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Abstract. The concept of generalised species of structures between
small categories and, correspondingly, that of generalised analytic func-
tor between presheaf categories are introduced. An operation of sub-
stitution for generalised species, which is the counterpart to the com-
position of generalised analytic functors, is also put forward. These
definitions encompass most notions of combinatorial species considered
in the literature—including of course Joyal’s original notion—together
with their associated substitution operation. Our first main result ex-
hibits the substitution calculus of generalised species as arising from
a Kleisli bicategory for a pseudo-comonad on profunctors. Our sec-
ond main result establishes that the bicategory of generalised species of
structures is cartesian closed.

1. Introduction

The concept of species of structures, introduced by Joyal [23], is a fun-
damental notion in modern enumerative combinatorics. A species of struc-
tures describes precisely what is informally understood by a type of labelled
combinatorial structure, and can be regarded as a structural counterpart
of a counting formal exponential power series. To provide a satisfactory
conceptual basis for the theory of species of structures, Joyal [24] also in-
troduced the theory of analytic functors. Analytic functors can be regarded
as structural counterparts of exponential generating functions, and provide
an equivalent view of species of structures as Taylor series. The theory of
species of structures [23, 24, 7] provides a rich calculus that is a structural
counterpart of the calculus of formal exponential power series. Among other
things, this calculus explains formal combinatorial counting arguments by
means of bijective proofs. For such and other applications of the theory of
species in combinatorics the reader is referred to [7].

One of the fundamental operations on combinatorial species is that of
substitution. Indeed, for a whole variety of notions of combinatorial species,
operations of substitution have been defined. Each of these corresponds to
the composition of associated formal power series (see, e.g., [23, 24, 40, 6, 38,
37, 7]). In particular, Joyal [24] showed that the operation of substitution for
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species of structures corresponds to the functorial composition of analytic
functors.

Our first aim here is to give a general and uniform treatment of combi-
natorial species and their substitution operation. After recalling the basic
theory of species of structures and analytic functors, we introduce the more
general concepts of species of structures between small categories and of an-
alytic functors between presheaf categories; the former being Taylor series
of the latter. Generalised species are then equipped with an operation of
substitution akin to the various existing notions for combinatorial species.
Our definition is shown to correspond to the series of Taylor coefficients of
the functorial composition of generalised analytic functors. This leads to the
definition of a bicategory of generalised species of structures. This material
constitutes the first part of the paper, and comprises Sections 2 and 3.

The substitution operation on species of structures underlies a well-known
and important monoidal structure introduced by Kelly [25] (see also [27, 28]).
Indeed, the monoids for this substitution monoidal structure are the sym-
metric set-operads of May [35]. More recently, Baez and Dolan considered
further generalisations of these structures leading to the concepts of sorted
symmetric set-operad [1] and of stuff types [2] (see also [39]). The former,
though not the latter, can be directly recast in our setting: the substitution
monoidal structures arise from the endo-homs of the bicategory of gener-
alised species, and the operads are the monads in there.

Our second aim is twofold: to give an abstract theory of the substitu-
tion calculus of generalised species and to further enrich the calculus of
combinatorial species by adding a new dimension to it. To this end, we in-
troduce a pseudo-comonad whose Kleisli bicategory has generalised species
as morphisms, with composition amounting to substitution. The Kleisli bi-
category of generalised species of structures is then shown to be cartesian
closed. Hence, it does not only supports operations for pairing and project-
ing, which are implicit in the combinatorial literature, but also operations
of abstraction and evaluation, yet to be exploited in combinatorics. This
development is presented in the second part of the paper, which comprises
Sections 4 and 5. Applications are discussed in Section 6.

The construction leading to the Kleisli bicategory of generalised species
is analogous to the construction of the relational model of linear logic [20].
This model can be seen to arise by observing that the monad on the category
of sets whose algebras are commutative monoids extends to a monad on the
category of relations via a distributive law. Using the duality available on
the category of relations, this monad can be turned into a comonad that has
the properties of a linear exponential comonad and thus determines a carte-
sian closed category via the Kleisli construction (see, e.g., [36, 41]). Our
work demonstrates that it is possible to carry over a similar programme in
the context of 2-dimensional category theory; with the 2-category of small
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categories replacing the category of sets, the bicategory of profunctors re-
placing the category of relations, the 2-monad for symmetric [strict] mo-
noidal categories replacing the monad for commutative monoids, and the
duality on profunctors replacing the duality on relations. This viewpoint
has also been considered in [10], where cartesian closed structures of the
type described here were indicated informally. Within the context of lin-
ear logic, our model generalises and extends a model that was a precursor
to models of linear logic: the model of normal functors (viz. generating
functors of formal set-valued multivariate power series) introduced by Gi-
rard [21] to construct a model of the lambda calculus. Within the context of
2-dimensional algebra, our construction of the Kleisli bicategory is similar
to an abstract construction of Day and Street in [14, Section 2]; a main
difference being that they consider a pseudo-comonad associated to the free
(non-commutative) monoid construction, which in our setting would amount
to considering the free (non-symmetric) strict monoidal completion.

