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An Introduction to Expert Systems

Bryan S. Todd

Abstract

This monograph provides an introduction to the theory of expert systems.
The task of medical diagnosis is used as a unifying theme throughout. A
broad perspective is taken, ranging from the role of diagnostic programs
to methods of evaluation. Wkhile much emphasis is placed on probability
theory, other calculi of uncertainty are given due consideration.
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Chapter 1

Synopsis

1.1 Scope of Monograph

What is an expert system? Opinions differ, and definitions vary from func-
tional requirements, which may be undemanding

a program intended to make reasoned judgements or give as-
ststance in a compler arca in which human skills are fallible or
scarce [Lau86]

or exacting

a program designed 1o solve problems at a level comparable to
that of @ human expert in a given domain [Coo89/,

to more operational descriptions, usually in terms of ‘knowledge’ and ‘infer-
ence’:

a compuler system that operates by applying an inference
mechanism fo a body of specialist erpertise represented in the
Jorm of ‘knowledge” [Goo835/.

The scope of this monograph is not restricted to any specific kind of
implementation method, such as that embodied by the last of the three
definitions above. Instead, a broader view is taken. Qther kinds of system
meeting the first defirition are included for comparisan.,

Application to medical diagnosis is used as a recurring theme through-
out. This is one of the most intensive fields of expert system research, and it
provides a unifying context for discussing the merits of different approaches.
The arguments are, however, transferable to other domains, and other ap-
plications are also described and used as examples where relevant,
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1.2 Outline of Monograph

Chapter 2 discusses the possible roles of medical expert systems, and briefly
reviews some early methods for providing decision support. These irclude
one of the most successful: the use of Bayes’ theorem with the assumption
of conditional independence.

Chapter 3 reviews a variety of alternative statistical methods which in
one way or another avoid some of the disadvantages associated with the
simpler use of Bayes’ theorem.

Chapter 4 introduces rule-based methods by illustrating some of the
components of a categorical expert system, by means of a simple example
in Prolog. Two well-known systems, MYCIN and PROSPECT OR, which
reason under uncertainty, are then described.

Chapter 5 explains an alternative knowledge representation: the descrip-
tive paradigm. This is exemplified by two large medical expert systems,
INTERNIST and its suecessor CADUCEUS.

Chapter 6 introduces causal networks as a descriptive knowledge rep-
resentation hased soundly on probability theory. Considerable emphasis is
given to the theory of causal networks, This is because they appear to be
emerging as one of the most important methods for constructing expert
systems which reason under uncertainty.

Chapter 7 counters the claim that inference rules are unsuitahle as a
knowledge representation when uncertainty is involved. A rule-based repre-
sentation is derived, employing a model first introduced in Chapter 3: the
logistic form.

Chapter 8 describes two alternative formalisms for handling uncertainty.
The motivation for seeking new technigques is explained, and the methods
are contrasted with probability theory.

Chapter 9 discusses both how to evaluate a diagnostic expert system,
and how to present the results in a clear and comprehensive way.



Chapter 2

Decision Support Systems

2.1 Purpose and Role

Consider the prablem of medical diagnosis. How might a computer program
assist a doctor to interpret his clinical findings and make a correct diagnosis?
There are two, quite different ways, and it is possible for a computer program
to help to some extent in both.

2.1.1 Checklists

Firstly, from time to time a particular kind of diagnostic challenge is en-
countered, with the following characteristics.

1. All the information necessary to reach the correct diagnosis has been
gathered.

2. It is hard, however, to think of the correct diagnosis.

3. Once suggested, though, the correct diagnosis is easily verified.

A loose analogy can be drawn with solving a crossword clue. For this
kind of problem, a computer program would be useful if it could suggest a
sensible list of possible interpretations. The role of such a program ought to
be uncontroversial because judgement and decision are left entirely to the
clinician. The program can be regarded simply as an ‘intelligeat checklist’
which prevents a possible oversight. However, while such problems are often
thought to be quite common, they are actually extremely rare [Dom78].

2,1.2 Decision Aids

A more controversial role for a computer program is as a direct aid to de-
ciding between a few possible alternatives, others having been ruled out.

3



4 CHAPTER 2. DECISION SUPPORT SYSTEMS

It has been suggested that the results of a computer analysis can be re-
garded just like those of any other test which assist the doctor in making
a decision [Dom84]. Indeed, computer analysis is an entirely nmon-invasive
test carrying no direct risk to the patient, only the indirect risk that it
may mislead the doctor. Moreover, if the program is carefully designed and
implemented, it is inexpensive too!

However, there is a special distinction between analysing clinical findings
by computer and carrying out a blood test or an X-ray; no new diagnostic
evidence is obtained. The computer simply analyses the clinician’s own find-
ings. Furthermore, the facts entered into the computer are an abstraction
of those findings, so some of the information available to the clinidan is in-
evitably lost in the process. {Can you think of a practical way of estimating
how much is lost?)

Despite these constraints, programs can be developed which, in trials,
appear useful. One approach entails trying to formalize a specialist’s own
knowledge and to simulate his reasoning processes; the program may then
assist non-experts (‘dissemination of expertise’}). A recent example of such
a program in a medical domain is the PLEXUS system for advice on the
diagnosis and management of nerve injuries [Jas87]. We will examine others
in more detail later.

If, though, the intention is to assist the specialist himself, then the pro-
gram must incorporate ‘knowledge’ he does not possess, and (if possible)
use it in a more effective way. Surprisingly, quite simple techniques go some
considerable way to attaining this objective, although no systerns yet exist
which have been shown to be of unequivocal use to a medical specialist.

2.2 Early Attempts

Before computers became widely available, efflorts were made to provide di-
agnostic assistance using mechanical devices. Nash designed a wooden frame
down the side of which werc marked some 300 diseases [Nas54]. Wooden
strips, ore for each symptom the patient had, could be hung on the frame.
Each strip was marked across with lines corresponding in position to the
diseases which could explain the symptom. Diseases which could explain
all the patient’s symptoms were then easily read off the frame; they were
against continuons lines running across all the strips. Lipkin and Hardy
describe a similar method for the ideutification of 26 blood disorders, using
punched cards [Lip58]. They tested their system using the case records of
80 patients who had been previously diagnosed. In 73 of these cases, only
one disease explained all the findings, and this was invariably the correct
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diagnosis. In the remaining 7 cases, the system failed because each patient
had multiple disorders, and no single disease could explain everything.

The strength of these systems is their simplicity; it is transparently obvi-
ous to the user how the results are obtained and what they mean. Further-
more, the inherent limitations of mechanical devices are readily overcome
by implementing the methods as computer programs instead. For example,
it would then be easy to look for all pairs of diseases which explain the
findings. A system in current use based on these principles assists in the
diagnosis of rare malformation syndromes {Win84].

Exercise 2.1 Choose some diagnostic Lask with which you are familiar (for
example, working out why a car won't start). Design and implement in your
preferred programming language, a system based on the principle of Nash’s
apparatis {0 heip localize the cause.

2.2.1 Flowcharts

Once computers became readily accessible, a favoured method of encoding
medical reasoning was by means of flowcharts using branch chain logic (so-
called ‘clinical algorithms’}. Flowcharts can be useful because they make
lines of reasoning explicit, so errors and omissions can be more readily iden-
tified than with some more complicated techniques. Quite complex diag-
nostic procedures can he formalized in this way, and explanations can be
assembled during program execution from fragments of prose attached to
arcs in the diagram; see for example a program to interpret biochemical
abnormalities [Ble72]. Other medical applications include the diagnosis of
dysphagia [Edw70], and screening for neurological disease [Vas?3].

Exercise 2,2 Repeat Ezercise 2,1 using a flowchart representation instead.
Which method is easier, and why®

2.3 Observer Variation

The diagnostic value of any computer analysis is ultimately limited by the
reliability of the clinical information entered ahout a given patient, and this
principle applies equally to non-medical applications. How reliable then are
clinical findings? In 1973 Gill and co-workers reported the results of a study
of observer variation amongst clinicians [Gik73]. Three clinicians attended
patient interviews conducted by a fourth. They recorded which questions
were asked, and whether the symptoms were present or not. Surprisingly,
the three observers disagreed in 20% of instances as to whether a particular
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question was actually asked, and in 16% of instances as to whether the
patient’s response was positive or negative!

This high degree of variation was attributed to a lack of standard defi-
nitions of symptoms. When agreed formal definitions were introduced, and
the experiment repeated, disagreement occurred in only about 4% of in-
stances [Gil73]. Further evidence of this wide divergence of opinion regard-
ing the definition of common symptoms is provided by a study of 40 ex-
perienced gastroenterologists and surgeons [Kni85). Clearly, any proposed
development of an expert system to assist diagnosis should be preceded
wherever possible by agreeing standard defiritions of findings. This may
prove to have a grealer eflect on the final performance than any particular
choice of implementation method.

2.4 Statistical Methods

In general, what sources of medical 'knowledge’ are available for construct-
ing an expert system? There are of course journal articles, textbooks and
medical specialists themselves. There is, however, another important source
of information: databases of previously diagnosed cases, particularly when
compiled using agreed formal definitions of symptoms and signs.

2.4.1 The Value of Raw Data

In an interesting siudy [Kni85], four gastroenterologists were asked inde-
pendently to specily which symptoms might discriminate between duodenal
and gastric ulcers. When compared with a database of several hundred ac-
tual cases, only four of the twelve most trnsted symptoms were subsequently
found to be significantly discriminating, one of which discriminated in the
reverse direction to that expected. This demonstrates the potential diagnos-
tic value of databases, and to some extent casts doubt on ‘expert opinion’
as a primary source of knowledge for diagnostic programs.

2.4.2 Probability Theory

In order to draw from previous cases, possibly uncertain inferences regard-
ing a new case, we require a calculus of uncertainty. Although there exist
several such calculi pertinent to expert systems {(two modern alternatives are
described in Chapter 8), probability theory is the most firmly established.
The {ollowing is a briel summary of the basics of discrete probability theory.
A more complete account can he found in almost any standard text (for
example, [Nea89]).
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Definitions and Axioms

Consider an experiment whose set {} of possihle cutcomes is known in ad-
vance. The set @ is known as the sample space of the experiment, and
each element of {2 is known as a sample point. (For simplicity we will as-
sume that € is fiuite.) Thus if the experiment consists of rolling a die, then
1= (1,2,3,4,5,6).

Any subset of ( is referred to as an eveni. {We will denote events by
uppet-case letters.) An event E is said to occur precisely when the outcome
of the experiment lies in E. For example regarding dice, {2, 4,6} is tbe event
‘an even number is thrown’, and {1,2,3} is the event ‘a number less than
four is thrown’. The entire sample space {} denotes the certain eveni, and
the empty set {} denotes the impossible event.

The probability of an event E is a real number denoted p(E}, and every
probability function p satisfies three axioms.

Axiom 1 Probehilities are non-negative.
0 < p(E)

Axiom 2 The probability of the certain event {s one.
p(}) =1

Axiom 3 [f two events (E and F) are matually exclusive (disjoint) then
the probabilily that at leust one of them occurs is the sum of their respective
probabilities.

EN¥ = {} = p(EUF) = p(E) + p(F)

The Complement of an Event

The complement (or negation) of an event E is written E. By definition,
E occurs if and only if E deoes not occur,

Ez2q-E (2.1}

Consequently,
o(E) = 1 - o(E) (2.2)
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Joint Probabilities and Conditional Probabilities

The probability p(E N F) that both event E and event F occur is termed
the jeint probability of E and F. By convention, a comma is used to denote
intersection of events; given any two events E and F,

HE,F) =2 p(ENF) (2.3)

The conditional probability of E given F is denoted p(E | F). When p(F)
is non-zero, p(E | F) is defined to be the ratio of the joint probability to the
probability of F.

- -~ PEF)
When p(F) is zero, p(E | F) is undefined.

Continning with the example of a die, let E be the event ‘an even number
is thrown’ and let F be the event *a number less than four is thrown’. The
probability of any event is given by the sum of the probabilities associated
with its constituent sample points {from Axiom 3). We assume that the
die is unbiased, so the probability associated with each sample point is the
same (1/6). Thus

E = {2,4,6} and p(E} = 1/2
F = {1,2,3} and p(F) = 1/2
EnF = {2} and p(E,F) = 1/6

Therefore, the conditional probability that an even number has been thrown,
given that the number is less than four, is 1/3 (i.e. 1/6 divided by 1/2).

Random Variables

A random variable is a function from {2 to the reals R. We will use Jower-case
Greek letters to denote random variables. In this course we will consider only
the boolean variety (2 — {0,1}) which we will call proposiiional variables.

By convention, the event that a random variable o takes value a, is
denoted by ‘e = a’. Thus, given any propositional variable & : & — {0,1}
and valee g : {0, 1},

a=a = {3:9 ] a(s) = a} (2.5)

Woe will denote sets of propositional variables by the letters A, 8,..., 2.

Given any set .A of propositional variables (A = {a1,03,...,2,}) and cor-
responding sequence ¢ of values (a = [¢1,az,...,a4]), by convention,

A=a = ﬂ (e = a,) {2.6)

1€i<n
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In order to reduce the notational burden, a propositional variable {or set
of propositional variables} will often appear in a formula without reference to
a particular value. In such cases, there is an implicit universal quantification
over all possible values. For example,

plo, B) = p{a)p(8)
is short for
Va,b:{0,1}eapla=ea,f=b)=pla=a)p(f=1)

Furthermore, the event that a propositional variable takes value 1 will often
be abbreviated to the corresponding upper-case letter. Thus

o =1 becomes A
B =1 hecomes B

and so forth. Similarly,

=10 becomes

=

8 =0 bhecomes

ele,

Independence

Two events E and F are said to be independent exactly when the proba-
bility p(E,F) of the joint event is equal to the product of the individual
prebabilities, p(E) and p(F). Clearly, independence is a symmetric relation-
ship. Furthermore, it follows that if E and F are independent then, whenever
p(E | F) is defined, p(E) is equal to p(E } F), Thus knowledge that event
has occurred does not influence the likelibood of E occurring.

Similarly, two propositional variables ¢ and # are said to be (uncondi-
tionally) independent precisely when

pla, B} = p(a)p(0) (2.7)

and conditionally independent given a set of variables C precisely when

pla, B[ C)=pla | C)p(B|C) (2.8)
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Application to Medical Diagnosis

In the context of medical diagnosis, £ is some real or imagined population
(for example, the set of all patients who have been, or ever will be, referred
to the John Radcliffe Hospital). Now suppose é represents somme arbitrary
disease: formally, § = 1 (abbreviated to D)} is the set of all patients who
have disease §. Furthermore, let § (= {o,03,...,04}) be a set of proposi-
tional variables corresponding to possible symptoms, signs or other items of
diagnostic value. Thus, if say o3 is ‘raised temperature’ then o3 = 0 is the
event ‘the patient does notf have a raised temperature’, and o3 = 1 is the
event 'the patient does have a raised temperature’.

Suppose a patient is drawn randomly {rom the same population. The
actual symptom values we record are s (= {s1,32,...,3n]), and we wish
to predict whether he or she has disease §. We are therefore interested
in p(D ]S = 5), the conditional probability that our patient has disease 4.

Unfortunately, in practice any attempt to estimate p(D | § = s) directly
from arandom sample of previously diagnosed patients will almost certainly
fail because it is unlikely that the sample will include any cases with exactly
the findings s. One solution, however, is to make some modelling assump-
tions; Bayes’ theorem allows this.

2.4.3 Bayes' Theorem

Two applications of the definition of conditional probability (Equation 2.4)
leads to
p(S | D}p(D)
D|IS)="r—-——~ 2.9
p(D|5)= B (2.9)

Unless disease & is very rare, it is generally feasible to estimate p(D) di-
rectly as the relative frequency with which é = 1 in a random sample (e.g. a
database of several hundred cases). One solution to the problem of estimat-
ing p(§| D} is to assume that the individual symptoms are conditionally
independent given the presence of disease 8. Thus,

#(S|D)= J] #leilD) (2.10)

1<:<n

Direct estimation of the conditional probability p(a; | D) is usually feasible.

The denominator p(S) of Equation 2.9 is also problematic. The usual
procedure is to assume that all diseases (&;,8;,...,8,) are mutually ex-
clusive (each patient has exactly one such disease §;). It then follows from
Axiom 3 (Page 7) and the definition of conditional probability (Equation 2.4)
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that
p(8)= 3. p(8|D;)p(D;) (2.11)
1gjsm
(The numerator in Equation 2.9 is one of the terms in the sum; the others
are evaluated similarly.)

