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Abstract

Demand for data storage is growing exponentially, but the

capacity of existing storage media is not keeping up. Using

DNA to archive data is an attractive possibility because

it is extremely dense, with a raw limit of 1 exabyte/mm3

(109 GB/mm3), and long-lasting, with observed half-life of

over 500 years.

This paper presents an architecture for a DNA-based

archival storage system. It is structured as a key-value store,

and leverages common biochemical techniques to provide

random access. We also propose a new encoding scheme

that offers controllable redundancy, trading off reliability for

density. We demonstrate feasibility, random access, and ro-

bustness of the proposed encoding with wet lab experiments

involving 151 kB of synthesized DNA and a 42 kB random-

access subset, and simulation experiments of larger sets cali-

brated to the wet lab experiments. Finally, we highlight trends

in biotechnology that indicate the impending practicality of

DNA storage for much larger datasets.

Categories and Subject Descriptors B.3.2 [Memory Struc-

tures]: Design Styles—Mass storage; J.3 [Life and Medical

Sciences]: Biology and genetics

Keywords Archival storage; molecular computing; DNA

1. Introduction

The “digital universe” (all digital data worldwide) is forecast

to grow to over 16 zettabytes in 2017 [14]. Alarmingly, the

exponential growth rate easily exceeds our ability to store it,

even when accounting for forecast improvements in storage

technologies. A significant fraction of this data is in archival

form; for example, Facebook recently built an entire data

center dedicated to 1 exabyte of cold storage [18].
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Most of the world’s data today is stored on magnetic

and optical media [14]. Tape technology has recently seen

significant density improvements with tape cartridges as

large as 185 TB [25], and is the densest form of storage

available commercially today, at about 10 GB/mm3. Recent

research reported feasibility of optical discs capable of storing

1 PB [8], yielding a density of about 100 GB/mm3. Despite

this improvement, storing zettabytes of data would still take

millions of units, and use significant physical space. But

storage density is only one aspect of archival: durability is

also critical. Rotating disks are rated for 3–5 years, and tape

is rated for 10–30 years. Current long-term archival storage

solutions require refreshes to scrub corrupted data, to replace

faulty units, and to refresh technology. If we are to preserve

the world’s data, we need to seek significant advances in

storage density and durability.

Synthetic DNA sequences have long been considered a

potential medium for digital data storage [6, 7, 10]. DNA is

an attractive possibility because it is extremely dense, with a

theoretical limit above 1 EB/mm3 (eight orders of magnitude

denser than tape), and long-lasting, with observed half-life of

over 500 years in harsh environments [2]. DNA-based storage

also has the benefit of eternal relevance: as long as there is

DNA-based life, there will be strong reasons to read and

manipulate DNA. The write process for DNA storage maps

digital data into DNA nucleotide sequences (a nucleotide is

the basic building block of DNA), synthesizes (manufactures)

the corresponding DNA molecules, and stores them away.

Reading the data involves sequencing the DNA molecules

and decoding the information back to the original digital

data. Both synthesis and sequencing are standard practice in

biotechnology, from research to diagnostics and therapies.

Progress in DNA storage has been rapid: in 1999, the state-

of-the-art in DNA-based storage was encoding and recovering

a 23 character message [7]; in 2013, researchers successfully

recovered a 739 kB message [6, 10]. This improvement of

almost 2×/year has been fueled by exponential reduction

in synthesis and sequencing cost and latency; growth in

sequencing productivity eclipses even Moore’s Law [4]. The

volume of data that can be synthesized today is limited mostly

by the cost of synthesis and sequencing, but growth in the



biotechnology industry portends orders of magnitude cost

reductions and efficiency improvements.

We think the time is ripe to consider DNA-based stor-

age seriously and explore system designs and architectural

implications. This paper presents an architecture for a DNA-

backed archival storage system, modeled as a key-value store.

A DNA storage system must overcome several challenges.

First, DNA synthesis and sequencing is far from perfect, with

error rates on the order of 1% per nucleotide. Sequences

can also degrade while stored, further compromising data in-

tegrity. A key aspect of DNA storage is to devise appropriate

encoding schemes that can tolerate errors by adding redun-

dancy. Existing approaches have focused on redundancy but

have ignored density implications. In this work we propose

a new encoding scheme that offers controllable redundancy,

enabling different types of data (e.g., text and images) to have

different levels of reliability and density. The density of our

encoding scheme outperforms existing work while providing

similar reliability.

Second, randomly accessing data in DNA-based storage

is problematic, resulting in overall read latency that is much

longer than write latency. Existing work has provided only

large-block access: to read even a single byte from storage,

the entire DNA pool must be sequenced and decoded. We

propose a method for random access that uses a polymerase

chain reaction (PCR) to amplify only the desired data, biasing

sequencing towards that data. This design both accelerates

reads and ensures that an entire DNA pool need not be

sequenced.

We demonstrate the feasibility of our system design with a

series of wet lab experiments, in which we successfully stored

data in DNA and performed random access to read back

only selected values. We further evaluate our design using

simulations to understand the error-correction characteristics

of different encoding schemes, assess their overheads, and

make projections about future feasibility based on technology

trends. Our results demonstrate the impending practicality

of DNA-based archival storage as a solution to exponential

growth in demand for data storage.

