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Abstract

We define a new class of binary matrices by maximizing the peak-sidelobe distances in the aperiodic

autocorrelations. These matrices can be used as robust position marks for in-plane translational spatial

alignment. The optimal square matrices of dimensions up to 7 by 7 and optimal diagonally-symmetric

matrices of 8 by 8 and 9 by 9 were found by exhaustive searches.
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I. INTRODUCTION

Binary sequences [1, 2] and matrices with good autocorrelation properties have key applica-

tions in digital communications (radar, sonar, CDMA and cryptography) [3] and in coded aperture

imaging [4]. Several works have conducted exhaustive searches for the optimal matrices of these

applications [5–8]. A less developed application of binary matrices with good aperiodic auto-

correlations is two-dimensional (2D) translational spatial alignment. For example, it has been

shown in electron-beam lithography [9–12] that position marks based on such binary matrices are

immune to noise and manufacturing errors. However, the symbols that were used in these prior

works were borrowed from different applications, noticablely the 1D Barker sequences of±1 from

communications. There have been no studies on the optimal patterns for translational alignment.

In this paper, we define and report the optimal binary matrices as alignment marks. Section II

sets up the problem. Section III defines the criteria for the optimal matrices. Section IV discusses

previous work related to this problem. Section V works out the useful bounds. Section VI explains

the exhaustive computer searches and lists the results. Section VII discusses several key observa-

tions of the optimal marks. Section VIII compares the performance of optimal and non-optimal

marks through simulations. Section IX discusses the potential applications of the matrices found.

Section X concludes the paper.

II. PRELIMINARIES

An alignment mark is made by creating a surface pattern different from the background so

that the pattern information transforms into a two-level signal when a digital image is taken. This

image can be represented as a binary matrix where 1 represents the (black) pattern pixels and 0

represents the (white) background pixels or vice versa.

The 2D aperiodic autocorrelation (A) of an M by N binary matrix with elements Ri, j is defined

as

A(τ1,τ2) =
M

∑
i=1

N

∑
j=1

Ri, jRi+τ1, j+τ2 (1)

where τ1,τ2 are integer shifts. The peak value is A(0,0) while all other values are sidelobes. A is an

inversion-symmetric [A(τ1,τ2) =A(−τ1,−τ2)] (2M−1) by (2N−1) matrix. The crosscorrelation
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between R and the data image matrix Di, j is expressed as

C(τ1,τ2) =
M

∑
i=1

N

∑
j=1

Ri, jDi+τ1, j+τ2. (2)

When the data D is a noisy version of the reference R, the peak value of the crosscorrelation

determines the most probable position of the mark.

It is important to note that all the matrices are implicitly padded with 0s for all the matrix

elements of indices exceeding their matrix dimensions.

A linear transformation of the data matrix results in a linear transformation of the correlation

as long as the reference matrix is kept the same. This can be seen from

D′i, j = cDi, j +d (3)

C′(τ1,τ2) = cC(τ1,τ2)+d
M

∑
i=1

N

∑
j=1

Ri, j (4)

where the second term of C′ is a constant. The data matrix can thus be arbitrarily scaled (c 6= 0)

while keeping the correlation equivalent and the alignment results identical.

III. CRITERIA FOR THE OPTIMAL BINARY MATRICES

Depending on the quantities being optimized, the criteria for the optimal matrices are different.

For alignment purposes, we list two criteria here. The first is to minimize the misalignment prob-

ability. The second is to minimize the misalignment deviation. The first criteria depends on the

values of the autocorrelation sidelobes, while the second criteria also depends on their positions

relative to the central peak.

In this paper, we chose to minimize the probability that misalignment happens. A misalign-

ment occurs when one of the sidelobes exceeds the central peak [p = A(0,0)]; this probability is

analytically expressed in Appendix A. Under the same noise condition, the less the peak-sidelobe

distance the higher the misalignment probability. Consequently the criteria for ranking the matri-

ces is based on their peak-sidelobe distances.

