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Abstract—We present a system to automatically generate natural language descriptions from images. This system consists of two
parts. The first part, content planning, smooths the output of computer vision-based detection and recognition algorithms with statistics

mined from large pools of visually descriptive text to determine the best content words to use to describe an image. The second step,
surface realization, chooses words to construct natural language sentences based on the predicted content and general statistics from

natural language. We present multiple approaches for the surface realization step and evaluate each using automatic measures of
similarity to human generated reference descriptions. We also collect forced choice human evaluations between descriptions from the

proposed generation system and descriptions from competing approaches. The proposed system is very effective at producing
relevant sentences for images. It also generates descriptions that are notably more true to the specific image content than previous

work.

Index Terms—Computer vision, image description generation
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1 INTRODUCTION

NATURAL language, whether spoken, written, or typed,
makes up much of human communication. A sig-

nificant amount of this language describes the visual world
either directly around us or in images and video. Connect-
ing visual imagery with visually descriptive language is a
challenge for computer vision that is becoming more
relevant as recognition and detection methods are begin-
ning to work.

There is an enormous amount of visually descriptive text
available—both closely associated with images in captions
and in pure text documents. Studying such language has
the potential to provide 1) training data for understanding
how people describe the world, as well as 2) more general
knowledge about the visual world implicitly encoded in
human language.

This paper explores techniques to benefit from both of
these possible sources of information. We exploit the first
type of textual information as a prior to modulate global
inference over computer vision-based recognition of objects,
appearance characteristics, and background regions. The
second type of language information is exploited to convert
the resulting keyword-based predictions into complete and
human-like natural language descriptions.

In addition to the direct outputs of our system—
automatically generated natural language descriptions for
images—there are also a number of possible related
applications. These include improving accessibility of
images for the visually impaired and creating text-based
indexes of visual data for improving image retrieval
algorithms. In addition, our work is in line with a more
general research direction toward studying visually de-
scriptive text and delving deeper into the connection
between images and language that has the potential to
suggest new directions for research in computer vision. For
instance, a better understanding of what information it is
important to extract from an image in order to choose
appropriate descriptive language may lead to new or more
observer-focused goals for recognition.

It is subtle, but several factors distinguish the challenge
of taking images as input and generating natural language
descriptions from many other tasks in computer vision. As
examples, when forming descriptive language, people go
beyond simply listing which objects are present in an
image—this is true even for very low-resolution images [40]
and for very brief exposure to images [16]. In both of these
settings, and in language in general, people include specific
information describing not only scenes, but specific objects,
their relative locations, and modifiers adding additional
information about objects. Mining the absolutely enormous
amounts of visually descriptive text available in special
library collections and on the web in general makes it
possible to discover what modifiers people use to describe
objects and what prepositional phrases are used to describe
relationships between objects. These can be used to select
and train computer vision algorithms to recognize these
constructs in images. The output of the computer vision
processing can also be “smoothed” using language statistics
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and then combined with language models in a natural
language generation process.

The proposed approach is comprised of two stages. In
the first, content planning, the sometimes noisy output of
computer vision recognition algorithms is smoothed with
statistics collected from visually descriptive natural lan-
guage. Once the content to be used in generation is chosen,
the next stage is surface realization, finding words to describe
the chosen content. Once again text statistics are used to
choose surface realization that is more similar to construc-
tions in commonly used language.

Natural language generation constitutes one of the
fundamental research problems in natural language pro-
cessing (NLP) and is core to a wide range of NLP
applications such as machine translation, summarization,
dialogue systems, and machine-assisted revision. Despite
substantial advancement within the last decade, natural
language generation still remains an open research pro-
blem. Most previous work in NLP on automatically
generating captions or descriptions for images is based on
retrieval and summarization. For instance, Aker and
Gaizauskas [1] rely on GPS metadata to access relevant
text documents and Feng and Lapata [18] assume relevant
documents are provided. The process of generation then
becomes one of combining or summarizing relevant
documents, in some cases driven by keywords estimated
from the image content [18]. From the computer vision
perspective these techniques might be analogous to first
recognizing the scene shown in an image and then retrieving
a sentence based on the scene type. It is very unlikely that a
retrieved sentence would be as descriptive of a particular
image as the generated sentence in Fig. 1.

From the computer vision community, work has con-
sidered matching a whole input image to a database of
images with captions [15], [33]. The caption of the best
matching image can then be used for the input image.

One major potential practical advantage of the approach
presented in this paper is that it can generate descriptions
without requiring related text or similar images with
descriptions. Instead, it builds a caption for an image in a
bottom up fashion, starting from what computer vision
systems recognize in an image and then constructing a
novel caption around those predictions, using text statistics
to smooth these (sometimes) noisy vision predictions.

However, the downside of such an approach is that
descriptions are constructed entirely from scratch. The
alternative approaches mentioned above [15], [33] that
sample directly from human written text may produce
more natural sounding, albeit possibly less directly relevant
or descriptive output.

These and other competing desirable traits (e.g., accuracy
to content, and naturalness of expression) in natural
language description pose challenges for evaluation. In
addition to reviewing the generation approach of Kulkarni
et al. [26] and presenting a new surface realization strategy
using more flexible optimization, this paper presents
extensive novel evaluations of the generated sentences of
this system and evaluations comparing the generated
sentences with those from competing approaches. Evalua-
tions are performed either automatically by measuring
similarity of generated sentences to reference examples
written by humans, or by directly asking humans which of
two sentences is a better description for an image.

