
norm 

 ( )| 0 |K QKf f f= +  

for every 𝑓𝑓 ∈ 𝑄𝑄𝐾𝐾  and 𝑎𝑎 ∈ 𝔻𝔻. Moreover, it is known that the 
Green's function 𝑔𝑔(𝑧𝑧,𝑎𝑎) can be replaced by the weight function 
1 − |𝜑𝜑𝑎𝑎(𝑧𝑧)|2. 

There are a number of ways we can further generalize 
the 𝑄𝑄𝐾𝐾 spaces; see [4] and [14] for example. 
Remark 1.1 

If 𝐾𝐾(𝑡𝑡) = 𝑡𝑡𝑝𝑝 , 0 ≤ 𝑝𝑝 < ∞,  then 𝑄𝑄𝐾𝐾 = 𝑄𝑄𝑝𝑝  see [5]. In 
particular, if 𝐾𝐾(𝑡𝑡) = 1, then 𝑄𝑄𝐾𝐾  is the Dirichlet space 𝒟𝒟. 
Moreover, if 𝐾𝐾(𝑡𝑡) = 𝑡𝑡,  then 𝑄𝑄𝐾𝐾  coincides with BMOA, 
the space of analytic functions of bounded mean 
oscillation. 

Two magnitudes 𝐴𝐴 > 0 and 𝐵𝐵 > 0 are similar, denoted 
by 𝐴𝐴 ≈ 𝐵𝐵 if there exist two non-negative real constants 𝐶𝐶1 
and 𝐶𝐶2 such that, 𝐶𝐶1𝐴𝐴 ≤ 𝐵𝐵 ≤ 𝐶𝐶2𝐴𝐴. 

1.2. Quaternion Function Spaces 
 

In this paper we will work in ℍ,  the skew field of 
quaternions, that is, each element 𝑧𝑧 ∈ ℍ, can be written in 
the form 

 0 1 1 2 2 3 3: ,a a a e a e a e= + + +  

where 𝑎𝑎𝑘𝑘 ∈ ℝ, 𝑘𝑘 = 0,1,2,3  and 1, 𝑒𝑒1, 𝑒𝑒2, 𝑒𝑒3  are the basis 
elements of ℍ . For these elements we have the 
multiplication rules 

 

2 2 2
1 2 3

1 2 2 1 3

2 3 3 2 1

3 1 1 3 2

1,
,
,
.

e e e
e e e e e
e e e e e
e e e e e

= = = −

= − =

= − =

= − =

 

The product is extended by linearity. The quaternionic 
conjugation 𝑎𝑎�  is given by 𝑎𝑎� = 𝑎𝑎0 − 𝑎𝑎1𝑒𝑒1 − 𝑎𝑎2𝑒𝑒2 − 𝑎𝑎3𝑒𝑒3 
and we have the property 

 2 2 2 2 2
0 1 2 3| | .aa aa a a a a a= = = + + +  

Therefore, if 𝑎𝑎 ∈ ℍ ∖ {0}, the quaternion 

 21 /: .a a a− =  

Also, the norm satisfies |𝑎𝑎𝑎𝑎| = |𝑎𝑎||𝑎𝑎|  for each 𝑎𝑎, 𝑎𝑎 ∈
ℍ. 

We identify each point 𝑥𝑥 = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) ∈ ℝ3  with a 
quaternion 𝑥𝑥 of the form 𝑥𝑥 = 𝑥𝑥0 + 𝑥𝑥1𝑒𝑒1 + 𝑥𝑥2𝑒𝑒2.  

Let 𝔹𝔹 ∈ ℝ3  be the unit ball in the real three-
dimensional space, with boundary 𝑆𝑆 = 𝜕𝜕𝔹𝔹. For 𝑟𝑟 > 0 and 
𝑎𝑎 ∈ ℝ3, we denote by 𝔹𝔹(𝑎𝑎, 𝑟𝑟) the ball with center 𝑎𝑎 and 
radius 𝑟𝑟. 