Exercise 2.3 As an aliernative to Equation 2.11 with its implicit assump-
tion that every patient has ezactly one disease, we could assume instead thai
findings are unconditionally independent as well. Thus we could write

#8)= ][I »le)

1<i<n

Suppose two sympioms (o and oy} are recorded from 1000 patients cach of
whom has one of two possible diseases (6, and §; ).

Cuses

730

20

20

30

20

80

80
20

1060

S
[

9
—-

ML-‘-MCJQQQ.-?:
L= R
b D @ e DD
S -

Calculate p(Dy | 51,52) using Equation 2.9. Obtain the numerator by as-
suming conditional indcpendence and applying Egquation 2.10. Obtain the
denominator by assuming unconditional independence and applying the for-
mula suggesied above. What is the meaning of the result?

An Application of Bayes’ Theorem: The Leeds Program

One of the most successful medical applications of Bayes’ theorem has been
to the diagnosis of acute abdominal pain. De Dombal ard co-workers in
Leeds noted that 95% of patients presenting to hospital with abdominal pain
of recent onset fall into exactly one of seven diagnostic categories [Dom72].

1. Appendicitis
2. Diverticular disease

3. Perforated duodenal ulcer
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4. Non-specific abdominal pain
5. Cholecystitis

6. Small bowe] obstruction

7. Pancreatitis

Using data from 400 patients, conditional probabilities for each possible
clinical finding, given each of the seven diagnoestic categories, were estimated.
Bayes’ theorem was used to classify 304 new cases; the computer diagnosis
was taken to be the disease &; with highest p(D; | §), where S stands for
the registrar’s findings at his first contact with the patient. The computer
achieved a correct diagnosis rate of 91.8% compared to 79.6% for the most
senior cinician who saw the case.

This very high computer accuracy has not been sustained in subsequent
trials, however, and doubts are now being expressed about the true value of
this method [Sut89].

Exercise 2.4 In 43% of cases referred to hospital with acute abdominal
pain, the pain resolves sponlancously and no specific cause is found {‘non-
specific abdominal pain’). Another 2{% of cases turn out to have appendici-
tis. In T{% of cases of appendicitis, the pain is in the right lower quadrant,
whereas in only 29% of cases of non-specific pain is this the site. What is
the relative likelihood of appendicilis as opposed 1o non-specific abdominal
pain if the site is the right lower guadrant? (Published data [Dom80])

Exercise 2.5 Continuing Frercise 2.4, in 57% of cases of appendicitis, the
pain is aggravated by movement, but this is true in only 9% of cases of non-
specific pain. Assuming that the sile of the pain is conditionally independent
of aggravation of the pain by movement, bolh in the presence of acule appen-
dicitis end when the pain has no specific cause, what is the relative likelihood
of appendicitis if we also learn that the pain is not aggravated by movement?



Chapter 3

Data-Based Approaches

3.1 Validity of the Independence Assumption

The most common criticism of the use of Bayes' theorem as described in
Chapter 2is the assumption of conditional independence. In practice, many
symptoms and signs are correlated {for example, pulse rate and (empera-
ture). Several studies (for example [Fry78, Cha89]) have assessed the im-
portance of the independence assumption with respect to medical data; a
small but significant reduction of diagnostic accuracy was generally found.
To see the eflect of ignoring interactions, consider the following hypothet-
ical example (taken from [Nor73a]) of the joint distributions of two symp-
toms (e and a3) given the presence of each of two diseases (€; and §;).

p(8:.521 D) = 05 p(51,5: | D) = 0
p(51,52|D1) = 0 P51,52|D2) = 0.5
P(51,8:1D1) = 0 P(5:,8:1Dg) = 0.5
(51,82 1 D) = 0.5 #(51,5;|D2) = 0

The conditional probabilities of each symptom are the same given each dis-
ease, since

p(S1 | Dy) = p(S1 } Do) = 0.5

and
p{Sz | 1) = p(521 D2} = 0.5

So taken alone, each symptom provides no discriminatory power between the
diseases. Yet, considered in combination, the two symptoms enable perfect
discrimination.

This chapter describes a variety of approaches which make weaker as-
sumptions than does the simpler application of Bayes’ theorem.

13
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3.2 Avoiding the Independence Assumption

3.2.1 Lancaster Model

Lancaster has generalized the definition of independence between variables
to one of independence between sets of variables [Zen75]. This enables the
following alternative to Equation 2.10 {Page 10); Equation 3.1 takes into ac-
count pairwise interactions between symptoms, but assumes that no higher
order interactions occur.

p(SID)=( > poio; D) HP(Jle))—(Ci‘-l) II #(exiD)

1<i<i<n ki j 1<k<n
(3.1)

Notice, however, that the number of parameters to estimate is now
quadratic rather than linear with respect to the number of symptoms. In
most applications, this requires a large amount of training data.

The effect of weakening the independence assumption in this way was
assessed with respect to the diagnosis of acute abdominal pain using 5916
training cases [Ser86]. A small improvement in diagnostic accuracy was
found.

3.2.2 Clustering Methods

The principal interactions that do occur are probably between small clusters
of symptoms which share a common cause. Norussis and Jacquez have sug-
gested identifying these clusters by analyzing correlation cocfficients, and
then regarding each such group of variables as a single, multi-valued vari-
able [Nar75b).

3.2.3 Kernei Method

If sufficient training data were available, the conditional probability p{S |
D) could be estimated directly, aud no independence assumption would be
necessary. One way to compensate for a shortage of training data is to ‘blur’
the cases that are availahle; each case is replaced by a collection of similar
cases. This is the basis of the ‘kernel’ method of smoothing [Ait76]. 1t offers
another alternative to Equation 2.10.

HSID) = 5 30 A1 A (3.2)
1<0<T



3.3. NEAREST-NEIGHBOURS METHOD 15

where

T = Total number of training cases,
Ag

5¢

Smoothing parameter for disease §. (0.5 < A; < 1)

Hamming distance (number of differing values) between
the instantiation of & and the corresponding findings of
the t*® training case.

The success of this method depends on the choice of the smoothing
parameter A, Several optimization methods have been described [Ait76,
Tit8D, Tut’6).

3.3 Nearest-Neighbours Method

Actually, if sufficient training data really were available, then Equation 2.9
(Page 10) would be irrelevant; p(D | § = s) itself could be estimated directly
as the relative frequency with which § = 1 amongst cases which have exactly
the clinjcal findings s. This is defeated in practice, however, because it js
very unusual to find in the training set even a single exact match (identical
symptom values) to a new patient.

A simple relaxation of this is to define a metric on vectors of findings,
and identify (for some pre-set value k, such as k = 10) the k cases in the
training set which are closest to the new patient. The conditional probabil-
ity p(D | &) is then estimated as the relative frequency of disease § amongst
this set of partial matches. The simplest metric to use is the Hamming dis-
tance. However, greater diagnostic accuracy may be achieved if each of the
syrmptoms is assigned a positive weight, and the distance defined as the sum
of the weights of the symptoms whose values differ. Notice that application
of this method entails no assumption of mutual exclusion belween diseases;
multiple disorders can be detected.

It has been proposed to implement this method on a connectionist archi-~
tecture in which the task of storing a very large training set and rettieving
close matches to new cases is distributed over a large number of proces-
sors [Sta86). However, when the nearest-neighbours methed was applied to
the diagnosis of acute abdominal pain {5916 training cases and 1000 test
cases ), results were markedly inferior to those obtained simply from apply-
ing Bayes' theorem with the assumption of conditional iudependence [Ser85].
More encouraging results were obtained in a similar comparative study of
the methods for the diagnosis of liver disorders (1991 training cases and
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437 test cases}, but Bayes’ theorem was still marginally better [Cro72]. In
conclusion, it seems that the nearest-neighbours method is not effective un-
less a very large amount of training data is available, and this is generally
impracticable.

3.4 Logistic Model

For any events I and F, the odds are defined by

—_—

E)

-~ M
odds (E) 2 == (3.3)
PE)
and the conditional odds are defined by
- PE|T) .
odds (E|F) & —= (3.4)
p(E|F}
Notice that the corresponding probabilities are easily recovered.
_ odds (E)
HE) = 1 +odds (E) (3.8)
_ odds (E|F)
MEIFY = e ® B (3.6)

The logistic approach to discrimination assumes a linear form for the
log-odds [And82]. Thus if a is a sequence of real-valued coefficients (¢ =

[a01ala . --70'71])1

Inodds (D| S =s)=ag + z a;5, (3.7)
1<i<n
The coefficients aq, . . ., a,, are chosen to maximize the probability of correct

classification of the training cases. This entails iterative optimization.

Equation 3.7 is consistent with several families of distribution, jncluding
that in which symptoms are either conditionally independent or mutually
exclusive given D and, conversely, given D. It is also comsistent with log-
linear distributions in which the interaction terms are equal. Therefore, the
logistic model is more general than independence Bayes, and this is usually
reflected by higher diagnostic accuracy.
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3.4.1 The Spiegelhalter-Knill-Jones Method

Indeed, whatever the underlying distribution, the conditional log-odds fora
disease can be expressed as the sum of the ‘weights of evidence’ provided by
the findings.
Inodds (D8} = 3 w; (3.8)
0<i<n
The term g stands for the prior weight of evidence before ary of the
findings are considered. It is simply the prior log-odds.

wp = Inodds (D) (3.9)

Fach of the other terms represents the weight of evidence provided by
the corresponding finding.

(i £ 0), v = In (E(a.- i 0'1,0'2,...,0;_1,])]) (3.10)

p(a.' I T1,02;0- 4 U|'~11ﬁ)

Notice that the value of weight w; depends on the values of all symp-
toms &y ...0;. So w; is really a family of 2¢ terms, one for each possible
assignment of symptom values. Therefore the number of parameters to es-
timate from training data is infeasibly large, in general.

One solution is to assume that symptoms are conditionally independent
given D and, conversely, given D. Equation 3.10 then simplifies to Equa-
tion 3.11. Now only two parameters are required for each symplom g;; the
weight of evidence provided by ¢; = 0 and the weight of evidence provided
by o; = 1.

‘ - p(o: 1 D)
(i £0), w; = In (P(f’i | ﬁ)) 3.11)

We refer to these weights (Equation 3.11) as ‘simple weights of evidence’,
because they rely upon a naive assumption of independence. Ifsymptoms are
in fact associated statistically, ther the procedure implied by Equation 3.8
tends to count their evidence twice. To compensate for this, Spiegelhalter
and Knill-Jones [SpiR4] introduce ‘shrinkage coefficients’.

lnodds (D|S) = z awy (3.12)
0<i<n

Thus, a logistic relationship is assumned between p(D | §) and the weights
of evidence w. The coefficients ap, ..., e, are optimized iteratively over the
same training data used to determine w.
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Exercise 3.1 Derive Equations 3.8, 8.9, 3.10 and 3.11 from first principles.
Hence justify the assertion that the logistic form (FEquation 3.7) is consistent
wilh distributions in which symptoms are conditionally independent in the
presence of the diseuse and in the absence of the disease.

The Glasgow Dyspepsia System

This method was first applied to the diagnosis of dyspepsia (abdominal
discomfort) [Spi84]. Ahout 150 symptoms were recorded in 1200 patients
referred to a specialist gastrointestinal clinic with dyspepsia. From this data
simple weights of evidence for each of 7 diagnostic categories were obtained,
and then shrinkage coefficients were derived. Multiplication of a simple
weight of evidence by its shrinkage coefficient gives the actual weight.

For example, tabulated below are some weights of evidence for the diag-
nosis of gallstoncs.

Finding Simple Weight | Actual Weight |

Starting score (wq) —2.97 —3.00 j
History < 12 months No —0.52 —0.44
Yes +0.56 +0.52
Attacks of pain No -1.75 —1.41
Yes +2.18 +1.77
Pain in RUQ No —0.88 —0.53
Yes +1.28 +0.77
Pain radiates to shoulder No ( —0.37 —0.19
Yes +2.53 +1.29

So fer example, il a patient presents {--3.00) with a two-year history
{—0.44) of attacks (+1.77) of pain in the right upper quadrant (+40.77)
radiating to the shoulder (+1.29), then the total score is +0.39. So, the
conditional log-odds are 0.39. Taking antilogs and applying Equation 3.6
{Page 16), we find that the probability that the patient has gallstonesis 0.60.

£l-3%

The strength of this mcthod is that the user can clearly see which find-
ings count for and which count against the final diagnesis, and to what
extent. Furthermore, the method has an attractive simplicity. The entire
table of weights, and a graph or reference table for performing the final
transformation from score to probability, can be printed on a piece of card.
The user can then calculate p(D | §) even without the aid of a computer.

= 0.60
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More recently this method has been applied to the problem of predicting
postoperative respiratory complications in elderly surgical patients [Sey90].

3.5 Recursive Partitioning

Rather than make the independence assumption that is implicit in Equa-
tion 3.11, it may be preferred to retain the generality of Equation 3.10. This
is actually possible because, although the number of parameters to estimate
is exponentially large, in practice the most reasonable estimate of nearly all
of these is zero by default.

This is because in order to estimate w, for some particular symptom val-
ues (81,..., 8}, sufficient training cases are required with precisely the find-
ings 81,...,8-1, and these become rarer as i increases. If no such training
cases are available, or if their number is too small to permit reliable estima-
tion, then there is no alternative but to take w; to be zero both fore; = 0
and for ¢; = 1. It follows that the number of weights that can actually be
estimated cannot exceed the total number of training cases available.

The effect of each finding on the running total of evidence in favour of
diagnosis § can be expressed as a kind of flowchart (see Figure 3.1).

The accuracy of the probabilities depends critically on the order in which
symptoms are considered. The worst decision would be to choose as oy a
symptom which is present in about half the training cases, but which pro-
vides hardly any evidence for or against the diagnosis of disease §. Whatever
the value of #;, only about half the training data would then be available
to guide interpretation of subsequent findings.

When choosing the next symptom to consider, the objective should be
to select one which partitions the training data into two sets of roughly
similar size, but in which the relative frequency of disease § is as different
as possible. A measure advocated by Michie [Mic89] for this purpose is the
expected magnitude of the weight of evidence that the finding will provide.
In general, for symptom o; this is given by

E(wi) = pi x |w}| 4 (1 - pi) x [wl] (3.13)
where p; is the probability that o; = 1 given the values of the preceding
symptoms.

P = p{Si|o1,02,...,0001) (3.14)
and » and w} are the weights of evidence provided by o; =0 and o; = 1,
respectively.

(3.15)

1

-~ -S—!l T1,02,...,04-1 D)
2 2 1In (p(... 2 2
p(Si | e1,02,...,0i-1,D)
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I}

-

P(S, | 1,02 .y Ti—1, D)
In — 3.16
(P(Sx! 0'1,0"2,---,0'.—1,])) [ )

Overfitting is avoided hy considering only symptoms which are significant
according to Fisher's exact test, or x? if numbers are large. If none of
the remaining symptoms are significant then partitioning stops. The entire
recursive procedure is as shown below, where T' is the training set.

if T is ‘partitionworthy’ then

¢ Choose as the next o; the symptom with highest expected
weight of evidence among the significant candidates.

+ Partition T inte Ty (those for which ¢; = 0} and Ty (those for
which o; = 1).

» Apply this same procedure recursively to Ty and 7.

else label T with the log-likelihood ratio of disease & estimated as

L

A traning set T is said to be partitionworthy exactly when

(Number of cases in T for which § = 1)
Number of cases in T for which § = 0

1. There is some symptom which does not appear anywhere on the path
to I from the root, and

2. this symptom is present in at least one member of T and absent in at
least one member of T, and

3. this symptom is a statistically significant discriminant for disease é.
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Figure 3.1: Example of a flowchart showing influence of each finding on the
total evidence in favour of diagnosis §, expressed on a vertical scale.

3.0 p(D|S) =0.95
a/z
o' =
2.0
p(D | 8) = 0.84
1.0 »(D|8)= 0.1
0 \ A
ga =1 p(D|S) =029
-10 a, = 1 )
a4 = 1
2.0 o \
&= 0 p(D}S)=0.06
-3.0 p(D | S) = 0.05
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Notice that in Figure 3.1 each symptom is numbered according to its
distance from the root, but different occurrences of ¢; need not stand for
the same symptom.