2. Background on DNA Manipulation

DNA basics. Naturally occurring DNA consists of four

types of nucleotides: adenine (A), cytosine (C), guanine (G),

and thymine (T). A DNA strand, or oligonucleotide, is a

linear sequence of these nucleotides. The two ends of a

DNA strand, referred to as the 5′ and 3′ ends, are chemically

different. DNA sequences are conventionally represented

starting with the 5′ nucleotide end. The interactions between

different strands are predictable based on sequence. Two

single strands can bind to each other and form a double helix

if they are complementary: A in one strand aligns with T

in the other, and likewise for C and G. The two strands in

a double helix have opposite directionality (5′ end binds

to the other strand’s 3′ end), and thus the two sequences

are the “reverse complement” of each other. Two strands do

not need to be fully complementary to bind to one another.

Such partial complementarity is useful for applications in

DNA nanotechnology and other fields, but can also result in

undesired “crosstalk” between sequences in complex reaction

mixtures containing many sequences.

Selective DNA amplification with polymerase chain reac-

tion (PCR). PCR is a method for exponentially amplifying

the concentration of selected sequences of DNA within a pool.

A PCR reaction requires four main components: the template,

sequencing primers, a thermostable polymerase and individ-

ual nucleotides that get incorporated into the DNA strand

being amplified. The template is a single- or double-stranded

molecule containing the (sub)sequence that will be amplified.

The DNA sequencing primers are short synthetic strands that

define the beginning and end of the region to be amplified.

The polymerase is an enzyme that creates double-stranded

DNA from a single-stranded template by “filling in” individ-

ual complementary nucleotides one by one, starting from a

primer bound to that template. PCR happens in “cycles”, each

of which doubles the number of templates in a solution. The

process can be repeated until the desired number of copies is

created.

DNA synthesis. Arbitrary single-strand DNA sequences

can be synthesized chemically, nucleotide by nucleotide [15,

17]. The coupling efficiency of a synthesis process is the

probability that a nucleotide binds to an existing partial

strand at each step of the process. Although the coupling

efficiency for each step can be higher than 99%, this small

error still results in an exponential decrease of product yield

with increasing length and limits the size of oligonucleotides

that can be efficiently synthesized to about 200 nucleotides.

In practice, synthesis of a given sequence uses a large number

of parallel start sites and results in many truncated byproducts

(the dominant error in DNA synthesis), in addition to many

copies of the full length target sequence. Thus, despite errors

in synthesizing any specific strand, a given synthesis batch

will usually produce many perfect strands. Moreover, modern

array synthesis techniques [15] can synthesize complex pools

of nearly 105 different oligonucleotides in parallel.

DNA sequencing. There are several high-throughput se-

quencing techniques, but the most popular methods (such as

that used by Illumina) use DNA polymerase enzymes and

are commonly referred to as “sequencing by synthesis”. The

strand of interest serves as a template for the polymerase,

which creates a complement of the strand. Importantly, flu-

orescent nucleotides are used during this synthesis process.

Since each type of fluorescent nucleotide emits a different

color, it is possible to read out the complement sequence

optically. Sequencing is error-prone, but as with synthesis,

in aggregate, sequencing typically produces enough precise

reads of each strand.
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Figure 1. Carlson curves [4]: trends in DNA synthesis and

sequencing technology compared to Moore’s Law. DNA

productivity is measured in nucleotides per person per day.

Recent growth in sequencing technology eclipses Moore.
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Figure 2. DNA storage as the bottom level of the storage

hierarchy

Sequencing and synthesis improvement projections. To-

day, neither the performance nor the cost of DNA synthesis

and sequencing is viable for data storage purposes. However,

they have historically seen exponential improvements. Their

cost reductions and throughput improvements have been com-

pared to Moore’s Law in Carlson’s Curves [4], as shown in

Figure 1. It shows that sequencing productivity has been

growing faster than Moore’s Law. Important biotechnology

applications such as genomics and the development of smart

drugs are expected to continue driving these improvements,

eventually making data storage a viable application.

3. A DNA Storage System

We envision DNA storage as the very last level of a deep

storage hierarchy, providing very dense and durable archival

storage with access times of many hours to days (Figure 2).

DNA synthesis and sequencing can be made arbitrarily

parallel, making the necessary read and write bandwidths

attainable. We now describe our proposal of a system for

DNA-based storage with random access support.

3.1 Overview

A DNA storage system consists of a DNA synthesizer that

encodes the data to be stored in DNA, a storage container

with compartments that store pools of DNA that map to a

volume, and a DNA sequencer that reads DNA sequences

and converts them back into digital data. Figure 3 shows an

overview of the integrated system.

DNA Synthesizer

PCR
Thermocycler

DNA Sequencer

DNA storage library
Data

IN

Data
OUT

DNA
pool

Figure 3. Overview of a DNA storage system.

The basic unit of DNA storage is a DNA strand that is

roughly 100-200 nucleotides long, capable of storing 50-100

bits total. Therefore, a typical data object maps to a very large

number of DNA strands. The DNA strands will be stored in

“pools” that have stochastic spatial organization and do not

permit structured addressing, unlike electronic storage media.

