
An MPI Prototype for Compiled Communication on Ethernet

Switched Clusters∗

Amit Karwande Xin Yuan†

Department of Computer Science
Florida State University

Tallahassee, FL 32306, USA
{karwande,xyuan}@cs.fsu.edu

Phone: (850)644-9133
Fax: (850)644-0058

David K. Lowenthal
Department of Computer Science

University of Georgia
Athen, GA 30602, USA

dkl@cs.uga.edu
Phone: (706)542-9269
Fax: (706)542-2966

Abstract

Compiled communication has recently been proposed to improve communication performance for clusters
of workstations. The idea of compiled communication is to apply more aggressive optimizations to com-
munications whose information is known at compile time. Existing MPI libraries do not support compiled
communication. In this paper, we present an MPI prototype, CC–MPI, that supports compiled communica-
tion on Ethernet switched clusters. The unique feature of CC–MPI is that it allows the user to manage network
resources such as multicast groups directly and to optimize communications based on the availability of the
communication information. CC–MPI optimizes one–to–all, one–to–many, all–to–all, and many–to–many
collective communication routines using the compiled communication technique. We describe the techniques
used in CC–MPI and report its performance. The results show that communication performance of Ethernet
switched clusters can be significantly improved through compiled communication.

Keywords: Communication Optimization, MPI, Clusters of Workstations, Compiled Communication, Col-
lective Communication

1 Introduction

As microprocessors become more and more powerful, cluster of workstations has become one of the most common

high performance computing environments. Many institutions have Ethernet–switched clusters of workstations

that can be used to perform high performance computing. One of the key building blocks for such systems

is a message passing library. Standard message passing libraries, including MPI [8] and PVM [19], have been

developed. Current implementations, such as MPICH [9] and LAM/MPI [22], focus on moving data across

processors and addressing portability issues. Studies have shown that current implementations of message

passing libraries are not tailored to achieve high communication performance over clusters of workstations [4].

Compiled communication has recently been proposed to improve communication performance for clusters of

workstations [25, 27]. In compiled communication, the compiler determines the communication requirement of a
∗This work was partially supported by NSF grants, ANI-0106706, CCR-0208892, CCR-0342540.
†Corresponding author, email: xyuan@cs.fsu.edu (Xin Yuan)

program. The compiler then uses its knowledge of the application communications, together with its knowledge

of the network architecture, to directly manage network resources, schedule the communications, and exploit

optimization opportunities. Compiled communication is more aggressive than traditional communication opti-

mization methods, which are performed either in the library or in the compiler. Depending on the resources that

the compiler has accesses, compiled communication can potentially perform optimizations across communication

patterns at the software level, the protocol level, and even the hardware level.

To facilitate compiled communication, mechanisms must be incorporated in the communication library to

expose network resources to the users. Existing messaging libraries, including MPICH [9] and LAM/MPI [22],

hide network details from the user and do not support compiled communication. In this paper, we introduce an

MPI prototype, CC–MPI, that serves as a run-time system for compiled communication on Ethernet switched

clusters. Since the targeted users of CC–MPI are compilers and advanced programmers who know system details,

we will use the terms user, compiler, and advanced programmer interchangeably throughout this paper.

CC–MPI optimizes one–to–all, one–to–many, all–to–all, and many–to–many collective communication routines

through compiled communication by separating network control from data transmission. For each communication

routine, zero, one or more network control routines and one or more data transmission routines are supported

in the library. Depending on the information available to the user, different combinations of network control

and data transmission routines can be used for a communication to achieve optimal performance. CC–MPI

allows the user to directly manage network resources, amortize the network control overhead over a number of

communications, and use more efficient methods for static communications when more information about the

communication is known.

A number of factors enable CC–MPI to achieve high communication performance. First, CC–MPI uses

different methods for each type of communication. Each method does not have to be effective for all situations.

It only needs to be effective in some cases since CC–MPI relies on its user to select the best method for a

communication. This gives CC–MPI more flexibility in using customized communication methods. Second,

some communication routines in CC–MPI make more assumptions about the communications to be performed

than the general-case routines. With these assumptions, more effective communication routines are developed.

Although such routines are not general, they provide high performance when applicable. Notice that CC–MPI

only provides mechanisms for compiled communication, the compiler needs to exploit these mechanisms to achieve

efficient communications.

We describe the techniques used in CC–MPI and report our performance study of CC–MPI. The results of our

study indicates that the communication performance of Ethernet switched clusters can be improved substantially

through compiled communication. For example, on 16 nodes, CC–MPI speeds up the IS benchmark (class A), a

2

program from the NAS suite [20], by 54% over LAM/MPI and 286% over MPICH.

The rest of the paper is organized as follows. The related work is presented in Section 2. In Section 3, we

discuss features in switched Ethernet that affect the method for efficient communication. In Section 4, we present

the techniques used in CC–MPI. In Section 5, we report the results of the performance study. Finally, Section 6

concludes the paper.

2 Related Work

Extensive research has been conducted to improve communication performance in high performance computing

systems. Many projects have focused on reducing the communication overheads in the software messaging layer

[5, 24]. Many parallel compiler projects also try to improve communication performance by generating efficient

communication code [1]. Optimizations with compiled communication are more aggressive by integrating the

compiler and library approaches.

The development of CC–MPI is motivated by compiled communication [2, 3, 14, 25, 26, 27] and the need to

support architecture-dependent communication optimization [11] at the library level. While it has been found

that information about most communications in scientific programs and in particular MPI programs can be

determined at compile time [7, 15], existing standard libraries, such as MPI [8] and PVM [19], do not support any

mechanisms to exploit such information. CC–MPI is an attempt to extend the standard MPI library to support

the compiled communication model and to allow the user to perform architecture-dependent communication

optimization across communication patterns.

