
Camera Calibration with known Rotation

Jan-Michael Frahm and Reinhard Koch
Multimedia Information Processing, Institute of Computer Science and Applied Mathematics

Christian-Albrechts-University of Kiel, Herman-Rodewald-Str. 3, 24098 Kiel, Germany

Abstract

We address the problem of using external rotation informa-
tion with uncalibrated video sequences. The main problem
addressed is, what is the benefit of the orientation infor-
mation for camera calibration? It is shown that in case of
a rotating camera the camera calibration problem is lin-
ear even in the case that all intrinsic parameters vary. For
arbitrarily moving cameras the calibration problem is also
linear but underdetermined for the general case of varying
all intrinsic parameters. However, if certain constraints are
applied to the intrinsic parameters the camera calibration
can be computed linearily. It is analyzed which constraints
are needed for camera calibration of freely moving cam-
eras. Furthermore we address the problem of aligning the
camera data with the rotation sensor data in time. We give
an approach to align these data in case of a rotating cam-
era.

1. Introduction

Scene analysis from uncalibrated image sequences is still an
active research topic. During the last decade we have seen
a lot of progress in camera selfcalibration and 3D-scene re-
construction. All these approaches use image data alone or
sometimes additional constraints for camera motion, scene
structure respectively camera calibration. Since they have
to rely on the available image content they may suffer from
degeneracies. These approaches use uncertain data there-
fore they tend to be sensitive to noise. Fortunately, in many
applications we have additional information from other sen-
sors available for example future cars will be equipped with
fixed or even rotating or zooming cameras for driver assis-
tence, where at least partial orientation and translation infor-
mation is available. Another type of application is surveil-
lance with rotating and zooming cameras. These data could
be integrated to improve camera calibration.

In this contribution we will discuss the possibilities to
use this external orientation information for selfcalibration.
We will first review the literature and existing image-based
selfcalibration methods in sections 2 and 3. Selfcalibration
from image and rotation data will be discussed in detail in
section 4. Section 5 will give an approach to align camera

data and orientation information in time. Finally we will
discuss some experiments and conclude.

2. Previous work
Camera calibration has always been a subject of research in
the field of computer vision. The first major work on self-
calibration of a camera by simply observing an unknown
scene was presented in [14]. It was proven that selfcali-
bration was theoretically and practically feasible for a cam-
era moving through an unknown scene with constant but
unknown intrinsics. Since that time various methods have
been developed.

Methods for the calibration of rotating cameras with un-
known but constant intrinsics were first developed in [16].
The approach was extended for rotating cameras with vary-
ing intrinsic parameters by [7]. Camera selfcalibration
from unknown general motion and constant intrinsics has
been discussed in [14, 17, 20]. For varying intrinsics and
general camera motion the selfcalibration was proven by
[11, 21, 18]. An interesting approach was recently proposed
by Rother and Carlsson [9]. They jointly estimate funda-
mental matrices and homographies from a moving camera
that observes the scene and some reference plane simulta-
neously. The homography induced by the reference plane
generates constraints that are similar to a rotation sensor
and selfcalibration can be computed linearily. However,
some structural constraints on the scene are necessary, while
our proposed approach applies the constraints on the cam-
era sensor only. All these approaches for selfcalibration of
cameras only use the images of the cameras themselves for
the calibration.

Only few approaches exist to combine image analysis
and external rotation information for selfcalibration. In
[15, 12] the calibration for cameras with constant intrin-
sics and known rotation was discussed. They use nonlin-
ear optimization to estimate the camera parameters. More
often, calibrated cameras are used in conjunction with ro-
tation sensors to stabilize sensor drift [19]. This lack of
attention is somewhat surprising since this situation occurs
frequently in a variety of applications: cameras mounted in
cars for driver assistence, robotic vision heads, surveillance
cameras or PTZ-cameras for video conferencing often pro-
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vide rotation information.
In this paper we will address one of the few cases which

have not yet been explored, that of a rotating or generally
moving camera with varying intrinsics and known rotation
information. We will show that orientation information is
helpful for camera calibration. Furthermore it is possible to
detect degenerate cases for calibration like pure translation
of the camera.

To use the sensor information for camera calibration an
alignment of the sensor data with the image data in space
and time has to be performed. An approach for the spatial
alignment called hand eye calibration was used in [13]. The
alignment of two imaging devices without any overlap in
the views was developed by [5]. We will modify the tech-
nique of [5] to the case of a rotation sensor and a camera to
align both devices in time.

