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Abstract
Following verbal route instructions requires knowledge of
language, space, action and perception. We present MARCO,
an agent that follows free-form, natural language route
instructions by representing and executing a sequence of
compound action specifications that model which actions
to take under which conditions. MARCO infers implicit
actions from knowledge of both linguistic conditional phrases
and from spatial action and local configurations. Thus,
MARCO performs explicit actions, implicit actions necessary
to achieve the stated conditions, and exploratory actions to
learn about the world.
We gathered a corpus of 786 route instructions from six
people in three large-scale virtual indoor environments.
Thirty-six other people followed these instructions and rated
them for quality. These human participants finished at the
intended destination on 69% of the trials. MARCO followed
the same instructions in the same environments, with a
success rate of 61%. We measured the efficacy of action
inference with MARCO variants lacking action inference:
executing only explicit actions, MARCO succeeded on just
28% of the trials. For this task, inferring implicit actions is
essential to follow poor instructions, but is also crucial for
many highly-rated route instructions.

Introduction
Imagine you have an appointment in a large building you
do not know. Your host sent instructions describing how
to reach her office. You pull out the paper, read through
and interpret the text, and proceed down corridors, taking
the necessary actions. Upon finishing the instructions, you
come to an unmarked, closed door. Is your appointment
behind this door? Though the instructions were fairly clear,
in a few places, such as the end, you had to infer what to do.
How does an agent interpret an under-specified instruction
text in the environment to infer the correct course of action?

Verbal route instructions are explanations given by a
director, intended to guide a mobile agent, the follower,
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toward a specific spatial destination. When following route
instructions, the follower must parse and interpret the text,
model the instruction’s actions and descriptions, and enact
the instructions in the world, by performing these actions
and recognizing the descriptions.

Typically, a follower cannot simply execute instructions
without inference, since the necessary actions are not
completely specified. Instructions often provide just a
skeletal plan of action (Agre & Chapman 1990). A
follower can resolve the ambiguities and omissions by using
knowledge of language, an understanding of spatial actions
and relations, and a model of the environment.

This paper presents a system that interprets human-
written route instructions and follows the inferred model of
the described route. Our approach builds on a rich literature
studying different aspects of route instructions. Some work
presents a model of route instructions, but does not apply
the model to navigate (Vanetti & Allen 1988; Daniel et al.
2003; Tversky & Lee 1999; Klippel et al. 2005; Anderson
et al. 1991). Other work concentrates on understanding
single spatial commands in the small-scale space of a room
(Skubic et al. 2004) or tabletop (Roy 2005). Finally, other
work follows instruction sequences in a large-scale space,
but does not use spatial and linguistic knowledge to recover
from instruction errors or to infer implicit actions (Bugmann
et al. 2004; Simmons et al. 2003).

Inferring and executing implicit actions from route in-
structions requires knowledge of both language and spatial
actions. Some implicit actions are explicitly stated as
conditions to achieve (e.g. “With the wall on your
left, walk forward,”) while other actions are im-
plicit as preconditions (e.g. “Go two intersections
down the pink hallway”). Some unstated actions
are necessary to match the description to the environment.
When told to “Walk to the further end of the
hall,” a follower must turn to see the hall in both
directions, estimate which end is most distant, possibly turn
again to face the longer end, and only then move forward.

The core measure of a set of instructions for a route is
simple – did the follower end up at the intended destination?
Likewise, the minimal measure of an instruction follower is
simple – how often does the follower successfully complete
instructions? To evaluate MARCO and human followers, we
use a large corpus of natural language route instructions,



written by people over a variety of routes. The agent
follows the routes by navigating through complex, large-
scale environments without any prior spatial knowledge of
the environment’s layout.

This paper introduces the MARCO architecture for under-
standing and executing natural language route instructions.
We measured how often MARCO reaches the destination of
route instructions written by people for other people in large-
scale, indoor, virtual environments. We compared MARCO’s
performance with people’s performance following the same
instruction texts in the same layouts. To better understand
MARCO’s performance and the behavior of human directors
and followers, we compared the performance of MARCO
with and without the ability to infer implicit actions. Run-
ning MARCO without action inference provides a measure
of how often spatial and linguistic inference are necessary
to follow route instructions successfully.