Exercise 3.2 Since recursive partitioning aveids meking independence as-
sumnptions, i3 il necessarily ¢ more accurate method than application of
Bayes' theoremn with the assumption of conditional independenice? (Con-
stder the case that findings really are conditionally independent. Consider
also the ezample of ertreme conditional dependence given in Section 3.1
(Page 13).)

3.6 Neural Networks

Although motivated by the desire to model biological neural systems, the
study of computational neural networks has led to more flexible discriminant
functions, capable of computing more accurate conditional probabilities in
the presence of interactions [Lip87]. One kind, a perceptron, is constructed
from an ordered set of logistic functions (called either ‘neurons’ or simply
‘units’), Each variable (‘input’} now consists of either a symptom o; or
the output of another logistic function lower in the order. The final value
computed by the top element (‘output unit’) can be regarded as an estimate
of p(D | §). The lower elements are referred to as ‘hidden units’; their
purposels to detect important, but unspecified features of the finding vector.

Figure 3.2 shows a three-unit perceptron. For simplicity, it has been
assumed that there are only three symptoms: § = {a,02,63)-

A simple, iterative algorithm has hecome available in recent years fot
optimizing the coefficients over training data [Rum86]. It is a gradient de-
scent method entailing the propagation of errors back from the output unit
to thoselower in the order.
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Figure 3.2: Three-unit perceptron computing p(D | ).

D[ S)

Output unit

Hidden units

01 o2 o3 Symptoms
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Chapter 4

Rule-Based Methods

4.1 Types of Knowledge

Although databases of previous cases provide a great deal of useful diagnostic
information, other kinds of medical knowledge exist too. They include

e Heuristic knowledge - recognized associations between diseases and
symptoms. For example,

- Appendicitis nsually causes right lower quadrant abdominal pain.

- Right lower quadrant pain suggests appendicitis.

* Deep knowledge - knowledge about underlying causal and anatomical
mechanisms. For example,

- The appendix usually lies in the right lower quadrant of the ab-
domen.

~ Inflammation of an ahdominal organ usually causes local pain.

¢ Meta-knowledge - knowledge about knowledge., This includes explicit
awareness both of the reliability of particular knowledge, and of the
strategy for using knowledge. For example,

— Probabilities derived from statistical databases are more reltable
than subjective estimates.

- If a diagnosis cannot be reached directly by application of heuris-
tic knowledge, then reason from first principles hy applying deep
knowledge.

24
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Knowledge of this kind can be gathered from textbooks and journals,
and elicited from experts through interview. This knowledge is invaluable
for the construction of expert systems when training data are scarce. Also,
expert systems which use explicit knowledge of their domain to reason, have
the potential to explain and justify their conclusions.

The ability of an expert system to explain its conclusions is often said
to be an important prerequisite if it is to gain acceptance into routine
use [Tea81, Fox83, San85]. (However, in a national trial of the Leeds system
few doctors (under 10%) complained about the program’s numerical output
or its lack of reasoning [Dom84).)

4.2 Categorical Knowledge

Knowledge which consists only of logical relationships between facts, and
which contains no element of doubt, is called categorical. Categorical knowl-
edge can be expressed as ‘IF-THEN’ rules. In their simplest form, they have
the structure

IF Antecedent THEN Conclusion

The antecedent is a conjunction of facts, and the conclusion is sote new fact
which may be inferred. By analogy with the term ‘database’, a collection of
these rules is said to constitute a knowledge base.

4.2.1 Knowledge Base

For example, listed below are some rules to identily animals, written in
the logic programming language Prolog [Clo81]. The first argument of each
term is the rule’s antecedent, and the second argument is the conclusion.
The antecedent is a list of facts which must all be established before the
conclusion can be drawn. Notice that the conclusions (e.g. ‘is.bird") of some
rules appear within the antecedents of others.

rule{ [has_feathers,lays_eggs 1, is_bird ).
rule{ [has_scales,lives_on_land,lays_sggs ], ia_reptila ).
rule{ [has_scales,lives_in_water,lays.eggs], is_fish ).
rule{ [has_fur,drinks_milk 1, is_mammal ).

rule{ [is_viviparous,drinks_milk 1, is_mammal .
rule{ [is_bird,is_flightless,swims ), is_penguin ).
rule{ [is_bird,is_flightless,is_big 1, is_ostrich }.
rule{ [is_mammal,lives_in_water,is_big ], is_whale ).
rule{ [is_fish,is_big 1, is_shatk ).
rule{ [is_reptile,has_no_legsa 1, is_snake ).
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4.2.2 Inference Engine

In order to apply a set of rules to solve a particular problem, we require
an inference engine. Several different inference strategies are possible, and
explicit separation of the declarative knowledge expressed in the rules from
details of the inference algorithm is one of the distinct merits of the rule-
based approach {as opposed to the pracedural approach of say the flowchart).
This makes it much easier to modify the knowledge as the expert system is
being developed.

Suppose the following ohservations have been made about an animal.
{They too are expressed as Prolog assertions.)

is_big.
is_flightless.
has_feathers.
lays_ egys.

Backward Chaining

Suppose now we wish to prove that the animal is an ostrich. After first
checking that this fact is not already established, we choose any rule which
concludes ‘is ostrich’, and try to prove recursively ail the facts in its an-
tecedent. If this is unsuccessful, we choose an alternative rule (there are
none inthis example) and try again.

This inference algorithm is a depth-first hackward-chaining method, and
is often referred to as goal driven. It may he expressed in Prolog as follows.

bak{¢):- G.
bak{t}:- ruleA,G), mapi(bak,i), assert{(G).

Here, ‘map1(P,L)’ means that the single-argument predicate P holds for
each member of the list L. It is defined

mapi(_,[1).
mapi(F,[HIT]):- P =.. [F,H], P, mapi(F,T).

The goal ‘bak(()’ succeeds precisely when the fact G can he established
through hackward chaining. Notice, however, that the goal may not ter-
minate if the knowledge base is cyclic. (Consider the effect of including
‘rule((isostrich],is estrich).’ at the top of the list of rules.)

Identification of the animal entails trying to prove each of the possible
hypotheses (in a medical context: ‘diagnoses’) in turn until one is success-
fuily established, or none remain {(in which case the rules are insufficient to
permit identification). Expressing this in Prolog,
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identity(G) :- animal(G), bak(G).

animal{is_ostrich).
animal{is_penguin).
animal{is_ostrich).
animal(is_whale ).
animal{is_shark ).
animal(is_snake ).

Forward Chaining

Alternatively, we can choose any rule whose antecedent is already estab-
lished, but whose conclusion is not, and add this conclusion to the growing
database of established facts. We repeat this procedure until the fact of
interest is finally proven, or no further rules can be found.

This strategy is forward chaining, and is often referred to as data driven.
It can be expressed in Prolog as follows. (Whether inference proceeds in a
depth-first or breadth-first manner depends on the relative positions of the
rules in the Prolog database.)

fwd(G):- G.
fwd(G):~- rule{A,H), mapi(call,d), not H, assert{H), fwd(G).

The goal ‘fwd{G)’ succeeds precisely when fact G can be estahlished
throngh forward chaining. Given the present form of rule, this inference
strategy is impervious to cycles in the knowledge base. However, if the
knowledge base is acyclic? then ‘fwd(G)’ is logically equivalent to ‘bak(G)’.

The principal difference between forward and backward chaining con-
cerns efficiency. Forward chaining tends to be more efficient when the num-
ber of available diagnoses is large, whereas backward chaining tends to be
more efficient when the number is small.

The inference strategy is pertinent also to interactive programs. We have
assumed that all possible observations about the animal are included in the
Prolog database before inference begins. However, diagnostic expert systems
are usually required to seek whatever further information is necessary in
order to reach a diagnosis, by questioning the user. A simple extension to
the definitions of ‘bak{G)’ and ‘fwd(G)’ will cause the program to ask the
user the truth value of & when all else fails. The order in which questions
are asked depends on the inference strategy employed.

1The facts can be ordered totally so that facts in the antecedent of any given rule are
strictly lower than the conclusion.
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Explanations

One of the advantages of the rule-based representation is the ease with
which diagnostic conclusions can be supported by reasoned explanations.
This is because each rule amounts to a justification for its own conclusion.
A complete trace of the rules used to establish a final diagnosis thus provides
a coherent and complete argument.

This is how our Prolog program can be extended to generate explana-
tions. Firstly, if a fact G is found in the Prolog database, then the explana-
tion for G is simply that it is ‘given’ (by the user).

axp(G,given(G)):- G.

Backward chaining need proceed no further if an explanation for & is known.
If not, then G is explained by the list A of praven facts, each supported by
their own explanation, provided that a suitable rule with antecedent A and
conclusion G can he found.

bak(G,E):~ exp(G,E).
bak(G,since(G,E}):- rule(A,G), map2(bak,A,E),
assert (exp(G,since(G,E)}).

Here, ‘map2(P,L0,L1)’ means that the binary predicate P holds for each
pair of corresponding members of the lists L0 and L1. It is defined

map2(,,[1,[1).
map2(F, [HO{TO], [H11T1]):- P =.. [F,H0,H1], P, map2(F,T0,T1).

The explanation we obtain, when presented in a suitably readable format,
is as follows.
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is.ostrich

BECAUSE is_bird AND is_flightless AND 1s_big

GIVEN GIVEN
BECAUSE has feathers AND lays.eggs

GIVEN GIVEN

Conflict Resclution

Rules car be a good deal more complicated than this. The antecedent can
be an arbitrary boolean expression, the expression can include predicates as
well as propositions, and the conclusion can be generalized to an *action’ to
be taken if the antecedent is satisfied. An action may entail, for example,
assertion or retraction of a fact, assignment of a value to a global variable, or
printing of a message. When an expert system is used in a real-time contrel
application, an action might he, say, to open or close a particular valve.

When forward chaining, if more than one rule’s antecedent is satisfled,
there is said to be conflictin the choice of rule to apply next. The inferences
made, the actions taken, and the advice given by the expert system depend
on the way these choices are made. The protocol for selecting among al-
ternative rules is called a ‘conflict resolution strategy’. Possible strategies
are

1. Priority Ordering - Give rules a fixed priority, and choose the rule
with the highest priority. This is the strategy employed in the animal
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classification example; the order of the rules is simply the order in
which they appear in the Prolog database.

2. Specificity Ordering - Choose a rule whose antecedent is maximally
strong (logically). The rationale for this is that, if an antecedent holds,
the stronget it is, the more pertinent is the corresponding rule to the
present situation.

3. Uility Ordering - Choose the rule which employs cheapest materials,
or which entails the least hazardous remedy.

4. Reency Ordering - Choose the rule which was most (or least) recently
used.

5. Contezt Limiting - Partition rules into disjoint sets. Only one set of
rules is active at any one time.

XCON/R1is a rule-based expert system of this kind [McD82]. It is used
by DECto configure Vax systems. The program checks that the customer’s
order is complete and consistent, and then configures a layout of the com-
puter system. XCON is said to have reduced the error rate on orders from
35% to %, and to have saved $18-20m per year [Goo85, Jac86].

Medical reasoning, however, is almost inevitably associated with some
uncertainty. One area, though, in which categorical decisions can be made
is the planning of therapy. ONCOCIN is a rule-based system sharing sim-
ilar principles with XCON, which assists a clinician to plan cancer treat-
ment [Sho81].

Exercise 4.1 Modify the definitions of ‘bak(G}’ and fwd(G}’ so that in-
stead of the observations having te be asseried info the Prolog database at
the outsel, the ezpert system questions the user. Define “fud(G,E)’ so that
i provides explanations.

Exercise 4.2 Repeat Ezercise 2.1 (Page 5) using a rule-based representa-
tign instead.

Exercise 4.3 How might recursive partitioning (Section 3.5, Page 19) be
used to induce rules automatically?

4.3 MYCIN

Il knowledge is uncertain, the degree of certainty in a rule can be expressed
by some suitable parameter attached to the rule. The first system to in-
corporate an explicit mechanism for handling uncertainty in this way was
MYCIN [Sho76].
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MYCIN assists in the diagnosis and treatment of bacterial infections,
and it has several hundred rules. The antecedent of a rule is a conjunction
of clauses, each of which is a boolean expression. The conclusion of a rule
is a list of new facts which may be inferred, and it is associated with a
numerical certainly factor ranging from —1 to +1.

Here is an example of a MYCIN rule. The number appearing in brackets
in the conclusion is the certainty factor.

RULE 85
1) The site of the culture is blood, and
IF 2) The Gram stain of the orgarism is negative, and
3) The morphology of the organism is rod, and
4) The patient is a compromised host
There is suggestive evidence (0.6) that the identity
THEN S .
of the organism is pseudomonas aeruginosa.

This means that if all the conditions in the antecedent are satisfied,
theu our belief that the infecting organism is pseudomonas aeruvginosa is
significantly increased (by an amount ‘0.6").

4.3.1 Certainty Factors

A rule’s certainty factor is elicited directly from the same expert who formu-
lates the rule. The number is understood as the degree to which belief in the
rule’s conclusion would change if it were learned that the rule’s antecedent
were trme. A certainty factor of +1 indicates that the condlusion would
follow logically, and a certainty factor of —1 irdicates that the conclusion
would be completely refuted.

In the original MYCIN experiment, certainty factors were given a formal
interpretation by relating them to subjective probabilities (Equation 4.1).
Nevertheless, the certainty factors were still elicited directly; they were not
calculated using these equations.

With reference to an arbitrary rule, we adopt the following notation for
evenlis (corresponding to evidence and hypothesis).

E

H = “The conclusion is true.’

‘The antecedent is true.’
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The rule’s certainty factor (CF) is then defined

%ﬂ p(H) < p(H | E)
CF = b
ﬂ@%ﬂﬂﬂ p(H) > p(H | E)

4.3.2 Belief

The current belief ‘bel (a = 1)’ in a fact o is also represented on a scale —1
to +!. {The user can therefore express doubt in his findings.} For example,
the user might assert the following.

bel (*The site of the culture is blood.”) = 10
bel (“The Gram stain of the organism is negative.”) = 1.0
bel (“The morphology of the organism is rod.") = 09
bel (“The patient is a compromised host.’) = 04

Propagation of Belief

The belief in a rule’s antecedent is calculated from those of its component
facts by taking the minimum over conjunctions and the maximum over dis-
junctions. The belief in the antecedent of Rule 85, for example, would thus
be 0.4, The intuitive justification for this procedure is that a chain of nec-
essary conditions is only as strong as its weakest link.

If the belief ‘bel (E}’ in a rule's antecedent is negative, then that rule
causes o change in belief in its conclusion. This is because a rule is meant
to influence belief in its conclusion only if we have some reason to believe
that the antecedent holds.

However, if the belief in a rule’s antecedent is positive then the change
CF’ in belief in the rule’s conclusion is taken to be the product of ‘bel (E)’
and therule’s certainty factor CF. This is because CF is defined to be the
change in belief in the conclusion when the antecedent is known to hold
for certain. If there is doubt, then the change must be attenuated. This is
suminarized by

CF' = (0Ubel{E)) x CF (4.2)

where U denotes the binary infix ‘maximum’ operator.
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Combination of Belief

If more than one rule share the same conclusion, then separate changes
in belief CF{ and CF) are combined to form a resulting total change in
belief CF{ @ CF} using the following commutative and associative rule of
combination.

i
Cgl}f SFéF, CF{CF} < 0
CF, & CF, = 1 - (|CFy| 1 [CF3]) (4.3)
CF,+ CFy(1—-[CF)  CFi,CF}320

where I denotes the binary infix ‘minimum’ operator.

Since the initial belief in the condusion is zero, the resulting belief is
given simply by the total change in helief. So if the conclusion appears
within the antecedent of another rule, belief can be propagated by repeating
the same procedure described above.

The certainty factor formalism has, however, been criticized for its ad
hoc nature [SpiB4). Adams [Ada76] has shown that the definition of the
MYCIN combinator (Equation 4.3) involves implicit assumption of both con-
ditional and unconditional independence. Furthermore, Heckerman [Hec86]
has also poiuted out that the original interpretation of certainty factors
(Equation 4.1) is inconsistent with the combinator.