Let 𝛺𝛺  be a domain in ℝ3 , then we will consider ℍ -
valued functions defined in 𝛺𝛺  (depending on 𝑥𝑥 =
(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3)): 
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 : .f Ω→   

The notation 𝐶𝐶𝑝𝑝(𝛺𝛺;ℍ),𝑝𝑝 ∈ ℕ ∪ {0} , has the usual 
component-wise meaning. On 𝐶𝐶1(𝛺𝛺;ℍ)  we define 
ageneralized Cauchy-Riemann operator 𝐷𝐷 by 

 1 2
0 1 2

,f f fDf e e
x x x
∂ ∂ ∂

= + +
∂ ∂ ∂

 

and it's conjugate operator by 

 1 2
0 1 2

.f f fDf e e
x x x
∂ ∂ ∂

= − −
∂ ∂ ∂

 

The solutions of 𝐷𝐷𝑓𝑓 = 0, 𝑥𝑥 ∈ 𝛺𝛺,  are called (left) 
hyperholomorphic (or monogenic) functions and 
generalize the class of holomorphic functions from the 
one-dimensional complex function theory. For more 
details about quaternionic analysis and general Clifford 
analysis, we refer to [1], [8] and [15] and others. 

We denote by ℳ(𝔹𝔹) the class of hyperholomorphic (or 
monogenic) functions on 𝔹𝔹 . For 𝑎𝑎 ∈ 𝔹𝔹  the Möbius 
transform 𝜑𝜑𝑎𝑎(𝑥𝑥): 𝔹𝔹⟶ 𝔹𝔹 is defined by 

 ( ) .
1a
a xx

ax
ϕ −

=
−

 

Furthermore, let 

 ( ) 1, 1
| ( ) |a

g z a
zϕ

= −  

be a multiple scalar of the fundamental solution of the 
Laplacian in ℝ3  composed with the Möbius transform 
𝜑𝜑𝑎𝑎(𝑥𝑥),  i.e. 𝑔𝑔(𝑧𝑧,𝑎𝑎)  is the modified Green's function in 
quaternion sense. 

For 𝑎𝑎 ∈ 𝔹𝔹  and 0 < 𝑅𝑅 < 1  the pseudo-hyperbolic ball 
𝑈𝑈(𝑎𝑎,𝑅𝑅) is defined by 

 ( ) ( ){ }, : .aU a R x z Rϕ <  

This is an Euclidean ball, with center and radius given 
respectively by: 

 
( ) ( )2 2

2 2 2 2

1 1 | |
, .

1 | | 1 | |

R a a R

R a R a

− −

− −
 

Let 𝛼𝛼 > 0, the 𝛼𝛼-Bloch space ℬ𝛼𝛼  of quaternion valued 
functions given by (see [2,9]): 

 ( ) ( ) ( )2( ) : : sup 1 .
a

f f Df x x
αα

∈

 
= ∈ − 
 

   

The space ℬ
3
2  is called the quaternion Bloch space ℬ. 

The little quaternion 𝛼𝛼-Bloch space ℬ0
𝛼𝛼  is a subspace of 

ℬ𝛼𝛼  consisting of all 𝑓𝑓 ∈ ℬ𝛼𝛼  such that 

 ( ) ( )2

| | 1
lim 1 0.
a

Df x x
α

→
− =  

The quaternion Dirichlet space 𝒟𝒟 is given by: 

 ( ) ( ){ }2( ) : : .f f Df x dx= ∈ < ∞∫   

Let 𝐾𝐾: (0,∞) → [0,∞)  be a non-decreasing function. 
Define 𝐼𝐼𝐾𝐾,𝑔𝑔�𝑓𝑓(𝑎𝑎)� ∶ 𝔹𝔹 → [0,∞) as  

 ( )( ) ( ) ( )2
, sup ( , ) .K g

a
I f a Df x K g x a dx

∈
= ∫

 

The spaces 𝒬𝒬𝐾𝐾 of quaternion valued functions given by 

 ( ) ( ) ( )( ){ },: : .K K gf f I f a= ∈ < ∞   

Moreover, the little quaternion 𝒬𝒬𝐾𝐾,0  space consists of 
those 𝑓𝑓 ∈ ℳ(𝔹𝔹) for which 

 ( ) ( )( )2

1
lim , 0.
a

Df x K g x a dx
→

=∫  

Remark 1.2 
Obviously, the quaternion 𝒬𝒬𝐾𝐾  spaces are not Banach 

spaces, also are not linear spaces. Nevertheless, if we 
consider a small neighborhood of the origin 𝑁𝑁𝜀𝜀 , with an 
arbitrary but fixed 𝜀𝜀 > 0, then we can add the 𝐿𝐿1-norm of 
the function 𝑓𝑓  over 𝑁𝑁𝜀𝜀  to the seminorms, so 𝒬𝒬𝐾𝐾  spaces 
will become Banach spaces. 
Remark 1.3 

It should be remarked that if we put 𝐾𝐾(𝑡𝑡) = 𝑡𝑡𝑝𝑝 ,𝑝𝑝 < 3, 
then 𝒬𝒬𝐾𝐾 = 𝒬𝒬𝑝𝑝  (see [7]). Also, if 𝐾𝐾(𝑡𝑡) = 1, then 𝒬𝒬𝐾𝐾 = 𝒟𝒟, 
the quaternion Dirichlit space.  

