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A large-scale brain network can be defined as a set of segregated and integrated regions, that is, distant regions that share strong
anatomical connections and functional interactions. Data-driven investigation of such networks has recently received a great
deal of attention in blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (fMRI). We here review the
rationale for such an investigation, the methods used, the results obtained, and also discuss some issues that have to be faced for

an efficient exploration.
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1. INTRODUCTION

Blood-oxygen-level-dependent (BOLD) functional magnetic
resonance imaging (fMRI) is an imaging technique that
makes it possible to dynamically and noninvasively track
metabolic and hemodynamic changes in the brain [1, 2]. The
early developments of BOLD fMRI data analysis have mostly
relied on a method called general linear model (GLM),
whose objective is to pinpoint the differential involvement
of certain regions during various tasks [3-5]. Voxel clusters
that exhibited such a behavior are declared “activated” and
gathered into a so-called activation map that provides the
output of the GLM approach; each map represents all
regions that are significantly correlated with the stimulus
time course. GLM-based methods have been extensively used
in order to extract regions in a wide variety of conditions
(see, e.g., [6] for a review of activation studies related to the
premotor cortex).

The GLM, however, does not properly render the brain’s
intricate organization, which is believed to be based on
two major principles: segregation and integration [7, 8].
According to these two principles, functional tasks are
performed by specific collections of brain regions, also called
networks, that are anatomically connected and can engage

in complex interactions [9-11]. Even though the BOLD
contrast is only remotely related to neuronal activity, it was
first hypothesized, and then evidenced, that this imaging
modality is able to reflect, at least to some extent, the
strong constraints imposed on the brain by segregation and
integration. This realization came from the investigation
of the (misleadingly called) “rest” condition. First, studies
showed that brain regions could still be correlated at rest,
hinting for the existence of functional brain networks that
could still be present and imaged even when no task
was explicitly required from the subject [12, 13]. Network
investigation also started with a closer examination of the
“baseline,” that is, the signal measured when a subject
is in the “rest” condition of a protocol, between two
task conditions [14]. This approach was justified from the
fact that, from an energetic perspective, the brain uses a
significant part of the body’s energy, independently of the
presence or absence of a “task” [15, 16]. As methods of
increasing complexity were developed and validated, the
objective of many methodological developments shifted
from GLM-related procedures to methods that were able to
extract networks from BOLD fMRI data.

This paper is an attempt to review the latest advances
in investigation of extended large-scale networks in fMRI
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from a methodological perspective, as well as the networks
that have been found using these methods. This new
methodology, if confirmed, has very deep implications in
terms of methods that should be developed, and we discuss
some of the issues that such methods will have to deal with
in order to provide reliable and useful results.

2. LARGE-SCALE NETWORKS AS A CONSEQUENCE
OF BRAIN ORGANIZATION

An extended large-scale functional brain network may be
defined as a (potentially large) number of segregated regions
(potentially spread over the whole brain) that interact in
order to execute a coherent task. While Bressler and Tognoli
[17] mostly consider “high-level brain functions of which
cognition is comprised,” it is important to emphasize the fact
that about any function that the brain is able to process is
likely to have a network representation (see, e.g., Section 4
for a description of some low-level brain functions, such as
vision and audition processing).

Large-scale networks share many important features.
First, they are widely distributed over the brain. As a
consequence of the segregation principle, it is hypothesized
that they can be broken down into small brain regions,
coined “nodes” by Mesulam [18], “units” by Marrelec
et al. [19], and “local cortical area networks” by Bressler
and Tognoli [17], each region being characterized by a
consistent functional behavior. Such nodes can readily be
identified in subcortical structures, which are often gathered
into nuclei [20]. As to the cortex, despite cytoarchitectonic
features (embodied, e.g., by the work of Brodmann [21]
and his eponymous regions) that vary across its surface,
its parcellation based on structural criteria alone remains
globally a challenge. Nonetheless, local brain areas are also
strongly characterized by their function [17]. For instance,
primary sensory regions (e.g., visual) have been localized
in a quite reproducible manner; within these regions, areas
responding more specifically to certain types of inputs have
been successfully identified (e.g., vertical versus horizontal
lines in the primary visual cortex [22]). Still, even though
various levels of specialization can usually be observed,
there is a general agreement that most regions cannot
be unambiguously associated with one specific function
(see, e.g., [23] for Broca’s area) and, in general, a region
will exhibit a certain level of “multifunctionality” [17]: its
contribution will not be limited to one task but will be
allowed to vary within a given range of functions that it is
able to implement.

