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Abstract  This paper demonstrates a simple technique to analyze linear electric circuits. The technique is based on 
assuming some voltage or current values according to the given resistance/impedance values such that a relative 
circuit performance is obtained. The actual circuit results are achieved directly by normalizing the assumed values 
using a specific formula. In practice, this method either reduces the number of simultaneous equations or simplifies 
the mathematical formulas; hence the overall analysis procedure is reasonably accelerated. It is highly recommended 
that this method is taught in electric circuit courses especially in the beginning chapters so that students can have 
more variety of circuit analysis techniques. It is also possible to apply such a method to verify an existing solution or 
vice versa. 
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1. Introduction 
It is already recognized that the electric circuit theory is 

one of the main fundamental theories on which all 
branches of electrical engineering are based. Therefore, 
electric circuit analysis techniques are very important to 
be taught to electrical engineering students at the 
beginning of electrical engineering program [1]. They are 
also useful for students in other specializations such as 
physics and applied mathematics [2,3,4]. It is well-known 
that there are different circuit analysis techniques which 
are all based on three main laws: Ohm’s law, KCL and KVL. 
The techniques can involve combining resistors/impedances 
in series or parallel, voltage division or current division. 
For more complex circuits, nodal or mesh analysis are 
advised to be used where the solution procedure is 
significantly facilitated [1,5-12]. In fact, the above 
techniques along with the Y-∆ transformations are fairly 
sufficient to solve all linear electric circuits where the 
appropriate procedure is decided according to the given 
circuit design.  

In this research, we propose additional simple technique 
that is never presented elsewhere such that a student can 
have more options either to analyze a given circuit or to 
verify an existing solution. This technique is again based 
on the three famous laws mentioned above but it works 
backwards since we begin by assuming circuit values for 
some elements located far from the source. After complete 
analysis, these values are normalized to obtain the actual 
circuit results. This is unlike original methods in which 
the analysis usually starts from the given source and 
moves forwards to reach the actual circuit values. The 

technique proposed here can apply easily to most linear 
circuit designs including resistive DC circuits, charging 
RC, RL and RLC circuits, and AC circuits. It is not 
claimed that this technique can replace the traditional 
methods, especially the nodal and mesh techniques, but in 
many cases it can be the best option where the number or 
complexity of equations is reasonably reduced.  

For simplicity and as done in all references, we start 
with simple resistive DC circuits upon which our 
proposed method is fully explained. Various cases 
(examples) are given to ensure the validity of the 
technique over different designs. These examples are 
mostly taken from one reference [1] just for consistency 
and rapid verification. Other circuits including AC ones 
are then presented in the later sections. 

2. Simple Resistive Circuits 
As known, simple resistive circuits are composed of 

resistors that are connected in series, parallel or both. The 
new technique is mainly based on Ohm’s law which states 
that the voltage across a resistor is directly proportional to 
the current passing through the resistor [5-12]. 
Mathematically, 

  v Ri=  (1) 
It is therefore possible to say that the voltage across a 

resistor is directly proportional to the given resistance 
assuming constant current. On the other hand, the current 
through a resistor is inversely proportional to the given 
resistance assuming constant voltage. This would imply 
that, for any resistor, the voltage value can be initially 
assumed where it is either a multiple or fraction of the 
given resistance. This is of course assuming that i is the 
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proportionality constant in (1). For simplicity, the voltage 
and resistance can be assumed to be equal where i is 
assumed to be 1. Therefore, equation (1) temporarily 
becomes 

  V R=  (2) 
where capital letter is used to distinguish from the actual 
voltage value. 

In contrast, if the voltage is fixed, it is possible to 
predict a current value according to the resistance where 
the proportionality constant is the voltage in this case.  

The above two situations are applicable in case that 
there are several resistors in the circuit. However, both 
situations cannot be applied simultaneously since they are 
based on assumptions hence relative results, and dual 
assumption would corrupt the relativity. Therefore, the 
choice of the right approach must be dependent on the 
circuit design which mostly involves series and/or parallel 
connections. The following sections discuss the different 
possible options and their application. 

2.1. Series Resistors 
Suppose we have resistors connected in series as shown 

in Figure 1. The original approach is to combine them into 
one equivalent resistor thus the current i is obtained 
directly by Ohm’s law hence v1 and v2. Alternatively, the 
voltage division principle can be used where the source 
voltage v is divided among the resistors in direct 
proportion to their resistances [5,6,8].  

 
Figure 1. Series resistors 

In our proposed method, since the current is already 
constant through both resistors, it is possible to apply 
equation (2) as 

 1 1 2 2,V R V R= =  
where V1 and V2 are relative voltages assuming i = 1. 