MARCO Architecture
MARCO is composed of six primary modules: three to
interpret the route instruction text linguistically and three
to interpret the instructions spatially in the context of the
environment. The MARCO architecture for understanding
and following natural language route instructions builds
on ideas from the Nautilus natural language understanding
system and the GRACE system (Simmons et al. 2003).

The linguistic stack parses and models raw text. The
syntax parser models the surface structure of an utterance.
The content framer interprets the surface meaning of the
utterance. The instruction modeler applies spatial and
linguistic knowledge to combine information across phrases
and sentences. Figure 1 shows the representations MARCO
uses to model route instructions.

The executor reactively interleaves action and perception,
acting to gain knowledge of the environment and execute
the instructions in the context of this spatial model. The
robot controller is an interface to the particular follower’s
motor and sensory capabilities. The view description
matcher checks symbolic view descriptions against sensory
observations and world models, checking the expected
model against the observed model.

Modeling natural language route instructions
The syntax parser parses the raw route instruction text. Our
implementation uses a probabilistic context-free grammar
built with the Python Natural Language Toolkit (Bird &
Loper 2004). Instead of modeling part-of-speech syntax, our
grammar directly models verb-argument structure, similarly
to (Bindiganavale et al. 2000; Chang, Narayanan, & Petruck
2002). An example parse tree is at the top of Figure 1. We
used the parser to help annotate of the treebank of parses for
the corpus, but do not test the parser in the evaluation below.

The content framer translates the surface structure of an
utterance to a model of the surface meaning as a nested
attribute-value matrix. The matrix representation makes
the content readily accessible. The resulting content frame
(see middle of Figure 1) models the nested structure and
sense of an utterance by dropping punctuation, arbitrary text
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Figure 1: MARCO linguistic modules modeling a route
instruction text (Top) through the syntactic verb argument
and phrase structure (Mid-Top), the surface semantics frame
(Mid-Bottom), and the imperative semantics of which action
to take under a minimal model of the context (Bottom).

ordering, inflectional suffixes, and spelling variations. The
content framer draws word senses from WordNet (Fellbaum
1998), an ontology for English.

The instruction modeler translates the content frame’s
representation of the surface meaning of an instruction
element to an imperative model of what to do under
which conditions – the compound action specification.
The instruction modeler infers the imperative model from
the instructions by applying linguistic knowledge of the
verbs and prepositions of the route instructions and spatial
knowledge of how perception and action depend on the local
spatial configuration in similar environments.

Representing expected views and actions
The follower needs to model the actions and observations
described in route instructions. However, instructions
rarely specify exactly what the follower will see, but
rather describe some distinctive attributes of some of
the scenes along the route. The follower takes actions
depending on how its observations, while navigating, match
its expectations from the route instructions.

A view description represents what the follower expects
at a pose in the environment, given the descriptions in the
instructions. For each expected object, the view description
models the object’s type, the object’s location within the
view relative to the observer (angle and distance), and any
description of the object’s appearance and other attributes.



The view description is a minimal model of what the
follower expects: it neither over-commits to unspecified
details nor enumerates possible worlds. Instead, it models
no more than what was said. For example, the until
condition at bottom of Figure 1 models the post-condition
of the Turn: the follower expects a Path with a Green
appearance in front of it, but it may be immediate in the
view or off in the distance.

Route instructions require at least four low-level simple
actions. Turn changes the agent’s orientation (pose)
while remaining in the same location. Travel changes
the agent’s location without changing orientation along a
path. Verify checks an observation against a description
of an expected view. Declare-goal terminates instruction
following by declaring the agent is at the destination.
Route instructions may contain other action types, such
as “open the door” or “take the elevator to
the 2nd floor”. However, these four simple actions
are both necessary to follow almost all route instructions and
sufficient for many route instructions.

The compound action specification captures the com-
mands in route instructions by modeling which simple
actions to take (i.e., Turn, Travel, Verify and Declare-
goal) under which perceptual (e.g. seeing a view) or
cognitive conditions (e.g. estimating a distance). Resolving
some ambiguities is deferred until the follower observes
the environmental context as it proceeds along the route.
These compound action specifications are similar to the
“minimal units of information” Daniel et al. (2003) or
Higher-Order Route Instruction Elements (Klippel et al.
2005). Figure 1 shows the transformation from text to the
imperative instruction model.

