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Abstract Automatic dialog interaction with remote interlocutors is a difficult ap-
plication area for speech recognition technology because of the limited acoustic
context, poor signal representation, high variability of spontaneous speech and lim-
ited time available to do the recognition of noncanonical spoken production. We
present the speech recognition system for the non-native dialog applications that we
are currently developing. We find that our system broadly matches human perfor-
mance; that minimum Bayes risk decoding improves accuracy, and that the posterior
probabilities have good power towards predicting errors. We also explore the tem-
poral distribution of errors made by the recognizer with online speaker adaptation,
the frequency of errors among auto-semantic and function words, as well as the dis-
tribution of error rates among the heterogeneous speaker population. Our findings
motivate further development directions for dialog speech recognition systems.

1 Introduction

Applications that require real-time voice-enabled interactions, such as spoken dia-
log systems (SDSs), present several interesting design challenges. Foremost among
these is optimizing the tradeoff between speed and accuracy. In dialog environments,
the automatic speech recognizer (ASR) needs to propagate as quickly as possible the
hypothesis about what was just said by the human interlocutor. At the same time,
this hypothesis must be a close match to what the speaker has actually said.

We are mainly interested in real-time, speech-enabled educational learning and
assessment applications for non-native speakers. An example for such applications
is Subarashii, an interactive dialog system for learning Japanese [2, 4]. Subarashii’s
ASR component was built using the HTK speech recognizer [30] with both native
and non-native acoustic models. In general, the performance of the system after spo-
ken language understanding (SLU) was good for in-domain utterances, but not for
out-of-domain utterances. Two other examples, Robot Assisted Language Learn-
ing [3] and computer-assisted language learning applications for Korean-speaking
learners of English [26], demonstrated that acoustic models trained on the Wall
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Street Journal corpus with an additional 17 hours of Korean children’s English
speech for adaptation produced a word error rate (WER) of as low as 22.8% across
multiple domains.

In our recent work [13, 12], we have investigated the online and offline per-
formance of a Kaldi-based large vocabulary continuous speech recognition system
in conjunction with the open-source and distributed HALEF spoken dialog system
[27]. Already existing APIs for speech recognition e.g. Google’s Speech API! [18]
or Microsoft’s Speech API? are not suitable as ASR system in our SDS. They are
closed source and give no insights about the algorithms and models they use. Fur-
thermore, these services do not come with the flexibility to use specialized acoustic
and language models, for example, for better recognition of non-native speakers in
a particular language or domain. There may also be a concern about data privacy
when using services not hosted on one’s own premises. Finally, fairness among test
takers in an assessment application cannot be guaranteed without access to these
models.

The WAMI Toolkit [9] is an attempt to resolve the lack of open-source services
and provides tools to develop, deploy and evaluate web-accessible, multi-modal in-
terfaces including speech recognition. It allows for an easy integration of speech
related services such as speech to text or text to speech conversion into web ap-
plications. However, it makes heavy use of web technologies such as Adobe Flash
and AJAX, thus, it cannot be easily integrated inside a stand-alone SDS, which is
connected to the regular telephony network (PSTN), uses VoIP, or WebRTC-based
streamed audio.

With that motivation, our goal within this paper is to present a cloud-based,
highly adjustable and open-source ASR server. After laying out the operational re-
quirements and constraints for such a system, we present our ASR architecture. We
perform an analysis of speed constraints on accuracy. We analyze in detail the error
distribution over content and function phrases, over speakers as well as over time.
Finally, we evaluate the predictive power of our confidence scores in our application
scenario.

2 System Description, Architecture and Statistical Modeling

An ASR system used inside an SDS has to fulfill more requirements than an isolated
ASR system whose accuracy is traditionally the only measure of interest. In dialog
applications, however, another important priority is recognition speed. The SDS
needs to respond in a timely manner, ideally within three seconds after the human
input, or the interaction becomes overly tiresome for the human interlocutor [6, 28,
25] and may also severely influence the naturalness of the conversation. The The
standard metric used to quantify the speed of an ASR system is the real-time factor
(xRT), defined as the ratio between the time it takes to process the input and the
duration of the input. If the real-time factor is 1 or below 1 the input is considered
to be processed in real-time. In our applications, we expect human utterances to be

1 https://www.google.com/speech-api/v 1/recognize
2 https://www.projectoxford.ai/speech
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up to 10 seconds long. As ASR is the most computationally expensive step in the
dialog cycle, an approximate upper bound of recognition speed is xRT ~ 1.3, given
that the recognition starts simultaneously with the speech.