Evaluation shows that the proposed system is effective
at producing relevant sentences for images. The proposed
system also generates descriptions that are measurably
more true to the specific image content than previous
work, outperforming past approaches in terms of human
evaluation.

2 RELATED WORK

There are many areas of related work, including: using
word and picture information jointly for labeling images,
learning models of categories, attributes, or spatial
relationships from data, and methods to compose descrip-
tions for images. We briefly review some of the most
relevant work here.

2.1 Integrating Words and Pictures

Early work on connecting words and pictures focused on
associating individual words with image regions [2], [3],
[11] for tasks such as clustering, auto-annotation or
auto-illustration.

Other work has made use of text as a source of noisy
labels for predicting the content of an image. This works
especially well in constrained recognition scenarios—for
recognizing particular classes of objects—such as for
labeling faces in news photographs with associated captions
[4], [5] or characters in television or movie videos with
associated scripts [12], [39]. Other object classes that have
been considered include animal images from the web [7],
[30], [37] where text from the containing webpage can be
utilized for improved image classification.

2.2 Learning Models of Categories or Relationships

Some recent work has attempted to learn models of the
world from language or images. Saenko and Darrell [36]
learn visual sense models for polysemous words
(e.g., “jaguar”) from textual descriptions on Wikipedia.
Yanai and Barnard [44], [45] directly predict the visualness
of concepts (e.g., “pink” is a more visual concept than
“thoughtful”) from web image search results.

A related body of work on image parsing and object
detection, learns the spatial relationships between labeled
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Fig. 1. Our system automatically generates the following descriptive text
for this example image: “This picture shows one person, one grass, one
chair, and one potted plant. The person is near the green grass, and in
the chair. The green grass is by the chair, and near the potted plant.”



parts—either detections or regions. These relationships
were used as contextual models to improve labeling
accuracy, but the spatial relationships themselves were
not considered outputs in their own right [10], [20], [38],
[41]. Estimates of spatial relationships between objects
form an important part of the output of the computer
vision aspect of our approach and are used to drive
sentence generation.

2.3 Attributes

There is a great deal of ongoing research on estimating
attributes for use in computer vision [6], [13], [19], [27], [29],
[43] that maps well to our process of estimating modifiers
for objects in images. We use the low level features from
Farhadi et al. [13] for modifier estimation. Most past
approaches have either constructed the set of attribute
terms in an ad hoc manner or taken them from an
application appropriate ontology [13], [19], [27], [29], but
some approaches have tried to learn the attributes directly
from image-text pairs [6], [43]. We take a related approach,
by training models for attribute terms that commonly co-
occur with our object categories in Flickr descriptions and
for which we can produce reliable attribute classifiers.
Ultimately, our work combines priors for visually descrip-
tive language with estimates of objects given by detectors
and modifiers predicted by attribute classifiers around
these object detections.

2.4 Describing Images

There has been some recent work very close in spirit to our
own with the overall goal of producing relevant descrip-
tions for images. These methods can be divided into two
main types of approaches—methods that make use of
existing text to describe images, and methods that predict
image content and then build descriptions from scratch.

The first type of image description approach utilizes
existing text to describe query images. In some cases the text
is already associated with the image. For example, Feng and
Lapata [18] construct captions for news images from the
enclosing article text using summarization techniques [49].
In other cases, retrieval-based methods are used to gather
relevant text for composition. Aker and Gaizauskas [1] use
GPS metadata to retrieve relevant text documents for a
query image. Farhadi et al. parse images into a meaning
representation “triple” describing 1 object, 1 action, and
1 scene [15]. This predicted triple is used to retrieve whole
descriptive sentences from a collection written to describe
similar images. Other recent methods have also been based
on retrieval, including nonparametric methods for compos-
ing captions by transferring whole existing captions from a
large database of captioned images [33], or by transferring
individual relevant phrases and then constructing a novel
caption [28].

The second class of image description approach builds
descriptive text from scratch rather than retrieving existing
text. Our work falls into this category—detecting multiple
objects, modifiers, and their spatial relationships, and
generating novel sentences to fit these constituent parts, as
opposed to retrieving sentences whole. Other methods that
have taken the generate from scratch method for description
include Yao et al. [47] who look at the problem of generating

text with a comprehensive system built on various
hierarchical knowledge ontologies and using a human in
the loop for hierarchical image parsing (except in specia-
lized circumstances). In contrast, our work automatically
mines knowledge about textual representation, and parses
images fully automatically—without a human operator—
and with a much simpler approach overall. Li et al. [31] take
a similar approach to ours, but focus on introducing
creativity in sentence construction. Finally, Yang et al. [46]
also compose descriptions in a bottom up fashion, detecting
objects and scenes, and then using text statistics to
“hallucinate” verbs for objects. Descriptions are then
composed in an HMM framework.