The success of the MPI standard can be attributed to the wide availability of two MPI implementations:

MPICH[9] and LAM/MPI [22]. Many researchers have been trying to optimize the MPI library [13, 17, 21, 23].

In [13], optimizations are proposed for collective communications over Wide-Area Networks. In [21], a compiler

based optimization approach is developed to reduce the software overheads in the library, which focuses on

point–to–point communications. In [17], MPI point–to–point communication routines are optimized using a

more efficient primitive (Fast Message). Optimizations for a thread-based MPI implementation are proposed

in [23]. Our research is different from the existing work in that we develop an MPI library that allows static

communication information to be exploited.

3 Switched Ethernet

CC–MPI is designed for Ethernet switched homogeneous clusters. We assume that TCP/IP protocols are running

on the end hosts and IP multicast can be used through the UDP interface. To achieve optimal performance,

3

CC–MPI exploits the following features in switched Ethernet. First, switched Ethernet supports broadcast at the

hardware level, which indicates that using multicast primitives to realize broadcast types of routines, including

MPI Bcast, MPI Scatter, and MPI Scatterv, will likely result in good communication performance. Second,

Ethernet switches support unicast traffic effectively when there is no network contention in the system. Third,

multicast traffic in switched Ethernet negatively affects unicast traffic. Multicast should be used with great

caution in Ethernet switched clusters. Fourth, the machines are close to each other in an Ethernet switched

network and the communication propagation delay is small. Also, the transmission error rate is very low in an

Ethernet switched network.

One major limitation when compiled communication is applied to Ethernet switched clusters is that the heavy

weight TCP/IP protocol is used as the underlying transport layer protocol. This means that send and receive

operations are expensive due to the overheads of system calls. As a result, most of our techniques are developed

for communications with large messages when data transmission time is significant in comparison to the overall

communication time (data transmission time plus communication overheads in end nodes).

4 CC-MPI

CC–MPI optimizes one–to–all, one–to–many, all–to–all, and many–to–many communications through compiled

communication. To present the techniques used in CC–MPI, we will use MPI Bcast to illustrate how we im-

plement one–to–all communication, MPI Scatter for one–to–all personalized communication, MPI Scatterv for

one–to–many personalized communication, MPI Alltoall for all–to–all communication, and MPI Alltoallv for

many–to–many communication. In this section, we will first describe techniques used in one–to–all and one–to–

many communications, including issues related to multicast. We will then discuss all–to–all and many–to–many

communications, including our use of phased communication [12] to avoid network contention.

4.1 One–to–all and One–to–many Communications

MPI Bcast, MPI Scatter, and MPI Scatterv realize one–to–all and one–to–many communications. These rou-

tines are traditionally implemented using unicast primitives with a logical tree structure [9, 22]. In addition to

unicast based implementations, CC–MPI also provides implementations using multicast. Multicast based im-

plementations can potentially achieve higher communication performance than a unicast based implementation

because multicast reduces both the message traffic over the network and the CPU processing at the end hosts

and because Ethernet supports broadcast at the hardware level.

There are two issues to be addressed when using multicast: reliability and group management. The TCP/IP

protocol suite only supports unreliable IP multicast through the UDP interface. MPI, however, requires 100%

4

reliability. Thus, reliable multicast primitives must be implemented over the standard IP multicast to facilitate

the use of multicast. CC–MPI uses an ACK-based reliable multicast protocol [16] to reliably deliver multicast

messages. We adopt this protocol for its simplicity. Group management is another issue to be addressed in

a multicast-based implementation. Basically, a multicast group must be created before any multicast message

can be sent to that group. A group management scheme determines when to create/destroy a multicast group.

Given a set of N processes, the number of potential groups is 2N . Thus, it is impractical to establish all

potential groups for a program, and group management must be performed as the program executes. In fact,

most network interface cards limit the number of multicast groups; as an example, Ethernet cards allow only 20

such groups simultaneously. Because the group management operations require the coordination of all members

in the group and are expensive, the ability to manage multicast groups effectively is crucial for a multicast-based

implementation. CC–MPI supports three group management schemes: the static group management scheme,

the dynamic group management scheme, and the compiler–assisted group management scheme.

Static group management scheme. In this scheme, a multicast group is associated with each communicator.

The group is created/destroyed when the communicator is created/destroyed. Because a communicator is usually

used by multiple communications in a program, the static group management scheme amortizes the group

management overheads and makes the group management overhead negligible. This scheme is ideal for one–

to–all communications, such as MPI Bcast. Using the static group management scheme, MPI Bcast can be

implemented by having the root (sender) send a reliable broadcast message to the group.

A multicast based MPI Scatter is a little more complicated. In the scatter operation, different messages

are sent to different receivers. To utilize the multicast mechanism, the messages for different receivers must

be aggregated to send to all receivers. For example, if messages m1, m2 and m3 are to be sent to processes

p1, p2 and p3, the aggregate message containing m1, m2 and m3 will be sent to all three processes as one

multicast message. Once a process receives the aggregated multicast message, it can identify its portion of the

message (because the message sizes to all receivers are the same and are known at all nodes assuming a correct

MPI program) and copy the portion to user space. In comparison to the unicast based MPI Scatter, where

the sender loops through the receivers sending a unicast message to each of the receivers, the multicast based

implementation increases the CPU processing in each receiver because each receiver must now process a larger

aggregated message, but decreases the CPU processing in the root (sender), as fewer system calls are needed.

Because the bottleneck of the unicast implementation of MPI Scatter is at the sender side, it is expected that the

multicast based implementation offers better performance when the aggregated message size is not very large.

When the size of the aggregated message is too large, the multicast based implementation may perform worse

than the unicast based implementation because it slows down the receivers.