As a consequence of the integration principle, large-scale
networks are also characterized by potentially distant regions
with strong (anatomical) connections and (functional) inter-
actions. Whether top-down or bottom-up, serial or parallel,
connections and interactions are quintessential of networks
[18, 24, 25]. Anatomically, interregional connectivity is
suspected to be rather sparse [26-30]. Even though most
connections originating from one region are thought to re-
enter the same region, axons are known to connect regions
that are far apart from each other, for example, homologue
regions [e.g., [31-33]]. Functionally, these connections have

translations at all levels, from electrophysiology [34-38] to
measures of the electromagnetic field [39] and of the BOLD
signal [12, 13].

Whether coined “new phrenology” [40] or considered
as being “beyond phrenology” [25], such an approach leads
to a model of brain functions in which most functional
tasks are subserved by functional brain networks, that is,
collections of specialized regions that collaborate in order
to generate a coherent behavior [11, 36]. In support of
this approach, several networks have already been described
and documented. Luria [10] refers to three blocks: one that
“regulates the energy level and tone of the cortex,” another
one that is strongly implicated in information processing,
and a last one that is involved in higher, complex tasks, such
as “the formation of intentions and programs for behavior.”
Mesulam [18] proposed two distinct subdivisions of the
brain. First, based on the co-occurrence of functions with
similar features, the brain can be divided into five major
“subtypes”: primary sensory-motor, unimodal association,
heteromodal association, paralimbic, and limbic. There are
also at least five large-scale networks, each dealing with a spe-
cific cognitive function: spatial awareness, language, explicit
memory/emotion, face-object recognition, and working
memory-executive function. These networks are not isolated
from one another, but interact in very complex fashion, for
example, through “transmodal” areas.

3. fMRIINVESTIGATION OF
LARGE-SCALE NETWORKS

Relying on the assumption that BOLD fMRI is indeed
able to image brain networks (see, e.g., [15] for a review
of the neurophysiological substrate of neuroimaging), two
categories of methods may be identified for such studies:
approaches that make use of prior cognitive information and
fully exploratory methods.

3.1. Using neurocognitive information

Correlational methods were historically the first ones to
be applied to investigate large-scale networks in fMRI data
analysis, in the form of functional connectivity studies and
functional connectivity maps [12, 41-47]. Starting from
a voxel or region—the so-called “seed” voxel/region—one
extracts all voxels whose time courses are significantly
correlated with that of the seed. Measures other than
temporal correlation have also been used, such as coherence
and partial coherence [48, 49]. Selection of the seed region is
a key issue in studies of functional connectivity. First, a brain
region is selected according to its function (e.g., cortical rep-
resentation for hand movement, [47]). The corresponding
seed is then obtained from either prior anatomical knowl-
edge or functional manipulation. Anatomically, common
approaches consist of using coordinates in a standardized
space (Talairach or MNI) [44], or having an expert delineate
the region on anatomical images [48]. Functionally, the seed
can be obtained from an activation map, provided that the
region of interest can be characterized by its implication in
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a specific task (e.g., the primary motor cortex in a simple
movement) [41, 45, 47].

As opposed to effective connectivity—where Gonglaves
and Hall [50] showed that results of SEM analyses may vary
depending on the choice of the seed voxel—robustness of
functional connectivity maps with regard to the selection
of the seed region and its spatial extent have barely been
examined yet. Vincent et al. [51] showed that, for the
visual or the somatomotor network, the resulting functional
connectivity map was robust to the choice of the starting
seed region. Many other parameters (e.g., design, size of
each region) may have an influence on the outcome of the
analysis, potentially leading to different spatial structures or
correlation values between structures. Full exploration of a
whole network (i.e., with many regions) would imply the
recourse to several successive computations of functional
connectivity maps, each map being used to select a region
significantly correlated as seed voxel for the next step—a
procedure that is lengthy, complex, and whose convergence
is not assured. Wang and Xia [52] have recently proposed a
method to perform this exploration in only one step.

3.2. Blind exploration

The goal of fully exploratory methods is to provide data-
driven approaches of large-scale network detection in which
no prior cognitive information is required for the methods to
proceed. A number of such procedures have been proposed,
most of them relying more or less closely on either of the two
key features of large-scale networks, namely integration and
segregation.

The vast majority of approaches proceed as follows.
Based on a similarity measure, they gather voxels irrespective
of their anatomical proximity (and, hence, of segregation)
into separate classes that are strongly similar to each other
and dissimilar from one another. For each class, the output
is a map representative of the class and an associated time
course. All methods have one or several parameters whose
tuning affects the number of classes. Since each class tends to
gather voxels that are strongly correlated, it is often univo-
cally identified with a large-scale network. Blind approaches
include methods based on eigenvalue decomposition, such
as principal component analysis (PCA) [53-55], correlation
clustering [56], Kendall’s coefficient of concordance [57, 58],
K-means [59, 60], fuzzy clustering methods [54, 56], self-
organizing map algorithms [61], Kohonen clustering neural
network and fuzzy C-means [62], hierarchical clustering
[60, 63], integration and information-theoretic quantities
[64, 65], and spatial independent component analysis (sICA)
[66]. While most methods provide maps that are exclusive
(a voxel can only belong to one map), a few (e.g., fuzzy
clustering or ICA) provide an index of the plausibility for a
voxel to belong to each of the different classes. Most methods
also provide local criteria, calling for stepwise analyses, at
the exception of PCA and ICA that use global measures and,
consequently, are able to perform classification in one step.