Each clause is interpreted as a compound action specifica-
tion depending on the verb or a heuristic match based on the
other constituents. Adverbs, verb objects, and prepositional
phrases translate to pre-conditions, while-conditions, and
post-conditions in compound action specifications. For
instance, constituents may describe which path to take,
how far to travel, or the view that will be seen. This is
similar in intent to work on combining the lexical semantics
resource FrameNet with action schemas, allowing inference
(Chang, Narayanan, & Petruck 2002). The modeler
also recognizes termination conditions stated as purpose
clauses (Di Eugenio 1992), like “Turn so that you
see a chair in front.”

Interleaving Action, Perception, and Modeling
The executor sequences simple actions given the envi-
ronmental context and the state of following the route
instructions. For example, given a “face” command, the
executor Turns until a Verify signals that the observations
have matched the view description. Currently, MARCO uses
a simple executor that attempts to execute each compound
action specifications fully before moving to the next. This
algorithm may be replaced with a full action sequencer (e.g.
RAPs as by Bonnasso et al. (1997) or TDL as by Simmons
et al. (2003)) or an algorithm reasoning on inferred route
topology (Kuipers et al. 2004).

The robot controller executes the Turn, Travel, Verify,

and Declare-Goal actions. Robot controllers present a
common interface to the executor, abstracting domain-
dependent control implementation to simple actions.

The view description matcher checks the symbolic view
descriptions against sensory observations. The view de-
scription matcher treats the view description as constraints
that the observation stream must meet. This defers handling
many forms of ambiguity until the environment can provide
some disambiguating context. For instance, given the in-
struction “Turn to face the blue path,” the view
description would be Path(distance =’0:’, side =Front, ap-
pear =blue). The colon indicates an unbounded distance in
the view. The blue path may run forward from the agent
(distance =’0’, side =Front) or may be visible crossing this
path in the distance (distance =’1:’, side =Sides). MARCO
checks for both cases while turning.

The view description matcher will use whatever percep-
tual abilities the robot has available. On a hardware robot,
the concept of an intersection can be linked to the code that
segments intersections in the laser scan and classifies the
local path topology ( e.g. as a dead end, “T”, or corner
intersections (Kuipers et al. 2004)). With the simulation
in this paper, MARCO cannot directly observe intersection
type, but must model it through the relative positions of the
observed paths (see Figure 3).

Robustness to errors and ambiguities
When MARCO comes across a word that it does not have in
its concept base, it searches for the nearest known synonym
or more abstract hypernym using the WordNet ontology.
For instance, when instructed to “face the futon,”
MARCO will discover futon is not in its concept base, look
it up in WordNet, find the broader concept of couch in its
concept base, and stop turning when the view description
matcher observes a couch.

MARCO is also robust to unexpected input. If the
content framer encounters an constituents that it cannot
model, it will ignore it while modeling the remainder of the
clause. Likewise, if the parser cannot parse one sentence
from a set of route instructions, it will parse the others.
These techniques work well for two reasons. First, route
instructions often contain a lot of redundant information,
so neglecting to understand a phrase in one sentence is
often not critical. Second, the essential information in route
instructions is usually stated using a relatively small variety
of content frames for directing movements. Most of the
novel sentence frames occur in the declarative descriptions
between movement commands, so understanding these is
often not necessary if the imperative sentences are correct,
complete, properly understood, and properly applied.

Inferring actions implicit in instructions
The instruction modeler recognizes some linguistic condi-
tional clauses (e.g., “when,” “at,” and “so that”). These
conditionals are modeled as possibly requiring an action
to achieve. For instance, “At the corner, turn
left” is modeled as Turn( direction =Left, precondition
=Travel(until =Corner(dist =’0’))).



“Take the blue path to the chair.”
Travel(along =Path(appear =Blue, side =Front),

until =Corner(distance =’0’, side =At))
Map,
Robot Pose
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f Explore Turn
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Turn
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Figure 2: These simple scenarios illustrate how interpreting
an utterance depends on the follower’s pose in the envi-
ronment and its cognitive map. The circle represents the
follower, with the line indicating its front. The follower can
see hallways to its side, but not down the side hallway.

Implicit actions are inferred using both linguistic and
spatial knowledge and reasoning. For instance, read-
ing “Go down the hall to the chair,” the lan-
guage model interprets the phrase structure as along and
until parameters of a Travel action. Using spatial knowledge
and the Travel action model, MARCO infers the conditions
of the Travel action:
Pre The path should be immediately in front and the chair

should be in the front in the distance.
Post The chair will be local to the agent.