5

Realizing MPI Scatterv is similar to realizing MPI Scatter, with some complications. In MPI Scatterv, different

receivers can receive different sized messages and each receiver only knows its own message size. While the

sender can still aggregate all unicast messages into one large multicast message, the receivers do not have

enough information to determine the layout and the size of the aggregated message. CC–MPI resolves this

problem by using two broadcasts in this function. The first broadcast tells all processes in the communicator

the amount of data that each process will receive. Based on this information, each process can compute the

memory layout and the size of the aggregated message. The second broadcast sends the aggregate message.

Notice that it is difficult (although possible) to perform broadcast with an unknown message size. As a result,

MPI Scatterv is implemented with two MPI Bcast calls. MPI Scatterv can realize one–to–many communication

by having some receivers not receive any data. Using the static group management scheme, the one–to–many

communication is converted into an one–to–all communication because all processes in the communicator must

receive the aggregated message. This is undesirable because it keeps the processes that are not interested in

the communication busy. In addition, this implementation sends a reliable multicast message to a group that

is larger than needed, which can affect the performance of the reliable multicast communication. The dynamic

group management scheme and the compiler–assisted group management scheme overcome this problem.

Dynamic group management scheme. In this scheme, a multicast group is created when needed. This group

management scheme is built on top of the static group management scheme in an attempt to improve the

performance for one–to–many communications. To effectively realize one–to–many communication, the dynamic

group management scheme dynamically creates a multicast group, performs the communication with only the

intended participants, and destroys the group. In MPI Scatterv, only the sender (root) has the information

about the group of receivers (each receiver only knows whether it is in the group, but not whether other nodes

are in the group). To dynamically create the group, a broadcast is performed using the static group associated

with the communicator. This informs all members in the communicator of the nodes that should be in the new

group. After this broadcast, a new group can be formed and the uninterested processes that are not in the new

group can move on. After the communication is performed within the new group, the group is destroyed. With

the dynamic group management scheme, MPI Scatterv performs three tasks: new group creation (all nodes must

be involved), data transmission (only members in the new group are involved), and group destruction (only

members in the new group are involved). Dynamic group management introduces group management overheads

for each communication and may not be efficient for sending small messages.

Compiler–assisted group management scheme. In this scheme, we extend the MPI interface to allow users to di-

rectly manage the multicast groups. For MPI Scatterv, CC–MPI provides three functions: MPI Scatterv open group,

MPI Scatterv data movement, and MPI Scatterv close group. MPI Scatterv open group creates a new group for

6

the participating processes in a one–to–many communication and initializes related data structures.

MPI Scatterv close group destroys the group created. MPI Scatterv data movement performs the data move-

ment assuming that the group has been created and that the related information about the communication is

known to all participated parties. Notice that MPI Scatterv data movement requires less work than MPI Scatterv

with the static group management scheme. This is because the message size for each process is known to all

processes when MPI Scatterv data movement is called, so only one broadcast (as opposed to two) is needed in

MPI Scatterv data movement for sending the aggregate message.

(1) DO i = 1, 1000
(2) MPI Scatterv(....)

(a) An example program

(1) MPI Scatterv open group(...)
(2) DO i = 1, 1000
(3) MPI Scatterv data movement(....)
(4) MPI Scatterv close group(...)

(b) The compiler–assisted group management scheme

Figure 1: An example of compiler–assisted group management.

The MPI Bcast, MPI Scatter, and MPI Scatterv with the static group management scheme are implemented as

data transmission routines in CC–MPI. MPI Scatterv with dynamic group management and MPI Scatterv data movement

are also data transmission routines. On the other hand, MPI Scatterv open group and MPI Scatterv close group

are network control routines for MPI Scatterv. Note that when compiled communication is applied, network

control routines can sometimes be moved, merged, and eliminated to perform optimizations across communica-

tion patterns. The data transmission routines generally have to be invoked to carry out actual communications.

Consider the example in Figure 1 (a), where MPI Scatterv is performed 1000 times within a loop. Let us assume

that the MPI Scatterv sends to 5 nodes within a communicator that contains 30 nodes. When static group

management is used, all 30 nodes must participate in the communication. When dynamic group management is

used, only the 5 nodes will participate in the communication, which may improve reliable multicast performance.

However, a multicast group that contains the 5 nodes in the communication must be created/destroyed 1000

times. With compiled communication, if the compiler can determine that the group used by the MPI Scatterv is

the same for all its invocations, it can perform group management as shown in Figure 1 (b). In this case, only 5

nodes are involved in the communication, and the multicast group is created/destroyed only once. This example

demonstrates that by using separate routines for network control (group management) and data transmission,

CC–MPI allows the user to directly manage the multicast groups and to amortize network control overheads

over multiple communications. In addition, CC–MPI also allows more efficient data transmission routines to be

7

used when more information about a communication is known.

4.2 All–to–all and Many–to–many Communications

MPI Alltoall, MPI Alltoallv, and MPI Allgather realize all–to–all and many–to–many communications. There

are many variations in the implementation of these routines. One scheme is to implement these complex all-to–all

and many-to-many communication patterns over simpler one-to-all and one-to-many collective communication

routines. For example, for N nodes, MPI Allgather can be decomposed into N MPI Bcast operations. While

multicast can obviously improve communication performance for one–to–all and one–to–many communications, it

may not improve the performance for the more complex many–to–many communications on Ethernet switched

clusters. Consider realizing a many-to-many communication where s1, s2, and s3 each sends a message of

the same size to d1, d2, and d3. This communication can be realized with three multicast phases: Phase 1:

{s1 → d1, d2, d3}, Phase 2: {s2 → d1, d2, d3}, and Phase 3: {s3 → d1, d2, d3}. This communication can also be

realized with three unicast phases: Phase 1: {s1 → d1, s2 → d2, s3 → d3}, Phase 2: {s1 → d2, s2 → d3, s3 → d1},

and Phase 3: {s1 → d3, s2 → d1, s3 → d2}. Using an Ethernet switch, the unicast phase and the multicast phase

will take roughly the same amount of time and multicast-based implementations may not be more effective than

unicast based implementations. Our performance study further confirms this. Thus, while CC–MPI provides

multicast based implementations for some of the all–to–all and many–to–many communication routines, we will

focus on the techniques we use to improve the unicast based implementations.