Most approaches mentioned in the previous paragraph
have only been used a limited number of time in fMRI data
analysis so far. This can probably be accounted for by the

complexity of their algorithms, which is commensurate with
the difficulty of the task at hand. Outstandingly, sICA has
been used quite a lot recently, with results that are rather
promising. Regardless of its popularity, though, the network
interpretation of the results obtained needs to be proved
beyond simple criteria (these include, e.g., that voxels located
close to each other or in homologue regions tend to belong
to the same class). For instance, for PCA, Friston and Biichel
[67] mention that the interpretation of the eigenimages
in biological terms might be dubious, since they could be
rotated in the data space and still be a solution to the problem
(but see [68]). By contrast, components obtained through
ICA can be more easily related to known physiological
noises or functional processes [66, 69]. The methodological
reasons for this success are, however, still not clear, and many
explanations are plausible: the relevance of the assumption
of spatial independence, the adequacy of the underlying
mixing model, the efficiency of the global criterion/one-
step discrimination approach, or some interesting feature
of the information-theoretic optimization algorithm. In
any case, the fact that its application simplifies the results
to a maximum and produces a very limited number of
widespread networks, making interpretation easier, clearly
plays in its favor (compare, e.g., with [70, 71], or [72]).
Its sensitivity, which is much higher than that of clustering
methods, might also explain its success. Nevertheless, it must
still be kept in mind that the assumptions underlying ICA
(perfect synchrony within a network and spatial indepen-
dence between networks) impose an extreme and unrealistic
case of integration. While the simplification of several time
courses into one is performed only once for ICA, the stepwise
procedures implemented by other methods essentially go
through the same approximation at each step, leading to an
error that is probably far larger.

Unlike the numerous approaches to functional inte-
gration, few methods have specifically sought to extract
segregated regions. Some methods decrease the complexity
of the data by using predefined regions (e.g., according to
the Tzourio-Mazoyer et al. [81] template). Approaches using
predefinite regions do not check that all voxels within a
region exhibit homogeneous bahaviors; they merely assume
that it is the case. Average signals are then extracted from
each region, on which any integration-based approach, such
as hierarchical clustering [71, 72], can be applied. Intu-
itively, many clustering methods mentioned previously (e.g.,
K-means, hierarchical clustering, or information-theoretic
measures) could easily be applied for the purpose of detect-
ing segregated regions by incorporating a constraint of con-
tiguity between voxels that could be merged. Among these,
only the information-theoretic approach explicitly takes
both within- and between-classes measures of similarity into
account. Specifically, they optimize a so-called functional
clustering index (FCI) that keeps a balance between region
homogeneity (strong segregation) and sparseness of inter-
regional interactions (low integration) [64, 65]—the latter
constraint being hard to justify from a network perspective.
As to other clustering methods, as noted by Goutte et al.
[60] in accordance to Huygens’ formula, maximizing a
measure of the internal coherence of a class (associated with
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TABLE 1: Literature summary of the different networks found in network investigation of fMRI data. Methods—HC: hierarchical clustering,
SOM: self-organizing map algorithm, ICA: independent component analysis. Networks—M/SM: motor/sensorimotor, V: visual, A: auditory,
DM: default mode, dAtt: dorsal attentional, vAtt: ventral attentional, EC: executive control. Networks found are denoted by “X.” (*) In
addition to primary cortices (sensorimotor, visual, and auditory), the clusters shown by Cordes et al. [63] were essentially bilateral single
regions (thalami, fusiform gyri, and frontal gyri) which were parts of different networks of reference. (1) Except for the sensorimotor system,
the networks identified by Peltier et al. [61] were not properly labeled; the spatial organizations of the maps shown seemed similar to the
attentional networks. (1) The results presented by Calhoun et al. [73] were partial, mentioning the extraction of other networks that they
did not show neither comment; another study on similar datasets showed that the sensorimotor and the dorsal attentional networks might

be detected too [74].

Task Reference Method Network
M/SM \ A DM dAtt VALt EC
[61] HC X X X X() X()
[63] SOM X +) o
At rest [73] ICA X X X X
[75] ICA X X X X X «
[76] ICA X X X X X < X
Blocked visual (78] ICA X(1) X X X(%)
[79] ICA X X X
Blocked motor (80] LSNI X X X

segregation) is often equivalent to minimizing the same
measure of coherence but computed between classes (that
could be associated with integration). As such, the behavior
of such methods with regard to networks would again lead to
questioning.