Though the executor primarily performs the actions
explicitly stated in the route instructions, the executor also
plans sequences to gain information and to achieve pre-
and post-conditions of actions. Exploratory actions may be
necessary to determine where a reference object is: e.g. in
“Go towards the chair”, the follower may Turn to
locate the chair. If the pre- and post-conditions of actions

are not met, the executor plans to achieve them. The actions
the follower takes depend on both the route instruction text
and the text’s correspondence to the environment.

Figure 2 shows how this instruction is applied to navigate
given different maps and starting poses. Figure 2(a)
shows the default assumption, that the previous instruction
elements have moved the follower into position. If a blue
path is immediately in front of the agent, it will execute
the explicit Travel action. In Figure 2(b), the blue path is
visible immediately to one side, so it will Turn to meet the
precondition of Travel along a path, though this action is
not stated in the instructions. In Figure 2(c), the blue path is
visible to both sides, but the follower does not know which
way the chair is. The follower must make an exploratory
Turn to look down the blue hall in one direction, then if it
does not see the chair, Turn around to face the chair.

If the follower does not see a blue path in its immediate
surround, but does see one off in the distance (Figure 2(d,e)),
it will Travel to the distant path, then Turn onto it before
proceeding. Figure 2(f) shows the agent making an
exploratory Turn to find the blue hall, a Travel to reach it,
another exploratory Turn to find the chair, and only then
the explicit Travel command. If it does not see a blue
path from any pose at its current location, it will move
through the environment until it finds a match. This search
behavior improves performance on poor instructions, while
not significantly reducing the success rate of highly-rated
instructions (MacMahon & Stankiewicz 2006).

Evaluation
Route instructions represent knowledge about spatial actions
and spatial layouts. A route instruction set is useful if
it reliably guides followers to the intended destination.
Conversely, the navigation and understanding skills of a
follower mediate how well route instructions are followed.

Heuristic linguistic or spatial methods can suggest that
the syntax, the semantics, and even the pragmatics of a
route instruction text are incoherent or potentially inade-
quate (Riesbeck 1980). However, without situating the
route instructions in a spatial environment, these methods
cannot determine if missing information is necessary or
extraneous. Other knowledge of the structure of the
environment may constrain the possible actions or resolve
linguistic ambiguity. Additionally, as seen in Figure 2,
even apparently complete instructions may still require
thought and action to understand how they correspond to
the environment. Finally, heuristic methods cannot catch
explicit mistakes in description.

Human Route Instruction Directing and Following
We evaluated MARCO in three environments with a large
corpus of route instructions written by six human directors.
The corpus consists of 786 natural language route instruc-
tion texts from 6 subjects (3 M, 3 F) in three virtual reality
environments. 36 subjects (21 M, 15 F) followed these
route instructions. For details of the human study procedure,
see MacMahon & Stankiewicz (2006).

Using desktop virtual reality environments had several
benefits: (1) all route directors had similar exposure to the



Figure 3: Human Participants’ first-person view from pose
of the simulated robot (blue circle) at the easel (’E’) in the
map. MARCO experienced the view as the text token list:

[(Cement, Easel, Cement, Butterfly, Wood, Butterfly),
(Wall, Empty, Wall, Butterfly, Wood, Butterfly),
(Cement, Empty, Wall, End, Wall, End)]

environments; (2) all pertinent aspects of the environments
were known and repeatable across subjects; (3) directors
learn the environment by exploring from the same first-
person perspective as the followers; and (4) MARCO can
navigate the same environments as people.

Each of the three large-scale spaces used had forty
locations, seven long paths with distinct textured flooring,
seven to twelve short paths with a common cement floor, and
numerous visual and structural features. Each environment
contained seven named locations that were the start and end
points of the routes that the directors were asked to describe.
The layouts are difficult for people to learn and navigate, so
they provide challenges for both the directors and followers.
Figure 3 shows an example human view of the environment
(Top) and the textual view of the simulator MARCO sees
(Bottom). Figure 4 shows the overhead layout map (not
seen by participants) of this environment, with the follower’s
movement trace marked.