Traditionally, these complex communications are implemented based on point–to–point communications [9, 22]

without any scheduling. Such implementations will yield acceptable performance when the message sizes are

small. When the message sizes are large, there will be severe network contention in the Ethernet switch and

the performance of these implementations will be poor. CC–MPI optimizes the cases when the message sizes

are large using phased communication [12]. The idea of phased communication is to reduce network contention

by decomposing a complex communication pattern into phases such that the contention within each phase is

minimal. To prevent communications in different phases from interfering with each other, a barrier is placed

between phases. Next, we will discuss how phased communication can be used to realize MPI Alltoall (for

all–to–all communications) and MPI Alltoallv (for many–to–many communications).

CC–MPI assumes that network contention only occurs in the link between an Ethernet switch and a machine.

This assumption is true for a cluster connected with a single Ethernet switch. When multiple switches are

involved, this assumption will hold when a higher link speed is supported for the links connecting switches.

Under this assumption, the contention that needs to be resolved is in the links between a node and a switch.

8

To avoid network contention within a phase, each node receives at most one message in a phase (receiving two

messages potentially results in network contention). All–to–all communication for N nodes can be realized with

N − 1 phases and N − 2 barriers. The ith, 1 ≤ i ≤ N − 1, phase contains communications

{j → (j + i) mod N | j = 0..N − 1}

In the following discussion, we will call the phases that can form all–to–all communications all–to–all phases.

Essentially, scheduling messages in an all–to–all communication according to the all–to–all phases results in no

network contention within each phase. Notice that each source-destination pair happens exactly once in the

all–to–all phases.

Using N − 2 barriers potentially can cause a scalability problem. However, all–to–all communication itself is

not scalable, and the extra barrier is swamped by data transmission as long as the message sizes are reasonably

large. When the message size is large enough, phase communication reduces the network contention and achieves

high communication performance. Note also that barriers can be very efficient with special hardware support,

such as Purdue’s PAPERS [6]. In our evaluation, we do not use any special hardware support, a barrier on 16

nodes takes about 1 milli-second.

Realizing many–to–many communication with phased communication is more difficult. Using MPI Alltoallv,

a node can send different sized messages to different nodes. This routine realizes many-to-many communication

by specifying the size of some messages to be 0. The first difficulty to realize MPI Alltoallv with phased commu-

nication is that the communication pattern information is not known to all nodes involved in the communication.

In MPI Alltoallv, each node only has the information about how much data it sends to and receives from other

nodes, but not how other nodes communicate. To perform phased communication, however, all nodes involved

in the communication must coordinate with each other and agree on what to send and receive within each phase.

This requires that all nodes involved obtain the communication pattern information. CC–MPI provides two

methods to resolve this problem. The first approach uses an MPI Allgather to distribute the communication

pattern information before the actual many–to–many communication takes place. The second approach, which

can only be used when the user has additional information about the communication, assumes that the global

communication pattern is determined statically for each node and stored in a local data structure. It is clearly

more efficient than the first method.

Once the global communication pattern information is known to all nodes, a message scheduling algorithm

is used to minimize the total communication time for the many–to–many communication. CC–MPI supports

two message scheduling schemes for many to many communications: greedy scheduling and all–to–all based

scheduling. The greedy scheduling algorithm focuses on the load balancing issue. It works in two steps. In

the first step, the algorithm sorts the messages in decreasing order in terms of the message size. In the second

9

step, the algorithm creates a phase, considers each unscheduled message (from large size to small size) and puts

the message in the phase if possible, that is, if adding the message into the phase does not create contention.

Under our assumption, network contention is created when a node sends to two nodes and when a node receives

from two nodes. If the sizes of the remaining messages are less than a threshold value, all messages are put in

one phase. The greedy algorithm repeats the second step if there exists unscheduled messages. The operation

to put all small messages in one phase is a minor optimization to reduce the number of barriers for realizing a

communication pattern. The load in the phases created by the greedy algorithm is likely to be balanced because

messages of similar sizes are considered next to each other.

Input: Communication pattern
Output: Communication phases
(1)Sort messages based on their sizes
(2)while (there exist unscheduled messages) do

(3) if (the largest message size < the threshold) then

(4) Put all messages in one phase
(5) endif

(6) Let all–to–all Phase i be the phase
that contains the largest unscheduled message

(7) Create a new empty phase P

(8) Schedule all unscheduled messages that appear in
all–to–all Phase i in P

(9) For each unscheduled message in the sorted list
if no conflict, put the message in P

Figure 2: All–to–all based scheduling algorithm.

The all–to–all based scheduling algorithm is shown in Figure 2. The main difference between this algorithm

and the greedy algorithm is that messages are scheduled based on all–to–all phases first before being considered

based on their sizes. This algorithm attempts to minimize the number of phases while putting messages of similar

sizes in the same phase. It can easily be shown that this algorithm guarantees that the number of phases is no

more than N − 1. The algorithm produces the most effective scheduling for all–to–all communication and will

likely yield good results for communication patterns that are close to all–to–all communication.