Let 𝐾𝐾: (0,∞) → [0,∞)  be a non-decreasing function, 
consider the following problems: 

1. What conditions must 𝐾𝐾 have in order that 𝒬𝒬𝐾𝐾 to 
be non-trivial? 

2. Which properties of 𝐾𝐾1  and 𝐾𝐾2  imply that 
𝒬𝒬𝐾𝐾1 = 𝒬𝒬𝐾𝐾2? 

3. For which a necessary and sufficient conditions 
on 𝐾𝐾 so that 𝒬𝒬𝐾𝐾 = ℬ ? 

The main aim of this paper is to study these 𝒬𝒬𝐾𝐾 spaces 
and their relations to the above mentioned quaternionic 
Bloch space. We shall develop a general theory for 
quaternionic 𝒬𝒬𝐾𝐾 spaces which answers these questions and 
gives most basic properties of 𝒬𝒬𝐾𝐾  and 𝒬𝒬𝐾𝐾,0  spaces. Our 
results are extensions of the results due to Essén and 
Wulan (see [5]) in quaternion sense. 

The concept may be generalized in the context of 
Clifford analysis to arbitrary real dimensions. We will 
restrict us for simplicity to ℝ3  and quaternion-valued 
functions as (the lowest non-commutative case) a model 
case. For more studies on quaternion function spaces, we 
refer to [2,3,7,10] and others. 

We will need the following lemma in the sequel (see 
[12], Lemma 2.2, if 𝑝𝑝 = 2): 
Lemma 1.1 

Let 𝑓𝑓 ∈ ℳ(𝔹𝔹)  and let 0 < 𝑅𝑅 < 1 . Then for every 
𝑎𝑎 ∈ 𝔹𝔹, we have 

 ( )
( )
( )

( )( )

32
2 2

4 ,3 2

1
,

1
U a r

C a
Df x Df x dx

R R

−
−

≤
−

∫  (1) 

where 768 .C
π

=  

Remark 1.4 
If we change the variables 𝑥𝑥 = 𝜑𝜑𝑎𝑎(𝑤𝑤)  (the Jacobian 

determinant 
32

2
1 | |

|1 |
a

aw

 −
  − 

 has no singularities). In 

quaternion sense, the problem is that, 𝐷𝐷�𝑓𝑓(𝑥𝑥)  is 
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hyperholomorphic, but after the change of variables 
𝐷𝐷�𝑓𝑓(𝜑𝜑𝑎𝑎(𝑤𝑤)) is not hyperholomorphic. 

But we know from [13] that 1−𝑤𝑤�𝑎𝑎
|1−𝑎𝑎�𝑤𝑤 |2 𝐷𝐷�𝑓𝑓(𝜑𝜑𝑎𝑎(𝑤𝑤))  is 

again hyperholomorphic. So, we can solve this problem 
by the following lemma (see [10], Lemma 2.2): 
Lemma 1.2 

Let 𝑓𝑓 ∈ ℳ(𝔹𝔹) and let 𝑓𝑓𝑎𝑎 = 𝑓𝑓 ∘ 𝜑𝜑𝑎𝑎  and let 𝛹𝛹𝑓𝑓𝑎𝑎 :𝔹𝔹 → ℍ 
given by 

 ( ) ( )( )2
1 .
1

f aa
xax Df x

ax
ϕ−

Ψ ≤
−

 (2) 

Then 𝛹𝛹𝑓𝑓𝑎𝑎 ∈ ℳ(𝔹𝔹)  and �𝛹𝛹𝑓𝑓𝑎𝑎 �
2

 is a subharmonic 
function. 

We also refer to [15] who studied this problem for the 
four-dimensional case already in 1979. 

2. 𝐐𝐐𝐊𝐊 –spaces in Clifford Analysis 
In this section, relations between 𝒬𝒬𝐾𝐾 and Bloch spaces, 

which have been attracted considerable attention are given 
in quaternion sense. Our results are extensions of the 
results due to Essen and Wulan (see [5]) in quaternion 
sense. We consider some essential properties of 𝒬𝒬𝐾𝐾 spaces 
of quaternion-valued functions as basic scale properties. 