Exercise 4.4 Show that the MYCIN combinator (_@ .} has identity ele-
ment 0, and two zero elemenis 1 and —1. (Remember that ‘~18 1" is un-
defined. )

Exercise 4.5 Show thal the MYCIN combinator (_® _) is eommutative and
associattve,
Hint — first show that funetion [ defined by

v A —In(1-2z) >0
Sz = {]n(1+$) igo

has the property that
flzdy) = flz) + f(¥)

4.3.3 Inference Strategy

The inference strategy of MYCIN is backward chaining. Rules that bear
on the current goal (determination of the value of a particular variable) are
retrieved and evaluated. Any antecedent fact encountered whose current
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belief is unknown causes a subgoal to be generated, and the process re-
curses. Subgoals, however, are generalizations of the unknown fact: so, for
example, if the fact ‘the identity of the organism is pseudomonas aeruginosa’
is encountered, but its belief value is as yet undetermined, then a subgoal
‘determine the identity of the organism’ is created. If, after application of
this recursive procedure, the total weight of evidence about the current goal
remains small, the user is asked the value of the variable.

The search space is limited by means of ‘meta-rules’. These have the
same form as ordinary rules, but prescribe which rules to evaluate. In other
words, the inference sirategy is itself encoded by rules to some extent.

4.3.4 EMYCIN

MYCIN was found to perform at expert level [Yu79)], but has never found
a role in clinical practice. However, a derivative of MYCIN (with different
rules), PUFF [Aik83a], has been applied successfully to the routine interpre-
tation of lung function tests. An expert system without a knowledge base
is referred to as an expert system shell EMYCIN (standing for Essential
MYCIN) is MYCIN’s shell.

4.4 PROSPECTOR

The expert system PROSPECTOR assists geologists to evaluate exploration
sites for mineral ores [Dud79]. It contains several hundred inference rules.
The antecedent of a rule is a boolean combination of facts, and the con-
clusion of a rule is a single fact. Like MYCIN, the belief in 2n antecedent
is calculated from the beliefs iu the component facts by minimizing over
conjuactions, and maximizing over disjunctions. Unlike MYCIN, however,
beliefs are expressed on a scale 0 to 1, and they are interpreted as probabil-
ities conditioned on the evidence available to the user.

4.4.1 Inference

Regarding a particular rule, if E is the event ‘the antecedent holds’, and
H is the event ‘the conclusion holds’, then the likelthood ratios® A and X are
defined by

E| H)
#E | H) 44

INote these are real numbers, and nol random variables or events.
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v - pKE|H)
A= — .
A5 [ (49)
It follows that
odds (H] E) = A x odds (H) (4.6)
and _
odds (H | E) = A x odds (H) [4.7)

Every rulfe is associated with a pair of values (A, ), and every fact which
is the conclusion of any rule is associated with prior odds ‘odds (H)'. Al
these quantities were estimated subjectively by expert geologists,

Propagation of Probabilities

Equations 4.6 and 4.7 allow us to compute the conditional probability of H
when it is known for certain either that E has occurred or that E has not
occurred, However, in general, it is not known for certain whether E has
occurred, either because E is directly observable but the user is doubtful
about it, or because E is not observable and must be inferred by means
of other uncertain rules. Either way, the probability that E has occurred
is conditioned on the event U representing all the evidence the user has
regarding E. The probability p(E | U) is known, and we would like to
compute p(H | U). It follows that

p(H | U) p(H,E[U) + p(H,E | V)

It

p(H | E,U)p(E | U) + p(H | E,Up(E| V) (4.8)
If now we assume that E subsumes all evidence provided by U about H, as

does E, then
P(H|E,U) = p(H | E) (4.9

and N
pH|{E,U)= p(H |E) (410}

So, substituting and rearranging, Equation 4.8 becomes

p(H|U) = p(H | E) + p(E| V) (p(H | F) - p(H | E)) (4.11)

This means that p{H | U) can be calculated by linear interpolation between
the value it would have if E did not occur and the value it would have if
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E did occur. One way to view this is to imagine the two likelihood ratios A
and A being combined to form a single effective likelihood ratio A” depending
on the amount of evidence for E. This is defined

+ -~ odds (H{U)
= Todds (H)

(4.12)

Notice that
pPH|U)=pH|E) = V=2
pP(H{U)=p(H|E) = AN=2A

Combination of Probabilities

If several (k) rules share the same conclusion, their separate evidence must
be combined. Let E; (1 € i < k) be the event ‘the antecedent of the i*h rule
holds’, and let H be the event ‘the (common} conclusion holds’. If all
the E; are independent both given H and given H, then

odds (H|Ey,...,Ex) = A X ... % A, x odds (H) (4.13)

and
odds (H | Ey,...,Ee) = A, X ... X Ay % odds (H) (4.14)

where A and X, are the respective likelihood ratios for the ith rule. (If the
occurrence of E; is not known for certain, then the corresponding effective
likelihood ratio is used instead.)

Performance

Although the propagation formulae used hy PROSPECTOR make strong
independence assumptions, a close correspondence was found between the
computed probabilities and an expert’s subjective estimates with respect to
three test cases. Furthermore, when put to practical use, PROSPECTOR
was instrumental in the discovery of a deposit of molybdenum near Mount
Tolman (Washington State), and later in the discovery of another in Alberta
Canada (worth $100m).

Exercise 4.8 What is the sample space ) in relation to PROSPECTOR?
To whick (imagined) population do the probabilities relate?

Exercise 4.7 Dertve Fquations 4.6 and {.7.
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Descriptive Methods

A difficulty with the rule-based approach is that in many applications the
validity of inferences is highly context-sensitive. So antecedents tend to be
long, containing many preconditions, and the number of rules required tends
to be large. Also, formnlation of inference rules is a largely subjective and
ad hoc procedure, and furthermore, experts tend to experience difficulty in
articulating their expertise.

An alternative, and often more satisfactory method of representing med-
ical knowledge, is to describe the consequences of diseases, rather than to
say explicitly how to interpret symptoms. This descriptive knowledge of
diseases must then be coupled to some suitable inference engiue which per-
forms the inverse task of finding the disease which most closely matches the
actual findings.

5.1 INTERNIST

One of the largest medical expert systems that employs a descriptive rep-
resentation, is INTERNIST [Mil82, Pop85). It covers about 80% of general
medicine, and it has descriptions of abont 750 disorders. These were com-
piled from the medical literature and from interviews with specialists.

5.1.1 Knowledge Representation

Each disease description consists of a list of the manifestations (symptoms,
signs etc.) that the presence of the disease can explain. Each manifesta-
tion in the list is associated with two numbers: a freguency and an evoking
strength. Respectively, these are estimates of the frequency with which the
disease produces the manifestation, and the frequency with which the dis-
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ease explains the manifestation. They are expressed on a discrete, sub jective
scale from 0 to 5.

Every manifestation is also assigned an imperiance, irrespective of any
disease, which indicates the necessity with which the manifestation must he
explained by the final diagnosis. This is also expressed on a discrete scale,
from 110 5. An importance of 1 means that the manifestation occurs com-
monly is normal persons and is easily disregarded. Whereas, an importance
of 5 means that it is absalutely essential to explain the manifestation. The
importance of a manifestation can thus be thought of as the frequency with
which it can be explained by some identifiable disease.

Some of the 750 ‘diseases’ are actually generalizations of others. For
example, ‘inflammatory hepatocellular disease’ is a generalization of ‘in-
fectious mononucleosis’, hoth being represented in the model. Conversely,
others are more properly termed ‘pathophysiological states’; for example,
‘anaemia’. Links of various types {(e.g. ‘is caused by’, ‘issubtypeof’) exist
between the diseases.

5.1.2 Inference Algorithm

When the clinical findings of a patient are entered into the computer, a
list is compiled of the diseases which can explain any of the manifestations
present. A score is calculated for each disease on the list using a heuristic
scoring system. The score is based on the evoking strengths and importaace
values of the manifestations that are present, and the frequency values of
the manifestations that are ahsent. Bonus points are awarded if there are
links in the database to previously concluded diseases. Precise details of the
scoring system can be found in [Mil82]. More general diseases are retained
on the list in place of the more specific diseases they subsume, provided the
latter are indistinguishable in their ability to explain the observed data.

Next, a set of competitors for the highest scoring disease is identified.
Two diseases are said to be competitors precisely when the positive findings
explained by one disease are a subset of those explained by the other, If
there areno competitors, or if the nearest ones are 90 or more points below,
then INTERNIST concludes that the highest scoring disease is present. Oth-
erwise one of three diagnostic strategies is adopted according to the relative
scores:

1. Closest competitor 46 to 89 points below = Pursuing Mode: ques-
tions are asked about manifestations with high evoking strength for
the leading disease.

2. Mare than 4 competitors within 45 points of leading disease == Rul-
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ing Out Mode: questions are asked about manifestations with high
frequency numbers amongst the competitors.

3. From 1 to 4 competitors within 45 points of leading disease == Dis-
criminating Mode: questions are asked which ‘attempt to maximize
the spread in scores’.

When the presence of a disease is concluded, the manifestations explained
by that disease are removed from further consideration, and the procedure
is repeated. This enables the diagnosis of multiple co-existent disorders.

5.1.3 Performance

When tested on 19 cases that had been published in the medical literature
because of their abstruse nature, INTERNIST was found to have roughly the
same diagnostic accuracy as hospital physicians. The principal weaknesses
identified in INTERNIST’s reasoning were the inabilities to synthesize a
broad overview of the case, to reason temporally, and to reason anatomically.

5.1.4 CADUCEUS

A second version of INTERNIST, called CADUCEUS [Pop85)], has an em-
bellished knowledge base, and employs an improved diagnostic algorithm.
Whereas INTERNIST has only one strategy (identify the common canse of a
get of manifestations), CADUCEUS has several more operations 1o assist in
constructing an explanation. These include identifying one evoked disease
as a subtype or cause of another, and identifying shared subtypes of two
evoked diseases. A search for a coherent explanation is then performed by
repeated execution of these procedures, with the facility for back-tracking
(unlike INTERNIST) when unfavourable evidence is obtained.

5.2 Discussion

INTERNIST and CADUCEUS utilize a semantic network representation in
which links between entities (diseases, manifestations) are of more than one
kind, denoting various types of relationship. Several other systems employ
a similar representation: for example, CASNET [Wei78] and ABEL [Pat82).
Others have found frames useful which altow procedural information to be
combined with declarative: for example, the systems PIP [Pau76] and CEN-
TAUR [Aik83b).
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5.2.1 Patient Specific Models

Commeon to all these approaches is the construction of a patient specific
model. This means that the inference engine constructs an explanation for
the specific set of findings under consideration, which is in some sense the
most likely.

However, a maximum likelihood classification rule can be misleading.
Consider the restricied case that there are precisely three alternative com-
plete explanations that are consistent with the patient’s clinical findings s:

E; = ‘The patient has precisely diseases §; and §2.
E; £ ‘The patient has precisely diseases é; and 3.
E3 = ‘The patient has precisely diseases é; and 5.’

Suppose that the probabilities of these explanations conditioned on the find-
ings are

pE | S=s8) = 03

?E; | S = 5) 0.3

p(Es|S=s) = 04

Then the most likely explanation is E3 that the patient has precisely the
diseases &4 and 8. Yet, disease 8, is more likely to be present (p(Dy { & =
5) = 0.6) than either 6; or 85 (p(Dy | S = 8) = p(Ds | S = 5) = 04).
This potential anomaly becomes much more pronounced as the number of
possible alternative explanations jncreases.

Exercise 5.1 In the design of an expert system employing a descriplive
representation, how might one guard against the anomaly descrided above?



Chapter 6

Causal Networks

6.1 Combining Statistical and Knowledge-Based
Methods

When reasoning under uncertainty, iuappropriate assumption of indepen-
dence can lead to loss of diagnostic accuracy. Yet, general statistical meth-
ods which avoid independence assumptions (e.g. nearest neighbours, recur-
sive partitioning) use training data inefficiently. However, it is often possible
to predict statistical interactions and dependencies, {rom a knowledge of the
underlying causal mechanisms of the given domain. A possible solution is
therefore to assume a {possibly complicated) statistical model based on a
knowledge of causal mechanjsms, and then to estimate the numerical param-
eters of the model objectively, by reference to training data. This combined
statistical and knowledge-based approach is now increasingly advocated for
the design of diagnostic expert systems. Recent discoveries of efficient algo-
rithms for propagating probabilities through graphical structures have made
this approach much more feasible.

6.1.1 A Generalization

When symptoms tend to occur together in the presence of a particular dis-
ease, they are generally produced by some shared mecharism (often termed a
‘pathophysiological state’). For example, gallstones {disease) can sometimes
block the common bile duct causing obstructive jaundice (pathophysiologi-
cal state), which causes the skin to turn yellow and the urine tobecome dark
{symptoms). Analogously, with regard to fault diagnosisin cars for example,
failure of the alternator (‘disease’) causes the battery to run down (‘patho-
physiological state'} which both dims the headlights and makes it difficult
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to start (‘symptoms’). The key to making statistical dependencies explicit,
therefore, is to introduce pathophysiological states into the computer model.

However, some symptoms can cause others: for example, a raised tem-
perature causes sweating. Furthermore, sweating contributes to dehydra-
tion, which is not a symptom but a pathophysiological state! Also, the
clinician using the expert system may know (or wish to hypothesize) that
his patient has a particular pathophysiological state or co-existent disease.
l1deally, therefore, it should be possible for the user to make assertions about
pathophysiological states and diseases as well as symptoms. So the distinc-
tion between these three kinds of entity seems unhelpful.

Let us generalize and consider symptoms, pathophysiological states and
diseases all simply as propositional variables. The diagnostic task given the
values of any subset of these variables is to determine the likely values of
the rest,

6.2 Causal Networks as a Representation

Let A be an indexed set of variables 4 = {a;,@a,...,a,}. (Although, for
simplicity, we assume these are binary variables, most of the techniques and
results described here generalize easily to the multi-valued case). The knowl-
edge representation task amounts to finding some suitable way of describing
the joint probability distribution p(A).

P(-A) =P(01,02,...,0n) (61)

Explicit definition of p(A = a) for every sequence (a) of values would,
however. require tabulating 2" separate probabilities. However, it follows
from the definition of conditional probability (Equation 2.4, Page 8) that
any joint probability can be defined by a chain of conditional probabilities
{Equation 6.2). Furthermore, any such chain defines a valid joint probability;
the tworepresentations are equivalent.

P(A) =plan} x plaz | o1) x plaa | @1, 02) x ... X plas | @1, 02, ..., an-1)
(6.2)
The first few terms in Equation 6.2 are easily specified. Only one value
{p(a1 =1))is required for the first term since p(er; = 0) is equal to 1—p{a; =
1). Similarly, two values are needed for the second term, four values for
the third, and eight values for the fourth. However, the number of values
increases exponentially, the last term requiring 2"~!, so no saving is yet
achieved.
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8.2.1 Simplification

In practice, however, evidence about the state of any given variable a; is
exhausted by only a few anterior variables. They are called the parents
of a;, and their set is denoted by ‘par(e;)’.

Suppose, for example, the parents of ag; are aa, ar and aye. That
is to say, par(ag} = {aa, o7, a6} Therefore knowledge of the values of
just those three variables exhausts the evidence provided by all the vari-
ables ay,. .., axg regarding the value of the variable ag;. This means

plan | &y, a;,..., ax) = plen | a3, ar,ae)

So, the number of probabilities to specify is only eight instead of moze than
a million.

The greatest savings are likely to be achieved if the variables are indexed
so that those which represent direct physical causes of any other lie anterior
to it in the chain. Knowledge of the state of the direct causes of a given
variable thus exhausts the anterior evidence regarding that variable’s own
state. For example, if it is known whether or not a car’s battery is flat, then
the state of the alternator does not affect the probability that the car will
start.

The dependencies between the variables ary,..., o, can be expressed as
a directed acyclic graph (DAG). The nodes are the variables, and the arcs
indicate direct dependence; an arc from o; to «; indicates that a; is one of
the parents of ;. Irrespective of whether the variables really are indexed
50 as to respect trae physical causation (not possible if causation happens
to be cyclic), we will refer to any such graph as a causal graph. Associated
with each node a; in the causal graph is a table specifying the conditional
probability that ; = 1 given all possible states of its parents.

6.2.2 An Example

Let us develop the previous example. Suppose we wish to censtruct an
expert system to help garage mechanics determine the likely faults with cars.
The number of variables in any useful system would run into hundreds, but
for simplicity let us select just five,
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‘Alternator is ok’
‘Battery is charged’
‘Carburettor is ok’
‘Engine starts’

= ‘Lights work’

M2 TR
Il

With respect to any of these five variables, a value of 1 corresponds to
‘true’, and a value of O corresponds to ‘false’.