3. Selfcalibration from images
In this section we will explain some general notation and
summarize previous attempts for selfcalibration from im-
ages alone.

3.1. Notation
The projection of scene points onto an image by a camera
may be modeled by the equationm = PMh. The image
point in projective coordinates ism = [x, y, w]T , where
Mh = [X, Y, Z, 1]T is the world point in homogeneous
coordinates andP is the3 × 4 camera projection matrix.
The matrixP is a rank-3 matrix. If it can be decomposed as
P = K[RT |−RT t] the P-matrix is called metric, where the
rotation matrix R and the translation vectort represent the
Euclidian transformation between the camera and the world
coordinate system. The intrinsic parameters of the camera
are contained in the matrixK which is an upper triangular
matrix

K =

 f s cx

0 a · f cy

0 0 1

 , (1)

wheref is the focal length of the camera expressed in pixel
units. The aspect ratioa of the camera is the ratio between
the size of a pixel in x-direction and the size of a pixel in
y-direction. The principal point of the camera is(cx, cy)
ands is a skew parameter which models the angle between
columns and rows of the CCD-sensor.

For cameras rotating about their optical center the trans-
lation vectort is the null vector. Therefore the projection of
scene points is equal tom = AM , whereA is a3 × 3 ma-
trix andM = [X, Y, Z] denotes the point in 3D space. The
matrixA is also a rank-3 matrix which may be decomposed
asA = KR for metric P-matrices. The mapping of image
points from cameraj to camerai over the plane at infinity

π∞ is given by the homographyH∞
j,i = AiA

−1
j which is

H∞
j,i = KiR

T
i RjK

−1
j , (2)

whereRi resp. Rj is the rotation of camerai resp. cam-
eraj. We summarize these rotation matrices toRj,i which
represents the rotation between cameraj andi.

3.2. Rotating camera with known calibration
In case of known calibration matricesKi, Kj and known
rotationRj,i between imagej andi we can fully predict the
camera homographiesH∞

j,i by

H∞
j,i = KiRj,iK

−1
j . (3)

The imagei can be rotationally compensated w.r.t. image
j and we can exploit any estimated image homography to
compensate for sensor and calibration errors. Applications
to this case exist for fast and robust realtime tracking if
known feature markers are used [19].

We can extend this approach for varying calibration if
only the first calibrationK0 of camera0 is known. Rewrit-
ing (3) it is also possible to compute the varying calibrations
Ki from the known rotationsR0,i and estimated homogra-
phiesH∞

0,i by

Ki = ρj,iH̃
∞
0,iK0R

T
0,i. (4)

whereH̃∞
0,i is the homographyH0,i of (3) scaled by 1

ρj,i

which is estimated from the images themselves.

3.3. Selfcalibration of a rotating camera
Often all calibration matricesKi are unknown or only some
contraints onKi’s are given. In this case it is not possible to
use (3) directly to compute the camera transformationsH∞

j,i

and they have to be computed from the images.
There are many techniques to estimate the camera homo-

graphiesH̃∞
j,i from the given images[6, 7, 8]. We summa-

rize the technique from [7] where the internal and external
camera calibration can be computed from images even in
the case of varying internal parameters. In [7] the infinite
homography constraint (IHC)

KiK
T
i = ρ2

j,iH̃j,iKjK
T
j H̃T

j,i (5)

is used to get a set of linear equations by using some con-
straints like zero camera skew. The solution of this equation
set is the dual of the image of the absolute conic (DIAC)
ω∗ = KKT . The calibrationKj is the Cholesky decom-
position of the DIACω∗j . The other calibrationsKi are
computed as Cholesky decompositions ofω∗i by using (5)
to computeω∗i . This involves a nonlinear optimization with
an IHC-based error function.
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IHC calibration optimizes only the algebraic error in de-
pendency of the estimated homographiesH̃∞

j,i. In a refine-
ment step the error is minimized statistically by a maxi-
mum likelihood (ML) or a maximum a posterori (MAP)
optimization. Considering that the estimated feature posi-
tions for homography computation are disturbed by Gaus-
sian noise and to avoid a fit to noise of poorly constrained
parameters like the principal point a MAP estimation is
used. In [7] the MAP estimation is given by

MAP = argminKi,Ri,Ml

#cameras∑
i=1

#points∑
l=1

‖mi,l−KiRiMl‖2+

#cameras∑
i=1

(ci − cpri)T

[
σ2

x 0
0 σ2

y

]
(ci − cpri) (6)

with a given distribution[σx, σy] of the principal pointc and
a priorcpri of the principal point.M̂l is the projection ray
of thel-th image pointml.