According to KVL, the total assumed voltage V is  

 1 2 1 2V V V R R= + = +  (3) 
Certainly, this value is relative and is most probably a 
multiple of the given source voltage v. Thus it is possible 
to define a multiplicity factor (m) that is the ratio of the 
relative voltage obtained by (3) to the actual given voltage, 
i.e. 

 Vm
v

=  (4) 

Therefore, the actual voltages across the resistors are 

 1 2
1 2,

V Vv v
m m

= =  (5) 

In practice, the above solution procedure can be done 
very fast where simple calculations are involved. 

The unit prefix of the assumed values must be 
compatible with the given source unit. Typically, the 
assumed voltages are in V while the currents are either in 
A or mA. Basically, if the resistances are given in kΩ, the 
currents are assumed in mA. 

2.2. Parallel Resistors 
Suppose we have resistors connected in parallel as 

shown in Figure 2. Again, the original approach is to 
combine them into one equivalent resistor thus the current 
i is obtained directly by (1). The sub-currents i1 and i2 are 
obtained either by (1) or by current division where the 
total current i is divided among the resistors in direct 
proportion to the other resistance in parallel [6,8,10]. 

 
Figure 2. Parallel resistors 

In our approach, since the voltage is already constant 
across both resistors and the current through each resistor 
is directly proportional to the other resistance, it is 
possible to assume the current values as 

 1 2 2 1,I R I R= =  (6) 
According to KCL, the total assumed current I is  

 1 2 2 1I I I R R= + = +  (7) 
and 

 1 2 1 2 2 1V V V R I R I= = = =  
From (6) and (7), the voltage is then 

 1 2V R R=  (8) 

Obviously, the current and voltage values obtained above 
are all relative and are multiples (or fractions) of the actual 
currents and voltages, respectively. The actual values are 
then achieved by dividing all assumed values by the 
multiplicity factor m defined in equation (4). Therefore,  

 1 2
1 2, , , .

I IV Iv i i i
m m m m

= = = =  (9) 

If the circuit has a current source rather than a voltage 
source, the multiplicity factor m is then defined as the 
ratio of the relative current obtained by (7) to the actual 
current i given in the circuit. That is  

 Im
i

=  

In general, the multiplicity factor can be re-defined as 
the ratio of the assumed value to the actual value and is 
determined based on the source type given in the circuit, 
i.e. 

 Assumed
Actual

m =  (10) 
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3. The Technique Application 

3.1. Series Resistors Example 
Consider that we are required to find v1, v2 and i in the 

circuit shown in Figure 3. 

 
Figure 3. Series resistors example 

From (2), we assume that 
 1 210V, 20VV V= =  

Thus, the total relative voltage is 
 30 VV =  
From (4), the multiplicity factor is 

 30 2
15

m = =  

Therefore, 

 1 2
10 205V, 10V.
2 2

v v= = = =  

Hence 
 0.5A.i =  

3.2. Parallel Resistors Example 
Consider we are required to determine all currents and 

voltages in the circuit shown in Figure 4 [1]. 

 
Figure 4. Parallel resistors example 

From (6), we can assume that 

 1 23A, 6A.I I= =
 

Thus, the total relative current is 
 9AI =  
and the voltages are 

 1 2 3 6 18V.V V= = × =  
Now, the total relative voltage of the circuit is the sum of 
V1 and the 4-Ω resistor’s relative voltage which is 
basically 4I that is 36 V. Therefore, 

 36 18 54V.V = + =  
Thus, the multiplicity factor is 

 54 4.5
12

m = =  

As a result, 

 
1 2

1 2

18 94V, 2A,
4.5 4.5

3 60.67A, 1.33A.
4.5 4.5

v v i

i i

= = = = =

= = = =
 

Obviously, the above solutions are excessively detailed 
and can be shortened into fewer steps if the solver is 
familiar with the technique.  

3.3. Series Resistors with Dependent Source 
Example 

Consider the circuit shown in Figure 5 [1], in which we 
need to find i and vo. 