The peak-sidelobe distances are illustrated in Fig. 1. We plotted an autocorrelation matrix A(τ)

with peak value p and highest sidelobe value s. The shortest peak-sidelobe distance is denoted

as d1, where d1 = p− s. The other distances are defined as di+1 = di + 1 for i ≥ 1, as shown
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for d1 through d4 in Fig. 1. ni gives the number of times di occurs in the autocorrelation and

∑
i

ni = (2M− 1)(2N − 1)− 1. The histogram of an autocorrelation matrix can be expressed as

{d1|n1,n2, ...,n(s+1)}.

The criteria for finding the optimal matrix is to maximize d1 then minimize ni sequentially in

the dictionary order. This criteria is completely justified in the low noise limit in Appendix A , al-

though a general criteria depends on the amount of noise in the data matrices. Matrices of any size

can be compared using this criteria. In general, the distances (di) of the autocorrelation increase

with the size of the matrix. Without restricting the matrix dimension, the optimal matrix will di-

verge in size. Consequently, we study the optimal matrix for each fixed dimension. Interestingly,

the optimal matrices found in this paper are unique as discussed in Sec. VII.

IV. RELATED WORK

Previous works on 1 and -1 matrices with 0 background [5, 8] in digital communications are

different than our work on 1 and 0 matrices. The former representation has three levels (1,-1,0)

while our binary matrices have only two levels. The aperiodic autocorrelations of these matrices

are not equivalent.

Other works on binary matrices of 1s and 0s with aperiodic autocorrelations have used different

criterias selected for applications in radar and sonar. In the Costas-array problem [6], only one

black pixel is placed per column and row and the maximum sidelobe is fixed to one. In the

Golomb-Rectangle problem [7], the number of black pixels is maximized with the restriction that

the sidelobe still be fixed to one [13]. However, our criteria does bear some resemblance to those

in some of the works on one dimensional -1 and 1 (three levels) sequences [2].

V. TWO UPPER BOUNDS OF d1,max(p), dupper,I
1,max (p) AND dupper,II

1,max (p)

For a binary matrix R, the peak value p of its autocorrelation A equals the number of ones in

the matrix (R). The largest d1 for all matrices with a given p, of a fixed dimension, is d1,max(p).

d1,max(p) = p− smin(p), where smin(p) is the minimum highest sidelobe value as a function of p.

In this section, we constructed an upperbound of d1,max(p), dupper,I
1,max (p), by maximizing p−

A(±1,0). The A(±1,0) computed here forms a lower bound on smin(p), slower,I
min (p). This con-
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struction is illustrated in Fig. 2, where we assume the matrix R used to construct our bound is of

dimension M×N with M ≤ N.

We find:

dupper,I
1,max (p) =


p, p ∈ [0,N1] I

N1, p ∈ [N1,N2] II

M(N +1)− p, p ∈ [N2,MN] III

(5)

where N1 =
MN

2 ,N2 =
MN

2 +M when MN is even and N1 =
MN+1

2 ,N2 =
MN+1

2 +M−1 when MN

is odd.

This upperbound can be derived by starting out with a matrix Ri, j = 0 for all (i, j) and ‘filling

in’ with ones in a particular pattern. In region I, ones can be placed anywhere in Ri, j where i+ j

is odd. When p = N1, we have formed a “checkerboard pattern”. In region II, we place ones

wherever i+ j is even for i = 1 or i = N. In region III, the remaining locations without ones are

filled.

The autocorrelation function A(τ1,τ2) equals the number of black squares that are connected

by a displacement vector (τ1,τ2). We can use this property to construct a second lower bound

slower,II
min (p). This approach is similiar to the method used in Ref. [13].

Since the autocorrelation is invariant under inversion, there are ((2M− 1)(2N− 1)− 1)/2 =

2NM−N−M unique non-zero displacements; a matrix of p ones fills p(p−1)/2 of them. As p

increases, there are repeated displacements because p(p−1)/2 quickly exceeds 2NM−N−M.

We can find a lowerbound slower,II
min (p) by assuming that the displacements added to the autocor-

relation function distribute uniformly, that is |A(τ1,τ2)−A(τ ′2,τ
′
2)| ≤ 1 for nonzero displacements.