A tentative approach to consider simultaneously seg-
regation and integration has been conducted by the large
scale network identification (LSNI) method by Bellec et al.
[80]. LSNI first clusters neighboring voxels into small regions
using a region-growing algorithm [82] and then selects
regions that exhibit a significant correlation with other
distant regions. Such a procedure allows to define brain
functional regions and networks in a purely data-driven way.
While the sensitivity of the algorithm proposed was rather
low, it had the great advantage to explicitly define and address
the two principles of functional segregation and integration.
So far, this method seems adapted for individual analyses; its
extension to group studies seems limited due to the subject-
dependent definition of regions.

4. TYPOLOGY OF NETWORKS EXTRACTED WITH fMRI

During the last decade, several brain systems have been
studied in fMRI using functional connectivity-related
approaches. These studies have revealed integrated sys-
tems, including primary systems and associative networks.
Exploratory approaches have also allowed to extract several
functional networks at once. Even if all brain areas are not
included in a network, these networks involve many areas
and constitute a possible functional parcellation of the brain.

The motor network was the first network studied
through functional connectivity analyses. Biswal et al. [12]
reported correlations in low-frequency resting-state fluctu-
ations between left and right motor areas using single-slice
fast-sampled acquisitions. This result was later reproduced

with multislice acquisitions where an extended motor net-
work was shown to correlate with a region in the primary
motor cortex [44, 47]. Lowe et al. [44] showed that other
functional networks could be detected using other seed
regions, namely the visual network with a seed around the
calcarine fissure and a limbic network with a seed in the
amygdala. An auditory and a language systems were later
extracted in the same way [41, 43]. Other networks were
also studied using the seed-region functional connectivity
approach, such as the default-mode network [83-86], the
attentional networks [42, 83, 87], and memory networks
46, 88].

More recently, a larger number of functional networks
were revealed using exploratory methods based on ICA [76—
78]. Even if the number of extracted networks varied, their
spatial organizations were reproducible across studies. For
instance, all three studies just mentioned found functional
networks involving the same systems that were sometimes
split into different parts (e.g., left/right, rostral/caudal).
Using group ICA studies of resting-state datasets [76—
78], which were the most reproducible, we selected seven
functional networks: a motor/sensorimotor system, a visual
system, an auditory system, a default-mode network, a
dorsal attentional network, a ventral attentional network,
and an executive control network. Van de ven et al. [75]
systematically studied the reproducibility of ICA results
on individual datasets and the results using hierarchical
clustering [63] and self-organizing map algorithm (SOM)
[61] were presented on an individual level. The results from
studies that provided a systematic description of all networks
found are reported in Table 1. In Figure 1 and Table 2, we also
reported results from a study on a population of 20 healthy
subjects acquired at rest, where networks were extracted
using spatial ICA and a hierarchical clustering approach
similar to that of Esposito et al. [79].
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Ficure 1: Example of extended large-scale networks extracted in
fMRI at rest. The six networks were identified using spatial ICA
and a hierarchical clustering approach similar to that of [79] on a
group of 20 healthy subjects acquired at rest. Networks—M/SM:
motor/sensorimotor, V: visual, DM: default mode, dAtt: dorsal
attentional, vAtt: ventral attentional, EC: executive control. The
auditory network was not found as a separate network but some
temporal regions of the primary auditory cortex are overlapped
by other networks (in particular the M/SM network and the two
attentional networks). The union of all networks does not add up
to comprise the entire brain; for instance, some parts of the frontal
cortex do not belong to any reported networks. By contrast, some
brain regions simultaneously belong to several networks (in black).

The sensorimotor system involves at least the pre- and
postcentral gyri (including the primary motor cortex and
supplementary motor area). The visual system involves both
medial striate and extrastriate regions (calcarine sulcus and
lingual gyrus), as well as lateral occipital regions (nonpri-
mary visual regions); these two visual networks (primary
and associative) were identified separately by the three
group-ICA studies. The auditory system involves principally
lateral superior temporal gyri, the Heschl’s gyrus and
insular cortex. The so-called default-mode network involves
the anterior and posterior cingulate cortices, the medial
prefrontal cortex and lateral parietal regions [15, 89-91].

The dorsal attentional network involves lateral prefrontal and
dorsal partietal cortex; these regions are involved in visio-
spatial control [42, 92, 93]. The ventral attentional network
involves inferior occipito-parietal regions and inferior lateral
prefrontal regions; these regions are principally involved in
new item recognition [42, 94]. Last, the executive control
network involves superior and middle prefrontal cortices,
ventrolateral prefrontal cortex and anterior cingulate gyrus
[95].