Consider scheduling messages (0 → 1, 1MB), (1 → 3, 1MB), (0 → 2, 10KB), (2 → 3, 100B), (1 → 5, 100B),

(2 → 1, 100B) on 6 nodes. Here, the notion (src, dst, s) represents a message from source node src to destination

node dst of size s. Let us assume that the threshold value for the small message size is 0 and that the messages are

sorted in the order as specified. The greedy scheduling works as follows: messages (0 → 1, 1MB), (1 → 3, 1MB)

will be placed in phase 1 because they do not cause contention. After that, none of the remaining messages

can be placed in this phase. For example, message (2 → 3, 100B) cannot be placed in this phase because node

3 receives a message from node 1 in message (1 → 3, 1MB). The greedy algorithm then creates phase 2 and

places messages (0 → 2, 10KB), (2 → 3, 100B), and (1 → 5, 100B) in the phase. Message (2 → 1, 100B) cannot

be placed in this phase because it conflicts with message (2 → 3, 100B), so a third phase is created for message

10

(2 → 1, 100B). The all–to–all based scheduling scheme schedules the messages as follows. First, the algorithm

searches for the all–to–all phase that contains message (0 → 1). The algorithm then creates a phase and puts

messages (0 → 1, 1MB) and (2 → 3, 100B) in the phase because these two messages are in all–to–all phase 0.

After that, each unscheduled message is considered. In this case, message (1 → 3, 1MB) cannot be placed in this

phase because it conflicts with message (2 → 3, 100B). However, message (1 → 5, 100B) will be placed in this

phase. After this, a second phase will be created for messages (1 → 3, 1MB), (0 → 2, 10KB), (2 → 1, 100B);

none of these messages conflict.

Depending on the availability of information about the communication, CC–MPI provides four different meth-

ods for many–to–many communications.

1. Simple point–to–point communication based implementation. This provides good performance when the

message size is small and network contention is not severe.

2. Phased communication with the global communication pattern information distributed at runtime. In this

case, the global communication information is distributed with an MPI Allgather routine. After that, a

message scheduling algorithm is executed at each node to determine how each communication is to be

carried out. Finally, the message is transmitted according to the schedule. This routine is efficient when

the user determines that large amounts of messages are exchanged with the communication; however,

the details about the communication are unknown until runtime. We refer to this scheme as the Level 1

compiled communication for MPI Alltoallv.

3. Phased communication with the global communication pattern information stored in a data structure local

to each node. The difference between this method and (2) above is that the MPI Allgather is unnecessary.

We refer to this scheme as the Level 2 compiled communication for MPI Alltoallv.

4. Phased communication with the message scheduling information (phases) stored in a data structure local

to each node. Phased communication is carried out directly using the phase information. We refer to this

scheme as the Level 3 compiled communication for MPI Alltoallv.

These different schemes are supported in CC–MPI with two network control routines and two data transmis-

sion routines. The first data transmission routine supports point–to–point communication based implementation.

The second data transmission routine, MPI Alltoallv data trans2, performs the phased communication with the

assumption that the phases have been computed and the related data structures are established. The first net-

work control routine, MPI Alltoallv control1, performs the MPI Allgather operation to obtain the communication

pattern and invokes the message scheduling routine to compute the phases. The second network control routine,

11

MPI Alltoallv control2, assumes that the communication pattern information is stored in local variables and only

invokes the message scheduling routine to compute the phases. Depending on the availability of the information

about the communication, different combinations of the network control and data transmission routines can be

used to realize the function with different performance. For example, Level 1 compiled communication can be re-

alized with a combination of MPI Alltoallv control1 and MPI Alltoallv data trans2, level 2 communication can be

realized with a combination of MPI Alltoallv control2 and MPI Alltoallv data trans2, and level 3 communication

can be realized with a single MPI Alltoallv data trans2.

5 Performance Study

We have implemented CC–MPI on the Linux operating system. In this section, we evaluate the routines im-

plemented in CC–MPI and compare the performance of CC–MPI with that of two MPI implementations in the

public domain, LAM/MPI (version 6.5.4 with direct client to client mode) [22] and MPICH (version 1.2.4 with

device ch p4) [9]. The experimental environment is an Ethernet switched cluster with 29 Pentium III–650MHz

based PCs. Each machine has 128MB memory and 100Mbps Ethernet connection via a 3Com 3C905 PCI Ether-

Link Card. All machines run RedHat Linux version 6.2, with 2.4.7 kernel. The machines are connected by two

3Com SuperStack II baseline 10/100 Ethernet switches as shown in Figure 3.

Ethernet
Switch

Ethernet
Switch

P1 P17

P18P2

P0

P14

P15

P28

Figure 3: Performance evaluation environment.

5.1 Individual MPI Routines

MPI Barrier(MPI COMM WORLD);
start = MPI Wtime();
for (count = 0; count < ITER NUM; count ++) {

MPI Bcast(buf, s, MPI CHAR, 0, MPI COMM WORLD);
}
elapsed time = MPI Wtime() - start;

Figure 4: Code segment for measuring the performance of an individual MPI routine.

12

We use the approach similar to Mpptest [10] to measure the performance of an individual MPI routine.

Figure 4 shows an example code segment for measuring the performance. For the collective communication

routines, we use the average time among all nodes as the performance metric. Because we are averaging the time

over many invocations of an MPI routine, the average time is almost identical to the worst case time. Notice

that most of the techniques developed in this paper optimize communications with large message sizes. Hence,

although such measurement does not take into account application behavior, it should give a good indication

about the performance of the routines when the message size is large.

CC–MPI contains a plain unicast (TCP) based implementation for each of the routines, which achieves a

similar performance as the corresponding routine in LAM/MPI. We will omit the results for these implemen-

tations and only report the results of other implementations that improve performance for different situations.

Since CC–MPI provides mechanisms to support compiled communication and relies on the user to select the

most effective method for a communication, such implementations are efficient under some situations and not

efficient under other situations. It should be emphasized that the performance improvement is the potential

gain that can be obtained through compiled communication by employing alternative implementations while the

situations where a particular CC–MPI routine performs worse can be avoided and should not be treated as the

performance loss since another routine for the communication in CC–MPI can be selected.