For a non-decreasing function 𝐾𝐾: (0,∞) → [0,∞)  we 
say that the space 𝒬𝒬𝐾𝐾  is trivial if 𝒬𝒬𝐾𝐾  contains only 
constant functions. Whether the space 𝒬𝒬𝐾𝐾 is trivial or not 
depends on the integral 

 1 2
0

1 .rK r dr
r
− 

 
 ∫  (3) 

Proposition 2.1 
(i) If the integral (3) is divergent, then the space 𝒬𝒬𝐾𝐾 

is trivial. 
(ii) If the integral (3) is convergent, then 𝒬𝒬𝐾𝐾  ⊂ ℬ. 

Proof: 
(i) For 𝑎𝑎 ∈ 𝔹𝔹,𝑓𝑓 ∈ ℳ(𝔹𝔹)  and 𝑓𝑓𝑎𝑎 = 𝑓𝑓 ∘ 𝜑𝜑𝑎𝑎 .  Let 

𝛹𝛹𝑓𝑓𝑎𝑎 :𝔹𝔹 → ℍ  given by (2). Then 𝛹𝛹𝑓𝑓𝑎𝑎  is a 
hyperholomorphic function and �𝛹𝛹𝑓𝑓𝑎𝑎 �

2
 is a subharmonic 

function. By Lemma 2.1, after a change of variables 
𝑥𝑥 = 𝜑𝜑𝑎𝑎(𝑤𝑤),  we have �𝛹𝛹𝑓𝑓𝑎𝑎 (0)� = |𝐷𝐷�𝑓𝑓(𝑎𝑎)|(1 − |𝑎𝑎|2)3. 
Assume that there exists 𝑓𝑓 ∈ 𝒬𝒬𝐾𝐾 such that 𝛹𝛹𝑓𝑓𝑎𝑎 (0) ≠ 0 for 
some 𝑎𝑎 ∈ 𝔹𝔹. 

By subharmonicity of �𝛹𝛹𝑓𝑓𝑎𝑎 �
2, we have 

 

( ) ( )( )

( )

2

2 32
2

2 21
0

,

1 | | (1 | | )( )
| | |1 |

12 0 .

fa

fa

Df x K g x a dx

y ay K dy
y ay

rK r dr
r

∞

π

≥

 − −
= Ψ  

− 
− ≥ Ψ  

 

∫

∫

∫




 (4) 

Thus the integral (3) must be convergent and we have 
proved (i).  

(ii) Conversely, if the integral (3) is convergent and 
𝑓𝑓 ∈ 𝒬𝒬𝐾𝐾 , it follows from the inequality (4) that ℬ(𝑓𝑓) < ∞, 
i.e., we have 𝒬𝒬𝐾𝐾  ⊂ ℬ. This completes the proof.  

The convergence of (3) is related to the growth order of 
𝐾𝐾.  The log-order of the real-valued function 𝐾𝐾(𝑟𝑟)  is 
defined as 

 log log ( )lim .
logr

K r
r∞

ρ
→

=  

If 0 < 𝜌𝜌 < ∞,  the log-type of the quaternion-valued 
function 𝐾𝐾(𝑟𝑟) is defined as 

 log ( )lim .
r

K r
rρ∞

σ
+

→
=  

We always assume that the non-decreasing function 𝐾𝐾 
is differentiable and satisfies 𝐾𝐾(𝑡𝑡) = 𝐾𝐾(1) > 0  if 𝑡𝑡 ≥ 1 
and 𝐾𝐾(2𝑡𝑡) ≈ 𝐾𝐾(𝑡𝑡)  if 𝑡𝑡 ≥ 0.  We assume also that the 
integral (3) is convergent, otherwise, 𝒬𝒬𝐾𝐾 contains constant 
functions only. 

The following result was proved in [3]: 
Proposition 2.2 

If the log-order 𝜌𝜌  and the log-type 𝜎𝜎  of a non-
decreasing function 𝐾𝐾(𝑟𝑟)  satisfy one of the following 
conditions: 

(1) 𝜌𝜌 > 1, 
(2) 𝜌𝜌 = 1 and 𝜎𝜎 > 3. 
Then the space 𝒬𝒬𝐾𝐾 is trivial. 