Next we must decide how to order the variables, Let us do it as follows,
because this accords with our knowledge of causation.

a<y<fCAe

Now we must consider each variable in turn and decide which anterior
variables are its parents. It may be helpful at this stage to refer to any
available training data. If we do, we will probably be surprised to find that
v (“carburettor is ok’) depends on « (‘alternator is ok’} even though there
is no apparent cansal connection. This is because the joint distribution we
are describing is implicitly conditioned on the event ‘the car is taken to the
garage to be mended’. This makes rare, independent faults become almost
mutually exclusive (but much more prevalent than in the unselected popu-
lation of vehicles). We must therefore retain o as a parent of y. Figure 6.1
shows this and other dependencies.

The conditional probability tables (Table 6.1) are derived from training
data. The numbers are fictitious in this case, and serve only as an example.

The joint probabilities are easily recovered from these tables. For exam-

ple,

p(A)p(B | A)p(C| A)p(E| B,C)p(L | B)
0.81 x 0.89 x (1 — 0.95) x (1 — 0.23) x 0.94
0.026

p(+.B,C,E,L)

&

Exercise 8.1 Caleulgte (or write a progrem to compute) the rest of the
Joint probabikity distribution from Table 6.1. Use the explicit joint probability
distribution to calculate p(A | L, E).
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Figure 6.1: Causal graph of car faults.

4%

()

Engine starts?
(e}

Table 6.1: Conditional probability tables for network shown in Figure 6.1,

23

B

plA)

p(B|A)
p(B|A)

p(C|A)
p(C|A)

p(L|B)
p(L1B)

i n hn 1

0.81

0.00
0.89

0.99
0.95

0.10
0.94

0.05
0.12
0.23
0.85

.. Alternators sometimes fail.

.. Battery discharges if alternator fails.
.. Batteries can fail for other reasons.

.. Two separate faults are very uniikely.
.. Carburettors somelimes fail.

.. Lights usually fail if battery is low.
.. Lights can fail for other reasons.

.. Starting less likely if both faulls.

... A low batiery hinders starting.
.. A faulty carburetior hinders siarting,
.. Engines can fail for other reasons.
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6.2.3 Separation

A variety of conditional independencies can be read from a causal graph.
We start with some definitions.

An undirected path between variables o and 3 in a causal graph is said
to be blocked by a set of variables C if one of the following helds.

1. Two arcs on the path meet tail to tail at a variable ¥ in C.
2. Two arcs on the path meet head' to tail at a variable 4 in C.

3. Two arcs on the path meet head to head at a variable v such that
neither + nor any of 4’s descendants® are in C.

Two variables a and § in a causal graph are said to be separated by a
set of variables C if every undirected path hetween « and 3 is blocked by C.
By extension, two disjoint sets of variables 4 and 55 are said to be separated
by C il every member of A is separated by ¢ from every member of B.

The notion of separation is the graphical equivalent of conditional in-
dependence [PeaB6]. If C separates A from B then the variables A and B
are conditionally independent given C. See [NeaB9] Chapter 6 for a formal
treatment of separation.

Exercise 8.2 Regarding the eausal graph shown in Figure 6.1, prove that

p(h e a | By7) =p(Me | B,7) % plal 5,7}

[irat vithout eppeal to ‘separation’, and then again by arguing that {8,~}
separates {A, e} from {a}.

6.2.4 Assumed Models

If a variable has more than a few direct canses, it may be infeasible to
estimate all the entries in its conditional probability table from training
data. If so, then it may be reasonable to assume a statistical model for the
dependence of the variable upon the state of its direct causes.

One such model is the so-called ‘noisy OR gate’. Here it is assumed
that 3 variable o can be true only if at least one of its parents is also true.
Suppose that par(a) = B, and 8 = {3;,...,m}. According to the model,
each sach 8; has some specified probability p; of causing « Lo be true, and
these causation events are statistically independent. This can be expressed

pa|B=by=1- T[] (1-bip) (6.3)

1<ig<m

! Ariow head
?Vaniables reachable via a directed path from 7.
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where b stands for some arbitrary sequence of values, [by,...,by,).

A network in which all the tables are defined in this way is sometimes
referred to as a probabilistic causal graph. A medical expert system using
this representalion has been proposed by Peng and Reggia {Pen87}, althongh
earlier experiments with a similar representation were unrewarding [Lud&3].

An alternative to the ‘noisy OR gate’ is the logistic model (Equation 3.7,
Page 16). Reference to training data will help to decide which model is the
most appropriate for any given application.

6.3 Inference

Although causal graphs are an efficient way of representing a joint dis-
tribution over a set of variables, the inference task is unfortunately NP-
Hard [CooB9]. Nevertheless, efficient algerithms are known for restricted
kinds of causal graphs.

6.3.1 Inference in Causal Trees

If the causal graph is restricted to a tree, then design of an inference algo-
rithm js particularly straightforward. Consider the tree shown in Figure 6.2,
In a medical context, the upper variables would correspond to diseases, and
the lower variables to symptoms. Suppose we observe that symptoms #
and o are present and symptoms 4, v, and 7 are absent. If, furthermore,
we choose to assume tbat disease v is present, how likely is disease 3 to
be present too? The conditional probability we wish to compute can be
expressed as the ratio of two marginal probabilities.

p(Bi C,ﬁrws Pa S!T)
»(C,D,N,P,5,T)

The task of computing conditional probabilities therefore reduces to one
of computing marginal probabilities. A general algorithm for this is easily
derived.

Let A be the set of variables in a causal tree (A = {ay,...,a.}), where
@y is the root. Suppose T is the set of variables in the tree which are in-
stantiated to particular values (T C A}, and we wish to determire the prob-
ability p(Z). Regardless of whether a; is one of the instantiated variables
inZ

?(B|C,D.N.P.5T)= (6.4)

p(Il Al) + p(I: A—l)
P(T | A)p(A1) + p(T | Ar)o(Ar) (6.5)

p(T)
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Figure6.2: An example of a causal tree. (Conditional probabilities are given

OO

|
O

O ©

Let Z; denote the subset of 7 in the tree rooted at oy, forany i (1 <4<
n). Also, for any value u (v € {0, 1})let us define w;(u) to be the conditional
probability associated with the variables I; given that «; takes value u.

wi 2 Au:{0,1}ep(Z; | o; = u) (6.6}
Thus Equation 6.5 may be rewritten

P(Z) = wr(1)p(A1) + wi(0)p(Ar) (6.7)

Notice that p(A,), and hence p{A7), can be found in the conditional
probability table associated with the root node of the causal tree. Further-
more, w; is determined by the following recursive equations.

Yorall ¢ and w, if a; is in Z, and u js not its instantiated value then

wi{u)=0 (6.8)
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Table 6.2: Conditional probability tables for causal tree shown in Figure 6.2.

a p(A) = 0.3 A pLICy = 0.1
pL]C) = 1.0

B p(BIA) = 038 p pM|T) = 00
p(BlA) = 0.1 pM|C) = 07

1 p(CIA) = 0.2 v p(NJE) = 05
P(CIA) = 08 p(N|E) = 0.1

5 pD|B) = 0.5 = p(P|E) = 0.1
p(D|B) = 04 p(PIE) = 0.6

e p(E|B) = 07 g p(S|M) = 08
o(E|B) = 02 p(S[M) = 05

k p(K|B) = 03 r p(T|M) = 03
p(KlB) = 0.9 P(TIM) = 0.7

whereas if u is its instantiated value, or if a; is not in 7, then

wiw) = [T (wp(A; ] i = u) +w;(0p(A; o =w))  (6.9)

o echnfe,)

where ‘chn(c;)’ denotes the children of @; in the tree. Again, notice that
ple; | ;) is given by the conditional probability table associated with
node a;. Provided that these equations are applied starting at the leaves
and working back to the root of the tree, they enable efficient calculation
of p(T).

Proof

Equation 6.8 follows directly from the definition of w (Equation 6.6}. Equa-
tion 6.9 is derived as follows. If a; is in 7 and u is its instantiated value
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then

wilw)= p{Zilai = u)
... Definition of w.

= p(Ii— {eu} i = )
...Since v is the instantiated value of ay,

= P(Ua‘,echn(a.)IJ | a; = u)
... From definition of 7;.

= Ha,Echn(cr.)p(IJ I a, = U)
...Since a; separates each of the I;.

= HGJEChn(a,){p(IJ!Aj | @i = u}+ P(Ij:A_jI a; = u))
... Partitions event.

= [Ta,echn(a,)(PZi | Ajyai = w)p(A; {oi = u)
+p(Z; | Aj, i = w)p(A; | a; = u))

= o, echn(a)(PZ; | A5)P(A; | @i = v) + p(Z; | A)p(A; | & = u))

...Since o; separates IT; from a;.

ITa, echn(ay(willlp(A; | i = u) + w;i(0)p(A; | ai = u))
...Definition of w.

The case where a; is not in T follows similarly.

Exercise 6.3 Calculate the conditional probability specified by Equation 6.4
{Page {7) by applying Equations 6.8 and 6.9 lo the data given in Table 6.2.
(Calculate first the denominator of the right-hand side of Equation 6.4, and
then the numerator.) What is the compulational complezity aof this proce-
dure?

6.3.2 Inference in Sparse Causal Graphs

Overview

Recently, an inference algorithm has been described for causal graphs which
is efficient provided that the graph is sparse (LauB8]. The method entails
clustering together interacting variables in such a way that the dependence
between the sets of variables has a tree structure. This is carried out as a
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single pre-processing step at the time of building the expert system. Only
the tree is then retained for calculating conditional probabilities as and
when required. The algorithm for computing these conditional probabilities
makes special use of the fact that the conditional probability of an eventis
proportional to the joint probability when the conditioning event F is held
constant.

p(E|F) x p(E, F)

A more detailed description of the entire method is now given in reverse
order so as to motivate each preceding step. We start with some definitions.

Definitions

Let A be a set of propositional variables (A = {oy,...,0,)), and let T de-
note a collection of sets of these variables (' = {Cy,...,C;}); for example,
C3 = {az, 07, 05}. If ¥ is a function which maps instantiations of the vari-
ables in €, to the reals, for each i (1 < ¢ < p), such that for some constant &

pA =k T (c) (6.10)

1<i<p

then (T',4) is said to be a potential representation of the joint probability
distribution over A.

For each set C; we define the separator §; and the residual K, as follows
{81 is simply the empty set).

S = Gn(GUuGuU...uly) (6.11)
R = Ci-8, (6.12)

The set T is said to have the running intersection property if forall¢ > 1
there exists a j < ¢ such that &; € C;. The set (; is then called the parent
of C;. If more than one such €, exists then the choice as to which one is the
parent is arbitrary. Thus the relationship between the sets in T las a tree
structure, the root being (.

It follows that if (T',4) is a potential representation of the joint dis-
tribution such that T' has the running intersection property ther marginal
probabilities (for example, p(Ag)) can be computed using the method given
below. The theorems are stated here without proof. For a fuller and more
formal treatment, see [Lau88, Nea89).

Conditioning on Evidence

Firstly, if any of the variablesin A are instantiated to particular values then a
new potential function 9’ is obtained from ¢ by sebstituting theinstantiated
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values. Thus, continuing the earlier example, if o7 is instantiated to the
value 1, and org to the value 0, then C3 shrinks to the singleton set Cj = {a7)}
and ¥’ is defined on C} as follows.

¥'(A7)
¥'{A7)

The ather C; are treated similarly.

It [nllows, because of the constant of proportionality k in Equation 6.10.
that (IY, 1) is itself a potential representation of the joint distribution over
the uninstantiated variables in A, conditioned on the instantiated variables.
Furthermore, I'¥ inherits the running intersection property from I'. Thus, by
first conditioning the potential representation on available evidence before
recovering marginal prebabilities, we obtain conditioral probabilities (for
example, p{As | A», Ag)) instead.

’i’(A%EsA_Q)
‘w(A'Z! A?vK;)

It

Computing Marginal Probabilities
Marginal probabilities are recovered in three stages.

1. The conditional probabilities p(R; | ;) are computed for each i, start-
ing with ¢ = p and working down to ¢ = 1. This entails repeated
application of the following two steps. Firstly, it follows that

where the sum is over all possible instantiations of the variablesin R%,,.

Secondly, let C; be the parent of ,. We now define a new poteatial
function %' according to

#(C:) itJ
wic) = (6-14)
BC)Tr, ¥(C)  i=3

It follows that ({Cy,...,Cp—1}, %) is a potential representation of the
joint distribution over C; U...UC,_y. So by repeating these steps we
can recover all the p(R; | &)

2. From these, the probabilities p(C;) are computed for each i, start-
ing with i = 1 and working up to i = p. Since §; = {}, it follows
that p(Cy) = p(Ry ] &1). The rest are calculated using p(C;) = p(R; |
8:)p(Si). Probabikty p(S:) is determined by summing p(C;) over all
possible instantiations of the variables in €; — §;, where C; is ;s par-
ent.
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3. The marginal probability of any given variable is then determined
from p(C;), for any C, containing that variable, by summing out over
all possible instantiations of the remaining variables in ;.

Exercise 6.4 Prove Equation 6.13.

Obtaining a Potential Representation ¥

We have now seen how to calcnlate conditional probabilities from a potential
represeatation (I, v} with the running intersection property. How can we
obtain a suitable potential function ¥ from a causal graph representation of
the joint distribution aver the variables A?

If T is chosen such that for every variable a; there exists a C; which
contains both a; and all o;'s parents {i.e. &; € C; Apar(a;) C C;) then ¢ can
be obtained by multiplication of the conditional probability tables associated
with the causal graph. This is accomplisbed by assigning every variable a;
to exactly one C; which contains both that variable and its parents. If there
is more than one such C; then the choice is arbitrary.

Tor each C; let I, be the (possibly empty) set of variables assigned to C;.
The potential function 3 is then defined for each C; by

¥(C;) & ] ples ] par(as)) (6.15)

aydy

This forms a valid potential representation of the joint distribution {(with
constant & = 1) because

Il #@)= T ole:|par(en)) (6.16)

1<i<p 18i¢n

Obtaining a Cover I

It remains, therefore, only to find a snitable collection I' of sets of vari-
ables. It must have the running intersection property, and each variable
must appear together with its parents in at least one of these sets.
Lauritzen and Spiegelhalter’s method consists of first forming the moral
graph from the original causal graph by marrying all common parents: that
is to say, inserting an undirected edge between any two parents of a variable
that are not already joined, and then dropping directions of all edges.
Next, the nodes of the moral graph are ordered (assigned rank 1 to n)
by mazimum cardinality search [Tar84), which proceeds as follows. First,
rank 1 is assigned to an arbitrary variable. Then, repeatedly, the variable
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adjacent to the greatest number of previously numbered variables (breaking
ties arbitrarily) is chosen as the next to number.

1t follows that if the moral graph is triangulated® and if T is taken to
be the set of cliques!, ordered by their highest ranked variable, then I' has
the running intersection property. Furthermore, since each variable together
with its direct causes forms a complete set’ in the moral graph, they must
all appear together, as required, in at least one clique. If the moral graph is
not already triangulated, then a simple algorithm {Tar84] fills in with extra
edges nantil the graph is triangulated.

Computational Complexity

The Lauritzen-Spiegelhalter algorithm is applicable Lo any causal graph, yet
compttation of conditional probabilities is known to be NP-Hard [Coo89}.
For which kinds of graph is the algorithm efficient, and which component of
the algorithm becomes infeasible when the method is applied to an unsuit-
able kind of graph?

Pre-processing of the causal graph can always be completed in poly-
nomial time. Algorithms are available for performing maximum cardinal-
ity search, and for triangulating graphs by computing the fill-in, which
are O(rn+e) where n is the number of nodes (variables) and e is the number
of edges in the causal graph [Tar84]. Furthermore, an O(n + €) algorithm is
knowr for enumerating the cliques of a triangulated graph [Gol80]. This is
possible because in the case of triangulated graphs, the number of cliques is
no greater than the number of nodes.

However, initialization of the potential function % and computation of
marginal probabilities are (2™) where m is the number of variables in the
largest clique. This is the critical factor whick determines the feasibility of
the algorithm for any particular causal graph, and the size of the largest
clique is discovered during the pre-processing step.