In case of noise the approach of [7] sometimes fails to
compute the calibrationK with Cholesky decomposition of
ω∗ because the estimatedω∗ may not be positive definit.
Another problem is that ifU is the number of unknown in-
trinsics in the first frame, andV is the number of intrin-
sics which may vary in subsequent images, the following
counting argument for the unknown intrinsics of the cam-
eras must hold:

U + V (n − 1) ≤ (n − 1) · 5 (7)

wheren is the number of cameras. This leads to the
limitation that not all intrinsics are allowed to vary in this
approach.

3.4. Selfcalibration from general motion
Finally we discuss the problem of selfcalibration from
freely moving cameras. For freely moving cameras and
general 3D-scenes, the relation between two consecutive
frames is described by the fundamental matrix [4] if the
camera is translated between these frames. The fundamen-
tal matrixFj,i maps points from cameraj to lines in camera
i. Furthermore the fundamental matrix can be decomposed
into a homographyHπ

j,i which maps over the planeπ and
an epipolee

Fj,i = [e]xHπ
j,i, (8)

where[·]x is the cross product matrix. The epipole is con-
tained in the null space ofFi,j : Fi,j · e = 0.

The fundamental matrix is independent from any pro-
jective skew. This means that the projection matricesPj

andPi lead to the same fundamental matrixFj,i as the pro-
jectively skewed projection matrices̃Pj and P̃i [4]. This
property poses a problem when calibrating from projection

matrices. Most techniques for calibration of translating and
rotating cameras first estimate the projective skewed cam-
era matricesP̃i and the inversely skewed positions̃Mk of
the scene points from the image data with a Structure-from-
Motion approach. The estimated projection matricesP̃i and
the reconstructed scene points may be projectively skewed
by a projective transformationH4×4. Then they estimate
skewed projection matrices̃Pi = PH4×4 and inversely
skewed scene points̃M = H−1

4×4M. For uncalibrated cam-
eras one cannot avoid this skew and selfcalibration for the
general case is concerned mainly with estimating the pro-
jective skew matrixH4×4 via the DIAC [4] or the absolute
quadric [11, 18].

4. Selfcalibration with known rotation
In this section we will develop novel techniques to use avail-
able external orientation information for camera selfcalibra-
tion. We will address both cases of purely rotating and ar-
bitrarily moving cameras. It is assumed that the alignment
in time between orientation data and camera data is given.
In section 5 we will discuss a technique to align these data.

4.1. Rotating cameras
We can exploit given rotational information to overcome the
limitations on the number of varying intrinsics and the prob-
lems caused from noise during computation ofω∗ in [7].
Equation (2) can be rewritten as

KiRj,i − ρj,iH̃
∞
j,iKj = 03x3 (9)

where the rotationRj,i is known from the orientation sensor
and the homographỹH∞

j,i can be estimated from the images
themselves. Furthermore, for known scaleρj,i (9) is linear
in the components ofKi andKj . It provides nine linear
independent contraints on the intrinsics of the cameras

Normally the scaleρj,i is unkown then (9) can be written
as

03x3 = K̃iRj,i −H∞
j,iKj with K̃i =

1
ρj,i

Ki, (10)

which is also linear in the intrinsics of the cameraj and lin-
ear in the elements of̃Ki. Note that due to the unknown
scale we now have six unknowns iñKi. Kj is unchanged,
therefore we know that the matrix elementKj(3, 3)=1. Eq.
(9) provides nine linearily independent equations for each
camera pair for the five intrinsics contained inKj and the
five intrinsics ofKi plus the scaleρj,i contained inK̃i.
If there are no constraints available for the intrinsics, (10)
has no unique solution for a single camera pair. With two
constraints for the intrinsics or the scaleρj,i the solution
is unique. Alternatively, if we consider a camera triplet
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(i, j, k) with estimated homographies̃H∞
j,i and H̃∞

j,k (10)
provides

K̃iRj,i −H∞
j,iKj = 03x3,

K̃kRj,k −H∞
j,kKj = 03x3, (11)

with 17 unknowns and up to 9 independent equations for
each camera pair. Therefore, for each camera triplet the
solution for the intrinsics and scales is unique and can be
solved even for fully varying parameters. The use of a ref-
erence imagej in (11) is no limitation because the homog-
raphyHj,k can be computed asHj,k = Hj,iHi,k if it is only
possible to compute pairwise homographies.