Other studies have applied these exploratory approaches
to extract integrated functional networks from fMRI datasets
acquired during external stimulation [73, 79, 80]. The results
of these three studies are also compiled in Table 1. These
results showed that the detection of the functional networks
not directly related to the stimulation were less sensitive than
that without external stimulation.

5. FUTURE ISSUES

Tracking the presence of extended large-scale networks in
BOLD fMRI data raises many issues. We have here focused
on some aspects related to the neurocognitive aspects of net-
works, their identifiability by fMRI, and the methodological
questions raised by network analyses.

5.1. Neurocognitive aspects

The major issue to be faced is arguably the very definition of
an extended large-scale brain network. Indeed, even though
the brain is far from being fully connected, any region
is eventually connected to any other regions if one takes
polysynaptic connections into account. Obviously, stating
that the brain can be considered as one network is by no way
satisfying, no more than it is to say that each macrocolumn
forms a networks by itself. The strongly hierarchical nature
of the brain’s anatomical and structural organization induces
similar characteristics at all levels. As the brain can be
decomposed in networks, each network can in turn be
further partitioned into subnetworks, subnetworks into
subsubnetworks, and so on. Furthermore, even though
there probably is a (potentially loose) relationship between
anatomical and functional organizations, it is still unknown
how functional integration and segregation are coded in
anatomical terms. For the exact same structural organiza-
tion, it has been shown that networks can be observed to
break down as one discriminates different sets of functional
tasks or behaviors with increasing precision. For instance, the
visual system can be decomposed into a ventral and a dorsal
stream [22]. These two subnetworks, albeit interacting, have
very distinct functions [42, 92, 96]. Similarly, the motor
system can be further separated into a cerebello-cortical and
a basal-cortical loop with different patterns of involvement
[97, 98]. The difficulty to define a network does not yield
for primary networks only. For instance, it has been argued
that the fronto-parietal network could be further partitioned
into two subnetworks subserving attention and working
memory, respectively, [99], while the working memory
network itself could be further broken down in two, with
one subnetwork mediating attentional selection and another
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TaBLE 2: Example of extended large-scale networks extracted in fMRI at rest. Peak foci corresponding to the six networks identified using
spatial ICA and a hierarchical clustering approach similar to that of [79] on a group of 20 healthy subjects acquired at rest—M/SM:
motor/sensorimotor, V: visual, DM: default mode, dAtt: dorsal attentional, vAtt: ventral attentional, EC: executive control.

(a) M/SM network (d) dATT network
Names BA Talairach coordinates Names BA Talairach coordinates
Frontal Frontal
SMA 6 (0, 4, 52) (0, ~4, 52) PreSMA 6/8 (~3,23,50) (3, 19, 47)
Primar?r motor cortex 4  (—45, —12,56) (45, —14, 56) Lateral premotor  6/8 (=33, 13, 58) (33, 13, 58)
.Rolandlc opercule 43 (—46, —15,15) (46, —19, 15) Ventral prefrontal 46 (=36,50, 1) (45, 44, 1)
Cingulate cortex
ACC 3 (0, 14, 39) (0, 14, 39) Ventral prefrontal 44 (=50, 7, 23) (50, 7, 23)
Parietal Dorsal prefrontal 46 (—44, 30, 30) (45, 31, 30)
Postcentral 3 (=51, -15,38) (53, — 11, 38) Precentral 9 (—48,8,37) (49,9, 38)
SII 40/43 (-55, —30, 22) (55, —30, 22) Cingulate cortex
Insula PCC 31 (0, =36, 31) (0, —36, 31)
Posterior Insula 13 (—41,4,6) (43, -2,6) Parietal
Cerebellum Superior parietal 7 (—38, —62, 55) (35, —72,49)
VermisVIII (0, 73, ~26) (0, =73, ~26) Inferior parietal 40 (—38, —69, 45) (45, —52, 51)
(b) V network Angular gyrus 40 (—42, —69, 45) (45, —55,51)
Names BA Talairach coordinates Precuneus 7 (0, =69, 52) (0, =69, 52)
Occipital Temporal
Cuneus 19 (0, 83, 30) (0, —83, 30) MT 2L (57,749, -3) (56, =51, =3)
Calcarine 17 (=7, =90, 8) (7, —85,7) Inferior temporal 37  (-62, —48, —12) (55, =55, —12)
Lingual 18 (—13, =51, 3) (15, =51, 2) Subcortical areas
Fusiform 19 (=27, -60, -9) (31, —63, —-9) Caudate nucleus (—14,4,13) (10, 11,9)
Superior occipital 18 (-17, —94,21) (18, =92, 21) Thalamus VL (-10, —13, 10) (10, —13, 10)
Middle occipital 19 (—42, -88,4) (38, -89, 4) Cerebellum
Inferior occipital 18 (-39, —86,0) (39, —85, —2) Crusl (=35, —66, —26) (31, —66, —26)
Cerebellum Crus2 (~7, —83, —19) (14, —83, —22)
Crusl (=28, =79, —14) (35, —82, —14)
(c) DM network (e) vATT network
Names BA Talairach coordinates Names BA Talairach coordinates
Frontal Frontal
Superior frontal 8 (—24, 36,47) (24, 26, 47) preSMA 6 (0, 6, 45) (0, 6, 45)
Rostromedial frontal 10 (0,53,4) (0,53, 4) Ventral prefrontal 46 (—, —,—) (52, 38, 8)