Remark 2.1 
In the critical case 𝜌𝜌 = 1 and 𝜎𝜎 = 3, 𝒬𝒬𝐾𝐾 may be trivial 

or nontrivial. 
From now on and through the remainder of Sections 2 

and 3 we assume that the function 𝐾𝐾: (0,∞) → [0,∞) is 
non-decreasing and that the integral (3) is convergent. 
Theorem 2.1 

Assume that 𝐾𝐾1(1) > 0 and set  

 ( )
( )

1
2

1

, 0 1;
( )

1 , 1 .
K r r

K r
K r

 < ≤=  ≤ < ∞
 

Then 𝒬𝒬𝐾𝐾1 = 𝒬𝒬2. 
Proof: 

Since 𝐾𝐾1 is non-decreasing and 𝐾𝐾2 ≤ 𝐾𝐾1, it is clear that 
𝒬𝒬𝐾𝐾1 ⊂ 𝒬𝒬𝐾𝐾2 .It remains to prove that 𝒬𝒬𝐾𝐾2 ⊂ 𝒬𝒬𝐾𝐾1 . We note 
that 

 
( )
( )

, 1; ( ,1/ 2),

, 1; ( ,1/ 2).

g x a x U a

g x a x U a

> ∈

≤ ∈
 

Thus 𝐾𝐾1(𝑔𝑔(𝑥𝑥,𝑎𝑎)) ≤ 𝐾𝐾2(𝑔𝑔(𝑥𝑥,𝑎𝑎))  in 𝔹𝔹 ∖  𝑈𝑈(𝑎𝑎, 1/2).  It 
suffices to deal with integrals over 𝑈𝑈(𝑎𝑎, 1/2). 

Now we let 𝑓𝑓 ∈ 𝒬𝒬𝐾𝐾2  then for 𝑎𝑎 ∈ 𝔹𝔹, we have 

 

( ) ( )( )

( ) ( )( )

( )

2
1( ,1/2)

2 2 3
1( ,1/2)

1/22 2 3 2
10

,

(1 | | ) ,

1(1 ) .

U a

U a

Df x K g x a dx

f x K g x a dx

rf r K r dr
r

−

−

≤ −  

− ≤ −      

∫

∫

∫





 

By condition (3), the last integral above is convergent. 
This shows that 𝑓𝑓 ∈ 𝒬𝒬𝐾𝐾1  and Theorem 3.1 is proved. 

The significance of Theorem 3.1 is that the space 𝒬𝒬𝐾𝐾 
only depends on the behavior of 𝐾𝐾(𝑟𝑟) for 𝑟𝑟 close to 0. In 
particular, when studying 𝒬𝒬𝐾𝐾  spaces, we can always  
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assume that 𝐾𝐾(𝑟𝑟) = 𝐾𝐾(1) for 𝑟𝑟 ≥ 1. However, we do not 
make this assumption in our main theorems. 
Proposition 2.3 

Let 𝐾𝐾: (0,∞) → [0,∞).  Then, a monogenic function 
𝑓𝑓 ∈ ℳ(𝔹𝔹) belongs to the Bloch space ℬ  if and only if 
there exists an 𝑅𝑅 ∈ (0,1) such that 𝐾𝐾 �1−𝑅𝑅

𝑅𝑅
� > 0 and 

 ( ) ( )( )( )
2

,
sup , .

U a Ra
Df x K g x a dx

∈
< ∞∫


 (5) 

Proof: 
If 𝑓𝑓 ∈ ℬ, by the argument in the proof of Theorem 3.1, 

the supremum in (5) is finite for any 𝑅𝑅 ∈ (0,1). 
Conversely, if the supremum in (5) is finite, then 

 

( )( )

( ) ( )( )( )

2
,

2
,

sup

1 sup , .
1

U a Ra
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Df x dx

Df x K g x a dx
RK

R

∈

∈
≤ < ∞

− 
 
 

∫

∫




 

The following result gives a characterization of the 
quaternion Bloch space ℬ by quaternion 𝒬𝒬𝐾𝐾 spaces. 
Theorem 2.2 

Let 𝐾𝐾: (0,∞) → [0,∞), then 𝒬𝒬𝐾𝐾 = ℬ if and only if 

 1 2 3 2
0

1(1 ) .rr K r dr
r

− − − < ∞ 
 ∫  (6) 

Proof: 
Let us first assume that (6) holds. For 𝛼𝛼 > 0, we have 

 ( ) ( )2(1 | | ) .x Df x fα α− ≤   

Then, for 3
2

α = , we deduce that 
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x
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x
ϕ

−

−

≤ −  

 −
≤ −      
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∫

∫
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Here, we used that the Jacobian determinant is 