For the case of constant but unknown intrinsics (9) is
equal to

KRi,j − ρj,iH̃
∞
j,iK = 03x3. (12)

In this case the solution for the intrinsics is unique for
a single camera pair. The scaleρi,j of H̃j,i can be com-
puted directly from the homographỹHj,i itself because it is
a conjugated rotation matrix1, therefore the eigenvalues of
H̃∞

j,i are [10, 1]

eigval(H̃∞
j,i) = ρi,j [1, cos(φ) + i sin(φ), cos(φ)− i sin(φ)]

(13)
whereφ is the rotation angle about the axis given by the
eigenvector corresponding to the eigenvalue 1. The scale
ρi,j is the unknown scale of the homography. With (13)
we are also able to decide whether the camera calibration is
constant or the camera has varying intrinsics.

This novel linear technique to compute the intrinsics of
the cameras substitutes the linear and the nonlinear estima-
tion steps of the algorithm from [7]. To avoid error propa-
gation caused by algebraic error during estimation ofH̃∞

j,i

and error of orientation sensor we can use the MAP opti-
mization from [3] to get exact calibration and to stabilize
the orientation sensor.

Evaluation for rotating cameras: To measure the noise
robustness of the calibration we test the approach with syn-
thetic data. The center of the rotating camera is at the ori-
gin of the coordinate system. The camera rotates aboutx-
axis andy-axis with up to six degrees and observes a uni-
formly distributed scene in front of the camera. The scene
points are uniformly distributed in a cube and projected into
the images of size 512x512. The location of the projected
points is disturbed by uniformly distributed noise with max-
imum of 2 pixel. The known camera orientation is also dis-
turbed by uniformly distributed angular noise of up to 2 de-
grees per axis. We varied both pixel and rotational noise.

1MatricesA andB are conjugated ifA = CBC−1 for some matrix
C. The conjugated matrixA has the eigenvectors ofB that are transformed
with C.
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Figure 1: Noise robustness measurements. Top left: mean
of estimated focal lengthf , top right: variance of estimated
focal lengthf , bottom left: mean estimated aspect ratioa,
bottom right: variance of estimated aspect ratioa.

The homographies̃H∞
j,i are estimated from point correspon-

dences by least squares estimation using feature point nor-
malisation as in [2]. The measurements for the first camera
with focal lengthf = 415 and aspect ratioa = 1.1 are
shown in figure 1. The measured errors and variances for
the other images are similar to this results.

It can be seen from figure 1 that the estimated calibration
is rather stable and the variance is below 10% if the pixel
noise is less than one pixel and the orientation data are noisy
by angular errors of less than one degree. The influence
of the orientation noise is much larger since the absolute
rotation angle between the cameras is in the range of the
noise (6 degree camera rotation with up to 2 degree noise).
Since the error of orientation sensors like the InertiaCube2

from InterSense is normally in the range below one degree,
we can rely on the rotation information. The homography
estimation can also be estimated with an error of less than
1 pixel for the features’ positions in most situations. This
shows that the proposed calibration with (11) is robust for
most applications.

4.2. Calibration for freely moving cameras
We will investigate how to combine rotational information
and the Fundamental matrixFj,i in the general motion case
as introduced in section 3.4. The Fundamental matrix is not
affected by projective skew, therefore we will useFj,i in the
following to calibrate the cameras.

In (8) the homographyHπ
j,i is element of the three pa-

rameter family [4]

Hπ
j,i = H∞

j,i − evT ,

whereH∞ is the homography which maps over the plane
at infinity. Without loss of generality we assume thatv =
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[0, 0, 0]T . With (2) and (8) we get

Fj,i = [e]xKiRj,iK
−1
j . (14)

This is equivalent to

[e]xKiRj,i − Fj,iKj = 03×3, (15)

which is linear in the intrinsics of camerai and cameraj.
Please note the relationship to Eq. (9). One can see that (15)
is an extension of (9) which contains the unknown camera
translationt in the epipole. Equation (15) provides six lin-
ear independent equations for the intrinsics of the cameras.
So we need five image pairs to compute the calibration of
the first camera in case of fully varying intrinsics.