This gives slower,II
min (p) = ceil[ p(p−1)

4NM−2N−2M ], where ceil[x] rounds to the nearest integer greater than

x. Consequently, dupper,II
1,max = p− ceil[ p(p−1)

4NM−2N−2M) ].

As illustrated in Fig. 2, slower,II
min (p) is a better bound for small p, while slower,I

min (p) is a better

bound for large p. The first bound slower,I
min (p), which keeps track of the pixel positions, becomes

exact when p approaches “MN” (filled) . While the second bound slower,II
min (p), which ignores the

actual pixel locations, becomes exact when the matrix is sparse and p approaches “0” (empty).

VI. EXHAUSTIVE COMPUTER SEARCHES FOR THE OPTIMAL SQUARE MATRICES

Physical in-plane alignment usually requires equal alignment accuracies in both directions; this

calls for square matrices (M = N). We applied exhaustive searches to find the square matrices with
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the maximum d1[= max(d1,max(p))] . The resulting matrices were ranked using the criteria in Sec.

III to obtain the optimal matrices.

Backtrack conditions based on symmetries and sidelobes have been found useful in exhaustive

searches for binary matrices [5, 13, 14]. Matrices related by symmetry operations are considered

the same matrix. The symmetry operations for square matrices are horizontal and vertical flips and

rotations by multiples of 90 degrees. For this study, a backtrack condition based on eliminating

redundant matrices related by horizontal flips was implemented. Backtrack conditions based on

sidelobe levels are useful if the sidelobes are being minimized. However, we are maximizing the

peak-sidelobe distance d1, so the sidelobe backtrack condition was not used.

The search algorithm we implemented works by exhaustively generating matrices row by row.

The algorithm continues generating rows until a backtrack condition occurs, or a matrix is com-

pletely specified. The matrix is stored for later ranking if it has the same or greater d1 than the

existing maximum d1.

Several techniques were implemented to speed up the algorithm. Each matrix row was repre-

sented as a binary word so that fast bit-wise operations could be used. In addition lookup tables

were created to calculate the horizontal flips and correlations of rows. For our binary matrices,

the maximum sidelobes were typically located near the autocorrelation peak. Because of this, the

sidelobe values were checked in a spiral pattern around the peak to quickly determine if a matrix

had a d1 less than the stored maximum.

The search results for square matrices of size up to 7 by 7 are presented in Fig. 3. Fig. 3a) gives

the optimal matrices for 2 by 2, 3 by 3 and 4 by 4. In Fig. 3b), c) and d) we plot, in red, smin(p)

for matrices of sizes 5 by 5, 6 by 6 and 7 by 7. This red curve is indeed bounded from below by

the grey slower,I
min (p) and slower,II

min (p) constructed in Sec. V. The number of the matrices having the

maximum d1 is plotted in blue. This curve peaks around the intersection of the dupper,I
1,max and dupper,II

1,max

upperbounds. The circle on the blue line specifies the location of the optimal matrix ranked first

by the criteria in Sec. III. The optimal matrices and their autocorrelations are shown as insets.

The two numbers on the y-axes of the autocorrelation plots are the p and s values of the optimal

matrices. The matrices ranked second and third and their distance spectra are listed in Appendix

B.

The runtime for 7 by 7 matrices was 3 hours on 1000 Intel EM64T Nodes with 2.6 GHz clock

speed. Exhaustive searches of square matrices of size 8 by 8 are not accessible to us, since the size

of the search space increases exponentially with the number of matrix elements as 2N2
.
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VII. OBSERVATIONS ON THE OPTIMAL SQUARE MATRICES

The first interesting observation is that most top-ranked matrices in Fig. 3 and B are diagonally

symmetric. Because of this if we restrict our searches to symmetric matrices of larger sizes, we

still expect to find top-ranked matrices [14]. The search results for diagonally-symmetric matrices

of 8 by 8 and 9 by 9 are presented in Fig. 4.