Dorsolateral prefrontal 9 (-37,17,49) (36, 18, 51)

Dorsolateral prefrontal 9 (—35, 39, 34) (31, 39, 34)
Cingulate cortex

Inferior frontal opercule 43 (—44,13,4) (51, 15, 4)

ACC 24/32 (0, 44, 4) (0, 44, 4) Cingulate cortex
MCC 24/31 (0, —30, 34) (0, —30, 34)
PCC 31 (0 —42.31) (0, —42.31) MCC 24 (0, 12, 35) (0, 12, 35)

Parietal Parietal
Angular gyrus 40 (—49, —62, 42) (42, —69, 45) Inferior parietal 7/40 (-51, —50, 48) (53, —49, 48)
Precuneus 7 (0, —66, 36) (0, —66, 36) Supramarginal 40 (—62,-32,31) (59, —23, 26)

Occipital Precuneus 7 (0, —61, 58)(0, —61, 58)
Cuneus 18 (0, =70, 25) (0, =70, 25) Temporal

Temporal MT (— — —) (52, ~34, -2)
Anterior MT 21 (=59, —18, —14) (59, —11, —17) Insula
Posterior MT 39 (-55,-53,19) (52, —57, 16) Insula 13 (45,0, —3) (38, 10, —1)
PHG (=25, =29, —14) (24, 30, ~14) Subcortical areas
Hippocampus (—20, —25, —9) (24, —26, -9)

Subcortical areas Caudate (-10,1,13) (14, —6, 16)
Caudate nucleus (7,13, —4) (7, 10, —6) Thalamus (=5,-20,7) (5, -20,7)
Dorsomedial Thalamus (=3, -23,8) (7, -23,8) Cerebellum

Cerebellum Crusl (—45, —56, —24) (45, —56, —24)

IX (-3, =53, —36) (10, —49, —36) VI (=21, —65, —17) (28, =65, —17)
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TaBLE 2: Continued.

(f) EC network
Names BA Talairach coordinates
Frontal
Medial superior frontal 8/9 (0, 43, 37) (0, 43, 37)
Lateral premotor 6/8 (—38, 10, 54) (45,13, 48)

(-49,25, —7) (47, 25, =7)
(=52,21,2) (55, 24, 5)
(=21, 49, 36) (24, 52, 30)

Ventrolateral prefrontal 47

Ventrolateral prefrontal 45

Dorsolateral prefrontal 9
Cingulate cortex

MCC 24/31 (0, —18, 40) (0, —18, 40)
Parietal

Angular gyrus 39  (—49, —60, 26) (49, —53, 32)

Precuneus 7 (0, —52, 38) (0, —52, 38)
Temporal

Temporal pole 21 (—49,9, -27) (52,12, —27)

Anterior MT 20/21 (=57, —11, —19) (60, —11, —19)

Posterior MT 22/39 (=51, =59, 15) (55, —56, 15)

Subcortical areas
(~10,3,17) (12,2, 17)
(=3, —16, 14) (3, — 16, 14)
(=6, =6, 12) (6, —6, 12)

Caudate nucleus
Dorsomedial Thalamus
Anterior Thalamus

Cerebellum
Crusl (—24, —76, —23) (28, —79, —23)
Crus2 (=21, =76, —29) (24, —83, —25)

one rather underlying language functions [100]. Networks
are not exclusive from each other either. Mesulam [18] refers
to transmodal nodes that connect various neurocognitive
networks. For instance, activation of some fronto-parietal
regions is observed during different cognitive tasks [101]; are
these regions transmodal or part of a subnetwork that has a
specific function? Similarly, the insular cortex is typically a
multimodal association area that is not specifically activated
by auditory stimuli. However, as reported in Section 4, recent
papers have consistently classified it as belonging to a so-
called auditory system. As evidenced by Figure 1, there are
also some overlapping between networks, and voxels can be
simultaneously classified as belonging to different networks.
What is the function of such regions? Could this overlapping
between networks be related to synchronization through
distinct frequency-bands [35]—if such a phenomenon is
indeed visible through fMRI BOLD imaging? Regarding
the influence of a task on a network, an issue that has
not received much attention yet, studies have shown that
networks could indeed be influenced by the processing of
a task, either during the task [86] or even after it [102]. It
is hence not unrealistic to suspect that processing of a task
might also modify the very structure of some networks.
Another cogent question is the relationship between
networks as detected by fMRI data analyses and those
mentioned in the literature. Networks extracted from fMRI
are the consequence of the optimization of a mathematical
criterion whose link to neuroscience is, at the very least, not
obvious. While some results have been rather successfully
related to the neurocognitive literature (e.g., attentional
network), other results are more complex to interpret. Some