Therefore, it is necessary to embed the address itself into the

data stored in a strand. This way, after sequencing, one can

reassemble the original data value. We discuss digital data

representation in DNA in Section 4.

3.2 Interface and Addressing

A storage system needs a way to assign identification tags

to data objects so they can be retrieved later. We choose a

simple key-value architecture, where a put(key, value)

operation associates value with key, and a get(key) op-

eration retrieves the value assigned to key. To implement

a key-value interface in a DNA storage system, we need:

(1) a function that maps a key to the DNA pool (in the li-

brary) where the strands that contain data reside; and (2) a

mechanism to selectively retrieve only desired portions of a

pool (i.e, random access), since the DNA container will likely

store significantly more data than the desired object.

We implement random access by mapping a key to a pair

of PCR primers. At write time, those primers are added to the

strands. At read time, those same primers are used in PCR

to amplify only the strands with the desired keys. Because

the resulting pool will have a much higher concentration of

the desired strands, a sample from that pool is very likely to

contain all of those strands.

Separating the DNA strands into a collection of pools

(Figure 3) balances a trade-off between storage density,

reliability, and performance. The most dense way to store

data would be to have all strands in a single pool, but this

arrangement sacrifices reliability for two reasons. First, a

single pool requires many different primers to distinguish all

keys, which increases the chance that two primers react poorly

to each other. Second, a single pool reduces the likelihood that

a random sample drawn during the read process will contain

all the desired data. On the other hand, using a separate pool

per key sacrifices density excessively. We therefore use a

library of reasonably-sized pools, and use random access

within each pool.
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Figure 4. Overview of a DNA storage system operation as a key-value store.

3.3 System Operation

Figure 4 shows flowcharts for the write (put) and read

(get) processes in more detail. The write process (Fig. 4(a))

takes as input the key and value to store. It uses the key to

obtain the PCR primer sequences, compute the high part of

the address, and to determine the pool in the DNA library

where the resulting strands will be stored. The low part of the

address indexes the multiple strands generated by chunking

the value (see Sec. 4.2). Next, it encodes the data addresses,

payloads, and error detection codes, and attaches the primer

target sequences, to produce final DNA sequences for the

synthesizer to manufacture. The resulting DNA molecules

are stored in the storage library for archival.

The read process (Fig. 4(b)) takes as input a key. It uses

the key to obtain the PCR primer sequences that identify

molecules in the pool associated with that key. Next, the

storage system physically extracts a sample from the DNA

pool that contains the stored data, but likely also includes

large amounts of unrelated data. The sample and the PCR

primers are sent to the PCR thermocycler, which amplifies

only the desired strands. The resulting pool goes to the DNA

sequencer, which ultimately produces the digital data readout.

Note that this process might be iterative since it may require

multiple samples and sequencing steps to extract all the data

associated with the desired keys. The DNA synthesizer is used

for both producing the DNA strands that hold data payload

as well as synthesizing the PCR primers used to amplify data

during the random access read process.

The read process removes a sample of DNA from the pool,

and so cumulative reads reduce the quantity of DNA available

for future operations. But DNA is easy to replicate, and so

the pools can easily be replenished after read operations if

necessary. If successive amplification is problematic, a pool

can also be completely resynthesized after a read operation.

4. Representing Data in DNA

While DNA has many properties that make it different from

existing storage media, there are parallels between traditional

storage and DNA storage. At the lowest levels, traditional

storage media store raw bits. The storage device abstracts the

physical media, which could be magnetic state, or the charge

in a capacitor, or the stable state of a flip-flop, and presents

to the storage hierarchy raw digital data. In a similar way,

the abstraction of DNA storage is the nucleotide: though a

nucleotide is an organic molecule consisting of one base (A,

C, G, or T) and a sugar-phosphate backbone, the abstraction

of DNA storage is as a contiguous string of quaternary

(base-4) numerals. This section describes the challenges of

representing data in DNA, and presents several encodings

that overcome these challenges.

4.1 Representation

The obvious approach to store binary data in DNA is to

encode the binary data in base 4, producing a string of

n/2 quaternary digits from a string of n binary bits. The

quaternary digits can then be mapped to DNA nucleotides

(e.g., mapping 0, 1, 2, 3 to A, C, G, T, respectively). For

example, the binary string 01110001 maps to the base-4

string 1301, and then to the DNA sequence CTAC. However,

DNA synthesis and sequencing processes are prone to a wide

variety of errors (substitutions, insertions, and deletions of

nucleotides), requiring a more careful encoding.

The likelihood of some forms of error can be reduced

by encoding binary data in base 3 instead of base 4 [10], as

Figure 5(a) illustrates. Each ternary digit maps to a DNA

nucleotide based on a rotating code (Figure 5(b)) that avoids

repeating the same nucleotide twice. This encoding avoids

homopolymers—repetitions of the same nucleotide that sig-

nificantly increase the chance of sequencing errors [20].
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Figure 5. Encoding a stream of binary data as a stream of

nucleotides. A Huffman code translates binary to ternary

digits, and a rotating encoding translates ternary digits to

nucleotides.