Furthermore, the ASR system needs to integrate well into the architecture of the
SDS. To achieve compatibility with most systems, we require it to use open commu-
nication standards. Moreover, the ASR system has to be able to perform concurrent
recognitions because in a multi-user scenario it is not feasible to instantiate arbitrar-
ily many copies of the ASR system due to the large amount of memory, required
for each of the loaded models. Finally, reasonable accuracy is still required. SDSs
can recover from some recognition errors because most dialog applications rely on
the SLU instead of the ASR result. Furthermore, the dialog flow can be altered
(e.g. inserting re-prompts, clarification questions and confirmation requests) if the
confidence in the recognition hypothesis is too low. The latter, however, requires
a reliable prediction of errors. Application—specific recognition accuracy may be
increased by using application—specific models. Language models adapted to the
application domain have been shown to outperform general models [1]. Custom
acoustic models can be used to support new languages or optimize performance for
particular acoustic environments (e.g. noise) and speaker groups (e.g. dialects). In
one of our applications for instance, we employ an acoustic model optimized for
telephony speech and non-native speakers.

Our ASR is based on the Kaldi Toolkit [24]. This choice is motivated by a recent
study [7] that found that Kaldi significantly outperformed other open-source recog-
nizers on German Verbmobil and English Wall Street Journal corpora. The Kaldi on-
line ASR was also shown to outperform the Google ASR API [18] when integrated
into the Czech ALEX spoken dialog framework [22]. A recent study comparing
several popular ASRs such as Kaldi [24], Pocketsphinx [11] and cloud-based APIs
from Apple?, Google and AT&T* in terms of their suitability for use in SDSs, [21]
found no particular consensus on the best ASR, but observed that Kaldi performed
well in comparison with the other closed-source industry-based APIs. Furthermore,
the Kaldi Toolkit provides the necessary tools to train acoustic and language models
and low level features are accessible.

To ensure we fulfill the speed constraints outlined in Section 2, we need to start
the recognition ideally at the same time the speech starts and process it with similar
pace as it progresses. Therefore, we have implemented a streaming web-based ASR
service. A dialog application connects via a WebSocket connection to the dedicated
remote ASR server that starts speech processing as soon as the audio becomes avail-
able. To handle multi-client recognition, the ASR server has been implemented as a
multithreaded process: a unique listener thread that is responsible for the communi-
cation and audio chunk en-queuing; a collection of ASR threads that do the actual
processing and hypothesis generation while serving several simultaneous clients;
and a timer thread that sets the pace of the recognition critical cycle (see Figure 1
for a graphical representation of this architecture).

3 Apple’s Dictation is an OS level feature in both Mac OS X and iOS.
4 https://service.research.att.com/smm
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Data communication is organized through a shared memory queue. Constant
ASR-related objects, such as the acoustic model and the decoding weighted finite
state transducer, are globally visible throughout all of the threads, while the local
utterance-related context is specific to the instance of the ASR thread that processes
the given utterance.

Speaker and channel adaptation has to be performed online, while concurrently
recognizing the incoming speech, i.e. the entire ASR system must be able to produce
a hypothesis after a single pass through the data stream. No additional passes are
allowed unless they require only a minor additional delay. A system based on i-
vectors [17] as a method of adapting the deep neural network (DNN) based acoustic
model to the speaker that satisfies that requirement has been proposed in [32].
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Our acoustic model was trained using a standard Kaldi model generation pipeline
based on approximately 760 hours of spontaneous vocal productions obtained from
language learners in the scope of large-scale internet-based assessments of aca-
demic English. Although the dataset is not strictly collected from our prospective
application domain, we believe it serves as a reasonable engineering approxima-
tion at the current stage of model development. We are working on collection of
more application—specific data that will serve as our training set in the future ver-
sions of our system. In order to comply with the SDS design requirements, the data
was down-sampled to 8 kHz. We used standard 13-dimensional MFCCs with deltas
and delta-deltas and 10ms shift. The final acoustic model is a p-norm DNN [32]
with 4 hidden layers, a dimensionality of the input/output layer of 2000/250 and
was trained in 8 epochs. The system’s phonetic alphabet is comprised of 42 basic
tokens combining 39 “true” phonemes, and tokens for “silence”, “spoken noise”
and “noise”. Additionally, the final phonological tokens have word position-specific
modifiers for internal, singleton, word-beginning and word-ending positions.