networks extracted seem to share commonalities with some
of the subtypes described by Mesulam [18] (e.g., the motor
network; cf. Section 2), while others seem to be rather
related to Mesulam [18]’s neurocognitive networks (e.g.,
the attentional network). Besides, the union of all reported
networks (e.g., by sICA) does not include the whole brain.
Some brain regions are then excluded from the functional
networks organization of the brain. Why so? Globally,
the criterion used for network extraction might make the
methods sensitive to some functions or types of connections.
For instance, top-down and bottom-up influences have
distinct features [25, 34, 36-38]. Can they be detected equally
well by existing methods?

Apart from these difficulties, there has also been evidence
of variability across healthy subjects [80, 103] that could
be explained by many factors, such as development and/or
age [104, 105], and, in general, all forms of plasticity
[106, 107]. Pathologies, for example, stroke [108, 109] or
tumors [110-113], render the issue even more complex.
Some studies have shown that certain pathologies can have
network-specific effects: behavioral deficits in spatial neglects
for the fronto-parietal network [114]; epilepsy [115] and
Alzheimer’s disease [116] for the default-mode network.
Nonetheless, these results must be used with caution, for it is
not clear yet whether they truly reflect a change in neuronal
properties or, as, for example, in grade II glioma, a mere
modification of the metabolic and vascular properties of the
surrounding tissues.

5.2. BOLD fMRIimaging

Use of BOLD fMRI as a way to investigate large-scale
networks relies on three successive assumptions, namely,
that information exchanges between neurons is related to
synchronies, synchronies to the BOLD contrast, and the
BOLD contrast to the fMRI data effectively measured.

Synchronies are the blueprint of communication
between regions [17, 39, 117-120] and, as such, should be
strongly related to large-scale networks. A challenging issue
is to determine the exact relationship between the spatial
distribution and interaction pattern of regions within a
large-scale network on the one hand and, on the other hand,
the spatial and frequential distribution of oscillations.

Another issue is the connection between neuronal activ-
ity/synchrony and the appearance of a BOLD signal. While
much still needs to be unraveled as to the connection
between neuronal synchronies and the BOLD signal, it now
seems more and more accepted that a sustained change in
neuronal activity is likely to entail a relative change in the
BOLD level [121-124], even though the exact relationship is
expected to be rather complex [125].

Still, the BOLD signal is only a fraction of the total
signal that is acquired in fMRI, a signal that is not exempt
from many kinds of artifacts [126-128]. In particular,
some physiological processes (e.g., cardiac, respiratory, or
movement-related) induce spurious effects that contaminate
the BOLD signal in the whole brain [129, 130]. Such artifacts
are predominant in certain regions of the brain, such as the
basal arteries for cardiac activity or the interfaces between



International Journal of Biomedical Imaging

cerebrospinal fluid pools and brain tissus for breathing
and head movements. This origin-dependent predilection
implies a spatial structure of the noise. Some network
detection algorithms may hence recognize voxels influenced
by the same spatially structured artifact as meeting the
requirement for strong temporal coherence and, hence,
assign them to a common structure. This feature has been
successfully used by ICA techniques to provide efficient noise
separation and removal techniques [66, 131, 132]. Yet, the
issue arises when structures induced by noise are wrongly
interpreted as functional networks; their detection and
removal is hence of very high importance. The fundamental
question, while examining spatial structures with a similar
temporal behavior, is “do we measure neurally induced
signal or consequences of physiological processes [133]?”
Even though our understanding of the potential artifacts
that can contaminate the BOLD fMRI signal improves,
the consequences of many potential sources of structured
noise have barely been mentioned, let alone investigated.
For instance, it is believed that some mechanisms related
to the regulation of blood flow (e.g., through the level of
CO; in the blood) could induce coherent changes in BOLD
signal throughout the brain—giving birth to an effect likely
to be identified as a functional network. In fact, such an
effect has been used to explain the presence of the default-
mode network in fMRI [134, 135]. Now, whether these
regions are wrongfully classified as belonging to a common
functional network because their voxels are corrupted by the
same artifact, or whether they are actually regions that drive
the physiological response is a matter that remains to be
solved.