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55

0 5 10 15 20 25 30

C
om

m
un

ic
at

io
n

tim
e

(m
s)

Number of Nodes

CC-MPI
LAM/MPI

MPICH

(a) Small messages (1 Byte)

0

2

4

6

8

10

12

0 5 10 15 20 25 30

C
om

m
un

ic
at

io
n

tim
e

(m
s)

Number of Nodes

CC-MPI
LAM/MPI

MPICH

(b) Large messages (10 KB)

Figure 5: Performance of MPI Bcast

Figure 5 shows the performance of the multicast based MPI Bcast. As can be seen from Figure 5 (a), multicas-

ting does not guarantee an improvement in communication performance, even for the broadcast communication.

The reason that the LAM/MPI and MPICH broadcast implementations are more efficient than our multicast-

based implementation when the message size is 1 byte is that LAM/MPI and MPICH use an efficient logical

tree based broadcast implementation when the group is larger than 4 processes. This distributes the broadcast

workload to multiple nodes in the system. In our implementation, the root sends only one multicast packet, but

must process all acknowledgment packets from all receivers. As a result, for small sized messages, our multicast

13

based implementation performs worse. However, when the message size is large, the acknowledgment processing

overhead is insignificant, and sending one multicast data packet instead of multiple unicast packets provides a

significant improvement. In this case, our multicast-based implementation is much more efficient, as shown in

Figure 5 (b).

MPI Bcast only requires the static group management scheme. Next, we will evaluate the performance of

one–to–many communication for which dynamic group management and compiler–assisted group management

were designed. Figure 6 shows the performance of MPI Scatterv with different implementations and group

management schemes. In this experiment, the root scatters messages of a given size to 5 receivers among the

29 members in the communicator. As can be seen in the figure, the compiler–assisted scheme performs the best

among all the schemes. The dynamic group management scheme incurs very large overheads and offers the worst

performance among all the schemes. The static group management is in between the two. In this experiment,

LAM/MPI outperforms both the dynamic and static schemes.

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000

C
om

m
un

ic
at

io
n

tim
e

(m
s)

Message size

Dynamic
MPICH

Static
LAM/MPI

Compiler-Assist

Figure 6: Performance of one–to–five communication using MPI Scatterv.

Figures 7 shows the performance of phased communication based MPI Alltoall in CC–MPI, which is designed

to optimize the case when the message size is large. As can be seen from the table, even with 4 nodes, the

network contention can still degrade communication performance, and our phased communication outperforms

LAM/MPI and MPICH when the message size is larger than 16KB. For all–to–all communication over a larger

number of nodes, the network contention problem is more severe, and the advantage of phased communication is

more significant. With 16 nodes and a message size of 64KB, our phased communication completes an all–to–all

communication about 2 times faster than LAM/MPI and 5 times faster than MPICH. The performance trend is

similar for messages of sizes 256KB and 512KB.

As described in Section 4, CC–MPI provides a variety of schemes for MPI Alltoallv. Two scheduling algo-

rithms, greedy and all–to–all, are supported. For each scheduling scheme, three levels of compiled communication

schemes are implemented; Table 1 shows their performance. In this experiment, we use MPI Alltoallv to perform

14

all–to–all communication on 16 nodes. For this particular communication pattern, greedy and all–to–all based

scheduling yield similar results, so only the results for all–to–all based scheduling are presented. As can be seen

from the table, with more static information about the communication, more efficient communication can be

achieved. The Level 3 implementation is about 15.7% more efficient than the Level 1 scheme when the message

size is 4KB. As the message size becomes larger, the nearly constant cost of the MPI Allgather and the scheduling

operations become less significant. The Level 3 implementation is about 5.8% more efficient when the message

size is 32KB. Notice that the message scheduling does not take a significant amount of time on 16 nodes. For a

larger system, the scheduling overhead can be significant.

0
10
20
30
40
50
60
70
80
90

100

1K 2K 4K 8K 16K 64K

C
om

m
un

ic
at

io
n

tim
e

(m
s)

Message size

CC-MPI
MPICH

LAM/MPI

(a) 4 nodes

0

100

200

300

400

500

600

700

800

1K 2K 4K 8K 16K 64K

C
om

m
un

ic
at

io
n

tim
e

(m
s)

Message size

CC-MPI
MPICH

LAM/MPI

(b) 16 nodes

Figure 7: Performance of MPI Alltoall

message CC–MPI LAM/MPI MPICH
size Level 1 Level 2 Level 3 point-to-point
2KB 23.6ms 21.2ms 20.0ms 3.5ms 3.4ms 3.6ms
4KB 26.4ms 24.1ms 22.8ms 8.5ms 9.2ms 6.6ms
8KB 32.5ms 30.1ms 28.8ms 30.2ms 18.0ms 30.5ms
16KB 44.5ms 42.2ms 40.9ms 88.0ms 89.0ms 101.0ms
32KB 67.4ms 65.1ms 63.7ms 142.4ms 132.0ms 150.5ms
64KB 112.0ms 109.7ms 108.4ms 214.1ms 224.0ms 643.0ms

Table 1: Performance of different implementations of MPI Alltoallv.

5.2 Benchmark Programs

In this subsection, we compare the performance of CC-MPI with that of LAM/MPI and MPICH using two bench-

mark programs, IS and FT from the NAS suite [20]. The Integer Sort (IS) benchmark sorts N keys in parallel

and the Fast Fourier Transform (FT) benchmark solves a partial differential equation (PDE) using forward and

inverse FFTs. These two benchmarks are presented in the NAS benchmarks to evaluate collective communication

routines. Communications in other NAS benchmarks are either insignificant or dominated by point–to–point

15

communications. Both IS and FT are communication intensive programs with most communications performed

by MPI Alltoall and MPI Alltoallv routines.

Table 2 shows the results for IS, and Table 3 shows the results for FT. We run both benchmarks on 4, 8, and

16 nodes with the three problem sizes supplied with the benchmark—the small problem size (CLASS = S), the

medium problem size (CLASS = W) and the large problem size (CLASS = A). LAM/MPI and MPICH do

not have any special optimizations for Ethernet switched clusters. As a result, when the communications in an

application result in network contention, the performance degrades and is somewhat unpredictable. Different

ways to carry out communications may result in (very) different performance under different network situations.