The language model was estimated on the manual transcriptions of the same
training corpus consisting of ~ 5.8 million tokens and finally was represented as
a tri-gram language model with ~ 525 thousand tri-grams and ~ 605 thousand bi-
grams over a lexicon of ~ 23 thousand words which included entries for the most
frequent partially produced words. Ultimately, the final decoding graph was com-
piled having approximately 5.5 million states and 14 million arcs.



Speed vs. Accuracy: Designing an Optimal ASR System 5

3 Experiments

We test our recognizer on a physical computer, that has an Intel(R) Core(TM) i7-
4930K CPU running at 3.40GHz. This CPU is built as a six-core processor with the
Ivy Bridge-E architecture. The computer has 16 GB of RAM and works under the
Ubuntu v14.04 operating system. The choice of the hardware is essential to ensure
that our xRT measurements are performed with a state-of-the-art computing system.

For evaluation we have used two sets coming from 100 different speakers and
exceeding 9 hours of audio each: The development set (DEV), containing 593 ut-
terances (68329 tokens, 3575 singletons, 0% OOV rate) and the test set (TST), that
contains 599 utterances (68112 tokens, 3709 singletons, 0.18% OOV rate). Utter-
ances in the corpus are quasi-spontaneous monologs responding to six different test
questions covering two different speaking tasks: 1) providing an opinion based on
personal experience and 2) summarizing or discussing material provided in a read-
ing and/or listening passage. Maximum utterance duration is one minute. The av-
erage speaking rate is about 2 words per second. Every speaker produces up to six
such utterances. Speakers had a brief time to familiarize themselves with the task
and prepare an approximate production plan.

3.1 Speed-Accuracy Trade-off

Depending on the chosen parameter set (width of the pruning beam in decoding
and lattice generation; the maximum number of concurrent hypotheses), the rec-
ognizer is capable of operating with various accuracy—processing speed tradeoffs.
Usually systems with wider pruning beams are slower and more accurate. If one
continues to increase the pruning beam width, the recognizer’s accuracy saturates at
some point and attains its maximum. Further increase in the beam width slows the
system down even more without significant improvements in accuracy. We have ex-
perimentally found for our speech recognizer to be realtime-able it has to be moved
significantly away from the highest accuracy point (see Table 1 for details). Es-
sentially at the optimal operating point, the recognizer accuracy is bounded by the
inability to consider all possible hypotheses, rather than modelling imperfections.
This might be due to the inherent confusability of the alternatives, i.e. compared to
the native speech case, recognition of non-native, heavily accented speech, is a more
difficult task with more inherent confusion. Or it may also be that the complexity of
our statistical models was not adequately chosen.

We have observed that taking the first best hypothesis from the confusion net-
work constructed from the output word lattice provides a small but very consistent
improvement in word error rate regardless of the specific system configuration. In
constructing a confusion network [19] we follow the minimum Bayes risk decoding
approach implemented in Kaldi [8, 29].

For reference, in Table 1 we also put the performance of a baseline DNN-based
multi-pass speaker-adapting recipe of Kaldi, prepared on the same training data. As
it is evident from the given comparison, the i-vector system is better in both accuracy
and processing speed.
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Set |Adaptation| Prunning Hypotheses | WER [xRT
Beam Number
DEV| fMLLR various various 22.27%| 3.44
DEV| Online 50 40K 21.58%|> 25
DEV| Online 11 7K 21.95%|1.26
TST| Online 11 7K 23.05%|1.28

Table 1 Accuracy and speed of various recognizers.(“Online” — the i-vector based online adapta-
tion or “fMLLR” - the best operating point of a DNN-based standard multi-pass speaker adapting
recipe of Kaldi for WSJ corpus).

3.2 Comparison with Human Performance

With the TST set WER of about 23.05% our proposed system has reached the level
of broadly defined average human accuracy in the task of non-native speech tran-
scription. In fact, experts have average WER around 15% [31] while crowd-sourcing
workers perform significantly worse at around 30% WER [5]. Besides being accu-
rate our system is capable to achieve that performance in real-time (xRT ~ 1.28).