The director’s task in each environment is split into three
phases. In the first phase, a director freely explores the
environment. Second, the director is quizzed for navigation
competency in the environment. Once able to pass the
competency test by navigating efficiently among the named
locations, the director is queried for directions between all
pairs of named places in the environment. For each route,
the director types a set of instructions, then navigates to the
goal, and then self-rates his(her) belief that (s)he has reached
the goal and the quality of his(her) own instructions.

To gauge the quality of the route instructions, another
group of people evaluated the route instructions. Thirty-six
participants (15 female, 21 male) read the route instructions
and attempted to follow the routes described in the virtual
environments. While navigating, the follower could re-
examine the route instructions by pressing a key, which
covered the navigation screen with a pop-up window
showing the instruction text. Each route instruction text was
evaluated independently by six people. The destination po-

Figure 4: Bottom: Map of one of three virtual environments
(not seen by participants). Three regions share a wall
hanging of a fish, butterfly, or Eiffel Tower. Each long
hallway has a unique flooring. Letters above mark objects
(e.g. ’C’ is a chair), numbers indicate named positions.

sitions were not marked in the environments; the followers
had to explicitly end the navigation and indicate whether
they believed they had reached the described goal.

Route Instruction Corpus Statistics
For some routes, the director either did not enter any text
or only entered a comment, e.g. “I don’t know.” For this
evaluation of MARCO, we omit training routes, duplicated
routes, and the empty route descriptions, leaving 682 route
instruction texts that MARCO and people followed. The
route instructions had a mean of 34.5 words from a lexicon
of 587 words and, as modeled, had means of 4.7 context
frames and 5.1 compound action specifications.

The six directors in this study vary significantly in writing
style as a group and across different route instructions.
Across directors, style varies significantly in length of
the instructions (m=36.4, sd=16.5 words), size of the
lexicon used (m=213, sd=55 words), number of frames used
(m=5.0, sd=2.0 frames), efficiency of the routes (m=55,
sd=21 percentage points), human success rate (m=63, sd=19
percentage points), and human subjective rating (m=4.0,
sd=1.0 of 1–6 scale).

Route Instruction Situated Testbed
To test how well an agent (either human or MARCO) follows
route instructions, we gave the agent a route instruction
text, placed it at the starting location, monitored how it
navigates through the environment, and observed whether
it reaches and identifies the destination. We performed
this experiment with people navigating computer-rendered
VRML models of the three indoor environments. We
provided the same instruction texts to a software agent,
MARCO, which navigated through symbolic representations



Figure 5: Human and MARCO success rates, with standard
error bars, versus human instruction rating. The rating of 1
indicates extremely poor instructions, while 6 is excellent.
Success rate is how often, on average, the human followers
(circles) and MARCO (squares) finished navigating at the
intended position for all the instruction texts with mean
human rating of r ± 0.125. Data as of April 21, 2006.

of the same environments. MARCO’s input was from the
hand-verified ’gold-standard’ parse treebank, not the parser,
but all other modeling was done autonomously.

In these experiments, MARCO perceives the world
as an ordered list of symbols corresponding to any
visible walls, pictures, furniture, and path segments.
However, MARCO must model the world to fill the
significant disconnect between the symbolic observations
and the concepts mentioned in the instructions. For
instance, MARCO must match a described corner
with a model with spatial knowledge of a corner as the
termination of two paths in intersection. Additionally, the
instructions contain compositional restrictions, e.g. “the
intersection with the chair where the
flowered hallway goes to the left.”

We tested the full MARCO model and MARCO variants
missing spatial and linguistic action inference abilities
by running each agent against a large corpus of instruc-
tions. The test set consisted of the 682 instructions
with some descriptive text, which were followed by the
human participants in the three full-sized virtual envi-
ronments. Comparing the performance of MARCO with
people following the same route instructions tells us how
well MARCO is performing on a wide variety of route
instructions. Comparing the performance of an ablated
MARCO model against the full MARCO model shows how
much impact action inference has on navigation success,
given any redundant information in the environment, in the
instructions, or from the follower’s spatial reasoning.

Full-Corpus Implicit Action Inference Experiment
We present results for five types of followers: (1) human
participants, (2) the full MARCO model, (3) MARCO without
Turn inference, (4) MARCO without Travel inference, and
(5) MARCO without either Turn or Travel inference. For
people, the results are the mean over runs from 6 participants
following each instruction set, each beginning at the start
location facing a random direction. For the MARCO cases,
the presented results are the mean over four runs, facing each
of the four directions at the start.