The second observation for our optimal matrices shown in Fig. 3, is that d1 always occurred

in the first four neighbors of the autocorrelation peak [A(0,±1),A(±1,0)]. Since d1 is the most

likely point for misalignment, these matrices, although optimized for misalignment probability,

also have low misalignment deviation discussed in Sec. III. Another interesting property of the

autocorrelation is that the ratio of A(0,0)−A(±1,0)
N or A(0,0)−A(0,±1)

N is invariant under symbol expan-

sion (i.e. expanding the number of pixels making up the original marker pixel). This property

allows us to define a new quantity for the optimal matrices in this work called sharpness Λ = d1
N .

Since Λ is scale-invariant, d1 can be easily obtained for different scaling factors and used to evalu-

ate the alignment performance. The sharpness (Λ) of the optimal matrices increases with the size

of the matrices.

The third observation is that all of the optimal matrices shown in Figs. 3 and 4 are connected

through their black pixel (1s) and all but 3 by 3 are connected through their white pixels. A pixel

is connected if one or more of its eight neighboring pixels has the same value. Connectedness

is a preferred topological property for alignment marks; it makes the marks self-supportive, sus-

pendible and robust against mechanical disturbances.

The fourth observation is that the optimal matrices found in Figs. 3 and 4 are unique; there is

only one matrix with the optimal histogram ranked by the criteria from Section III . In general,

the mapping from histograms to correlations is not unique. For example the 2 by 2 matrices of 1 1

0 0

 and

 1 0

0 1

 have identical histograms. It is unclear whether this property holds for

optimal matrices of all sizes.

VIII. ALIGNMENT ACCURACIES OF THE OPTIMAL MATRICES

We study the performance of the optimal matrices by comparing the optimal alignment marks

to the cross patterns. The matrices were embedded in a white “0” background with a size 5 times

that of the symbol. Uniform Gaussian noise was added to all pixels to simulate a noisey image.
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This was correlated with its noise-free version. The alignment accuracy was determined by the

deviation of the correlation peak from the center for 10000 trials.

In Fig. 5, we plot the alignment deviation as a function of signal-to-noise ratio for two optimal

marks from Fig. 3 and the crosses. The y-axis is the horizontal alignment deviation in pixels while

the x-axis is the signal-to-noise ratio in decibels (= 20log S
N ). At a signal-to-noise ratio of 0 dB,

the markers are barely discernible by eye. All markers were expanded to the same area, of 35 by

35 total pixels and embedded in a background of 175 by 175 pixels, for direct comparison.

Applying the criteria from Section III, using the expanded 35 by 35 symbols, the 7 by 7 mark

is ranked first, followed by the 5 by 5 mark, and then the crosses. The quality of the optimal

alignment marks should improve with increasing size, which provides a motivation to continue

the search for larger optimal matrices.

IX. APPLICATIONS

Correlation detection from a digital image is a simple, efficient and reliable way to determine

the position of an alignment mark. In practice, the crosscorrelations can be calculated by fast-

Fourier-transforms. The peak of the correlation can further be interpolated to obtain an alignment

accuracy better than the distance represented by a single pixel of the image [9]. The matrices

reported in this paper are the desirable patterns to use in this context; they can replace the cross-

type patterns widely in use today as position markers. Alignment using these matrices is very

robust against noise in the imaging system and partial damage of the mark, providing the strongest

peak signal for accurate sub-pixel interpolation. The potential applications of the matrices found

in this paper include, but are not limited to, electron-beam lithography [10], planar alignment in

manufacturing [15], synchronization [16] and digital watermarking [17].

X. CONCLUSIONS

We introduced a new class of binary matrices (two level signals) which have maximial peak-

to-sidelobe distances in their aperiodic autocorrelation. Optimal square matrices of dimensions

up to 7 by 7 and optimal diagonally-symmetric matrices of 8 by 8 and 9 by 9 were found using

a backtrack algorithm. Useful bounds, notable properties and the performances of the optimal
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matrices were discussed.
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Appendix A: Probability of misalignment

The crosscorrelation between the data image and the reference matrix is denoted as C(τ1,τ2).