Matching human performance in the dialog context is a task that requires design-
ing individual sub-systems (speech recognition, natural language understanding, di-
alog management) with a clear understanding of application—specific constraints
and exploiting inherent possibilities. We see a possibility to further improve perfor-
mance of our SDS in general and ASR in particular specifically by a) mimicking
human strategies to handle ambiguous semantic context in the dialog; b) developing
statistical models for other existing knowledge sources (e.g. grammar, semantics
and pragmatics) and incorporating those into the process of hypothesis refinement;
and c) exploring rapid topic domain adaptation. The remainder of the paper is de-
voted to the error analysis that motivates these improvements.

3.3 Error Distribution over Speakers

The speech recognition system cannot provide identical recognition accuracy to all
potential interlocutors. There is an inherent variability in proficiency levels among
language learners. The acoustic environment is not always constant either. ASR
accuracy has to be studied as a distribution that is estimated on a broad target speaker
population. Sensitivity of the WER to the interlocutor’s proficiency is yet another
quality measure for the ASR in language assessment applications.

Results of such an analysis are presented in Figure 2. The shape of the distri-
bution (a skewed Gaussian) implies that there exists a systematic limiting factor
precluding our ASR from sometimes showing low WERs. The estimated standard
deviations are 12.35% and 8.59% for DEV and TST sets respectively.

For the system to be fair, a stratification over any of the social groupings, e.g.
race, gender, geographical location, native language, etc., shall not lead to a sta-
tistically significant alternation of the distribution in Figure 2. That is true under
the assumption of conditional independence of speaker proficiency over the above
mentioned properties.

To assess fairness of the system to language learners coming from different geo-
graphical locations, we have stratified the joint collection of the DEV and TST sets
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into groups, specific to broad geographical regions. The stratification’s coarse gran-
ularity was dictated by the necessity to retain sufficient and approximately equal
statistics for each of the geographical subgroups.

With the help of the dual Kolmogorov-Smirnov non-parametric test [14] we have
estimated the probability that each of the regional sub-group WERs is distributed in
a similar way to the joint set. As is evident from Table 2, our current ASR system
is not fair towards some of the sub-groups, e.g. Chinese English is recognized dif-
ferently with statistical significance (p < 0.05). More specifically, our ASR system
tends to produce less errors than in general when subjected with English utterances
of language learners from China. We explain that fact with overly large proportion
of the Chinese language learners in the training corpus. A better job needs to be
done to properly select training material for the speech recognition system.

Region Speakers|p-value
© Africa 10 0.84
5 South-East Asia 27 0.78
e B ver India 17 | 078
g Americas 20 0.74
& 10 Europe and Central Asia 36 0.56
Middle East 28 0.31
0o 10 20 30 40 50 60 Korea 30 0.13
e China 27 | 0.02

Table 2 Regional ASR bias (“p-value” - sig-
nificance level of the hypothesis that regional
and global WER samples are drawn from the
same distribution).

Fig. 2 WER distribution across different
speakers.

3.4 Error Distribution Over Word Type

Importance of an individual recognition error towards the general understanding of
the interlocutor’s input is not constant. Traditionally English words are divided into
two broad classes: content (or auto-semantic) words that entail a distinct semantic
concept; and function words that have little or ambiguous lexical meaning, but in-
stead serve to express grammatical relationships of other words within a sentence.
To adapt this classification to spontaneous spoken language we augment the above
classification with a joint group of common lexicalized interjections (e.g. “yeah”,
“boo”, “oops”, etc.) and fillers (e.g. “um”, “ah”). The system’s lexicon, thus, con-
tains 319 distinct function words and 24 interjections and fillers. The remaining
22800 lexicon entries are content words.

Table 3 reflects word-class and error occurrence statistics within the test set.
While being an extremely small lexical set, function words are more frequent than
content words in natural language. Content word recognition is a more difficult
problem in information-theoretical terms (e.g. the task of choosing 1 out of 22800
requires significantly more information than 1 out of 319). The apparent raw rates
of mis-recognition (substitutions and deletions combined) of content and function
words are similar. It suggests that some of the function word errors can be recovered
by applying a content-conditioned re-scoring model that encapsulates grammatical
rules of the language. We explain the reduced content word insertion rate by the fact
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that English content words follow the minimal word constraint [20] and generally
have larger phonetic support compared to function words. Exclusion of function
words, fillers and interjections reduces the mis-recognition rate by half and makes
the insertion rate five times smaller.