Because base 3 is not a multiple of base 2, mapping

directly between the bases would be inefficient: 6 ternary

digits (36 = 729) can store 9 bits of data (29 = 512), but waste

217 possible states. Instead, we use a Huffman code [13] that

maps each binary byte to either 5 or 6 ternary digits. For

example, the Huffman code maps the binary string 01100001

to the base-3 string 01112. The rotating nucleotide encoding

maps this string to the DNA sequence CTCTG. The code maps

more common ASCII characters to 5 digit strings, offering

minor compression benefits for textual data, though the effect

on overall storage density is insignificant.

4.2 Data Format

Another practical issue with representing data in DNA is that

current synthesis technology does not scale beyond sequences

of low hundreds of nucleotides. Data beyond the hundreds

of bits therefore cannot be synthesized as a single strand of

DNA. In addition, DNA pools do not offer spatial isolation,

and so a pool contains data for many different keys which

are irrelevant to a single read operation. Isolating only the

molecules of interest is non-trivial, and so existing DNA

storage techniques generally sequence the entire solution,

which incurs significant cost and time overheads.

To overcome these two challenges, we organize data in

DNA in a similar fashion to Goldman et al. [10], as shown

in Figure 6. Segmenting the nucleotide representation into

blocks, which we synthesize as separate strands, allows

storage of large values. Tagging those strands with identifying

primers allows the read process to isolate molecules of

interest and so perform random access. Below we describe

these designs in detail.

Payload. The string of nucleotides representing the data to

be stored is broken into data blocks, whose length depends

on the desired strand length and the additional overheads

TCTACGCTCGAGTGATACGAATGCGTCGTACTACGTCGTGTACGTA…

Output Strand

Input Nucleotides

TCTACGCTCGAGTGATACGAA ATCTACGTCTACGATC CCAGTATCA

AddressPayloadPrimer
Target

Primer
Target

S S

5’ 3’

Figure 6. An overview of the DNA data encoding format.

After translating to nucleotides, the stream is divided into

strands. Each strand contains a payload from the stream,

together with addressing information to identify the strand

and primer targets necessary for PCR and sequencing.

of the format. To aid decoding, two sense nucleotides (“S”

in Figure 6) indicate whether the strand has been reverse

complemented (this is done to avoid certain pathological

cases).

Address. Each data block is augmented with addressing

information to identify its location in the input data string.

The address space is in two parts. The high part of the address

identifies the key a block is associated with. The low part of

the address indexes the block within the value associated with

that key. The combined address is padded to a fixed length

and converted to nucleotides as described above. A parity

nucleotide is added for basic error detection.

Primers. To each end of the strand, we attach primer se-

quences. These sequences serve as a “foothold” for the PCR

process, and allow the PCR to selectively amplify only those

strands with a chosen primer sequence.

Random Access. We exploit primer sequences to provide

random access: by assigning different primers to different

strands, we can perform sequencing on only a selected group

of strands. Existing work on DNA storage uses a single primer

sequence for all strands. While this design suffices for data

recovery, it is inefficient: the entire pool (i.e., the strands for

every key) must be sequenced to recover one value.

To provide random access, we instead design a mapping

from keys to unique primer sequences. All strands for a

particular object share a common primer, and different strands

with the same primer are distinguished by their different

addresses.

Primers allow random access via a polymerase chain

reaction (PCR), which produces many copies of a piece of

DNA in a solution. By controlling the sequences used as

primers for PCR, we can dictate which strands in the solution

are amplified. To read a particular key’s value from the

solution, we simply perform a PCR process using that key’s

primer, which amplifies the selected strands. The sequencing

process then reads only those strands, rather than the entire

pool. The amplification means sequencing can be faster and

cheaper, because the probability of recovering the desired

object is higher.

Note that not all adapters and primers have the same behav-

ior or effectiveness during PCR. Also, the actual sequences

affect the PCR cycle temperatures. Discussing adapter and
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Figure 7. An encoding proposed by Goldman et al. [10]. The

payloads of each strand are overlapping segments of the input

stream, such that each block in the stream appears in four

distinct strands.

primer design is outside the scope of this paper. The hash

function that maps addresses to primers can be implemented

as a table lookup of primers that are known to work well and

have known thermocycling temperatures. For this paper, we

used primer designs from prior work [24].

5. Encodings for Reliable Storage

The previous sections described the organization of a DNA-

based storage system, and in particular, how data can be

broken into strands of DNA. However, the encoding implied

by the previous section is naive: each bit of binary data is

encoded in exactly one location in the output DNA strands,

and so relies on the robustness of DNA for durability. A more

robust design would provide redundancy at the data encoding

level. This section discusses existing work on encodings

for redundancy, highlights the reliability–density trade-off

implicit in encoding design, and presents a new encoding

with similar reliability to and yet higher density than existing

work.

5.1 Existing Encodings

Early work in DNA storage used encodings simpler than

the one we describe above. For example, Bancroft et al. [3]

translate text to DNA by means of a simple ternary encoding:

each of the 26 English characters and a space character maps

to a sequence of three nucleotides drawn from A, C, and T (so

exactly 33 = 27 characters can be represented). The authors

successfully recovered a message of 106 characters, but this

encoding suffers substantial overheads and poor reliability

for longer messages.