 ( )
2

2
1

, .
|1 |

a
J a x
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−
=
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Now, using the equality 

 ( )
( )( )2 2

2
2

1 1
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1
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a x
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ϕ
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we obtain that, 
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r
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∫

∫




 

Then, we have ℬ ⊂ 𝒬𝒬𝐾𝐾. 
To prove that 𝒬𝒬𝐾𝐾 ⊂  ℬ, we assume that 𝑓𝑓 ∈ ℬ. For a 

fixed 𝑅𝑅 ∈ (0,1) let  

 ( ) { }, : 1 .E a R x x a R a= ∈ − < −  

Then, we have 
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By Lemma 1.1, we obtain 
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which implies that, 
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This completes the proof. 
The importance of Theorem 2.2 is to give us a 

characterization for the quaternionic Bloch space by the 
help of integral norms of 𝒬𝒬𝐾𝐾 spaces of quaternion valued 
functions. 

Also, with the same arguments used to prove the 
previous theorem, we can prove the following theorem for 
characterization of little hyperholomorphic Bloch space. 
Theorem 2.3 

Let 𝐾𝐾: (0,∞) → [0,∞), then 𝒬𝒬𝐾𝐾,0 = ℬ0 if and only if (6) 
holds.  

Now we give a characterization for the quaternion 𝒬𝒬𝐾𝐾 
spaces in terms of some different weighted functions in 
the unit ball of ℝ3. 

Define 𝐼𝐼𝐾𝐾,𝑔𝑔�𝑓𝑓(𝑎𝑎)� ∶ 𝔹𝔹 → [0,∞) as  

 ( )( ) ( ) ( )2 2
, sup (1 ) .K a

a
I f a Df x K x dxϕ ϕ

∈
= −∫

 

Theorem 2.4 
For 𝐾𝐾: (0,∞) → [0,∞), let 𝑓𝑓 ∈ ℳ(𝔹𝔹). Then,  

 ( )( ),sup .K K
a

f I f aϕ
∈

∈ ⇔ < ∞


  (7) 

Proof: 
We consider the equivalence 

 ( )( ) ( )( ), , .K K gI f a I f aϕ ≈  

By the change of variable 𝑥𝑥 = 𝜑𝜑𝑎𝑎(𝑦𝑦) and Lemma 1.2, 
we have 
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with 𝛹𝛹𝑓𝑓𝑎𝑎 (𝑦𝑦) = 1−𝑦𝑦�𝑎𝑎
|1−𝑎𝑎�𝑦𝑦|3 𝐷𝐷�𝑓𝑓�𝜑𝜑𝑎𝑎(𝑦𝑦)�, while 
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where 𝐽𝐽(𝑎𝑎,𝑦𝑦) = 1−|𝑎𝑎|2

|1−𝑎𝑎�𝑦𝑦|2the Jacobian determinant. 
Then, we only need to show 

 ( )21 | | 1 , .
| |

yK K y y
y

 −
≈ − ∈ 

 
  

This is obvious because of the assumptions for 𝐾𝐾, and 
the following obvious facts  

• 23 1 | |1 1 ,
4 | |

yy
y

−
≤ − ≤ ≤  if 10

2
y< ≤  

• 2 21
1 2(1 ),

y
y y

y
−

− ≤ ≤ −  if 1 1
2

y≤ < . 

The proof of Theorem 3.4 is completed. 

3. Conclusion 
Our aim in this paper lies at the interface of 

hyperholomorphic function spaces and operator theory. 
This paper is an attempt to synthesizethe achievements in 
the theory of hyperholomorphic function spaces. Many 
interesting and seemingly basic problems remain open. 
One of those open problems is the following question: 
What kind of operators act between the weighted 
hyperholomorphic function spaces like Bloch 𝒬𝒬𝑝𝑝 and 𝒬𝒬𝐾𝐾 
spaces? In analytic case several authors have studied 
boundedness and compactness of composition and 
Toeplitz operators between some weighted classes of 
function spaces like BMOA (the space of analytic 
functions of bounded mean oscillation), 𝒬𝒬𝑝𝑝and 𝒬𝒬𝐾𝐾spaces 
(see [4,9,14] and others).  

In quaternion sense the problem is that, 𝑓𝑓(𝑥𝑥) is 
hyperholomorphic, but (𝑓𝑓 ∘ 𝜑𝜑)(𝑥𝑥)is not hyperholomorphic, 
where φ is a hyperholomorphic self-map of the unit ball B.  
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