In one medical application of this method, MUNIN [And87] a system to
assist the interpretation of electromyographic findings, no clique was found
to contain more than four variables.

6.3.3 Monte Carlo Inference Methods

One technique worth considering when others are found to be infeasible, is
Monte Carlo simulation. Pearl [Pea87] has proposed a stochastic simulation

*{i.e. contains no cycle of more than three nodes without a bridging edge)
*A clique is 2 maximal complete set of nodes.
®A complete set of nodes is that which induces a complete sabgraph.
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method in which the known variables are clamped to their respective and the
unknown variables are assigned random values. Then, each of the unknown
variables in turn is assigned a (possibly new) random value with probability
determined by the conditional probability tables. This procedure is repeated
many times, nntil the system reaches a stationary distribution. For any ¢, the
relative frequency with which variable o, takes value 1 during the simulation
thus provides an estimate of the probability p{A;) conditioned on the known
variables.

Underlying this method is the principal that a variable a; depends on
all others only through its parents, its children and their parents, These are
said to constitute the variable’s Markov blanket.

The nature of a variable’s dependence on its Markov blanket is quite
simple. Let R, here denote the set of all variables except ;.

R = A—{ai} (6.17)

The conditional probability associated with a; given the values of all other
variables is
p(aiu Rl)

P(R:)

p(A)
Ll (6.18
£, #A) )

where the sum is over all possible values (0 and 1) of variable a;. Now, the
joint distribution specified by the causal graph is

pA) = [I #lajlpar(a;) (6.19)
1<i<n
Thus, from Equations 6.18 and 6.19,
I[ #lo; I par(ay))

1<5¢n

> II ey Ipar(e;))

o 1<5%n

plei | R;)

ploi | Ri) = (6.20)

However, «; appears only in the term p{o; | par(a;)) and in each term p(a; |
par(a;}) where a; is a child of &; (and equivalently a; € par(a;)). The other
terms therefore factor and cancel.

ploi par(ei))  J[  plaj | par(a;))

a,echn(a,)

Z(p(a-'lpar(a-')) II P(ﬂ:‘lpaffﬂj)))

oy a,echn{c,)

plai | R) = (6.21)



56 CHAPTER 6. CAUSAL NETWORKS

However, the denominator is independent of the actual value of «; since the
sum is over all possihle values. So

plei | Ri) (P(a-lpar(aa)) I1 P(ﬂjlpar(ﬂ;))) (6.22)

ay€chnia,)

where the constant of proportionality does not depend on «;, it depends
only on the values of a;’s Markov blanket. Equation 6.22 thus provides a
more efficient way of calculating the conditioral probability p(e; | R:) than
does Equation 6.21. This is because, provided no variable’s Markov blanket
is toolarge, the term on the right-hand side of the proportionality can be
pre-computed as a reference table.

Although this method seems a powerful technique for small but highly
connected causal graphs that would otherwise not yield to exact methods,
convergence tends to hecome unacceptahly slow as the number of nodes in
the network increases [Coo89).

Exercise 6.5 Without recourse te Equation 6.22, use the definition of sepa-
ration (Section §.2.3, Page 46) to argue that a variable depends on all others
in a cousa{ graph only through its Markov blanket.



Chapter 7

A Probabilistic Rule-Based
System

It has often been argued that the rule-based approach is inappropriate for
reasoning under uncertainty {Hec86, Nea89)]. In this chapter, we first look at
how a rule-based system could be constructed, and then discuss the relative
merits of adopting a rule-based rather than a descriptive approach.

7.1 A Causal Graph Representation

The direction of inference in a rule-based system is usually in the reverse
direction to that of causation. In general, we ohserve symptoms, and we
wish to determine which disease has caused them, rather than the other
way arcund. A causal graph representation would therefore appear to be
the converse to that required for direct inferential knawledge. However,
Equation 6.2 (Page 42) remains valid for any indexing of the variables, not
just those which respect causation. The reason the latter are preferred when
describing a joint probability distribution is that knowledge of the state of
the direct causes of a variable tends to exhaust all other anterior evidence, so
the resulting graph is sparser. If we are prepared to suspend temporarily any
consideration of efficiency, we can use a causal graph to represent inferential
knowledge.

Recall the earlier example (Section 6.2.2, Page 43) of a diagnostic pro-
gram for faults in cars. Let us develop the causal graph again, but this time
representing inferential rather than descriptive knowledge.

57
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7.1.1 Car Faults Revisited

Given the task of developing an expert system to assist garage mechanics
localize faults in cars, we have decided upon the following (trivial} list of
binary variables.

= ‘Alternator is ok’
‘Battery is charged’
‘Carburettor is ok’
‘Engine starts’
‘Lights work’

>0 2R
Il

A value of 1 corresponds to ‘true’, and a value of 0 corresponds to ‘false’,
as before, This time, however, let us order the variables according to the
sequence in which we infer their values. Lowest are those variahles whose
values are directly observable (¢ and A). Higher variables are inferred from
lower ones,

A<e<Becy<a

Next we construct the causal graph. We consider each variahle in turn,
and decide on which anterior variables in the new order it depends. We can
discover this by inspection of the original causal graph (Figure 6.1, Page 45).
If A isthe set of variables anterior to a particular variable ¢ in the new order,
then we wish to restrict A to the smallest subset A’ which separates {¢}
and A— A’ in the original causal graph.

1. Variable A has no anterior variables. It is the root of the new graph.

2. Variable ¢ depends on A because failure of the lights is evidence that
the battery is flat, and therefore makes it less likely that the engine
will start.

3. Variable 8 depends on both A and ¢ since if it found that the lights
work normally, or that the engine starts, then this is evidence that the
battery is charged. Both A and £ must be retained as parents of § in
the new graph because neither separates the other from 2 in the old
graph.

4. Variable 4, however, depends on A only through 8, since {3} sepa-
tates ¥ from A in the old graph. Only ¢ and § need to be retained as
pareuts of v in the new graph.
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5. Variable a depends on the other variables only through £ and 7,
since {8, 7} separates {a} from {A, €} iu the descriptive graph. There-
fore, only 3 and 4 need to be retained as parents of a in the new graph.

So some economy of representation can still be achieved. Figure 7.1 shows
the new ‘causal’ graph.

Figure 7.1: Causal graph of car faults.

Alternator ok?

(a)

Battery charged?
(8)

Carburettor ok?

(1)

Lights work?
(A

Engine starts?

{e)

Far this example, let us derive the new conditional probability tables
{Table 7.1, Page 60) from the previous ones (Table 6.1, Page 45) wsing, say,
the Lauritzen-Spiegelhalter methaod, so that both the old and the new causal
graphs specify the same joint prabability distribution. In practice, though,
we would derive the probabilities directly from training data.
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Table7.1: Conditional probability tables for network shown in Figure 7.1.

A (L) = 0.706 ...Lights usually work normally.
e pE|L) 0.221 ... If lights fail then usually no slarting.
#HE|L) = Q.791 ...If lights work then probably starts ok.

J p(B|L,E) = 0.034 ...No start/lights = battery probably low.
#B|L,E) = 0.544 ...Engine staris ok suggests battery ok.
o(B|L,E) = 0.833 ...If lights work then baltery probably ok.
B |L,E} = 0994 ...Start/lights ok = battery probably ok.

¥ C|B,E) = 0975 ...Two separate foults are unlikely.
§C{B,E) = 0990 ...Starts ok = carburettor probably ok.
2CiB,E) = 0787 ...Carburetior fault can ezplain no start.
p(C|B,E) = 0.986 ...Starts ok = carburettor probably ok.

a HA|B,C) = 0701 ...Two separcte faults are unlikely.

(A |B,CY = 0.310 ...Flat batiery suggests alternator fault.
p(AIB,C} = 1000 ...If battery charged then alternator ok.
A |B,C) = 1000 ...If battery charged then allernator ok.
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The same joint probabilities as before are easily recovered from these
tables, allowing for the fact that we are working to three decimal places
only. For example,

#A | B,C)p(B | L,E)p(C| B,E)p(E| L)p(L)
1.000 x 0.833 x (1 — 0.787) x (1 — 0.791) x 0.706
0.026

A, B,CE,L)

i

&

7.2 Assuming a Logistic Model

Actually, it was possible to invert the original causal graph as shown above
only because of its small size. In general, we would find that a variable has
s0 many new parents that it is infeasible to specify by explicit enumeration
all the conditional probabilities in its table. That, after all, is the reason for
trying to order the variables in a manner consistent with causation. We are
deliberately doing the opposite here.

A simple solution, however, is to specify each variable’s conditional prob-
ability table implicitly, by assuming a statistical model. A reasonable model
to choose is the logistic one, since the parents of a variable now represent
evidence rather than causative factors. (The ‘noisy OR gate’ model might
have been a better choice had the latter been the case instead.)

Let us see how we can specify the conditional probability tables in the
above example (Table 7.1). The first two variables present no difficulty
because neither has more than one parent.

Inodds (L) 0.874 (7.1)
Inodds (E|X) = —1.26+2.59A (7.2)

It

Notice that in Equation 7.2 we allow random variables to appear on the
right-hand side. This is a shorthand for the more cumbersome

Yu:{0,1}elnodds (E| X = u) = —1.26 + 2.594

The next variable 5 has two parents (A and ¢). However, we are rather
fortunate: 3 does indeed depend logistically on A and e. This is because
A and ¢ are conditionally independent given S; inspection of the original
graph (Figure 6.1) confirms that {8} separates X and ¢. Calculating the
appropriate weights we obtain

lnodds (B | A,e) = —3.342 + 4.949 X + 3.517¢ (7.3)
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Thus only three parameters instead of four are required to specify the joiut
probability table. In general, only = + 1 parameters rather than 2" are
required, where n is the number of parents.

7.2.1 Allowing Expressions

‘We are less fortunate with the next variable 4. It has two parents, £ and g,
and {7} fails to separate them in the original graph, so they are not condi-
tionally independent. A logistic relationship might still have held ueverthe-
less, but not in this particular case.

However, a logistic form of dependence can always be obtained if we
replace the variables in the logistie equation with arbitrary boolean expres-
sions. Thus,

Inodds {C|e,8) =
3.683(—~e A -8) + 4.635(e A ~F) + 1.309(~c A7) + 4.252(c A 0)
(7.4)
where, for any values u, v (u,» € {0,1}),

v 1-n

I1»

uhy Xy

A logistic relationship now holds because all of the terms are mutually
exclusive. However, we have as many terms as there are entries in ¥’s con-
ditional probability table. Nevertheless, we can approximate the required
function by combining terms with similar weights., For example, combining
the second and fourth terms (and averaging the weights) we obtain

lnodds (C | &,8) = 3.683(~¢ A =3} + 1.309(~¢ A B} + 4.443c (7.5

In practice, we would use our knowledge of the domain to decide upon
a set of terms that were mutually independent or exclusive, and then derive
the relevant weights directly from training data. Although this involves an
element of approximation and assumption, so too does the construction of
a descriptive causal graph.

7.2.2 Transforming the Weights

The last variable o poses a special problem. How are we to handle logical
constraints? Although o depends logistically ou its new parents, 4 and 7,
because it separates them in the original graph, p(A | B) = 1. This means
variable 3 would require an infinitely large weight in the logistic equation!
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A simple solution is to transform the weights to the interval [—1, +1].
This is easily achieved [Haj85] by applying a suitable transformation such

as F.
e’ —1

e+ 1

We will refer to these transformed weights as certainty factors, They

comhine not by simple addition, but by a new operator ‘@’. (Let a and b
denote arbitrary certainty factors.)

F = Ar:Re

(7.6)

a@b 2 F(F N e)+F'(b) (7.7)

Since F is bijective, the operator @ inherits the properties of commuta-
tivity and associativity from simple addition, in terms of which it is defined.
The operator also has 0 as its identity element. Furthermore, substituting
for F in the definition above we obtain the following more familiar rule of
combination [Hajg5].

a@b=(a+b)/(ab+1) (7.8)

Logical constraints are now represented by the certainty factors +1
and —1. These are both zero elements of the operator ®: in the presence
of complete certainty, further evidence makes no difference. (Note that, as
one would expect, +1 cannot be comhined with —1 because that denotes
contradiction.)

e -1 = +1@ae=+1 (7.9)
a4l = ~1@a=-1 (7.10)
1n general, let us denote the conditional cerfainty in an event E given F

by ‘cert {E | F)’. This is defined as the transformed log-odds. Thus, for any
pair of events E and F,

1l

cert (E | F) = F(lnodds (E | F)) (7.11)

1t follows that

It

»(E|F)-pE]|F)
2p(E | F) - 1 (7.12)

cert (E | F)

[

5o conditional probabilities are easily recovered from conditional certainties.
Let us now transform Equations 7.1, 7.2, 7.3 and 7.4, before going on to deal
with a. From Equation 7.1,

F(lnodds (L)) = F(0.874) (7.13)
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Thus,
cert (L) = 0.411 (7.14)

From Equation 7.2
F(lnodds (E | A)) = F(-1.26 + 2.59 A) {7.15)

Thus, from the definition of &, and since 0 is a fixed point of transforma-
tion F,

cert (E] A) F(-1.26+ 2.593)
— F(-1.26) @ F(2.59%)
= F(-1.26) @ A F(2.59)

= —0.557 & 0.860 A (7.16)
Similaly, from Equations 7.3 and 7.4

cert (B | A, £}
cert (C| &, 3)

-0.932 @ 0.986 % @ 0.942¢ (7.17)
0.951(~c A ~3) @ 0.981(e A —8) @ 0.575(-¢ A )
@ 0.972(c (748)

Lastly, the equation for variable o is

cert (A|B,7y)= 04028 3 & —-0.678y (7.19)

7.2.3 Decompaosition into Rules

If we so desire, we can rewrite Equations 7.14, 7.16, 7.17, 7.18 and 7.19
as a collection of inference rules. Each rule corresponds to one term in an
equation. All that is required is to introduce ‘true’ as an expression that has
constant value 1 in order to represent the constant term in each equation.
The certainty factor of each term we write as a superscript to the implication
symbol. Thus,

true =>+04ll 3 (7.20)
true =087 ¢ (7.21)

A =to860 (7.22)

true ="092 g (7.23)

A o088 g (7.24)

g =102 g (7_-25)

~G A -e 10951 (7.26)
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—BAE =t098l 4 (7.27)
BA-ng =H0575 (7.28)
BAe =10971 (7.29)
true =*t0401 4 (7.30)

B Lo (7.31)

¥ = —0.678 (7_32)

Notice that acyclicity of rules obtained this way follows from acyclicity of
causal graphs.

7.3 Inference

Since a set of rules, such as the one above, is equivalent to a causal graph, the
Lauritzen-Spiegelhalter algorithm provides a method for drawing inferences
(‘applying the rules’). If this is found to be infeasible because the size of
the resulting cliques is too great, then there is another suvitable alternative:
Monte Carlo propagation [Cor86)].

7.3.1 Monte Carlo Propagation

Since the causal graph on which the rules are based has been orientated
in the direction of inference, the variables whose values are known for any
given case tend to be a complete initial segment of the order. Thus, if
the order on the variables is ) < a3 < .., < ay, then precisely the vari-
ables a;, az,..., a; are known, for some i. Notice that this is the opposite
state of affairs to that when the variables are ordered according to causa-
tion. This is why Monte Carlo methods tend te be efficient for inferential
representations, but not for descriptive ones.

If the known variables do cobstitute an initial segment of the order,
then Monte Carlo propagation is particularly simple and effective, In order
to sample the distribution over the unknown variables, conditioned on the
values of the known ones, we start by setting all known variables to their
respective values (D or 1). We then turn to tbe next variable in the order
and compute the probability that it has value 1. Suppose the prohability
is p. We then assign the value 1 to this variable randomly with probability p,
and value 0 with probability 1 — p. We repeat this step for each successive
variable in turn. This entire procedure corresponds to one sirnulation. We
repeat many simulations (say 1000), and count the relative frequency with
which each of the unknown variables is assigned value 1.
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Example

Continuing the previous example, suppose we observe that A = 0 (the lights
do not work) and £ = 0 (the engine does not start). We set these variables
to their respective values.