Goldman encoding. We focus on an existing encoding

proposed by Goldman et al. [10], shown in Figure 7. This

encoding splits the input DNA nucleotides into overlapping

segments to provide fourfold redundancy for each segment.

Each window of four segments corresponds to a strand in

the output encoding. The authors used this encoding to

successfully recover a 739 kB message. We use this encoding

as a baseline because it is, to our knowledge, the most

successful published DNA storage technique. In addition,

it offers a tunable level of redundancy, by reducing the width

of the segments and therefore repeating them more often in

TCTACGCTCGAGTGATACGAATGCGTCGTACTACGTCGTG

Input 
Nucleotides

XOR Parity 
Strand

Figure 8. Our proposed encoding incorporates redundancy

by taking the exclusive-or of two payloads to form a third.

Recovering any two of the three strands is sufficient to recover

the third.

strands of the same length (for example, if the overlapping

segments were half as long as in Figure 7, they would be

repeated in eight strands instead of four).

5.2 XOR Encoding

While the Goldman encoding provides high reliability, it also

incurs significant overhead: each block in the input string is

repeated four times. We propose a simple new encoding that

provides similar levels of redundancy to prior work, but with

reduced overhead.

Our encoding, shown in Figure 8, provides redundancy by

a simple exclusive-or operation at the strand level. We take

the exclusive-or A⊕B of the payloads A and B of two strands,

which produces a new payload and so a new DNA strand.

The address block of the new strand encodes the addresses of

the input strands that were the inputs to the exclusive-or; the

high bit of the address is used to indicate whether a strand is

an original payload or an exclusive-or strand. This encoding

provides its redundancy in a similar fashion to RAID 5: any

two of the three strands A, B, and A⊕ B are sufficient to

recover the third.

The reliability of this encoding is similar to that of Gold-

man. In Section 6, we show that we successfully recovered

objects from both encodings in a wet lab experiment. How-

ever, the theoretical density of this encoding is much higher

than Goldman—where in their encoding each nucleotide re-

peats (up to) four times, in ours each nucleotide repeats an

average of 1.5 times. In practice, the density difference is

lower, due to the overheads of addressing and primers that

are constant between the two encodings. Simulation results

in Section 7 show our encoding to be twice as dense as that of

Goldman, and for all practical DNA synthesis and sequencing

technologies, it provides equivalent levels of reliability.

5.3 Tunable Redundancy

Recent work in approximate storage [12, 23] shows that many

applications do not need high-precision storage for every data

structure. For example, while the header data of a JPEG file

is critical to successful decoding, small errors in the payload

are tolerable at the cost of some decoding imprecision.

One key advantage of our encoding is that the level of

redundancy is tunable at a per-block granularity. For critical

data, we can provide high redundancy by pairing critical



blocks with many other blocks: if A is critical, produce A⊕B,

A⊕C, etc. On the other hand, for blocks that are less critical,

we can further reduce their redundancy: instead of including

only two blocks in an exclusive-or, we can include n, such

that any n−1 of the n blocks is sufficient to recover the last,

at an average density overhead of 1/n.

In addition to improving density, tunable redundancy has

a significant effect on performance. Both DNA synthesis

and sequencing are slower and more error-prone with larger

datasets, and this error does not always grow linearly in size.

It is often economically viable to synthesize smaller DNA

pools with more accurate technology, while larger pools are

out of reach. Tunable redundancy allows the storage system

to optimize the balance between reliability and efficiency.

5.4 Factors in Encoding Design

As with many encodings in the literature, ours ignores special

properties of DNA synthesis and sequencing that make

choosing an optimal encoding more complex. In particular,

errors in synthesis and sequencing are not uniform: they vary

according to location within a strand, and different sequences

of nucleotides are more susceptible to undesired reactions.

Synthesis error grows with the length of the strand being

synthesized; nucleotides towards the end of the strand are

more likely to be incorrect. Some of these errors are easily

ignored, because they result in truncations, where the product

strand is not of the correct length. Other errors are more

insidious, with substitution errors being particularly common.

An improved version of our encoding would tolerate

variable substitution errors by not aligning the strands directly.

For example, rather than computing A⊕B, we might instead

compute A⊕B′, where B′ is B in reverse. Since nucleotides

at the end of a strand are more error-prone, reversing one

strand ensures that the average quality is (roughly) constant

along the strand, so that each nucleotide has at least some

redundancy information stored in a high-reliability position.

6. Experiments

To demonstrate the feasibility of DNA storage with random

access capabilities, we encoded four image files using the two

encodings described in Section 5. The files varied in size from

5 kB to 84 kB. We synthesized these files and sequenced the

resulting DNA to recover the files. This section describes our

experience with the synthesis and sequencing process, and

presents results demonstrating that DNA storage is practical

and that random access works. We used the results of our

experiments to inform the design of a simulator, which we

use in Section 7 to perform more experiments exploring the

design space of data encoding and durability.

6.1 Materials and Method

This section briefly describes the experimental protocol; see

Appendix A for details.

We used as input to the storage system four image files.

For each image file x.jpg, we generated DNA sequences

(a) sydney.jpg, 24301 bytes

(b) cat.jpg, 11901 bytes

(c) smiley.jpg, 5665 bytes

Figure 9. Three image files we synthesized and sequenced

for our experiments.

corresponding to the output of put(x.jpg, ...). We

performed these operations using two different encodings –

the Goldman encoding and our proposed XOR encoding –

described in Section 5. Combined, the eight operations pro-

duced 45,652 sequences of length 120 nucleotides, represent-

ing 151 kB of data.