5.3. Data analysis

Many questions remain open regarding what methodologies
to apply to extract functional networks. We here quickly dis-
cuss issues related to the choice of a model, the redundancy
of fMRI signals, the necessity to provide both individual and
group analyses, the importance of result representation, and
the validation of fMRI results with other modalities.
Procedures used to investigate networks are usually based
on mathematical methods that have been discovered inde-
pendently of the field of fMRI data analysis. Their behavior
is hence not guided by cognitive but mathematical consid-
erations. While it can be accepted that most methods are
general enough to be applied to a wide variety of problems,
they still require a careful assessment of how best to adapt
them to the issue at hand. We believe that the major point
to cope with here is “how do methods code for segregation
and integration? Does it make sense?” A relevant approach
could be to try to derive out consistence requirements from
cognitive consideration of what an “ideal” method should
be able to do: quantify integration between voxels, regions,
or networks using the same principled measure (such as
the multiple correlation coefficient [136] or integration [7,
137]); differentiate between direct and indirect information
exchanges (such as partial correlation [19, 72, 138-141]);
discriminate causality from simple co-occurrence (such as
Granger causality [138, 142—144]). Some methods are able

to deal with one aspect of the problem, but none has been
proposed to answer all these questions simultaneously.

Besides, investigation of large-scale networks face a
very interesting problem, namely that of determining the
spatial precision under which data should be considered
as segregated and over which they should be said to be
integrated. While it is obvious that neighboring voxels
share a great deal of information, methods that model
and summarize the behavior of a whole network with
one single time course clearly oversimplify the problem
and discard a lot of cogent information. Bellec et al. [80]
proposed a statistical model that provides a critical distance
that separates segregation and integration. Voxel clustering
is another attempt to deal with that issue. However, the
parameters that characterize the clustering coarseness are set
a priori, when they should be determined by the intrinsic
properties of the data and allowed to vary across the brain
(e.g., between subcortical and cortical structures, which have
distinct characteristic spatial extents). This step allows one
also to reduce the dimensionality of the data. At least for
this reason, it is a crucial step, because network investigation
requires multivariate analyses that are computationally very
demanding (the computational burden roughly exponentialy
increase with the number of regions).

In neurocomputing, models investigating issues very
similar to that of large-scale networks have already been
developed [145-148]. However, most methods developed
so far for effective connectivity, such as structural equation
modeling (SEM) [149-152], dynamical causal modeling
(DCM) [153-155], or generative models—including neural
mass models [145, 156] and large-scale neural models [147,
157-159]—, have been of little use to the investigation of
extended large-scale networks, since their intrinsic complex-
ity prevent them from modeling systems with that many
degrees of freedom (but see, [160]).

Methods originating from graph and/or network theories
might prove more adapted to such problems [161-163],
since they provide global quantification of structures that,
besides from being ubiquitous [164, 165], are not unlike
some models of brain networks. Using such methods, brain
networks have been shown to exhibit small-world [70,
166—170] and scale-free [171, 172] features. The fact that
networks simultaneously exhibit both properties has strong
structural [104, 173] and functional [174, 175] implications.

Being able to devise methods that can deal with both
individual and group analyses is also an important issue. At
the individual level, it is essential to assess the significance
of the different networks [80, 85, 176]. With procedures
of increasing complexity, nonparametric resampling proce-
dures [177], mostly used in the context of the GLM so
far [178], might be appealing [179]. At the group level,
one seeks to determine invariant networks across subjects.
This has been done by either considering a model for the
group [76] or solving the problem at an individual level and
then performing clustering [79]. Validation of such methods
have to be developed; a first step in this direction has been
proposed by Calhoun et al. [180].

Once results have been produced, representing the results
becomes a key issue. Consider for instance functional
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connectivity as measured by marginal correlation. Though
computationally tractable on a large-scale network of N
units, even for N large, such a method generates N(N —
1)/2 correlation coefficients (e.g., 4950 for as few as 100
voxels/regions; 19900 for 200; 499500 for 1000). Simply
representing these on a graph as is commonly done [72, 140,
181] would prove impossible to read, let alone to interpret.
Procedures that summarize the information have to be
proposed; these can rely on PCA/MDS [71, 79, 182]; they
could also use other representational techniques [183, 184].

Last, but not least, an essential point to validate and
better understand the large-scale network approach in fMRI
is the comparison with results form other imaging modalities
or areas of neuroscience, such as electrophysiology [34-38],
electroencephalography (EEG) or magnetoencephalography
(MEG) [39, 125, 185, 186], and diffusion tensor imaging
(DTI) [187-190]. To be able to efficiently compare results
from different imaging modalities, it is essential to better
understand how each modality images the activity of large-
scale brain networks. In this perspective, providing a unified
generative and/or statistical model for several of these
modalities would be of the utmost importance, granting
access to multimodal in vivo imaging of the brain in action.
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