Problem MPI Number of Nodes
Size Library 4 8 16

LAM/MPI 0.11s 0.09s 0.07s
CLASS=S MPICH 0.10s 0.08s 0.07s

CC–MPI 0.13s 0.16s 0.28s

LAM/MPI 1.32s 1.02s 1.60s
CLASS=W MPICH 2.69s 2.16s 1.57s

CC–MPI 1.08s 0.69s 0.64s

LAM/MPI 9.62s 5.88s 4.62s
CLASS=A MPICH 21.92s 15.40s 11.60s

CC–MPI 8.45s 4.90s 3.00s

Table 2: Execution time for IS with different libraries, different numbers of nodes and different problem sizes.

Problem MPI Number of Nodes
Size Library 4 8 16

LAM/MPI 1.00s 0.70s 0.75s
CLASS=S MPICH 2.04s 1.63s 1.01s

CC–MPI 1.10s 0.63s 0.42s

LAM/MPI 2.15s 1.55s 1.42s
CLASS=W MPICH 4.17s 2.77s 1.46s

CC–MPI 2.20s 1.28s 0.77s

LAM/MPI 146.50s 27.37s 12.75s
CLASS=A MPICH 111.91s 46.71s 28.01s

CC–MPI 40.19s 21.34s 11.23s

Table 3: Execution time for FT with different libraries, different numbers of nodes and different problem sizes.

As can be seen from the table, LAM/MPI performs much better than MPICH in some cases, e.g. the ’A’ class IS

on 16 nodes, while it performs worse in other cases (e.g., the ’A’ class FT on 4 nodes). With CC–MPI we assume

that the user determines that the communications will result in severe network contention with the traditional

communication scheme and decides to use phased communication to perform MPI Alltoall and MPI Alltoallv.

For MPI Alltoallv, we assume that the Level 1 compiled communication scheme is used. As can be seen from the

table, CC–MPI results in significant improvement (up to 300% speed up) in terms of execution time for all cases

except for the small problem sizes. This further demonstrates that compiled communication can significantly

16

improve the communication performance. For IS with a small problem size, CC–MPI performs much worse than

LAM/MPI and MPICH. This is because we use phased communication for all cases. In practice, when compiled

communication is applied, a communication model selection scheme should be incorporated in the compiler to

determine the most effective method for the communications. For the small problem size, the compiler may

decide that the message size is not large enough for the phased communication schemes to be beneficial and

resort to point–to–point based dynamic communication scheme to carry out communications. Notice that for IS

with a small problem size, the execution time with CC–MPI increases as the number of nodes increases. The

reason is that both communication and computation take little time in this problem, so the execution time is

dominated by the barriers in the phased communications. As the number of nodes increases, the number of

barriers for each phased communication increases, and each barrier also takes more time.

5.3 A Software DSM Application

In this section, we report our early work aimed at using CC–MPI to improve software distributed shared memory

(SDSM) performance. Our initial CC–MPI-enabled SDSM is built within the Filaments package [18] and uses

an eager version of home-based release consistency [28].

We tested the potential of using Level 1 compiled communication for MPI Alltoallv to implement exchange

of page information through a synthetic application that first modifies a set number of pages on each node and

then invokes a barrier. The barrier causes all pages to be made consistent through collective communication.

This process is repeated for 100 iterations.

Table 4 presents the results of this benchmark. We observe that with a small number of nodes, the advantage

of Level 1 compiled communication versus dynamic communication (the point–to–point based implementation

without message scheduling) is relatively small. In fact, on 4 nodes, Level 1 compiled communication sometimes

results in worse performance than dynamic communication. However, as the number of nodes increases, the

advantage of Level 1 compiled communication is significant (almost a factor of two when four pages per node are

modified). As the message size becomes much larger (starting at eight pages per node), the advantage decreases

somewhat, but is still significant.

6 Conclusion

In this paper, we present CC–MPI, an experimental MPI prototype that supports compiled communication.

CC–MPI employs a number of techniques to achieve efficient communication over Ethernet switched clusters,

including using multicast for broadcast type communications, supporting the compiler–assisted group manage-

17

Pages Modified Communication Number of Nodes
Per Node Method 4 8 16

1 Level 1 0.93s 2.02s 4.57s
Dynamic 0.90s 4.29s 6.75s

4 Level 1 3.07s 6.76s 15.8s
Dynamic 4.13s 12.1s 27.5s

8 Level 1 9.46s 15.7s 35.5s
Dynamic 8.35s 18.6s 48.4s

Table 4: Experiments with our prototype SDSM that uses CC–MPI for communication.

ment scheme that allows reliable multicast to be performed effectively, separating network control from data

transmission, and using phased communication for complex many–to–many and all–to–all communications. We

demonstrate that using compiled communication, the communication performance of Ethernet switched clusters

can be significantly improved.

Compiled communication will likely be more beneficial for large systems, especially for massively parallel

systems. In such systems, traditional dynamic communication is likely to generate significant network contention,

which will result in poor communication performance. Compiled communication performs communications in a

managed fashion and reduces the burden in the network subsystem. One difficulty with compiled communication

is that it requires the user to consider network details, which is beyond of capability of a typical programmer. For

the compiled communication model to be successful, it is crucial to develop an automatic restructuring compiler

that can perform optimizations with compiled communication automatically. This way, programmers can write

normal MPI programs and enjoy high communication performance achieved through compiled communication.

References

[1] P. Banerjee, J. A. Chandy, M. Gupta, E. W. Hodges IV, J. G. Holm, A. Lain, D. J. Palermo, S. Ra-

maswamy, and E. Su. The PARADIGM Compiler for Distributed-Memory Multicomputers. IEEE Com-

puter, 28(10):37–47, October 1995.