To demonstrate that DNA storage allows effective random

access, we performed four get operations: selecting three of

the four files encoded with the Goldman encoding, and one

of the four encoded with the XOR encoding. The three files

retrieved from the Goldman encoding are in Figure 9; we also

performed get(sydney.jpg) on the XOR-encoded data.

The synthesized sequences were prepared for sequencing

by amplification via the polymerase chain reaction (PCR)

method. The product was sequenced using an Illumina MiSeq

platform. The selected get operations total 16,994 sequences

and 42 kB. Sequencing produced 20.8 M reads of sequences

in the pool. We inspected the results and observed no reads

of sequences that were not selected – so random access was

effective in amplifying only the target files.

6.2 Results

File Recovery. We successfully recovered all four files from

the sequenced DNA. Three of the files were recovered without

manual intervention. One file – cat.jpg encoded with the

Goldman encoder – incurred a one-byte error in the JPEG

header, which we fixed by hand. As described, the design

of the Goldman encoder provides no redundancy for the

first and last bytes of a file, and so this error was due to

random substitution in either sequencing or synthesis. We

could mitigate this error scenario by trivially extending that

algorithm to wrap the redundant strands past the end of the

file and back to the beginning.

Sequencing Depth. Figure 10 shows the distribution of

sequencing depths over the 16,994 selected sequences. The

sequencing depth of a strand is the number of times it was

perfectly sequenced. Of the 20.8 M reads from the sequencing
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run, 8.6 M were error-free reads of a strand in the desired

pool. The distribution of reads by sequence is heavily skewed

with a mean depth of 506 and median depth of 128. These

results suggest that encodings need to be robust not only to

missing sequences (which get very few reads), but heavily

amplified incorrect sequences.

Reduced Sequencing Depth. The sequencing depth achieved

in our experiment is more than sufficient to recover the en-

coded data. Sequencing technology can reduce sequencing

depth in exchange for faster, higher-throughput results. To

determine whether our encodings are still effective as se-

quencing depth reduces, we randomly subsampled the 20.8 M

reads we achieved and tried to decode sydney.jpg again,

using both the Goldman and XOR encodings.

Figure 11 shows that both encodings respond similarly

to reduced sequencing depth. The x-axis plots the fraction

of the 20.8 M reads used, and the y-axis the accuracy of the

decoded file. Both encodings tend to 25% accuracy as the

depth reduces, as both decoders randomly guess one of the

four nucleotides if no data is available. The accuracy of the

two encodings is similar; however, the XOR encoding is

higher density than the Goldman encoding.
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Figure 12. Reliability of encoded data as a function of storage

density at different sequencing depths.

Naive Encoding. Figure 8 shows that the XOR encoding

is actually a superset of a naive encoding: if we ignore

strands which are products A⊕B, we are left with only the

naively encoded strands A and B. We attempted to decode

sydney.jpg while ignoring the XOR products. We found

that 11 strands were missing entirely, and even after improv-

ing the decoder to arbitrarily guess the values of missing

strands, were not able to recover a valid JPEG file. The XOR

encoding corrected all these errors at a lower density over-

head than the Goldman encoding. These results suggest that

even at very high sequencing depths, a naive encoding is not

sufficient for DNA storage: encodings must provide their own

robustness to errors.

7. Simulation

We used the results of the experiments in Section 6 to inform

the design of a simulator for DNA synthesis and sequencing.

The simulator allows experimenting with new encodings and

new configurations for existing encodings. This section uses

the simulator to answer two questions about DNA storage:

first, how do different encodings trade storage density for

reliability, and second, what is the effect of decay on the

reliability of stored data?

Reliability and Density. The encodings we described in

Section 5 can be reconfigured to provide either higher density

or higher reliability. To examine this trade-off between dif-

ferent encodings, we encoded the sydney.jpg file (Fig. 9)

with a variety of configurations. These configurations vary the

number of strands where a piece of data is included, by chang-

ing the overlap between strands for Goldman and increasing

the number of XOR copies for XOR.

Figure 12 plots the density achieved by an encoding

(x-axis) against decoding reliability (y-axis). The density

is calculated as the file size divided by the total number

of bases used to encode the file. Figure 12 includes three

different encoding mechanisms: a naive encoding with no

redundancy, the encoding proposed by Goldman, and our

proposed XOR encoding. It presents the results for two
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sequencing depths, 1 and 3. Naive encoding has the lowest

reliability because there is no redundancy. As the sequencing

depth increases, the reliability improves, but as observed in

the wet lab experiments, even at higher sequencing depths, the

Naive encoding is not sufficient to provide full data recovery.

For both tunable encodings, additional redundancy increases

robustness, but affects density negatively. For sequencing

depth of 1, where only a single copy of each strand is

available, any error causes information loss if no redundancy

is available (red dot). As more redundancy is added (blue

and green curves), the encoding becomes more resilient to

errors. At sequencing depth 1 and same density, Goldman is

more resilient than XOR because it does not combine then

replicate bits, it simply replicates them. As sequencing depths

increase, XOR becomes as reliable as Goldman because the

probability of having no copies at all of the original data

lowers significantly.