2.5 Describing Videos

In addition to these generation efforts in images, there has
also been work related to linking humans and their actions
in video [21], [23], [24]. Applications include methods to
construct plots for sports activities [21], or to recognize and
retrieve video depicting activities using associated text
[22], [23]. People use high-level structure—goal directed
partonomic hierarchies—to describe human actions [48].
We do not pursue this angle further here, but note that
describing humans and their activities is an important
aspect of visual description.

3 METHOD OVERVIEW

An overview of our system is presented in Fig. 2. For an
input image:

1. Detectors are used to detect things (e.g., bird, bus,
car, person, etc.) and stuff (e.g., grass, trees, water,
road, etc.). We will refer to these as things and stuff,
or collectively as objects.

2. Each candidate object (either thing or stuff) region is
processed by a set of attribute classifiers.

3. Each pair of candidate regions is processed by
prepositional relationship functions.

4. A CRF is constructed that incorporates the unary
image potentials computed by 1-3, with higher order
text-based potentials computed from large text
corpora.

5. A labeling of the graph is predicted.
6. Sentences are generated.

The rest of the paper first describes the content planning
stage of our description generation process. A conditional
random field (CRF) is used to predict a labeling for an
input image (Section 4), then the image-based potentials
(Section 5.1) and higher order text-based potentials (Sec-
tion 5.2). Next, we describe the surface realization stage of
our generation process. Various methods for surface
realization (forming natural language descriptions) are
covered in Section 6. Finally, we discuss extensive evalua-
tion results in Section 7, and conclude in Section 8.

4 CONTENT PLANNING

We use a conditional random field to predict the best
labeling for an image (e.g., Fig. 3)—i.e., for the content
planning step of our description generation process. Nodes
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of the CRF correspond to several kinds of image content:
1) objects—things or stuff, 2) attributes which modify the
appearance of a object, and 3) prepositions which refer to
spatial relationships between object-object pairs (including
things and stuff).

For a query image, we run a large set of (thing) object
detectors across the image and collect the set of high scoring
detections. We merge detections that are highly overlapping
(greater than 0.3 intersection/union) into groups and create
an object node for each group. In this way we avoid
predicting two different object labels for the same region of
an image which can occur when two different object
detectors fire on the same object. We also run our stuff
detectors across the image and create nodes for stuff
categories with high scoring detections. Note that this
means that the number of nodes in a graph constructed for
an image depends on the number of object and stuff
detections that fired in that image (something we have to
correct for during parameter learning). For each object and
stuff node we classify the appearance using a set of trained
attribute classifiers and create a modifier node. Finally, we
create a preposition node for each pair of object and stuff
detections. This node predicts the probability of a set of
prepositional relationships based on the spatial relationship
between two object regions.

The domain (of possible labels) for each node is node
dependent. For an object (or stuff) node the domain
corresponds to the set of object (or stuff) detectors that

fired at that region in the image. For the attribute nodes the
domain corresponds to a set of appearance attributes that
can modify the visual characteristics of an object (e.g., green
or furry). For the preposition nodes the domain corresponds
to a set of prepositional relations (e.g., on, under, near) that
can occur between two objects.

The energy function for an image labeling (assignment of
each node to one of the values of its domain) is described by

EðL; I; T Þ ¼
X

i2objs
Fi þ

2

N % 1

X

ij2objPairs
Gij; ð1Þ

where N is the number of objects and 2/(N-1) normalizes—
for a variable number of node graphs—the contribution
from object pair terms so that they contribute equally with
the single object terms to the energy function. Here,

Fi ¼ !0"0 ðobji; objDetÞ þ !0"1 ðattri; attrClÞ ð2Þ

þ !1#0 ðattri; obji; textPrÞ; ð3Þ

Gij ¼ !0"2 ðprepij; prepFunsÞ ð4Þ

þ !1#1 ðobji; prepij; objj; textPrÞ: ð5Þ

The three unary potential functions are computed from
image-based models and refer to: the detector scores for
object(s) proposed by our trained object and stuff detectors
( ðobji; objDetsÞ), the attribute classification scores for an
object (or stuff) region as predicted by our trained
attribute classifiers ( ðattri; attrClÞ), and the prepositional
relationship score computed between pairs of detection
regions ( ðprepij; prepFunsÞ). Descriptions of the particu-
lar detectors, classifiers, and functions used are provided
in Section 5.1.

The pairwise ( ðmodi; obji; textPrÞ) and trinary ( ðobji;
prepij; objj; textPrÞ) potential functions model the pairwise
scores between object and attribute node labels, and the
trinary scores for an object-preposition-object triple labeling,
respectively. These higher order potentials could be learned
from a large pool of labeled image data. However, for a
reasonable number of objects and prepositions the amount of
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Fig. 3. CRF for an example image with two object detections and one
stuff detection. Left shows original CRF with trinary potentials. Right
shows CRF reduced to pairwise potentials by introducing z variables
whose domains are all possible triples of the original 3-clique.

Fig. 2. System flow for an example image: (1) Object and stuff detectors find candidate objects, (2) each candidate region is processed by a set of
attribute classifiers, (3) each pair of candidate regions is processed by prepositional relationship functions, (4) a CRF is constructed that incorporates
the unary image potentials computed by 1-3 and higher order text-based potentials computed from large document corpora, (5) a labeling of the
graph is predicted, and (6) sentences are generated.



labeled image data that would be required is daunting.
Instead we learn these relationships from large text collec-
tions. By observing in text how people describe objects,
attributes, and prepositions between objects we can well
model the relationships between node labels. Descriptions of
our text-based potentials are provided in Section 5.2.