TST Set Total Words|Content Words|Function Words|Fillers+Interject.
Reference token count 67864 24596 37522 5746
Insertion count 2836 575 1649 612
Insertions, % 4.18% 0.85% 2.43% 0.90%
Mis-recocgnition count| 12809 6740 5357 712
Mis-recocgnitions, % 18.87% 9.93% 7.89% 1.05%

Table 3 Error distribution among different types of words for minimum Bayes risk decoding
system evaluated on the test data.

The WER within the content word set can serve as a baseline for SLU model
development and evaluation. This baseline assumes existence of a one-to-one map-
ping between content words and concepts. The mapping is also assumed to have no
contextual dependency.

3.5 Error Distribution Over Time

It is interesting to observe the difference in error distribution through time for the
systems with online and offline speaker adaptation. The overall balance of errors
is presented in Table 4. A more detailed picture of error distribution through time
can be found in Figure 3. The figure contains an estimate of the probability of the
error to occur in the vicinity of a certain time instance (P(error|T + dt) in Figure
3). As timing of a deletion is inherently ambiguous, only substitution and insertion
statistics are used in this figure. We limit the figure to the first 40 seconds of the ut-
terance, where the amount of the test material is maximal and the collected statistics
are sufficient for a reliable estimate of the probability.

The system with online speaker adaptation has a higher probability to make an
error in general (Table 4) and this probability is specifically higher in the beginning
of the utterance (circled in Figure 3). This observation can be explained by the fact
that initially the online speaker adaptation procedure has very little data to work
with. Online speaker adaptation performs worse than offline adaptation during the
first 15 seconds of an utterance. This is larger than the expected duration of a typ-
ical spoken response in our SDS. The design option to hide an increased speaker
adaptation analysis window behind the response latency is, thus, ruled out. In order
to achieve optimal speaker adaptation performance, there is a need to maintain the
speaker adaptation profile through the whole dialog interaction.

Until the ASR gathers enough data for adaptation the dialog complexity has to
be controlled by the SDS. E.g. the human interlocutor dialog act should be elicited
by the dialog system in such a way that there is a possibility to interpret it with
a low-perplexity model; the response of the dialog system has to be pragmatically
correct regardless of the human input.
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The figure also shows that the probability to make an error is not constant over
time for both systems. It remains to be seen if this behavior is an indication that the
system’s error rate depends on the rhetorical structure of the utterance or is due to
other particular properties of the experimental material. Both language and acous-
tic modelling (LM and AM) can result in the WER dependency on the rhetorical
structure. E.g. the context is less certain in the sentence beginning, which will re-
sult in decreased performance of the history-based n-gram LM. We have also seen
in past experiments that acoustic properties of oral production chunks depend on
their salience [15]. That observation corroborates the effort code of Gussenhoven
[10, 23]. The AM may be failing for non-salient speech chunks.

—— online speaker adaptation
Adaptation Online|Offline
Word Error Rate, % | 21.90 | 21.74

Substitutions, % 12.41 | 12.25

P(error | T+dt)

Deletions, % 593 | 5.96
Insertions, % 3.56 | 3.54
xRT 1.26 | 1.15

9
0.154'
0 ~S——T10 15 20 25 30 35 40

time, sec

Table 4 Overall accuracy of the sys-
tems used in the comparative error tim-
ing analysis.

Fig. 3 Error timing analysis

3.6 Error Detection

The ability to predict its own errors is essential for an SDS ASR system. It helps in
operation, e.g. to trigger a re-prompt or confirmation for content that was not recog-
nized as sufficiently unambiguous, as well as during training to reduce dependency
of the system development on human supervision. This ability is equivalent to the
possibility of accurately estimating the probability of being correct under a selected
hypothesis, i.e. to estimate the statistical confidence level [16]. If the confidence
estimate is sufficiently accurate, we may set a boundary threshold parameter for a
rejection subsystem that will deem all recognitions falling below the threshold as
unreliable, while asserting those above the threshold as correct.