 
Figure 5. Series resistors with dependent source 

The total actual supplied voltage is  
 12+4 16 V.v = =  

The assumed voltages are V4Ω = 4 V and Vo = ‒6 V 
(according to the given polarity) 

Since, the dependent source has a function of vo which 
is assumed to be Vo, it is added to the relative voltages, 
thus equation (3) becomes 
 4 2 4 6  2( 6) 2Vo oV V V VΩ= + + = + + − = −  (11) 

Note that the resistor voltages are always positive in (11) 
as passive sign convention is always satisfied. However, 
the dependent source voltage is not. 
The multiplicity factor is 

 2 1
16 8

m −
= = −  

Hence 

 2
1 68A, 48V.
1/ 8 1/ 8

i v −
= = − = =
− −

 

3.4. Parallel Resistors with Dependent Source 
Example 

Consider that we want to determine io and vo in the 
parallel circuit shown in Figure 6 [1]. 

 
Figure 6. Parallel resistors with dependent source 

According to (6), the relative (assumed) values are 
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 8=8A, 2A 2 8=16V.o oI I VΩ = ⇒ = ×  

Since, the dependent source is a function of io which is 
assumed to be Io, it is added to the relative currents, thus 
equation (7) becomes 

 8
88 2 12A.

4 4
o

o
I

I I I Ω= + + = + + =  (12) 

Note that if the dependent source was in the opposite 
direction, it would be subtracted in (12). 

However, the multiplicity factor is 

 12 2
6

m = =  

and hence 
 8 164A, 8V.

2 2o oi v= = = =  

In fact, the solution of the above circuits in Figure 5 and 
Figure 6 is much shorter than that obtained by traditional 
approaches. 

3.5. Charging RLC Circuit Example 
Consider the circuit in Figure 7 [1]. We would like to 

find i, vC and iL under dc conditions.  

 
Figure 7. Charging RLC circuit 

Under dc conditions, the circuit becomes as shown in 
Figure 8, which is a simple resistive circuit with series 
connection. 

 
Figure 8. RLC circuit under dc conditions 

We assume 
 1 51V, 5V 1A.V V IΩ Ω= = ⇒ =  

Using equation (3), 
 6V.V =  
Thus,  

 6 1
12 2

m = =  

As a result,  

 1 52A, 10V.
1/ 2 1/ 2L Ci i v= = = = =  

4. AC Circuits 
As known, AC circuits are usually composed of 

impedances that are connected in series, parallel or both. 
These impedances are related to resistors, capacitors and 
inductors. Since Ohm’s and Kirchhoff’s laws work in 
phasor domain with all kinds of passive elements in the 
same way used with DC circuit resistors, it is possible to 
apply our technique on AC circuits as well. To do so, we 
shall now base on Ohm’s law in phasor form which states 
that the phasor voltage across a passive element is directly 
proportional to the phasor current passing through the 
element [5-12]. Mathematically, 
 =V ZI  (13) 

where Z is the element impedance. Again, it is possible to 
state that the phasor voltage is directly proportional to the 
given impedance assuming constant current. Also, the 
phasor current through an element is inversely 
proportional to its impedance assuming constant voltage. 
This would imply that the phasor voltage value can be 
initially assumed as long as it is in direct proportion to Z, 
or the phasor current is assumed such that it is inversely 
proportional to Z. Doing this would allow finding a 
relative circuit values that are eventually normalized to 
reach the actual values. However, the application of the 
above two assumptions is based on the AC circuit design 
as discussed in the next sections.  

4.1. Series Impedances 
Suppose we have AC circuit with passive elements 

connected in series as shown in Figure 9. The traditional 
approach is to combine the impedances into one 
equivalent impedance thus the phasor current I is obtained 
directly by (13) hence V1 and V2. Alternatively, the 
voltage division principle can be used where the source 
voltage V is divided among the elements in direct 
proportion to their impedances [1,7,8,9].  

 
Figure 9. Series impedances 

In our technique, we solve the circuit by assuming the 
element voltage value in direct proportion to its given 
impedance as mentioned above. For simplicity, we can 
assume that the voltage across any element is 
 ′ =V Z  (14) 
where the current is assumed to be 1, and prime is used to 
distinguish from the real voltage value.  

Applying (14) on both elements, we get the relative 
voltages as 
 1 1 2 2,′ ′= =V Z V Z  

According to KVL, the total assumed voltage V′ is 
 1 2 1 2′ ′ ′= + = +V V V Z Z  (15) 
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Clearly, this value is relative and is simply a multiple or 
fraction of the given source voltage V. Thus it is possible 
to define the multiplicity factor in phasor domain as the 
ratio of the relative phasor value (whether voltage or 
current) to the source phasor value given in the circuit. In 
this case, 

 ′VM =
V

 (16) 

Note that the multiplicity factor is now complex, and 
that is why it is represented by capital-bold letter. 

Therefore, the actual phasor voltages across the 
elements are basically 

 .
′ ′

=1 2
1 2

V VV , V
M M

=  (17) 

We believe that the above procedure is simpler than the 
conventional procedure for such circuit. 