4.1 Converting to Pairwise Potentials

Since preposition nodes describe the relationship between a
preposition label and two object labels, they are most
naturally modeled through trinary potential functions:

 ðobji; prepij; objj; textPrÞ: ð6Þ

However, most CRF inference code accepts only unary
and pairwise potentials. Therefore, we convert this trinary
potential into a set of unary and pairwise potentials
through the introduction of an additional z node for each
3-clique of obj-prep-obj nodes (see Fig. 3). Each z node
connecting two object nodes has domain O1xPxO2, where
O1 is the domain of object node1, P is our set of
prepositional relations, and O2 is the domain of object
node2. In this way the trinary potential is converted to a
unary potential on z:

 ðzij; textPrÞ: ð7Þ

Plus 3 pairwise potentials, one for each of object node1,
preposition node, and object node2 that enforce that the
labels selected for each node are the same as the label
selected for Z:

 ðzij; objiÞ ¼
0; if Zijð1Þ ¼ Oi

inf; o:w:;

!
ð8Þ

 ðzij; prepijÞ ¼
0; if Zijð2Þ ¼ Pij;
inf; o:w:;

!
ð9Þ

 ðzij; objjÞ ¼
0; if Zijð3Þ ¼ Oj;
inf; o:w:

!
ð10Þ

4.2 CRF Learning

We take a factored learning approach to estimate the
parameters of our CRF from 100 hand-labeled images. In
our energy function ((1)-(5)), the ! parameters represent the
tradeoff between image and text-based potentials. The "
parameters represent the weighting between image-based
potentials. And, the # parameters represent the weighting
between text-based potentials. In the first stage of learning
we estimate the image parameters " while ignoring the text-
based terms (by setting !1 to 0). To learn image potential
weights we fix "0 to 1 and use grid search to find optimal
values for "1 and "2. Next, we fix the " parameters to their
estimated value and learn the remaining parameters—the
tradeoff between image and text-based potentials (!
parameters) and the weights for the text-based potentials
(# parameters). Here we set !0 and #0 to 1 and use grid
search over values of !1 and #1 to find appropriate values.

It is important to carefully score output labelings fairly
for graphs with variable numbers of nodes (dependent on
the number of object detections for an image). We use a
scoring function that is graph size independent:

objt%f
N
þ
ðmod; objÞt%f

N
þ 2

N % 1

ðobj; prep; objÞt%f
N

;

measuring the score of a predicted labeling as: 1) the
number of true obj labels minus the number of false obj
labels normalized by the number of objects, plus 2) the
number of true mod-obj label pairs minus the number of
false mod-obj pairs, plus 3) the number of true obj-prep-obj
triples minus the number of false obj-prep-obj triples
normalized by the number of nodes and the number of
pairs of objects (N choose 2).

4.3 CRF Inference

To predict the best labeling for an input image graph (both
at test time or during parameter training) we utilize the
sequential tree reweighted message passing (TRW-S) algo-
rithm introduced by Kolmogorov [25], which improves
upon the original TRW algorithm from Wainwright et al.
[42]. These algorithms are inspired by the problem of
maximizing a lower bound on the energy. TRW-S modifies
the TRW algorithm so that the value of the bound is
guaranteed not to decrease. For our image graphs, the CRF
constructed is relatively small (on the order of 10s of nodes).
Thus, the inference process is quite fast, taking on average
less than a second to run per image.

5 POTENTIAL FUNCTIONS

In this section, we present our image-based and descriptive
language-based potential functions. At a high level the
image potentials come from hand designed detection
strategies optimized on external training sets (we use some
off-the-shelf detectors and train others in order to cover
more object categories). In contrast the text potentials are
based on text statistics collected automatically from various
corpora.

5.1 Image-Based Potentials

 ðobji; objDetÞ—Object and Stuff Potential
Object detectors. We use an object detection system

based on Felzenszwalb et al.’s mixtures of multiscale
deformable part models [17] to detect “thing objects.” We
use the provided detectors for the 20 PASCAL 2010 object
categories and train four additional non-PASCAL object
categories for flower, laptop, tiger, and window. For the non-
PASCAL categories, we train new object detectors using
images and bounding box data from Imagenet [9]. The
output score of the detectors are used as potentials.