Density and Strand Length. One limiting factor for DNA

storage is strand length: current DNA synthesis technology

can only viably produce strands of lengths less than 200, and

our wet lab experiments (Sec. 6) used strands of length 120.

But future synthesis technology promises to increase this

limit, as many fields of biology require longer artificial DNA

sequences (for example, the average human gene has on the

order of 104 nucleotides).

Figure 13 plots the density of different encodings on the

y-axis as a function of the strand length on the x-axis. As

strand length grows, addressing and other overheads become

less significant, and density becomes a function only of the

encoding. In the limit, the density of our XOR encoding

is 2.6× that of Goldman, and yet our results show similar

reliability. The XOR encoding is also two-thirds the density

of a naive encoding, which suffers much worse error rates.

Decay. Finally, we used the simulator to evaluate the dura-

bility of DNA storage over time. The durability of electronic

storage is, in the best case, in the tens of years. In contrast, the

half life of single stranded DNA is much longer. To demon-
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to ensure a desired reliability over time.

strate the durability of DNA storage, we simulated decay

at room temperature, according to rates observed in recent

work [11]. Storage at lower temperatures significantly in-

creases the half life of the stored DNA.

Figure 14 shows desired timespan on the x-axis and the

number of copies of each strand required to achieve a desired

reliability after the timespan on the y-axis. Different curves

correspond to different desired reliabilities. For example, the

99.99% reliability line says that to have a 99.99% chance

of recovering an encoded value after 100 years, we need to

store only 10 copies of the strands for that value. The results

show that even very few copies are sufficient to provide high

reliability long beyond the half lives of existing electronic

media. In summary, high reliability for long time intervals

does not have much impact on DNA storage density.

8. Discussion and Future Work

The results in Sections 6 and 7 demonstrate a full DNA stor-

age system and its advantages. This section provides a more

in-depth examination of experimental data and discusses po-

tential improvements.

The Real Source of Errors. The results in Section 6

showed that error rates in a complete storage pipeline are high

enough to require redundant encoding. This section shows

where these errors come from, so that we can decide where

to focus our attention when attempting to reduce errors.

To answer this question, we synthesized a small subset

of strands using a high fidelity on-column synthesis process

(Single). In this process, each sequence is synthesized indi-

vidually resulting in low error rate, but high cost and low

throughput incompatible with information storage applica-

tions. In contrast, the results in Section 6 were generated

using a high-throughput microarray-based synthesis process

(Array) that is not high fidelity, but is currently among the

lowest cost DNA synthesis alternatives.

Figure 15 compares the overall error distribution for

identical strands obtained through Single and Array synthesis

as a function of the relative position within the strand. The
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overall error rate is due to both sequencing and synthesis

errors. However, if we assume that the error rate for Single

synthesis is near zero, we can interpret errors measured for

those strands as solely due to sequencing. The difference

between the error rates for the stands derived from Single

and Array can then be interpreted as synthesis errors. We

clearly see that sequencing error dominates for all locations:

the sequencing error rate is on average an order of magnitude

higher. These results show that future technology should

focus on improving the accuracy of sequencing.

Synthesis Efficiency. In addition to incorrect strands,

micro-array synthesis can produce truncated strands. Stan-

dard sequencing processes exclude these truncated strands,

so they are unused for data recovery and represent waste.

To illustrate the potential losses due to truncation, Fig-

ure 16 shows the length distribution of the synthesized strands,

as determined by gel electrophoresis (see Appendix A for

details). Less than 5% of the pool is of the target length of

120 nucleotides – other strands are either truncated early, or

(much more rarely) made longer. This indicates that work in
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Figure 17. A hairpin, in which a single sequence of DNA

binds to itself because nearby regions are self-complementary.

Hairpins make DNA amplification and sequencing more error

prone.

reducing number of fragments could improve synthesis costs

by up to about one order of magnitude.

Avoiding Bad Sequences. The representation we (and oth-

ers) have used does not avoid more complex sources of error

in DNA data representation. For example, Figure 17 shows

a hairpin, in which a single sequence of DNA binds to it-

self, folding its two ends together because they are (partially)

complementary. The binding of the two ends to each other pre-

vents this strand from being easily amplified and sequenced.

A more robust representation would avoid creating sequences

that are self-complementary to reduce the chance of this self-

hybridization. Of course, restricting self-complementarity

also reduces the potential density of the representation, so it

presents a trade-off between density and reliability.

Similarly, if different strands are partially complementary,

there is a chance they will bind to each other. A more robust

encoding would try to mitigate this chance. For example, the

mapping in Figure 5(b) from ternary digits to nucleotides

need not be static. Instead, it could be selected on a per-

strand basis by selecting the encoding that produces the least

self-complementary and partially complementary strands.

We intend to explore these directions as future work, but

thus far these issues have had little effect on our experiments.