The fundamental matrices̃Fj,i that have to be estimated
from the images are scaled by an arbitrary scaleρj,i

F̃j,i = ρj,iFj,i. (16)

For these estimated fundamental matricesF̃j,i (15) is

03×3 = [e]xKiRj,i − F̃j,iKj

= [e]xK̃iRj,i − Fj,iKj (17)

which is also linear in the intrinsics of cameraj and the
scaled intrinsics of camerai in conjunction with the scale

1
ρj,i

. The matrices[e]xK̃iRj,i andFj,iKj have rank 2, for
this reason we only have to use two rows of (17) for com-
putation and it provides only six linearily independent equa-
tions for the scale and the intrinsics of the cameras. It fol-
lows from the counting argument that the solution is never
unique if no constraints for the scales1ρj,i

or the intrinsics
of the cameras are available.

Now we will discuss the most important constraints to
get a unique solution to the calibration problem. We can
constrain theKi’s by different parameters settings:

• known principal point: The solution for the focal
length, aspect ratio and skew is unique if we use two
image pairs.

• known skew and principal point: We can estimate the
focal length and aspect ratio directly from a single fun-
damental matrix and the rotation.

• known skew, known aspect ratio and principal point:
The solution for the focal length is unique for one im-
age pair. Note that this case is also linear in the case of
unknown rotation [4].

These constraints can be applied for efficient selfcalibration
in case of general camera trajectory.

Furthermore the known rotation can be used to detect
critical motion sequences for the solution of the selfcalibra-
tion problem. Critical motion sequences mean that it is not

possible to fully determine the projective skewing homog-
raphy H4×4 and therefore the camera can’t be calibrated
completely. Pure translation of the camera can be detected
from zero rotation about all axes. In this case the recon-
struction is only affine. Another critical motion is planar
translation of the camera and rotation about an axis perpen-
dicular to that plane. This critical motion can be detected by
measuring the orthogonality of the eigenvector correspond-
ing to the real eigenvalue one of the rotation matrix (Eq.
(13) in section 4) and the camera motion plane.

Evaluation for freely moving cameras: To measure the
noise robustness of the proposed calibration for arbitrarily
moving cameras we use synthetic data with known noise
and ground truth information. Six cameras are positioned
on a sphere looking inside and observing randomly dis-
tributed points inside the sphere. The 3D points are pro-
jected to the cameras and the corresponding image points
are disturbed with pixel noise of up to 2 pixel. The images
are 512x512 pixel. These projections are normalized [2]
and we calculate the fundamental matricesF̃j,i for the im-
age pairs by least squares estimation. The computed fun-
damental matrices̃Fj,i are used for the robustness measure-
ments. The known orientation of the cameras is also dis-
turbed by angular noise of up to 2 degrees. The results for
the case of known principal point(cx, cy) and known skew
s are shown in figure 2 for the first camera with focal length
f = 415 and aspect ratioa = 1.1. The errors and variances
for the other images are very similar to these measurements.
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Figure 2: Noise robustness measurements. Top left: mean
of estimated focal lengthf , top right: variance of estimated
focal lengthf , bottom left: mean estimated aspect ratioa,
bottom right: variance of estimated aspect ratioa.

It can be seen that for orientation noise of up to 1 degree
and pixel noise of up to 1 pixel the calibration is rather sta-
ble. The noise sensitivity for this calibration is very similar
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to the rotational case, but one can see a slightly larger influ-
ence of pixel noise for F-estimation. For larger noise levels
the quality of the estimated parameters is not as good as in
the purely rotational case but they may still be used as good
starting values for full nonlinear selfcalibration.

5 Alignment of orientation sensor
and rotating camera

We have to address the problem of aligning orientation sen-
sor data and the camera data in time. When grabbing an
image or reading sensor data, the computer system adds
unknown latencies to the data. Measurements have shown
that typical latencies for digital image acquisition are in the
range of 50 to 150 ms. Sometimes this latency information
is available from time stamps of sensor and camera data,
otherwise we have to estimate the timeshiftts between the
camera data and the sensor from the data itself.

In this section we show that for a rotating camera it is
possible to align the orientation sensor data to the camera
data by using the estimated homographiesH̃j,i and the ro-
tation Rj,i. We will describe two different alignment ap-
proaches to computets depending on the camera type. The
first approach assumes a camera with fixed internal param-
eters. In the second approach we will address the case that
the intrinsics of the camera vary.