Stuff detectors. Classifiers are trained to detect regions
corresponding to non-part-based object categories. We train
linear SVMs on the low-level region features of [13] to
recognize: sky, road, building, tree, water, and grass stuff
categories. SVM outputs are mapped to probabilities.
Training images and bounding boxes are taken from
ImageNet and evaluated at test time on a coarsely sampled
grid of overlapping square regions over whole images.
Pixels in any region with a classification probability above a
fixed threshold are treated as detections, and the max
probability for a region is used as the potential value.
 ðattri; attrClÞ—Attribute Potential
Attribute classifiers. We train visual attribute classifiers

that are relevant for our object (and stuff) categories.
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Therefore, we mine our large text corpus of Flickr descrip-
tions (described in Section 5.2) to find attribute terms
commonly used with each object (and stuff) category,
removing obviously nonvisual terms. The resulting list
consists of 21 visual attribute terms describing color (e.g.,
blue, gray), texture (e.g., striped, furry), material (e.g.,
wooden, feathered), general appearance (e.g., rusty, dirty,
shiny), and shape (e.g., rectangular) characteristics. Training
images for the attribute classifiers come from Flickr, Google,
the attribute dataset provided by Farhadi et al. [14], and
ImageNet [9]. An RBF kernel SVM is used to learn a classifier
for each visual attribute term (up to 150 positive peer class
with all other training examples as negatives). The outputs
of the classifiers are used as potential values.
 ðprepij; prepFunsÞ—Preposition Potential
Preposition functions. We design simple prepositional

functions that evaluate the spatial relationships between
pairs of regions in an image and provide a score for each of
16 preposition terms (e.g., above, under, against, beneath,
in, on, etc). For example, the score for aboveða; bÞ is
computed as the percentage of regiona that lies in the
image rectangle above the bounding box around regionb.
The potential for nearða; bÞ is computed as the minimum
distance between regiona and regionb divided by the
diagonal size of a bounding box around regiona. Similar
functions are used for the other preposition terms. We
include synonymous prepositions to encourage variation in
sentence generation but sets of synonymous prepositions
share the same potential. Note for each preposition we
compute both prep(a, b) and prep(b, a) as either labeling
order can be predicted in the output result.

5.2 Text-Based Potentials
We use two potential functions calculated from large text
corpora. The first is a pairwise potential on attribute-object
label pairs  ðattri; obji; textPrÞ and the second is a trinary
potential on object-preposition-object triples  ðobji; prepij;
objj; textPrÞ. These potentials represent the probability of
various attributes for each object and the probabilities of
particular prepositional relationships between object pairs.

Parsing potentials. To generate the attribute-object
potential  pðattri; obji; textPrÞwe collect a large set of Flickr
image descriptions (similar in nature to captions, but less
regulated). For each object (or stuff) category we collect up to
50,000 image descriptions (fewer if less than 50,000 exist) by
querying the Flickr API1 with each object category term. Each
sentence from this descriptions set is parsed by the Stanford
dependency parser [8] to generate the parse tree and
dependency list for the sentence. We then collect statistics
about the occurence of each attribute and object pair using
the adjectival modifier dependency amodðattribute; objectÞ.
Counts for synonyms of object and attribute terms are
merged together.

For generating the object-preposition-object potential
 pðobji; prepij; obji; textPrÞ we again collect a large set of
Flickr image descriptions (about 1.4 million total), in this
case using queries based on pairs of object terms. All
descriptive sentences containing an occurrence of at least
two of our object (or stuff) categories plus a prepositional
term (about 140k) are parsed using the Stanford depen-
dency parser. We then collect statistics for the occurrence of
each prepositional dependency between object categories.

For a prepositional dependency occurrence, object1 is
automatically picked as either the subject or object part of
the prepositional dependency based on the voice (active or
passive) of the sentence, while object2 is selected as the
other. Again, counts for an object and its synonyms are
merged together.

Google potentials. Though we parse thousands of
descriptions, the counts for some objects can still be sparse.
Therefore, we collect additional Google Search-based
potentials:  gðattri; obji; textPrÞ and  gðobji; prepij; objj;
textPrÞ. These potentials are computed as the number of
search results approximated by Google for string match
queries on each of our attribute-object pairs (e.g., “brown
dog”) and preposition-object-preposition triples (e.g., “dog
on grass”).

Smoothed potentials. Our final potentials are computed
as a smoothed combination of our parsing-based potentials
with the Google potentials: ! p þ ð1% !Þ g.

6 SURFACE REALIZATION

The output of our CRF is a predicted labeling of the image.
This forms the content we want to encode in our surface
realization step, generation of the final natural language
descriptions. This labeling encodes three kinds of informa-
tion: objects present in the image (nouns), visual attributes
of those objects (modifiers), and spatial relationships
between objects (prepositions). Therefore, it is natural to
extract this meaning into a triple (or set of triples), e.g.,

&white; cloud>; in;<blue; sky':

Based on this triple, we want to generate a complete
sentence such as “There is a white cloud in the blue sky.” For
simplicity, we make the following restrictions on generation:
First, the set of words in the meaning representation is fixed
and generation must make use of all given content words.
Second, generation may insert only gluing words (i.e.,
function words such as “there,” “is,” “the,” etc.) to complete
the sentences—generation should not introduce new con-
tent. These restrictions could be lifted in future work.

We present three generation techniques for producing a
surface realization. The first is based on decoding using
n-gram language models, Section 6.1. Next, we introduce a
more flexible ILP-based optimization that can handle a
wider range of constraints on generation, Section 6.2.
Finally, we present a template-based approach, Section 6.3.

6.1 Decoding Using Language Models

An N-gram language model is a conditional probability
distribution P ðxijxi%Nþ1; . . . ; xi%1Þ of N-word sequences
ðxi%Nþ1; . . . ; xiÞ such that the prediction of the next
word depends only on the previous N % 1 words. That is,
withN % 1th order Markov assumption, P ðxijx1; . . . ; xi%1Þ ¼
P ðxijxi%Nþ1; . . . ; xi%1Þ. Language models are shown to be
simple but effective for improving machine translation and
automatic grammar corrections.