9. Related Work

Encoding data in DNA has a long line of research in the

biology community. Early examples encoded and recovered

very short messages: Clelland et al. recovered a 23 character

message in 1999 [7], and Leier et al. recover three 9-bit num-

bers in 2000 [16]. The first significant scaling improvements

were made by Gibson et al. in 2010, successfully recovering

1280 characters encoded in a bacterial genome as “water-

marks” [9] – but note this approach is in vivo (inside an

organism), whereas ours is in vitro (outside), so the technol-

ogy is very different and inapplicable to large-scale storage.

More scaling improvements were made by Church et al. in

2012, who recovered a 643 kB message [6], and Goldman

et al. recovered a 739 kB message also in 2012 [10]. However,

both these results required manual intervention: Church et al.

had to manually correct ten bits of error, and Goldman et al.

lost two sequences of 25 nucleotides.



Most recently, Grass et al. recovered an 83 kB mes-

sage without error [11]. Their design uses a Reed-Solomon

code [22], striping the entire dataset across 5000 DNA strands.

While this design leads to excellent redundancy, it defeats the

desire for random access.

Concurrent with our work, Yazdi et al. [28] developed a

method for rewritable random-access DNA-based storage.

Its encoding is dictionary-based and focuses on storage of

text, while our approach accommodates arbitrary binary

data. We do not support rewritability, which adds substantial

complexity, because write-once is appropriate for archival

items (e.g., photos) that are unlikely to change. If necessary,

one can use a log-based approach for rewriting objects, since

the density of DNA exceeds the overhead of logging.

The use of DNA as a computing substrate also has a long

history: in 1994, Adleman proposed composing Hamiltonian

paths with DNA [1]. Researchers have proposed the use of

DNA for Boolean circuits [26], neural networks [21], and

chemical reaction networks [5]. DNA computing has also

begun making inroads in the architecture community: Muscat

et al. explore the architectural challenges of DNA strand-

displacement circuits [19], and Talawar examines the design

of a DNA-based crossbar interconnection network [27].

10. Conclusion

DNA-based storage has the potential to be the ultimate

archival storage solution: it is extremely dense and durable.

While this is not practical yet due to the current state of DNA

synthesis and sequencing, both technologies are improving

at an exponential rate with advances in the biotechnology in-

dustry. Given the impending limits of silicon technology, we

believe that hybrid silicon and biochemical systems are worth

serious consideration: time is ripe for computer architects to

consider incorporating biomolecules as an integral part of

computer design. DNA-based storage is one clear example

of this direction. Biotechnology has benefited tremendously

from progress in silicon technology developed by the com-

puter industry; perhaps now is the time for the computer

industry to borrow back from the biotechnology industry to

advance the state of the art in computer systems.
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A. Appendix: Materials and Method

Primers for the PCR reaction (Fig. 18) were designed to am-

plify specific files and also to incorporate sequence domains

that are necessary for sequencing. Each primer incorporated

overhangs that included three sequence domains in addition

to the amplification domain necessary for PCR amplification.

The first domain included the sequences necessary for binding

to the Illumina flow cell during next generation sequencing.

The second domain included a custom sequencing-priming re-

gion designed for the sequencing primer to bind. This region

allows for sequencing of multiple files in the same sequencing

run since the sequencing primer region becomes independent

of the oligonucleotide pool. These sequences were generated

using Nupack [29], software for thermodynamic analysis of

interacting nucleic acid strands, in order to avoid the forma-

tion of secondary structure that could interfere with the PCR

reaction. The third domain consisted of a 12-nucleotide long

degenerate region intended to optimize cluster detection in

the Illumina sequencing platform.

PCR Amplification

File N - Sequence NFile N File N

File N - Sequence NFile N File N

File N - Sequence NFile N File N

Randomized Region

Sequencing Primer Region

File 1 - Sequence 1

File 1 - Sequence 2

File 1 - Sequence 3

File 1

File 1File 1

File 1

File 1

File 1

Flowcell Binding Region

Figure 18. PCR amplifies the strands in the file, and attaches

new regions to each end that allow for sequencing.

PCR amplification was performed using Platinum® PCR

SuperMix High Fidelity MasterMix from Life Technologies.

The cycling conditions were (i) 95°C for 3 min, (ii) 95°C for

20 s, (iii) 55°C for 20 s, (iv) 72°C for 160 s, and (v) looping

through (ii)–(iv) 30 times. The PCR amplification output

was purified via gel extraction and quantified before next

generation sequencing. Finally, the product was sequenced

using an Illumina MiSeq sequencing platform.

Synthesis Efficiency. To determine the results in Figure 16,

which presents a distribution of strand lengths produced by

synthesis, we designed a mathematical model to estimate

the nucleotide coupling efficiency, which is the probability

that a nucleotide will be added to the strand during each of

the 120 coupling cycles in the synthesis process. The model

says that the likelihood of observing a strand of length n is

proportional to

Intensity = nNt pn(1− p)
where Nt is the total number of DNA molecules being

synthesized in the array, p is the coupling efficiency, and

Intensity is the observed flouresence measured from the gel

electrophoresis shown in Figure 19. By fitting this model, we

estimated the nucleotide coupling efficiency in the synthesis

process to be approximately 0.975.

Oligonucleotide

Pool

Size Reference

Ladder

20             30        40      50     60   70  80 90 100

Figure 19. Gel electrophoresis results showing the distribu-

tion of strand lengths from the DNA synthesis process.
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