Figure 5 shows the evaluation results. Human participants
were able to successfully find and identify the desired
destination with an overall mean success rate of 69% of 682
instruction sets in the three environments. With full action
inference, MARCO successfully followed 61% of the route
instruction texts. Further, MARCO increases in performance
as the human instruction rating increases and as human
performance increases. While MARCO does not yet match
human performance across route instructions of all qualities,
the correlations from MARCO’s performance to human
performance and to human ratings are strong (MacMahon
& Stankiewicz 2006).

Without inferring Travel actions, MARCO’s performance
drops to 42%. Some implicit Travels are stated in the
text as preconditions, for instance, “At the end of
the hall, turn right.” Others are implicit in the
preconditions of the stated action, for instance, “Take the
green path,” when the green path is distant. Finally,
some actions may be implicit in how the command is
expressed. “Take the second left,” implies Travel
forward two intersections with a path to the left.

If MARCO does not execute implicit Turn actions, perfor-
mance slips to 32% of the instruction corpus. One type of
implicit Turn is in the text as a condition to achieve instead
of an explicit command: “With your back to the
wall, walk forward” implies a possible Turn if a
wall is not immediately to the rear. Turns can also be implicit
in an action’s preconditions, e.g. a Turn to face the path
in “Go down the brick hallway.” Implicit actions
may be unnecessary, depending on the starting conditions
and how MARCO interpreted and executed any previous
instruction elements.

Following purely explicit instructions, without inferring
either Turn or Travel actions, MARCO can successfully
follow just 28% of the routes in the corpus. The effects of
Turn or Travel action inference are neither fully independent
nor fully dependent, both are critical for route instructions.

Implicit Action Experiment Results by Rating
Action inference is essential for following the lowest
rated instructions in this corpus, but merely important
for following the highest rated instructions. Table 1
summarizes the results graphed in Figure 5 across broad
classes of human post-hoc subject instruction ratings. In this
discussion, r will denote the mean rating on an instruction
set from the six human followers.

For poor instructions, r ≤ 3.5 out of 6, MARCO is
effectively crippled without action inference skills. On



Quality Range All 1:2.5 2.5:3.5 3.5:5 5:6
Human 69% 33% 46% 75% 85%
Full MARCO 61% 16% 36% 64% 84%
No implicit Travel 42% 0% 12% 46% 66%
No implicit Turn 32% 2% 11% 32% 52%
No implicit acts 28% 1% 7% 30% 46%

Table 1: Performance on instructions with mean human
rating r, s.t. x < r ≤ y. All differences from Full
MARCO are significant at p < 0.001, except there is no
significant difference between people and Full MARCO for
the instructions rated 5 < r ≤ 6.

good but not excellent instruction, MARCO can follow a
significant number of instructions without action inference,
but performs much better by inferring actions, especially
Turns. Making an implicit turn puts the follower on the
correct path, revealing a view down the path which shares
very little information with views facing in other directions.
A Travel moves the agent to a new place, but does not bring
as much new information into the view for agents able to see
distant objects.

On the best instructions, those rated r > 5, the full
MARCO system and people had no significant difference
in performance. Without action inference, MARCO had
significant decreases in performance even on the best sets.
Action inference accounts for nearly all the success on poor
instructions and about half the success on good instructions.

Instruction-Based Learning (IBL) Comparison
This work is similar in intention to the Instruction-Based
Learning (IBL) for Mobile Robots project (Bugmann et
al. 2001; 2004). Bugmann et al. (2001) presented a
corpus of 96 spoken route instruction sets from participants
guiding a human operator, who had remote control of a
robot navigating through a tabletop model of a town center.
They modeled the instructions as action schemas, called
“functional primitives,” such as MOVE FORWARD UNTIL
<COND>, TURN <DIR> <LOC>, <LANDMARK> IS LOCATED
<WHERE>, and GO TO <LANDMARK>.

Bugmann et al. (2004) implemented a robotic system
capable of following programs of functional primitives from
this corpus, expanded to 144 route instructions. The 15
functional primitives take a fixed parameter list, so their
action model is less expressive than our Compound Action
Specifications. Effectively, their functional primitive are
curried versions of our actions with some parameters fixed,
matching common sentence argument structures rather than
allowing any combination of conditions. For instance, they
model go_until, exit_roundabout, follow_road_until, and
take_road, all of which would be modeled with our Travel
action with various keyword parameters.