5.1 Rotation alignment with fixed internal
parameters

For a rotating camera with fixed internal parameters we
don’t have to calibrate the internal camera parameters be-
cause the homography between two views is a conjugated
rotation matrix for constantK (see section 3.1). For this
case Caspi and Irani [5] developed a similarity measure
that exploits the eigenvalue structure of the homographies
to align two spatially coupled camera sequences1 and2.
They sort the eigenvalues of the homographies in descend-
ing order (eigenvalue vector) and compare them by

simeig(H̃1
j,i, H̃

2
j,i) =

eig(H̃1
j,i)eig(H̃2

j,i)

‖eig(H̃1
j,i)‖‖eig(H̃2

j,i)‖
, (18)

where‖ · ‖ is a vectornorm. It measures the parallelity of
the eigenvalue vectors of the homographies. For real valued
eigenvalues, Eq. (18) provides the cosine of the angle be-
tween the two vectors. We have adapted their approach such
that we exchange the first homographyH̃1

j,i with the rota-
tion matrix Rj,i of the orientation sensor. The second ho-
mography can then be replaced by the infinite homography
H̃∞

j,i. In this case we cannot sort the eigenvalues because

the eigenvalues of a rotation matrixR are complex and a
permutation of (13) and have absolute value 1. So it is not
possible to sort the eigenvalues contained in the eigenvalue
vector. Furthermore the eigenvalue vector is a function of
Φi

E(Φi) = ρj,i[1, cos Φi+i sinΦi, cos Φi−i sinΦi]T . (19)

This known eigenvalue structure leads to a simpler and
more robust matching criterion

simcos =
∣∣∣∣cos Φi −

cos Φj

ρj,i

∣∣∣∣ (20)

The alignment in time between the estimated homograpy
sequence and the rotation data can now be performed with
this criterion. We now search for the time shiftts which
minimizes

ts = argminshift

{
simcos(H̃∞

j,i, Rt+shift)
}

. (21)

5.2 Rotating camera with varying internal
parameters

Our calibration approach normally has to deal with a camera
with varying internal parameters. In this case it is not pos-
sible to match eigenvalues of the rotation matrixRj,i and
the homographyH̃∞

j,i because the conjugation assumption
is not valid for varyingKj . Therefore we have to calibrate
the camera before the alignment between camera and sen-
sor in time. We can use image-based selfcalibration like the
approach of [7] but we only need short sequences for this
task. In contrast to a camera with fixed but unknown cal-
ibration we have the calibration information and we know
the accurate rotation. Therefore we don’t have to deal with
scales for the homographies. For these reasons (20) is equal
to

simrot(Ri, Rj) = | cos Φi − cos Φj |. (22)

In the framework of calibrated cameras we are able to
use the information about the rotation axis, too. The differ-
ence∆axis of the normalized rotation axis is

∆i,j,axis =
eigvec(Ri)
‖eigvec(Ri)‖

− eigvec(Rj)
‖eigvec(Rj)‖

. (23)

In order to use (22) and (23) simultaneously as a simi-
larity measure we need to scale each measure to unit range
[0, 1]. Therefore the combined similarity measure is

simrot,axis=
∆i,j,axis

3
+

simrot(Ri, Rj)
2

. (24)

This criterion can also be used with cameras with fixed but
unknown calibration.
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Figure 3: left:Images from the sequence to test alignment.
right: Alignment of orientation sensor data with camera
data using the different criterions angle criterion (22), axis
criterion (23) and the combined criterion (24).

Alignment experiments: We compared the three simi-
larity measures (22), (23) and (24) w.r.t. robustness. It can
be seen that all criteria improve with sequence length. The
best results were achieved with the combined criterion and
the angle criterion, while the axis criterion showed more
sensitivity to noise. A real sequence of 57 images was
taken and aligned with an InterSense InterTrax2 consumer
rotation sensor. This sequence is taken by a PAL camera
mounted on a tripod which rotates about Pan-axis and Tilt-
axis. A frame of the sequence is shown in figure 3. The
orientation sensor provides new orientation data for every
8ms. The different criteria (22), (23) and (24) were used
to estimate the time shiftts. The similarity curves for the
different criteria are plotted in figure 3 with minima in the
range from -90ms to -112ms.