The autocorrelation of the binary reference matrix is denoted as A(τ1,τ2). The data image is

essentially a copy of the reference matrix with noise added to it. We assume the noise is Gaussian

and the standard deviation for each pixel is σ . The “black” and “white” pixel values of the data

image are denoted as bi and wi, whose expectation values are bi = 1, wi = 0 and C = A.

Misalignment happens if C(0,0)−C(τ1,τ2) = xτ1,τ2 ≤ 0, representing a sidelobe [C(τ1,τ2)]

exceeding the central peak [(C(0,0))] in the crosscorrelation. Below we write this inequality in

detail,

xτ1,τ2 =C(0,0)−C(τ1,τ2) =

p

∑
i=1

bi−

{p−dτ1,τ2

∑
i=1

b(τ1,τ2)
i +

dτ1,τ2

∑
i=1

w(τ1,τ2)
i

}
≤ 0 (A1)

p = A(0,0),dτ1,τ2 = A(0,0)−A(τ1,τ2)> 0

The first term in the inequality represents C(0,0), where each element of the reference matrix

with value 1 multiplies the corresponding bi. The sum includes all p pixels of bi. The two terms in

the brackets represent C(τ1,τ2), when the reference and data matrices are offset by (τ1,τ2). b(τ1,τ2)
i

is a subset of bi which multiply elements of value 1 in the reference matrix. w(τ1,τ2)
i is a subset of

wi which multiply the remaining elements of value 1 in the reference matrix.

xτ1,τ2 is a sum of Gaussian variables and so is also a Gaussian variable with an expectation

value xτ1,τ2 = dτ1,τ2 . By bookkeeping the terms in Eq. A1, one finds the standard deviation

σ2
xτ1,τ2

= 2dτ1,τ2σ2.

The probability of misalignment due to the sidelobe at (τ1,τ2) is M(xτ1,τ2 ≤ 0).

M(xτ1,τ2 ≤ 0 | xτ1,τ2 = dτ1,τ2) =∫ 0

−∞

1√
2πσxτ1,τ2

exp[
−(xτ1,τ2−dτ1,τ2)

2

2σ2
xτ1,τ2

]dxτ1,τ2

=
1
2

Erfc(

√
dτ1,τ2

2σ
) = M(

dτ1,τ2

σ2 )

Here, the complemantary error function is Erfc(t) = 2√
π

∫
∞

t dt ′ exp(−t ′2).
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The probability of misalignment (PoM) is the union of the probability in the spaces bounded by

all the inequalities (xτ1,τ2 ≤ 0) at sidelobe positions (τ1,τ2 6= 0,0). The individual spaces bounded

by the inequalities overlap in general making the exact calculation of PoM difficult. However, it

is easy to find an upper bound for the PoM by assuming no overlap between these spaces. Specif-

ically, PoM ≤ ∑(τ1,τ2 6=0,0)M(xτ1,τ2 ≤ 0) [2] where the sum is over all sidelobes.

M(
dτ1,τ2

σ2 ) decreases as the distance dτ1,τ2 increases. Consequently a good criteria should tend to

maximize the overall di in order to minimize the probability of misalignment. Also, it is of higher

priority to maximize the smaller distance, which contributes more to the PoM. This is the basis

of our ranking criteria, which is completely justified in the low noise limit. Under the low noise

limit, the terms of larger di make vanishingly small contributions compared to the term of smaller

di. We show this in Eq. A2 by noticing that Erfc(t) can be approximated by 2√
π

exp(−t2)
t for large

t (or small σ ).

lim
σ→0

M(di+1/σ2)

M(di/σ2)
= lim

σ→0
exp [−di+1−di

2σ2 ]

√
di√

di+1
= 0 (A2)

However, the ranking criteria, in general, depends on the noise level σ . We note, due to the central

limit theorem, the above results still hold for non-Gaussian noise distributions, when the matrix

size is large.
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Appendix B: Distance spectra

In order to provide additional useful matrices and to illustrate our ranking criteria, we tabulated,

in Table I, part of the peak-sidelobe distance spectra for the top-three ranked square matrices from

the exhaustive search results. The values of the first four distances (d1,d2,d3,d4) and the numbers

(n1,n2,n3,n4) of the corresponding sidelobes are listed. Those top-three binary square matrices

are shown in Fig. 3 and in Fig. 6.
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TABLE I. Peak-sidelobe distance spectra of the top-three ranked square matrices from the exhaustive search

results.