[2] M. Bromley, S. Heller, T. McNerney, and G.L. Steele Jr. Fortran at Ten Gigaflops: the Connection Machine

Convolution Compiler. In Proceedings of SIGPLAN’91 Conference on Programming Language Design and

Implementation, pages 145–156, June 1991.

[3] F. Cappello and G. Germain. Toward High Communication Performance Through Compiled Communi-

cations on a Circuit Switched Interconnection Network. In Proceedings of the First Int. Symp. on High–

Performance Computer Architecture, pages 44–53, 1995.

18

[4] P.H. Carns, W.B. Ligon III, S.P. McMillan, and R.B. Ross. An Evaluation of Message Passing Implementa-

tions on Beowulf Workstations. In Proceedings of the 1999 IEEE Aerospace Conference, pages 41-54, March

1999.

[5] David Culler and et. al. The Generic Active Message Interface Specification. 1994. Available at

http://now.cs.berkeley.edu/Papers/Papers/gam spec.ps.

[6] H. G. Dietz, T. M. Chung, T. I. Mattox, and T. Muhammad. Purdue’s Adapter for Parallel Execution

and Rapid Synchronization: The TTL PAPERS Design. Technical Report, Purdue University School of

Electrical Engineering, January 1995.

[7] Ahmad Faraj and Xin Yuan. Communication Characteristics in the NAS Parallel Benchmarks. In Fourteenth

IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS 2002), pages

729–734, November 2002.

[8] The MPI Forum. The MPI-2: Extensions to the Message Passing Interface, July 1997. Available at

http://www.mpi-forum.org/docs/mpi-20-html/ mpi2-report.html.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance, Portable Implementation of the MPI

Message Passing Interface Standard. In Parallel Computing, 22(6):789-828, Sept. 1996.

[10] W. Gropp and E. Lusk. Reproducible Measurements of MPI Performance Characteristics. Technical Report

ANL/MCS-P755-0699, Argonne National Labratory, Argonne, IL, June 1999.

[11] S. Hinrichs. Compiler Directed Architecture–Dependent Communication Optimizations, Ph.D. Thesis, Com-

puter Science Department, Carnegie Mellon University, 1995.

[12] S. Hinrichs, C. Kosak, D.R. O’Hallaron, T. Stricker, and R. Take. An Architecture for Optimal All–to–All

Personalized Communication. In 6th Annual ACM Symposium on Parallel Algorithms and Architectures,

pages 310–319, June 1994.

[13] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, and R.A. F. Bhoedjang. Magpie: MPI’s Collective

Communication Operations for Clustered Wide Area Systems. In 1999 SIGPLAN Symposium on Principles

and Practice of Parallel Programming, pages 131–140, May 1999.

[14] M. Kumar. Unique Design Concepts in GF11 and Their Impact on Performance. IBM Journal of Research

and Development, 36(6), November 1992.

[15] D. Lahaut and C. Germain. Static Communications in Parallel Scientific Programs. In PARLE’94, Parallel

Architecture & Languages, LNCS 817, pages 262-276, Athen, Greece, July, 1994.

19

[16] Ryan G. Lane, Daniels Scott, and Xin Yuan. An Empirical Study of Reliable Multicast Protocols Over

Ethernet-Connected Networks. In International Conference on Parallel Processing (ICPP’01), pages 553–

560, September 3-7 2001.

[17] M. Lauria and A. Chien. MPI-FM: High Performance MPI on Workstation Clusters. Journal of Parallel

and Distributed Computing, 40(1):4–18, January 1997.

[18] D. K. Lowenthal, V. W. Freeh, and G. R. Andrews. Using Fine-Grain Threads and Run-time Decision

Making in Parallel Computing. Journal of Parallel and Distributed Computing, 37(1):41–54, Nov. 1996.

[19] R. Manchek. Design and Implementation of PVM Version 3.0. Technical report, University of Tennessee,

1994.

[20] NASA. NAS Parallel Benchmarks. available at http://www.nas.nasa.gov/NAS/NPB.

[21] H. Ogawa and S. Matsuoka. OMPI: Optimizing MPI Programs Using Partial Evaluation. In Supercomput-

ing’96, November 1996.

[22] J.M. Squyres, A. Lumsdaine, W.L. George, J.G. Hagedorn, and J.E. Devaney. The Interoperable Message

Passing Interface (impi) Extensions to LAM/MPI. In MPI Developer’s Conference, 2000.

[23] H. Tang, K. Shen, and T. Yang. Program Transformation and Runtime Support for Threaded MPI Execution

on Shared-Memory Machines. ACM Transactions on Programming Languages and Systems, 22(4):673–700,

July 2000.

[24] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U–net: A User–Level Network Interface for Parallel

and Distributed Computing. In the 15th ACM Symposium on Operating Systems Principles, pages 40–53,

December 1995.

[25] X. Yuan, R. Melhem, and R. Gupta. Compiled Communication for All–Optical TDM Networks. In Super-

computing’96, November 17-22 1996.

[26] X. Yuan, S. Daniels, A. Faraj and A. Karwande. Group Management Schemes for Implementing MPI

Collective Communication over IP-Multicast. The 6th International Conference on Computer Science and

Informatics, pages 76-80, Durham, NC, March 8-14, 2002.

[27] X. Yuan, R. Melhem, and R. Gupta. Algorithms for Supporting Compiled Communication. IEEE Trans-

actions on Parallel and Distributed Systems, 14(2): 107-118, Feb. 2003.

[28] Y. Zhou, L. Iftode, and K. Li. Performance Evaluation of Two Home-based Lazy Release Consistency

Protocols for Shared Memory Virtual Memory Systems. In Proc. of the 2nd Symp. on Operating Systems

Design and Implementation (OSDI’96), pages 75–88, 1996.

20