In this work, we make use of language models to
predict gluing words (i.e., function words) that put together
words in the meaning representation. As a simple
example, suppose we want to determine whether to insert
a function word x between a pair of words ! and " in the
meaning representation. Then, we need to compare the
length-normalized probability p̂ð!x"Þ with p̂ð!"Þ, where p̂
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takes the n0th root of the probability p for n-word
sequences, and pð!x"Þ ¼ pð!Þpðxj!Þpð"jxÞ using bigram
(2-gram) language models. If considering more than two
function words between ! and ", dynamic programming
can be used to find the most optimal sequence of function
words efficiently. Because the ordering of words in each
triple of the meaning representation coincides with the
typical ordering of words in English, we retain the
original ordering for simplicity. Note that this approach
composes a separate sentence for each triple, indepen-
dently from all other triples. To train the language model
n-grams we crawl Wikipedia pages, describing objects our
system can recognize.

6.2 ILP Decoding
In our last surface realization method we allow for some
creativity in the generation process, which produces more
human-like descriptions than our two previous methods
(Sections 6.1 and 6.3). This approach makes use of language
models and appropriate linguistic constraints to generate
sentences for images in an ILP framework. ILP provides a
general computational framework to efficiently solve
challenging optimization problems, while also providing a
nice way to incorporate long range constraints on sentence
content and syntax that would otherwise be difficult to
enforce using other approaches.

We formulate sentence generation as an optimization
problem over the choice of word at each position in a
sentence. The objective function will encode the negative
log likelihood of the sentence under the language model
(smaller is better). The tuples output by the vision system
for an image will form constraints for the optimization—
generated sentences should discuss the detected content of
the image. In addition, looking at generation as an
optimization problem makes it possible to easily add
additional constraints on the structure of the generated
sentences. Finally, in this paper, we formulate the optimiza-
tion as an integer linear program, dictating the form of the
objective function and constraints.

What we hope to gain by using a global optimization
framework like ILP is the ability to add long-range
constraints to the generation process that can make the
resulting sentences more likely to be grammatical and
pleasing. This can be difficult when using a local search
strategy for generating sentences according to a language
model, as enforcing longer range constraints may not be
possible or may be very cumbersome in such settings
(e.g., some dynamic programming and randomized search
approaches). Results will show that a small number of
longer range constraints can be added to the n-gram
language model to produce pleasing and grammatical
descriptive sentences.

We will write the objective function and constraints in
terms of indicator variables for sequences of n words
ending at position i in the generated sentence:

xiw0...wn%1 ¼ 1; if Xi%j ¼ wj for j ¼ 0 . . .n% 1;
0; Otherwise;

!

where Xi is the word in the ith position in the generated
sentence and each wj 2 V is a word in the vocabulary V .

We will then optimize an objective function written in
terms of the indicator variables that expresses how well the
generated sentence agrees with a language model:

minimize
x

X

n¼1...4

X

iw0...wn%1

Cw0...wn%1xiw0...wn%1

subject to fiðx(Þ ) bi; i ¼ 1 . . .nle

gjðx(Þ ¼ ci; j ¼ 1 . . .neq

x( 2 f0; 1g;

where x( is shorthand for all of the indicator variables. The
costs,

Cw0...wn%1 ¼ % logP ðw0jwn%1 . . .w1Þ;

are the negative log probability of word w0 following the
sequence of words wn%1; wn%2; . . . ; w1. Note that the objec-
tive function expresses the negative log of the product of
unigram, bigram, trigram, and 4-gram language models.

Next, we catalog the various constraints. These are written
using fiðx(Þ ) bi and gjðx(Þ ¼ cj in the optimization problem
above, but below are left in simpler forms for brevity.

1. Constraints for variable consistency. Each place
holder should get exactly one word assigned
8i
P

w2V xiw ¼ 1.
Indicator variables should be consistent with

each other:

8i
X

wn%12V
xiw0...wn%1 ¼ Xiw0...wn%2 ;

8i
X

w02V
xiw0...wn%1 ¼ Xði%1Þw1...wn%1 :

2. Constraints for image semantics. Each content word
(word specified in the vision output tuple) should
occur in the final sentence:

8w2Content Words

XL

i¼1

xiw ¼ 1:

Adjectives. Sentences should not contain adjective-
adjective bigrams, so let A be the set of adjective
words:

8m1;22A8i:2)i)Lðxim2m1 ¼ 0Þ:

Adjectives should occur within a short distance
(D set by cross validation) of the object being
modified, so for any adjective object pair m; o:

8i8j:ji%jj>Dðxim þ xjo ) 1Þ:

We avoid Object2-Verb-Adjective2 patterns because
it confuses the association of subject and verb, so for
any Adjective2 Object2 pair, m2; o2:

8i;3)i)L8v2Verbsðxim2vo2 ¼ 0Þ:

Prepositions. Prepositions should not occur to the
right of, following, Object2, so for a pair of objects
o1; o2:

8p2Prep8i8j>iðxio2 þ xjp <¼ 1Þ:

Object1 must not be in between the preposition and
Object2. However, we do allow Object2 between the
preposition and Object1. So, let o1be Object1 and o2

be Object2 and
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8p2Prep8i8j>i8k>jðxip þ xjo1 þ xko2 <¼ 2Þ:

We note that if the same object type appears twice
in a triple, then it is duplicated in the vocabulary.