N×N d1 d2 d3 d4

Ranking n1 n2 n3 n4

3×3 4 5 6 7

First 4 4 12 4

Second 4 12 6 2

Third 6 6 12 0

4×4 7 8 9 10

First 8 8 22 10

Second 10 2 10 18

Third 12 0 8 20

5×5 10 11 12 13

First 4 6 10 6

Second 4 12 8 6

Third 4 12 16 12

6×6 14 15 16 17

First 4 16 4 2

Second 6 6 12 4

Third 6 8 12 6

7×7 19 20 21 22

First 14 8 6 0

Second 16 4 4 4

Third 16 4 8 4
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FIG. 1. (Color Online) We illustrate an autocorrelation function A(τ), whose peak value is p, highest

sidelobe value is s, and whose peak-sidelobe distances are di.

Number of ones (p)

MN

N
2

N
1

MN

I II III

M

N

p

s        (p)min
lower, I

s         (p)min
lower, II

d1

FIG. 2. (Color Online) Lowerbounds of smin(p), slower,I
min (p) and slower,II

min (p). p is the autocorrelation peak.

The three matrices on top illustrate the methods of filling black pixels for regions I, II and III for the matrix

construction of slower,I
min (p). The grey pixels show spots to be filled in that region, while the black pixels are

spots that have been filled in previous regions.

15



 

 

Number of ones (p)Number of ones (p)

Number of ones (p)

10

20

0

32

13

23

9

6x6

1

0

4x4

3x32x2 5x5

7x7

200

150

100

50

0

1500

1000

500

0

6

4

2

0

10

8

a)

d)c)

b)

N
u

m
b

e
r 

o
f 

m
a

tr
ic

e
s 

w
it

h
m

a
x

im
u

m
 d

  1

N
u

m
b

e
r 

o
f 

m
a

tr
ic

e
s 

w
it

h
m

a
x

im
u

m
 d

  1
N

u
m

b
e

r 
o

f 
m

a
tr

ic
e

s 
w

it
h

m
a

x
im

u
m

 d
  1

p

s      (p)min

s           (p)
 lower,I
min

s           (p)
 lower,II
min

 

 

10 25201550

18

8

30

20

10

0
10 30200 403020100

40

20

0 

 

FIG. 3. (Color Online) Results of the exhaustive searches for 2 by 2 to 7 by 7 matrices. a) The optimal

matrices from 2 by 2 to 4 by 4 are shown. b), c) and d) smin(p) is plotted in red. The solid grey line is

slower,I
min (p) while the dotted grey line is slower,II

min (p). The number of the matrices having the maximum d1 are

plotted in blue. The circle specifies the location of the optimal matrix. The optimal matrices are presented

as insets below their autocorrelations, which are labeled with their p and s values.
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FIG. 4. (Color Online) Results of the exhaustive searches for diagonally-symmetric 8 by 8 and 9 by 9

matrices.

 

 

−16 −15 −14 −13 −12 −11 −10 −9

FIG. 5. (Color Online) The “horizontal” alignment deviation is shown for the four alignment marks under

various signal-to-noise ratios. The vertical deviation is almost identical. The color of each plot line borders

the corresponding marker. All markers have been expanded to 35 by 35 pixels to illustrate the idea of pixel

expansion. The top, black line, on the right edge, corresponds to the 7 by 7 cross, while the second to top,

grey line corresponds to the 5 by 5 cross. The second to bottom, blue line corresponds to the optimal 5 by

5 marker, while the bottom, red line corresponds to the optimal 7 by 7 matrix.
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FIG. 6. (Color Online) Matrices ranked second and third. The first-ranked optimal matrices are shown in

Fig. 3.
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