Bugmann et al. (2004) also compared human perfor-
mance with the performance for a robot navigating through
the tabletop model environment given hand-translated or
automatically-translated programs of functional primitives
from the corpus. People were able to reach the destination
on 83% of the instructions, the robot followed hand-

translated programs on 63% of the routes, and 14% of
the routes automatically translated into programs “would
actually lead the robot to the goal.”

Though our success rates are not directly comparable,
since they start with raw speech and control a physical robot,
our automated success rates are much more similar to our
human rates. Their environment had fewer places, paths,
and strong visual features than ours, but had more diverse
intersections in a realistic town street layout. Their basic
instruction-following method is similar to our work, but
seems less robust to errors and omissions in the instructions,
due to the spatial and linguistic knowledge we model.

The work in this paper is more easily and less expensively
replicated, since no special robotic equipment or physical
town model is needed. More importantly, our subjects
learned the environments from the same first-person per-
spective as the human and software agents following the in-
structions and wrote instructions from memory. Bugmann’s
participants only saw an outside, panoramic perspective
of the town model while directing. This difference in
how environments are learned and perceived between the
directors and followers leads to a class of errors not present
in our approach. Specifically, directors may refer to
information unavailable to followers. Conversely, while our
directors may make errors while learning the map through
navigation or recalling the map while directing, these errors
are cognitively interesting and prevalent in the real world.

Conclusions
This paper examines the role of using knowledge about
language and space to infer implicit actions in following nat-
ural language route instructions through large-scale spaces.
The MARCO agent can parse, model, and reactively enact
route instructions. MARCO approaches human levels of
performance in applying instruction texts to navigate from a
starting place to the destination and declare when the goal
is reached. Our evaluation testbed ties together a large
instruction corpus, navigable environments, and human
and artificial embedded agents with linguistic and spatial
reasoning abilities. Comparing the performance of MARCO
model variants, we find implicit actions are essential to
following poorly-rated instructions and are often important
to following even highly-rated instructions.

This testbed of a large route instruction text corpus tied
to simulated environments presents a challenge task for
researchers in natural language understanding and spatial
reasoning. The methodology emphasizes understanding the
gist of route instructions over some details: the essential
linguistic and spatial details separate navigation success
from failure. However, to be tested, components must
be integrated into a complete agent that can read the
instructions and apply the understanding to act in the world.

This paper contributes an assessment of human perfor-
mance for communicating route information through unfa-
miliar large-scale spaces. By comparing the performance
of a computational model with and without the ability to
infer implicit actions, we measure how often understanding
the unstated is necessary to succeed in this task. Though
this ratio will change for other tasks and domains, the



methodology of comparing human and automated systems
on large corpora of problems will generalize.

Successfully following natural language route instruc-
tions requires both linguistic and spatial reasoning skills.
Linguistic syntax parsing and surface semantics are not
sufficient; a system must be able to ground semantic
concepts in actions and observations. Moreover, the system
must be able to apply pragmatic reasoning skills to infer the
director’s intentions of what to do and where to go. The
follower should move to a pose matching the precondition
of the next instruction, even when the text does not state
the step. In fact, inferred actions may violate or override
explicitly stated actions, such as when the instructions lead
the follower to face a dead end and indicate forward travel.

The ability to follow route instructions is useful: every
day, people use route instructions to travel along previously
unknown routes and there is a large industry devoted
to generating driving instructions. Spatial route instruc-
tions are an interesting combination of robotics, artificial
intelligence, cognitive psychology, and natural language
processing. Route instructions are easily evaluated, despite
the complexity of integrating modules doing linguistic
modeling, abstract spatial reasoning, and moving a robot
through a world – does the follower reach the destination?

We have demonstrated how linguistic and spatial knowl-
edge, along with exploratory action in the environment, are
jointly necessary for successful applying route instructions.
We believe that the natural language understanding methods
described here will generalize to the larger domain of
understanding instructions about complex sequential tasks,
including cooking, first aid, furniture assembly, automobile
repair, and many others. We also believe these tasks should
be similarly evaluated, with a testbed that demonstrates
sufficient understanding by achieving a complex, situated
task given diverse natural language instructions.
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