3. Constraints for linguistic rules. No function word
(vocabulary not in the vision output) should be
repeated more than twice, 8w2 Funtion Words

P
i xiw ) 2.

Verbs. Sentences should contain at least one verb,PL
i¼1

P
w2 Verbs xiw * 1, but the first and last (Lth)

words cannot be verbs, 8w2Verbsðx1w ¼ xLw ¼ 0Þ.

6.3 Templates with Linguistic Constraints
Decoding based on language models is a statistically
principled approach; however, two main limitations are:
1) It is hard to enforce grammatically correct sentences
using language models alone; 2) it is ignorant of discourse
structure (coherency among sentences) as each sentence is
generated independently. We address these limitations by
constructing templates with linguistically motivated con-
straints. This approach is based on the assumption that
there are a handful of salient syntactic patterns in
descriptive language.

For example, a simple template might read: “This is a
photograph of <count> <object(s)>.” or “Here we

see <count> <object(s)>.” To encode spatial (pre-
positional) relationships we use templates such as “The

<nth> <adjective> <object1> is <prep> <nth>

<adjective> <object2>.” In this manner we can
produce sentences like “This is a photograph of one sky.”,
“Here we see one person and one train.” or “The first black
person is by the blue sky.” Additional example results can
be seen in Figs. 4 and 6.

7 EXPERIMENTAL EVALUATION

For evaluation, we use the UIUC PASCAL sentence dataset2

[35], which contains up to five human-generated sentences
that describe 1,000 images. From this set we evaluate results
on 847 images (153 have been used to set CRF parameters
and detection thresholds).

Two forms of quantitative evaluation are performed,
automatic evaluation using standard methods for evaluat-
ing generated sentences (Section 7.1) and human forced
evaluations to directly compare the results between our
method and several previous methods (Section 7.2). In each
case we also quantitatively evaluate and compare to two
previous approaches for image description generation used
on the same dataset [35]. The first comparison method is the
bottom up HMM approach from Yang et al. [46], which
detects objects and scenes, and then hallucinates plausible
verbs for generation (using text statistics). The second
comparison method is a retrieval-based approach from
Farhadi et al. [15]. This method detects objects, scenes, and
actions and then retrieves descriptive sentences from
similar images through the use of a meaning space. Finally,
we also discuss our results qualitatively (Section 7.1).

7.1 Automatic Evaluation

We evaluate our results using two standard methods for
automatic evaluation of machine generated sentences,
BLEU [34] and ROUGE [32] scores. These two measures
are commonly used in the machine translation community
to evaluate the goodness of machine translated results
against ground truth human translations.

The BLEU score measures the modified n-gram precision
of machine generated sentences with respect to human
generated sentences. Because our task can be viewed as
machine translation from images to text, BLEU may seem
like a reasonable choice at first glance. Upon a close look
however, one can see that there is inherently larger
variability in generating sentences from images than
translating a sentence from one language to another. For
instance, from the image shown in Fig. 1, our system
correctly recognizes objects such as “chair,” “green grass,”
and “potted plant,” none of which is mentioned in the
human-generated description available in the UIUC PAS-
CAL sentence dataset. As a result, BLEU will inevitably
penalize many correctly generated sentences, which in turn
can cause a low correlation with human judgment of
quality. In addition, because BLEU measures precision, it
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inherently penalizes the long descriptions produced by our
template-based generation method (even though as will be
seen in Section 7.2 humans judge this method to produce
the best results). Nevertheless, we report BLEU score as a
standard evaluation method and to provide a quantification
of its shortcomings.

BLEU score results are shown in Table 1. In our case, we
measure the BLEU score of generated descriptions against
the set of five human written descriptions provided with
each image [35]. The first column shows BLEU score when
measured with exact match for each word, and the second
column shows BLEU when we give full credit for
synonymous words. To give a sense of upper bound, we
also compute the BLEU score of human-generated sen-
tences; we compute the average over all images of the
BLEU score for one human-generated sentence with respect
to the others for that image. Finally, we also compute BLEU
score for two other related image description methods,
Farhadi et al. [15] and Yang et al. [46]. Notice that the BLEU
score for these methods is much better than for our method,

though human judgment seems to indicate the opposite to
be true (Section 7.2). This is perhaps because our method
tends to produce much longer descriptions than the
previous methods and BLEU inherently penalizes long
descriptions; ours produces on average 24 words for the
template approach, 18 for language model-based genera-
tion, and 16 for ILP, while Farhadi et al. [15] produce, on
average, nine words and Yang et al. [46] produces seven
words on average.

In addition, we also evaluate using ROUGE score.
ROUGE score is quite similar to BLEU, except that it
measures the n-gram recall (rather than precision) of
machine generated sentences with respect to human gener-
ated sentences. The results are shown in Table 2. Here we see
that ROUGE scores for our methods are similar to or slightly
better than those for the previous methods [15], [46]. This
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TABLE 1
Automatic Evaluation: BLEU Score Measured at 1 for
Generated Descriptions versus the Set of Descriptions

Produced by Human Annotators

Fig. 5. Comparison of our three surface realization generation methods.