6. Experiments
6.1. Calibration of rotating camera
We tested the calibration techniques for rotating cameras
with a sequence taken by a consumer pan-tilt-zoom camera
as used in video conferencing (Sony DV-31). The camera is
panning and zooming during the sequence. A frame of the
sequence is shown in figure 4. The camera rotation is taken
from the camera control commands, which means that we
used the angles which are sent to the camera. Therefore
the rotation error depends on the positioning accuracy of
the pan-tilt head which is in the range of below 0.5 degrees
for each axis. As reference for the zoom we interactively
estimated the focal length for the different zoom positions
from a given calibration object beforehand as ground truth.
The focal length of the camera varied between 875-1232
(in pixel). We also compensated the zoom-dependent radial
distortion beforehand. This can be done for the different
discrete zooming steps of the camera with the knowledge of
the zoom step but without knowledge of the correct zoom in
pixel.

The sequence was processed by tracking feature points
with a KLT-tracker [22]. From these tracks we calcu-
lated the homographies for the sequence with RANSAC and

Figure 4: left: Image from the real scene, right: Image from
the synthetic scene

5 10 15 20 25 30 35
800

850

900

950

1000

1050

1100

image

f

5 10 15 20 25
0

200

400

600

800

1000

1200

1400

image

f

Figure 5: Calibration results for constant and varying focal
length

least-squares-estimation over the inliers. The reprojection
error gave a mean pixel error of 0.8 pixel. Calibration es-
timates for the focal length were computed from triples of
images.

Figure 5 shows results for focal length estimation. The
dashed line gives the true values, the solid line the estimated
values. The left chart shows the estimated focal length (in
pixel) for constant focal lengthftrue =940 pixel, the right
chart contains a zooming camera. The average relative esti-
mation error is around 3% for fixed zoom and 7% for chang-
ing zoom.

6.2. Calibration from general motion
We tested the calibration of a moving and rotating camera
by using images rendered from a photorealistic image ren-
derer. A tilting and panning camera is moving sideways in
front of a VRML-scene created from realistic 3D models of
buildings (see figure 4). The focal length of the camera was
fixed to 415 (in pixel). We tracked features over the image
sequence with the KLT-tracker [22]. From these features we
estimated Fundamental matrices for different image pairs.
The rotation is the given rotation of the ground truth data.
The linear estimated focal length has a mean relative error
of 4% w.r.t. the true focal length (see figure 6 (a)).

We also tested the calibration technique for a real, mov-
ing, and rotating camera. The test sequence was taken by
the above mentioned pan-tilt-zoom camera. For the first test
sequence the camera only rotates and moves during the se-
quence (see figure 4). As reference for the zoom we use
the manual calibration of the different discrete zoom steps
of the camera. The focal length of the camera for the first
Sequence is 875 (in pixel). We also compensated the zoom-
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dependent radial distortion beforehand. The resulting rela-
tive mean error is about 5% for the linear calibration.

Our second test sequence also used the above video con-
ferencing camera. During the sequence the camera is pan-
ning, tilting, zooming and moving. A frame of the sequence
is shown in figure 4. The focal length in pixel varied be-
tween 875 and 940. We also compensated the radial distor-
tion beforehand. The calibration results are shown in figure
6 (b). The resulting error is about 2.5% for the linear cali-
bration.

(a) (b)

Figure 6: (a) calibration for synthetic sequence, (b): esti-
mated focal length for varying intrinsics of real sequence.
(dash-dotted: ground truth, solid: estimated values)

7. Conclusions
In this contribution we have proposed a novel selfcalibra-
tion approach that exploits knowledge of external rotation
information in conjunction with image-based estimation of
homographies and Fundamental matrices. The joint cali-
bration from Fundamental matrices and rotation data guar-
antees metric projection matrices and avoids the problem of
projective skew.

Rotation information can be found “for free” in a wide
variety of applications and has proven valuable in this con-
text. We have investigated the constraints that can be used to
stabilize calibration and have evaluated the robustness of the
approach with controlled and synthetic data. First real mea-
surements have shown the viability of the method. We will
continue to integrate the approach in a complete structure-
from-motion system. We expect that rotation information
will not only lead to better calibration but also to faster and
more reliable image feature tracking since we can compen-
sate the rotation component. We expect this to be a major
step towards uncalibrated realtime tracking in unstructured
outdoor environments.
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