The most accessible form of the confidence measure in our present system is
in the estimates of the posterior probabilities of word alternatives in the confusion
network that our recognizer generates. It is interesting to learn how much of the error
detection predictive power is contained in this unsophisticated statistical confidence
measure applied to the task of spontaneous non-native speech recognition. Figure
4 presents a detection error trade-off (DET) curve for an error detection (rejection)
system, that takes a posterior of the word hypothesis as an input. The colored line in
this plot represents a plurality of individual operation points. Each point is a trade-
off between making two types of error: calling an error to be a correct recognition
(false acceptance) and discarding a valid hypothesis as an error (false rejection).
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Error Detection Performance

40

— Lattice Beam Width = 6
- - - Lattice Beam Width = 12|

20

False Rejection Probability (in %)

10

Lattice Beam Width = 6
= = = Lattice Beam Width = 12

Balance of the rejected word hypotheses,
normalised to the total of observable errors, %
o)

. . . . . . . . o
5 10 20 20 10 20 30 40 50 60 70 80 90
False Acceptance Probability (in %) Rejection Threshold, x0.01

Fig. 4 Recognition error rejection DET curve Fig. 5 Error rejection operating point selection

For instance, according to this figure, our system is capable of rejecting ~ 60% of
errors at the cost of falsely rejecting =~ 10% of correct recognitions. Each individual
operation point is optimal for a certain loss function.

If we choose our loss function to be proportional to the total number of errors,
false acceptances and false rejections, assuming that the error rates during the oper-
ation are going to be the same as we have observed in our development data, we may
specify a particular optimal operating point for the rejection system. Figure 5 depicts
a balance between the correctly and incorrectly rejected hypotheses. In this figure,
each correct rejection increments the balance while false rejection decrements it.
The balance is finally scaled relative to the total amount of errors, observable by the
recognition system (substitutions and insertions). The balance attains the extremum
at = 15% of the error count with the threshold in the range 0.65 —0.68. At this point
the system rejects ~ 43.5% of true errors and ~ 5.8% of correct recognitions. The
recorded level of rejection performance is good to serve as a baseline in our further
studies. If the confidence estimate is not good enough the balance curve might not
have an extremum at all. It might be monotonously decreasing if the number of false
rejections is always larger than the number of correct rejections for any value of the
threshold. With the same set of operating parameters on the TST set the system
rejects ~ 44.11% of true errors and ~ 6.38% of correct recognitions.

In both figures (Figure 4 and 5), we show the results for two systems: one with
the pruning beam during the confusion network generation twice as large as that of
the other. The system with the larger beam is more computationally complex and
produces larger lattices with a bigger number of alternative transcriptions. Although
the large beam system is much slower, the DET curves of each system are barely
distinguishable. The balance curve for the larger beam case is slightly shifted to-
wards the zero threshold value and there is a tiny increase in the balance maximum.
The shift can be explained by the fact that the larger beam results in more popu-
lated lattices, i.e. a larger expected number of alternative transcriptions. The larger
expected number of alternative transcriptions in turn reduces the expected poste-
rior probability estimate in probability mass re-normalization during the confusion
network construction. The absence of the significant increase in the balance allows
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us to conclude that a more accurate posterior estimation does not lead to increased
rejection performance and the narrower, more computationally efficient beam is suf-
ficient for our purposes.

4 Conclusions

We have seen that building a fast and accurate dialog speech recognition system
for interacting with distant non-native interlocutors is possible. Our near real-time
system performs better than non-specialist human transcribers and not far from the
human expert performance level.

The DNN with i-vector-based speaker adaptation for acoustic modelling allows
us to reach the state-of-the-art acoustic decoding accuracy with single-pass process-
ing. However, due to the lack of observation statistics, the online speaker adaptation
is not efficient during the initial 15 seconds of the interaction.

Word posterior probabilities in confusion networks have been observed to have
good power towards predicting erroneous recognitions. The rejection model is ca-
pable of correctly predicting ~ 44.11% observable recognition errors at the cost
of falsely rejecting ~ 6.38% of correctly recognized words. The reported rejection
performance is measured in the system that satisfies the real-time requirements.

The analysis of error distribution across auto-semantic and function words roughly
estimates the upper bound of the improvement in WER that can be achieved with
the gramatical re-scoring model. The main impact of such model should be on the
recognition of function words and potentially can be as big as 40% of the total WER.

Studying the WER distribution across different speaker populations, we find that
a better job needs to be done in collecting the training data to ensure fairness of the
resulting system towards various possible target user sub-groups.
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