A =0

= 0
The next variable in the order is 3. We use Rules 7.23, 7.24 and 7.25 to
determine the probability p{B | L, E). Rule 7.23 “fires’ (i.e. its antecedent

evaluates to 1), but Rules 7.24 and 7.25 do not (i.e. their antecedents eval-
uate 1o 0). Thus,

cert (BJLE) = —-0432 0 & 0
—0.032

So, applying Equation 7.12 {Page 63),
»(8|L,E)

(-0.932 + 1)/2
0.034
which corresponds to the value given in Table 7.1 (Page 60).
Now we draw a random number from the rectangular distribution over

the interval [0,1). Using a random number generator, let us suppose we
obtain 0.663. This is not strictly less than 0.034 so we set § to value Q.

B:=0
The next variable in the order is 4. Only Rule 7.26 fires for -y. Thus,
cert (C | E,B) = 0.951
and _
p{C | E,B) =0.975

Again we have simply computed the relevant entry in Table 7.1. Suppose
the next random number is 0.102. This is strictly less than 0.975, so we set
7 to value 1.

y:=1
Finally, regarding a, only Rules 7.30 and 7.32 fire. Rule 7.31 does not.
Therefore,

cert (A | B,C) 0.402 @ —0.678

= -0.379
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and

(A | B,C) = 0.310
Suppose the next random number is 0.721. Since this is not strictly less
than 0.310, so we set « to value 0,

a:=0

Therefore, at the end of the first simulation, 3 =0,y =1and a = 0.

Shown in Table 7.2 are the results of an actual experiment in which
this procedure was repeated many times. As the number of runs increases,
the relative frequencies approach the actual conditional probabilities given
A=0and ¢ = 0.

Table 7.2: Frequencies with which variables were assigned value 1 during
increasing numbers of simulations. The last column shows the actual con-
ditional probabilities.

VARIABLE RUNS PROB
100 1000 10000

A 3 34 342 | 0.034

¥ 96 969 9689 | 0.969

o 35 346 3434 | 0.343

This algorithm is both efficient and universally applicable. Notice that
it is unaffected by the degree of connectivity of the graph.

Exercise 7.1 Suppose we intend to use Monte Carlo simulation to approz-
smate the conditional probability associated with @ particular unknown vari-
able. If we require the estimate to be correct to two decimal places at a
confidence level of 95%, how many simulations do we need to perform?

7.4 Inferential versus Causal Representations

As we have seen, when knowledge is represented as a set of inference rules,
propagation of evidence is computationally more tractable than when knowl-
edge is represented as a descriptive causal graph, unless that graph is sparse.
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These are not the only reasons, however, for preferring inference rules as a
representation.

7.4.1 Insufficiency of Causation

In practice, training data are generally conditioned on events which are
observable effects rather than underlying causes. For example, a medical
database is usvally conditioned on the event ‘the patient seeks medical ad-
vice’ or some specialization thereof (e.g. ‘the patient presents to hespital
with acute abdominal pain'). Clearly this excludes persons who have no
symptoms, which in turn makes causally unrelated events spuriously depen-
dent.

This means, when constructing a descriptive causal graph, it is not safe
to assume that the parents of a given variable are only those which are its
direct causes. For example, we had to include an arc from ‘Alternator is ok’
to ‘Carburettor is ok’ in Figure 6.1 (Page 45) even though there is no direct
causal link. Perhaps we should also have included an arc from ‘Battery is
charged’ for the same reason: if the battery becomes old it may ro longer
hold a charge, thus making starting difficult. However, causally unrelated
and independent faults tend to be mutually exclusive amongst those vehicles
showing signs of trouble. Incompleteness of the graph means that the joint
distribution it specifies does not correspond exactly to the population, no
matter how accurately the individual entries in the conditiona! probability
tables are estimated.

7.4.2 Scarcity of Training Data

When constructing a large expert system, perhaps one encompassing many
rare diseases for example, it may be found that the availabletraining data are
insufficient for estimating all the required conditional probabilities. There
are two ways to proceed.

Numerical Stability

One solution is to make use of other sources of information, such as published
results of relevant studies, or subjective estimates elicited from experts. Se-
lection of the kind described above, however, complicates this process; it
is difficult to be sure that numerical estimates obtained from one popu-
lation apply to another one selected in a different way. For example, are
probatility estimates derived from patients referred to hospital with acate
abdominal pain compatible with those for patients who consul)t their general
practitioner with the same symptom?
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However, Dawid has shown that conditional probabilities of diseases
given symptoms remain stable while those of symptoms given diseases vary
according to the way a population is selected [Daw76). Therefore, we might
expect any selection bias in the training data to have less effect on certainty
factors derived for inference rules, than on conditional probability tables for
a descriptive causal graph.

Variable Reduction

Another solution is to try to reduce the number of parameters to estimate.
Suppose our expert system includes three rare symptoms o1, 02 and o3, any
one of which is evidence for a particular disease 6. If we adopt a descriptive
representation, we will need to specify a conditional probability table for
each of the three symmptoms. However, if we choose to write inference rules
instead, then if data are scarce a single rule will suffice:

oy VoV ay 2t é

This reqnires estimation of only one certainty factor (¢), and so allows data
regarding the three symptoms to be pooled.

7.4.3 Explanations

Lastly, explanations are more easily generated from inference rules than from
descriptive knowledge representations. This is because explanations must
justify conclusions in terms of the given observations, and this corresponds
directly to the orientation of the knowledge expressed in the form of inference
rules.



Chapter 8

Alternative Calculi of
Uncertainty

Most of the expert systems described in earlier chapters have used proba-
bility theory to model uncertainty. However, alternative formalisms have
been proposed and are being developed to address perceived weaknesses of
probability theory as a calculus of uncertainty. This has caused a certain
polarization of opinion, and has led to some friction between proponents of
different methods - see the discussion following [Spi84] for example. Never-
theless, we describe here two formalisms, ‘approximate reasoning’ based on
fuzzy sets, and the Dempster-Shafer theory of evidence, which have arcused
a great deal of interest and which are relevant to expert systerns.

8.1 Fuzzy Sets

Experl opinion is often used as a source of knowledge for expert systems,
yet jt tends to be imprecise. Recall an example from Chapter 4 {Page 24):
most cinicians would readily assert that

inflammation of an abdominal organ usually causes lecal pain.

Clearly this is an important fact that ought to be useful diagnostically,
yet it is imprecise; what exactly is meant by ‘inflammation’, ‘usually’, ‘local’
and ‘pain’? The study of fuzzy sets [Zad65] is motivated by the desire to
model concepts such as these which are inherently vague.

8.1.1 Paradoxes of Gradual Change

Consider what it is to be bald. Choose an arbitrary bald man; in general,
he is not completely hairless, but has noticeably fewer hairs than normal.

70
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Now suppose he grows precisely one additional hair: clearly he is still bald.
Howevaer, if we continue this chain of reasoning, repeatedly postulating the
growth of a single further hair, we will eventually conclude that this indi-
vidual remains bald no matter how many extra hairs he grows (paradox of
falakras, ‘the bald man’ [Car69]). Similar paradoxes derive from heaps of
objects that remain heaps even after a single object is removed, and from
large numbers that remain large even after they are decremented by one.

The source of the paradox is that the concept ‘bald’ (*heap’, or ‘large’} is
inherently vague, and can be made precise only by arbitrary definition (e.g.
‘A person is bald precisely when he has fewer than 13,000 scalp hairs.’).
Expressed another way, the set of all bald persons is not precisely defined;
it is fuzzy. Paradoxes such as those of falakros can be avoided by formal
reasoning in terms of fuzzy sets [Gog69).

B.1.2 A Representation for Fuzzy Sets
Crisp Sets

A (conventional) set whose membership is clearly defined is said to be ¢risp.
Any crisp set A of type Pe is uniquely represented by its characteristic
function g 4 which maps each element of & to 1ifit jsin set A or 0 otherwise.

Bato—{0,1)
. 11 2EA (8.1)
Vu:oep,(u)= 0 wd A
For example, suppose « is the set of outcomes of rolling a die, and A is
the set of even scores.

{1,2,3,4,5,6}
{2,4,6}

n

[+

A

1N

Then the characteristic function of A is
pa={1=0,21,3-0,4-1,5-0, 61}

Fuzzy Sets

Fuzzy sets are represented by generalizing the notion of a characteristic
function to allow continuous grades of membership. Thus, in general,

pyie—~ 10,1} (8.2)
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Thus, elements can be only partial members of a fuzzy set. (Notice that
crisp sets are just special cases of fuzzy ones.}

For example, regarding dice, suppose HIGH is the (fuzzy) set of outcomes
which are ‘high’ scores. One possible characterization of this set is

HHIGH = {1 — 00, 2~ 00, I 0-1, 4 0-5-, 3 09, 6— 10} (8.3)

One possible interpretation for the degree of membership of an element u
to a fuzzy set .1 is the proportion of persons who would agree that u is a
mernber of A.

Exercise 8.1 Let B and UV be, respectively, the empty and the universal fuzzy
subsets of the (crisp) set w. Define O and U by means of their characteristic
Junctions. Also, define ‘7", the fuzziest of all subscts of w.

Exercise 8.2 Ezplain how the use of fuzzy sets can avoid the paradoz of
falakros,

8.1.3 Operations on Fuzzy Sets
Union and Intersection

Consider now what it means to take the union and intersection of fuzzy sets.
Assume that A, B and C are fuzzy subsets of a uuiversal set w, of which
u and v are arbitrary members.

Operations on fuzzy sets should preserve the familiar properties in the
case that the operands are crisp.

Ba(u)=0App(u)=0 = p,,p(u}=0 A pyrg(u) =0 (8.4)
palw)=0napplu)=1 = puplu)=1A panpg(u)=0 (8.5)
pala)=Lapg(u)=1 = pgp(u)=1A pyap(u)=1 (8.6)

Furthermore, the degree of membership of u to the union of A and B should
be no less than its degree of membership to either set.

Haup(u) 2 (1 a(u) U pp(u)) (8.7)

where LI denotes the infix binary operator ‘maximum’. Similarly, the degree
of membership of u to the intersection of 4 and B should be no more than
its degree of membership to either.

Banp(u) £ (pa(u) N pglu)) (8.8)



8.1. FUZZY SETS 73

where M denotes ‘minimum’. Also, even when extended to fuzzy sets, the
operations of union and intersection should have their usual algebraic prop-
erties of associativity, commutativity, idempotency and distributivity.

(AuB)UC = AU(BUC) 8.9)
(AnBInC = An(BnC) (8.10)
AUB = BUA (8.11)
ANB = BnA (8.12)
AUA = A {8.13)
AnA = A4 (8.14)
An(BuC) = (ANBIU(ANC) (8.15)

If also we require that p 4,y and jt 45 are continuous and non-decreasing
with respect to u, and pg, then it follows [Bel73] that

Baup(u) = pa(u) U pg(u) (8.16)
and

Banp(u) = pa(u) Npg(u) (8.17)

Complement

Clearly complementation should reverse the ordering of the degree of mem-
bership of an element to two sets.

ra(u) > pg(u) = pg(u) < pg(u) (8.18)
Furthermore, complementation should be its own inverse.
A=4 (8.19)

Lastly, if we also require that the effect of complementation on the degrees
of membership is symmetric

Ba(u) +pa(v) =1 = pglu) + pz{v) =1 (8.20)
then it follows [Gai76] that
) = 1= (1) (8:21)

Exercise 8.3 Using the definitions of union, intersection and complemen-
tation given by Fquations 8.16, 8.17 and §.21, show that De Morgen’s Laws
hold for fuzzy sets.
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8.1.4 Linguistic Hedges

Zadeh [Zad72) introduced the neotion of linguistic hedges (e.g. ‘very’, ‘more
or less', ‘not very") as modifiers of fuzzy sets. The hedge ‘very’ is defined as
replacing the degree of membership of an element by its square.

Pvcry.ﬁl(ﬂ') = (I“A(u))z (822)

The inverse, ‘fairly’, is defined as replacing the degree of membership of an
element by its square-root.

Hrairry4(2) = \/;;(_“) (8.23)

These operators are said to correspond reasonably well to normal usage of
the terms; although, in one study, ‘very’ seemed to be more of a horizon-
tal translator than a power function [Her76). Nevertheless, the operators
provide a consistent way of constructing more complicated fuzzy sets from
fundamental ones,

Example

For example, returning to the previous example of a die, we could de
fine MOD to be the set of ‘moderately high’ scores, with the assumption that
‘moderately high’ means ‘kigh, but not very high’. Recall (Equation 8.3)
that we have chosen to characterize HIGH by

parep = {1 — 0.0, 2+ 0.0, 3+ 0.1, 4 = 0.5, 5+ 0.9, 6 — 1.0}
Squaring,
Hueyhige = 11— 0.0, 2 0.0, 3+—0.01, 4 — 0.25, 5 0.81, 6 — 1.0}

Taking the complement,

Hnat very HIGH =
{1~ 1.0, 2 1.0, 3~ 0.99, 4 —~ 0.75, 5 — 0.19, 6 — 0.0}

And, taking the intersection with H itself,

PHIGHﬂ(not very HIGH) = Fp =
{1 00,2 00,3 01,4 0.5,5 0.19, 6 = 0.0}
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8.1.5 Fuzzy Inference
Fuzzy Relations

A fuzzy relation R is a fuzzy subset of @ X 4, where a@ and 4 are the domain
and range types of R, respectively, The degree of membership pug(u,v)of a
pair (u,v) to K is the degree to which R relates u to v.

For example, regarding scores obtained by rolling a die, let LOTLESS be
the relation ‘is a lot lower than’. Shown below is one possible characteriza-
tion of this relation.

HLOTLESS =
{(1,1)—~0.0,(1,2)~0.1,(1,3)—0.5,(1,4)—0.9,(1,5) ~ 1.0, (1,6}~ 1.0,

(2,1)0.0,(2,2)—0.0,(2,3)—0.1,(2,4)—0.5,(2,5) 0.9, (2,6)1- 1.0,
(3,1)0 0.0, (3,2)—0.0,(3,3)—0.0,(3,4) —0.1,(3,5) 1+ 0.2, (3,6)1-+ 0.7,
(4,1)0.0,(4,2)—0.0,(4,3)— 0.0, (4,4) 0.0, (4,5)—0.1,(4,6) 0.3,
(5,1)—0.0,(5,2)—0.0,(5,3)—0.0,(5,4) — 0.0, (5,5) ~0.0,(5,6) 0.1,
(6,1)—0.0,(6,2)—0.0,(6,3)— 0.0, (6,4} 0.0,{6,5)}—+0.0,(6,6)r+0.0 }

In general, if we know that two variables 2 : @ and y : § are related by
a relation R, where up : (a x §) — [0,1], and we learn the actual value of
z, then we can infer that y lies in the (fuzzy) image of z through R.

For example, suppose r and y are the scores obtained on two consecutive
rolls of a die, and we are told that z ‘is a lot lower than’ y. If then we learn
that z is actually 2, adopting the characterization of LOTLESS given above
we can conclude that y is 2 member of the set B where

Av: B e oripss(2,v)
{1=00,2—00,3—~01,4—05,5— 09, 6 1.0}

BHicH

fi

1]

So we conclude that y is ‘high’.

The Compaositional Rule of Fuzzy Inference

In the case that all we know of z is, say, that it is either 2 or 3, we obtain
two alternative fuzzy restrictions on y, either of which may be appropriate.
Naturally, therefore, the resultant set is giver by the fuzzy uunion of the two.
This principle readily extends to larger (crisp) sets of possible values of z.
Zadeh [Zad73] generalized this principle to the case when the value of
is known ounly fuzzily. This is expressed as the ‘Compositional Rule of Fuzzy
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Inference’.
T is A
(z,¥) is R

yis Ao R
where A o B denotes the ‘composition’ of A with B (i.e. the image of A4
through R). This is defined
Paop = Avidel |(ua(u)Tpale,v) (8.24)
Ui
where
By O [07 1]
pr : (axf)—[0,1]
(The principle of fuzzy inference readily extends to the case where the value

of a variable is determined from the values of n — 1 other variables through
a n-ary relation.)

Exercise 8.4 Suppose that a die is rolled twice. The first score is ‘not
very high’, and, even worse, the second ‘is a lot lower than’ the first! Use
the Compositional Rule of Fuzzy Inference to calculaie the (fuzzy) set of
possible seores that might have been obtained on the second roll. (Use HIGH
and LOTLFESS.)