Fig. 6. Results of description generation using our template-based surface realization method. These are “bad” results as judged by human
annotators.

TABLE 2
Automatic Evaluation: ROUGE Score for

Generated Descriptions versus the Set of Descriptions
Produced by Human Annotators



correlates better with the observations made in our forced
choice human judgment experiments (Section 7.2).

7.2 Forced Choice Evaluation

In addition to the above automatic methods for evaluation,
we also perform human subject-based evaluations. These
evaluations take the form of forced choice experiments to
directly compare results between methods on the Pascal
Sentence Dataset [35]. An example forced choice experiment
can be seen in Fig. 7. In these experiments users are
presented with a set of images (five in our experiments). For
each image, they are shown two descriptions, one from each
of two methods you want to compare—in Fig. 7 we show an
experiment using results from the method of Farhadi et al.
[15] with our method using template-based generation.
Users are instructed to select the description that is most
appropriate for each image, considering the relevance of the

caption with respect to the image content. Care is also taken
to randomize order of method presentation (top versus
bottom) to avoid user bias in selection.

Results of our forced choice experiments are shown in
Table 3. We first evaluate our two language model-based
methods for generation (LM and ILP) against our template
generation method and find that the template model
performs best in human subjective evaluations. Note that
this evaluation compares the results from full generation
systems where many factors can influence an observer’s
perception, including content, grammar, sentence length,
etc. It seems that for both language model and ILP-based
decoding, some lack of fluency in the produced results
really influences human evaluation. So, while these meth-
ods perform reasonably well under automatic measures of
performance, they perform poorly under human judgments.

Next, we evaluate our best human judged generation
method—template generation—against the results from
two other approaches to image description [15], [46].
Because our method sometimes does not produce a
description (when no object is detected), for those descrip-
tions we assume that the competing method always wins
the forced choice test. Results show that both our descrip-
tion method and Yang et al. [46] are preferred in human
judgment experiments over Farhadi et al. [15], preferred 80
and 72.2 percent, respectively. In comparisons between our
method and that of Yang et al. [46], we see a slightly smaller
difference, but are still preferred 61.9 percent of the time
over this approach.

7.3 Qualitative Evaluation
The majority of our generated sentences look quite good.
Some example results are shown in Fig. 4 (for the template-
based generation scheme) that represent some “good”
generation results on PASCAL images. However, in fact
most of our results look quite good. Even “bad” results
almost always look reasonable and are relevant to the image
content (Fig. 6). Only in a small majority of the images are
the generated descriptions completely unrelated to the
image content (Fig. 6, two right-most images). In cases
where the generated sentence is not quite perfect this is
usually due to one of three problems: a failed object
detection that misses an object, a detection that proposes the
wrong object category, or an incorrect attribute prediction.
However, because of our use of powerful vision systems
(state of the art detectors and attribute methodologies) the
results produced are often astonishingly good.

In general, we find that the object detectors are
more reliable than the predicted spatial (prepositional)
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Fig. 7. An example forced choice experiment on Mechanical Turk to
evaluate two image description methods (in this case our CRF and
template-based generation versus the method from Farhadi et al. [15]).
A user is presented with a set of images and two descriptions for each
image. They must select the description that is most appropriate for
the image, considering the relevance of the caption with respect to the
image content. Care is taken to randomize order of method
presentation to avoid user selection bias.

TABLE 3
Pairwise Method Forced Choice Evaluation

For each pair of methods we evaluate human preferences on produced
results. Column Pref1 denotes the percentage of times the left method
was selected, while Column Pref2 denotes the percentage of times the
right method was selected.



relationships, a task that is quite difficult to accomplish with
entirely 2D reasoning about inherently 3D relationships.

We can also compare the outputs of our three generation
methods, language model decoding, ILP decoding, and our
template method. Fig. 5 shows results from each of these
methods. Though the template method is simplest and
produces somewhat robotic sounding sentences, it does
generate consistent sentences by construction. Both the
simple decoding method and ILP-based decoding some-
times produce grammatically incorrect sentences (e.g., “the
cow and by the tree”). Human judgments between the
template and decoding methods reflect this problem.
However, template methods will likely be insufficient to
produce more complex image descriptions beyond the
simple cases we currently consider.

8 CONCLUSIONS AND FUTURE WORK

We have demonstrated a surprisingly effective, fully
automatic, system that generates natural language descrip-
tions for images. The system works well and can produce
results much more specific to the image content than
previous automated methods. Human-forced choice experi-
ments demonstrate the quality of the generated sentences
over previous approaches. One key to the success of our
system was automatically mining and parsing large text
collections to obtain statistical models for visually descrip-
tive language. The other is taking advantage of state-of-the-
art vision systems and combining all of these in a CRF to
produce input for language generation methods.

Future work includes methods to produce more natural
sounding image descriptions, incorporating ideas of
content importance in the description process, and ex-
tending the method to handle more general image content
(beyond the 20 Pascal object categories). We would also
like to expand our approach to include actions and scenes,
as well as applying related techniques to describe the
content of videos.
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