4.2. Parallel Impedances 
Suppose we have impedances connected in parallel as 

shown in Figure 10. Again, the conventional approach is 
to combine them into one impedance thus the current I is 
obtained directly by Ohm’s law hence I1 and I2. 
Alternatively, the current division principle can be used 
where the total phasor current I is divided among the 
elements in direct proportion to the other impedance in 
parallel [6,9,12].  

 
Figure 10. Parallel impedances 

In our approach, since the voltage is constant across 
both elements and the current through each one is directly 
proportional to the other impedance, it is possible to 
assume the phasor current values as 
 1 2 2 1 ,′ ′= =I Z I Z  (18) 

According to KCL, the total assumed current I′ is 
 1 2 2 1′ ′ ′= + = +I I I Z Z  (19) 

and the voltage across both elements is  
 1 2 1 2 2 1′ ′ ′ ′ ′= = = =V V V Z I Z I  

Using (18), the parallel voltage is then 
 1 2′ =V Z Z  (20) 

The phasor current and voltage values obtained by (19) 
and (20) are obviously relative and are again multiples or 
fractions of the actual current I and voltage V, 
respectively. The actual values are then achieved by 
dividing all assumed values by the multiplicity factor M 
which is in this case  

 ′IM =
I

 (21) 

Therefore, 

 
′ ′′ ′ 1 2

1 2
I II VI = ,V = ,I = ,I = .

M M M M
 (22) 

5. The Technique Application in AC 
Circuits 

5.1. Series Impedances Example 
Assume we need to find v(t) and i(t) in the circuit 

shown in Figure 11 [1]. 

 
Figure 11. Series impedances example  

 5 90 V, 10S ω= ∠− ° =V  

From (15), the total assumed (relative) AC voltage and 
current are  
 4 2V, 1AS j′ ′= + =V I  

Thus, 

 4 + 2 0.894 116.57
5 -90  

j′
= = ∠ °

∠ °
S

S

V
M =

V
 

Therefore, the actual phasor voltage and current are 

 2 2.236 -26.57 V
0.894 116.57  

j
= = ∠ °

∠ °
V  

 1 1.118 -116.57 A
0.894 116.57  

= = ∠ °
∠ °

I  

Hence, 
 ( ) 2.236sin(10 63.43 )Vv t t= + °  

 ( ) 1.118sin(10 26.57 )Vi t t= − °  

5.2. Parallel Impedances Example 
Consider we are required to determine vo(t) in the 

circuit shown in Figure 12 [1]. 

 
Figure 12. Parallel impedances example 

Since the inductor and capacitor are in parallel, we can 
use (18) to assume that 
  , L C C L′ ′= =I Z I Z  



 American Journal of Electrical and Electronic Engineering 74 

That is 
 25A, 20A.L Cj j′ ′= − =I I  

Therefore, the total assumed current according to (19) 
is 
 5AL C j′ ′ ′= + = −I I I  

and the relative voltage across the inductor and capacitor 
according to (20) is  
 500 V.o L C′ ′ ′= × =V I I   

From the above, the relative voltage across the 60-Ω 
resistor can be obtained using 60I′ which is ‒j300 V. 
Therefore, the total relative voltage for the whole circuit is 
  500 300.j′ = −V   

The multiplicity factor is 

 500 300 29.15 -15.96
20 -15  

j−
= = ∠ °

∠ °
M  

As a result, 

 500 17.15 15.96 V
29.15 -15.96  

= = ∠ °
∠ °

Vο  

In time domain, 
 ( ) 17.15cos(4 15.96 )V.ov t t= + °  

6. Conclusion 
In this paper, we introduce a simple technique to 

analyze linear DC and AC electric circuits. The technique 
is based on assuming element values according to the 
given resistances/impedances such that a relative circuit 
results are attained. The actual performance is achieved by 
normalizing the assumed values using a specific formula. 

It is practically shown that this technique significantly 
facilitates the solution procedure in many cases where it 
either simplifies the calculations or reduces the number of 
equations. However, it is not claimed that such a method 
is proposed to replace the conventional methods, but it is 
highly recommended to be considered for circuit analysis 
where some complex steps can effectively be saved. In 
addition, the technique is advised to be used with the Y-∆ 
transformations and the circuit theorems including 
superposition, source transformation, Thevenin’s and 
Norton’s theorems. Furthermore, we suggest that this 
method is taught in electric circuit courses especially in 
the introductory chapters to give the students more variety 
of circuit solving techniques.  
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