8.1.6 Production Rules

It may not always be feasible to specify fuzzy relations by explicit enumer-
ation, Production rules provide a convenient shorthand. Although by no
means the only way of deriving a fuzzy relation from a production rule,
the simplest way is to take the cartesian product of the antecedent and
conclusion. Thus, we interpret a rule

ris A= yis B
as the proposition
(z,y)is Ax B
The cartesian product of two fuzzy sets is defined by
Haxg = uiogv:fep (u)pgle) (8.25)

where A is a fuzzy subset of o, and B is a fuzzy subset of J. In the case
that we have several rules relating z and y, we simply take the fuzzy union
of thecorresponding relations.
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Exercise 8.5 Suppose r and y are the scores obtained on two rolls of a die.
The assertion that = and y are ‘about the same’ can be expressed as three
production rules,

z is low = y is low
z is moderale = y ts moderate

z is high = y is high

Assume that ‘high’ corresponds to the set HIGH defined above (Equation 8.3,
Page 72), and thal ‘low’ corresponds ta the set LOW defined below. Take
‘moderate’ here to mean ‘not low and not high’. Reduce the set of three
production rules to a single fuzzy relation by taking the union of the corre-
sponding cartesian products. Is this an accurate characterization of “is about
the same as’¥

Brow = {1 10,2 0.9, 3 0.5, 4 0.1, 5+ 0.0, 6 — 0.0}

Exercigse 8.8 Conlinuing Fzercise 8.5, use the Compositional Rule of Fuzzy
Inference to determine the value of y if = is ‘fairly low”.

8.1.7 Fuzzy Inference and Medical Diagnosis

Fnzzy sets have been claimed by some {e.g. [AdIR85]) as *highly suitable for
the formalization of medical processes and concepts’. Others disagree. For
example, De Dombal pointed out that the obvious remedy to the vagueness
of clinical terminology is to make the terminology more precise [Dom78].
Although some medical expert systems have been built which employ fuzzy
sets (for example, [AdI85, Fie90)}, the ‘min-max’ operations that arean inte-
gral part of fuzzy reasoning seem inappropriate: medical diagnosis involves
accumulation and weighing of evidence. The multiplication and addition
operations of probability theory seem intuitively more correct.

8.2 Dempster-Shafer Theory of Evidence

8.2.1 Some Difficulties with Probability Theory

Dempster-Shafer theory [Dem67, Sha76] directly addresses two problematic
aspects of the use of probability theory to model belief: the representation
of ignorance, and the separation of belief in competing hypotheses. Accord-
ing to probability theory and the ‘Principle of Indifference’, if we have no
reason to choose between two mutually exclusive events then both are as-
signed equal prior probabilities. No distinction, therefore, is rmade between
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complete ignorance about the relative likelihcod of two mutually exclusive
events, and secure knowledge that the two events are equally probable.

Furthermore, it is a consequence of the axioms of probability theory that
given any event E, the probability p(E) is 1 — p(E). This means that any
evidence for E is necessarily evidence against its complement E, yet often
this seems counter-intuitive. For example, fever is evidence for measles,
yet it is also evidence Jor (rather than sgainst) the alternative diagnosis of
influenza.

8.2.2 Mass Functions

According to Dempster-Shafer theory, rather than assign probability mass to
individual sample points alone, we can distribute the total mass amongst all
subsets of the sample space. Thus m(E) denotes the amount of probability
mass that we are prepared to associate with event E, but not with any
propet subset of E, on the strength of the available evidence. A probability
masgsfunction m therefore has the following properties. (In Dempster-Shafer
theory © is used rather than £ to denote the sample space, and we follow
that convention.)

m:P® —[0,1)

m({})=0 {8.26)
Y m{E)=1 {8.27)
Ece

Beljef

The total probability we have committed to event E (or, in subjective terms,
our current belief ‘bel (E)’ that event E has occurred) is given by the sum
of the probability mass associated with all subgets of E.

bel (E) = »_ m(F) (8.28)
FCE
Thus the constraint that the probabilities of an event and its complement
must sum to 1 has been relaxed to the following.
bel (E) + bel(E) < 1 (8.29)
As one would expect, we are always certain that the universal event © has
occurred. This follows directly from Equations §.27:

bel (B) = 1 (8.30)
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Some Extreme Mass Functions

In the case g that all the probability mass is assigned to @, we have
no belief in any more refined event than the universal event itself. This
represents complete ignorance.

1 E=9
mo(E) = { 0 E£0 (8:31)
Whereas, if all the probability mass is assigned to singleton events {m)
_ | p(E) #E=1
mi(E) = { 0 HE#£1 (8.32)

then the belief in any event is identical to the probability of that event. So
a probability function is just a particular kind of belief function.

8.2.3 Dempster’s Rule of Combination

Consider now how beliefs based on two sources of evidence can be com-
bined. Suppose a patient has either measles (M), influenza (/) or some
other infectious disease (O).

@ = {M,1,0}

Furthermore, suppose that, taken individually, twoitems of clinical evidence
induce the mass functions m; and my shown below. (Only events with non-
zero probability mass have been included in the table.}

{M, I} 0.80 {I} 0.20
M} 040 | {M} 032 {} 0.08

mi {M,0} 050 | {M} 040 {} 0.0
{M, 1,0} 0.10 | {M, I} 008 {I} 0.02

The only way that, say, event {M,[} can occur is if two events oc-
cur simultaneously whose intersection is {M,I}: in this case, {M, 1,0}
and {M, I} with probability masses 0.10 and 0.80, respectively. Therefore,
assuming independence, the comhined probability mass of {M,[}is 0.10 x
0.80. When an event {(such as {M} in this case) can occur in more than one
way, the sum of the products is calculated; thus the combined probability
associated with {M} is 0.32 4+ 0.40.

There is a difficulty, however, when the intersection of the respective
events is empty. A total probability mass of 0.18 is apparently associated
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in the example above with the impossible (empty) event. The solution is
to set this to zero, and redistribute the probability mass amongst the pos-
sible events by normalization {division by 0.82). The combined probability
mass function is as follows, all other events mapping to zera probability,
where ® denotes combination of two mass functions. Values are shown to
two decimal places only.

mydme ({I}) = 0.02
m @my ({M,I}) = 010

The general form of Dempster’s Rule of Combination is

0 E={}
m; B ma(F) = Fn%;E my(F)m3(G) - {8.33)
2. m(F)my(G) 70
FnG#{}

Exercise 8.7 You are playing & game of ludo. Your opponent rolls the die
and then seems very pleased with himnself indeed. This is strange because the
score on the die looks like only a five, but you can’t be 100% sure without
your spees.

Judging your opponent’s reaction, you assign subjcctive probability to the
possible events according to the following mass function (mq ).

m]({455!6]) = 01
m1({5,6}) = 0.2
my({6}) = 0.7
While, the blurred appearance of the die suggests mass function m;.
my({4,5,6}) = 0.2
ma({5}) = 08

Using Dempster’s Rule of Combination, calculate how strongly you believe
the opponent’s score is five, when taking both pieces of evidence into account.
Also, how certain are you that the score was more than four?



Chapter 9

Testing and Evaluation of
Decision Aids

9.1 Evaluation

Once a new expert system has been designed and implemented, the next
stage is to evaluate its performance. In many applications, the user interface
js important; it may ultimately determine the acceptability of the system.
More fundamental however, and the subject of this chapter, is the ability of
the system to arrive at the correct diagnosis and to give the right advice.
How then should the diagnostic accuracy of an expert system be assessed?
(We answer this question specifically in relation to medical expert systems,
although the principles generalize to many other applications.}

9.1.1 Test Data
Retrospective vs Prospective

For training and test purposes we require a collection of case descriptions
specifying both the symptoms and the true diagnoses for a random set of
patients. There are two ways of collecting such data:

1. Retrospectively - Case notes are retrieved from hospital archives, and
the relevant information is transcribed onto structured forms.

2. Prospectively - Doctors are asked to fill in structured forms themselves
at the time patients are seen.

Retrospective data are easily collected, but tend to be of poor quality.
Handwritten entries in case notes are often ambiguous, and sometimes illeg-
ible. There is a tendency to record only positive findings and key negative

81
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ones. This means that it is often hard to tell whether a symptom or sign
was truly absent, or simply not looked for.

Prospective data, on the other hand, are generally of a similar quality to
the data that would be entered into the computer if the expert system were in
routine use. Nevertheless, it may not be worth the trouble of collecting such
data unless the expert system has already been tested with retrospective
data, and has shown promise.

Avoiding Bias

When assessing performance, two sources of bias should be avoided. Firstly,
the iruining sei' and the fest set? should be random samples from the same
population. If not, then misleadingly poor performance figures may be ob-
tained.

Secondly, the training set and the test set should not intersect (except
by chance). If training cases are vsed to test the performance of the system
then performance may be deceptively optimistic.

‘Leaving-One-Out’ Method Often only a limited number (n) of cases
are available to the system developer, and the numbers become too small if
the set iz partitioned into training cases and test cases. If training entails
only calculation of numerical parameters, and is computationally efficient,
then the ‘leaving-one-out’ method is applicable, This entails using each case
in tum as a test case, and training the expert system afresh each time on
the remaining (n — 1) cases.

9.1.2 Trial Design

When evaluating a system, the results are more easily interpreted if they can
be compared with those of familiar standards such as Bayes’ theorem and
the unaided clinician himself. The significance of such results can be better
assessed also if the computer and the clinician are compared with respect to
the same test cases; this allows paired rank tests of statistical sigmficance
to be applied.

In some applications, the ‘true’ diagnosis may he unclear and open to
debate. This is the case, for example, regarding selection of antimicrobial
therapy. In order to overcome this difficulty, the treatment recommenda-
tions of MYCIN (Chapter 4, Page 30) were compared with those of eight

l(lhe set of cases used to derive stalistical parameters for the system and Lo optimize
its periarmance)
(e set of cases used to test the system)
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clinicians by a panel of expert judges [Yu79]. The judges were blinded as to
which was the computer’s advice and which were the clinicians’. In 35% of
assessments, MY CIN’s recommendation was considered ‘unacceptable’, but
this was marginally better than any of the eight clinicians!

Although an expert system is likely to be useful if it gets tbe diagnosis
right more often than the unaided clinician, the real purpose is to assist
the clinician himself to achieve a higher diagnostic accuracy. This is a more
difficult hypothesis to test, and where it has been tested there have been
same surprising results.

In a multicentre trial of the Leeds program for the diagnosis of abdominal
pain {Chapter 2, Page 11), not only did the clinicians’ diagnostic accracy
rise from 46% to more than 65% when the computer system was introduced,
but a real improvement in patient management was abserved [AdaB8€). For
example, approximately 278 unnecessary operations were avoided during
the trial period, and savings in NHS resources amounting to £20m were
achieved.

However, introduction of a computer system not only makes available to
the clinician an interpretation of his own findings, but also requires that the
clinician use a structured data-collection form. This discipline itself is likely
to lead to an improvement in diagnostic accuracy. When structured forms
alone were used, diagnostic accuracy was found to be about 57% [Adag6].
Furthermore, when clinicians were also given regnlar feedback about their
own performance, they achieved the same diagnostic accuracy after three
months as those using the computer program. It is therefore far from clear
what contribution, if any, the computer is making [Sut89]. One would hope
that this question can be eventually resolved by developing more accurate
programs whose contribution is greater and more easily measurable.

9.2 Performance Parameters

Let us now look more closely at the various performance parameters that
we can measure.

9.2.1 Diagnostic Accuracy

The diagnostic aecuracy ol an expert system (or clinician, flowchart ete.) is
the proportion of cases it correctly diagnoses. While this is useful as a single
numerical parameter of overall performance, it is generally helpful to know
which diseases the system identifies well, and which it identifies poorly.
Consider a single arbitrary disease §. A case which has § is said to be
a true positive if § is diagnosed by the system, otherwise a false negative.
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Conversely, a case which does not have 6 is said to be a false positive if § is
diagnused, otherwise a frue negative,

The sensitivityof an expert system to a particular disease § is the propor-
tion of cases which have &, that the system correctly diagnoses. Conversely,
the specifieily is the proportion of cases which do not have § that the system
correctly diagnoses as not having 4.

For example, Vastola [Vas73] described a flowchart-style program called
ASSIGN for deciding whether or not patients have a neurological disorder
requiring referral to a neurologist. The program was tested on 308 patieuts
attending a neurological clinic, and ASSIGNS’s decision was compared with
that of a physician, whose decision was assumed to be correct. The following
results were obtained.

183 patients (TP) Correctly referred
57 patients (FP) Unnecessarily referred
58 patients (TN) Correctly discharged
10 patients (FN} Wrongly discharged
308 patients Total

Therelore,

TP/(TP + FN)
TN/(TN + FP)

183/(183+ 10) = 0.95
58/(58 +57) = 0.50

Sensitivity
Specificity

Thus while ASSIGN is quite sensitive (i.e. it correctly refers most cases that
require referral), it is not very specific (i.e. it is not very good at identifying
the patients who can be safely discharged).

9.2.2 ROC Curves

Generally, expert systems do not make categorical decisions in the way that
ASSIGN does. Instead, they calculate a numerical measure of support (e.g.
the conditional probability) for a particular hypothesis. A decision as to
whather or not to accept the hypothesis is taken (either by the clinician or
the expert system itself) by comparing the numerical measure of support for
the hypothesis with a pre-determined threshold. By lowering this threshold,
the sensitivity of the system can be increased, but only at the expense of a
decrease in the specificity.

A graph of sensitivity against the complement of the specificity, as the
threshold is altered, provides a way of comparing on a common scale, di-
verse kinds of expert system designed for the same discrimination task. The
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graph (see Figure 9.1) is called the relative operating characteristic (ROC)
of the system [Swe88]. The area under the curve provides a single numerical
measure of discrimination; a value of 1 denotes perfect discrimination, and
a value of 0.5 denotes zero discrimination.

Figure 9.1: ROC curves for three expert systems (A, B, C) regarding a par-
ticular binary decision problem. System A provides the most discriminatory
power, and system C provides none at all.

Sensitivity

0 1 — Specificity 1

Exercise 8.1 Test the flowchart shoun in Figure 8.1 (Page 21) on the ran-
dom sample of 20 cases given in Table 9.1 (Page 87). Skcich the ROC curve,
and use il to decide whether the flowchart is a better discriminani than an-
other system which is known to have a sensitivity of 0.90 and a specificity
of 0.95.
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9.2.1 Discriminant Matrices

Ounce a decision threshold has been selected, a clear and comprehensive way
of summarizing an expert system’s performance with a range of alternative
diagroses is by means of a diseriminant matriz. A discriminant matrix
itemizes the total number of test cases which actually have disease §; but
were diagnosed as having disease #,, for every i and 7.

For example, suppose an expert system is designed to classify patients
into exactly one of three categories (A, B and C). Table 9.2 presents some
hypo:hetical test results in the form of a discrimination matrix.

This provides all the information necessary to calculate the sensitivity
and specificity of the expert system to each of the disorders. Take diagno-
sis A, for example:

28
23+ 1+1

167 + 18 + 22 + 166
154 167+ 18+ 12 + 22 + 166

Sensitivity to A 0.92

= 0.93

Specificity to A

Reliability

There is another parameter, however, that we have not considered: rels-
ability. How reliable is the computer diagnosis ‘A’ in the above example
(Table 8.2)? In other words, when the computer asserts that the diagnosis
is A, what is the probability that the computer is correct? This too is easily
determined from the discrirmination matrix.

Reliability of A = 23/(23 + 15 + 12) = 0.46

Notice that while the expert system is very sensitive and specific to A, the
computer’s diagnosis of A is quite unreliable and unsafe.

Exercise 8.2 From Table 9.2, calculale the sensitivity, specificity and reli-
abiliy of the expert system with respect to diagnoses ‘B’ and “C’.
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Table 9.1: Test data for Exercise §.1.

Case § o] 02 d3 04
1 11 1 1 ¢
2 0 ¢ 0 0 1
3 1 1 0 0 1
4 1 1 0 1 1
5 0o 1 1 0
6 01 0 1 0
7 1 1 0 1 1
8 1 1 ¢ 0 1
9 1 1 1 0 0

10 01 0 1 1
11 o1 0 1 1
12 11 1 1 0
13 1 1 06 0 0
14 o1 1 0 1
15 1 1 0 1 0
16 01 0 0 0
17 01 0 1 0
18 01 1 1 1
19 0 ¢ 0 1 0
20 1 1 1 0 1

Table 9.2: Discrimination matrix for diagnoses A, B and C.

Computer’s diagnosis

A B C

A 23 1 1

True diagnosis B 15 167 18
C 12 22 166

87
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