For the convenience of the reader, relevant notions of 2-dimensional cat-
egory theory are recalled in Appendix A. Throughout the paper, we use
well-known properties of presheaf categories and make extensive use of the
calculus of coends, for which the reader is referred to [33, Chapter X]. For
background on monoidal categories, see e.g. [16, 32].

2. Species of structures and analytic functors

2.1. Species of structures. Recall from [23] that a species of structures is
a functor B // Set, for B the groupoid of finite sets and bijections, and Set
the category of sets and functions. Species of structures are essentially
determined by their action on finite cardinals. To express this precisely,
let P be the full subgroupoid of B whose objects are the finite cardinals
[n] =def {i ∈ N | 1 ≤ i ≤ n}, with n ∈ N. Thus, the hom-sets of P are as
follows:

P[u, v] =def

{
Pn , if u = v = [n]

∅ , otherwise

where Pn denotes the symmetric group on [n]. Then, composition with the
embedding P � � // B yields an equivalence of functor categories

[B,Set] ' // [P,Set] . (1)

In view of the above, and without loss of generality, we will henceforth
consider species of structures either as functors B // Set or P // Set
depending on the point of view that is most convenient.

2.2. Analytic functors and substitution. Every species of structures F

determines an endofunctor F̃ : Set // Set, called the analytic functor
associated to F . For F : P // Set, the endofunctor F̃ is a left Kan extension
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of F along the inclusion P // Set

P Set

Set

//

eF
��F ))

+3

and we define it as follows:

F̃ (X) =def

∫ u∈P

F (u)×Xu .

Note however that this can be simplified to yield a description as an expo-
nential power series. Indeed,

F̃ (X) ∼=
∑
n∈N

F [n]×Xn
/Pn

where F [n]×Xn
/Pn

is the quotient of F [n] × Xn induced by the left
Pn-action on F [n] given by the action of F and the right Pn-action on
Xn given by permuting n-tuples. In general, an endofunctor on Set is said
to be analytic [24] whenever it is naturally isomorphic to the analytic func-
tor associated to a species. Moreover, whenever T ∼= F̃ , one says that F
is the species of Taylor coefficients of the analytic functor T ; the concept
being well-defined up to natural isomorphism [24, Theorem 1].

It is a remarkable fact that analytic functors are closed under composi-
tion. This can be seen to follow from the fact that there is an operation of
substitution [24] that to every pair of species F,G associates a species G◦F
such that

G̃ ◦ F ∼= G̃ F̃ . (2)

As explained in [7, Section 1.4], the substitution operation for species of
structures is a structural counterpart to the composition of formal exponen-
tial power series.

To define substitution we need recall that the groupoid P has a canonical
symmetric strict monoidal structure whose unit is the empty cardinal and
whose tensor product, here denoted ⊕, is given by the addition of cardinals.
The symmetry is given by the natural isomorphism whose components are
the bijections

[m]⊕ [n] = [m + n]
σm,n

∼=
// [n + m] = [n]⊕ [m]

defined by
σm,n(k) = 1 +

(
(k + n− 1) mod (m + n)

)
. (3)

Then, in the vein of [25], the substitution operation can be defined as follows:

(G ◦ F )(u) =def

∫ v∈P

G(v)× F ∗v(u) (4)
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where

F ∗[n](u) =def

∫ u1,...,un∈P ∏
i∈[n]

F (ui)×P[⊕i∈[n]ui, u] .

For a proof of (2) see [24, Section 2.1 (iv)], or Theorem 3.2.1 below.
Finally, we recall that the substitution operation underlies an important

monoidal structure on the category of species of structures; see [25]. The
unit I for the substitution tensor product is characterised by the fact that
Ĩ ∼= IdSet, and is defined as

I[n] =def

{
[1] , if n = 1
∅ , otherwise

(5)

3. Generalised species of structures and analytic functors

3.1. Generalised species of structures. Our generalisation of the notion
of species of structures combines two ideas. The first idea is to generalise
from the category B to a category BA, parameterised by a small category
A, such that B1 ∼= B. This construction already occurs in [23, Section 7.3],
and is given as follows: the objects of BA are families 〈ai〉i∈I with I ∈ B and
ai ∈ A; a morphism 〈ai〉i∈I

// 〈a′j〉j∈J in BA consists of a pair (σ, 〈fi〉i∈I)
with σ : I ∼= // J in B and fi : ai

// a′σ(i) in A. Composition and iden-
tities are the obvious ones. The second idea is to generalise from Set to
presheaf categories on small categories, i.e. functor categories of the form
B̂ =def [B◦,Set] with B small.

The following definition generalises the concept of species of structures,
which thus arises as that of (1,1)-species of structures. Further examples
of combinatorial species subsumed by our generalisation are mentioned in
Section 6.1.

3.1.1. Definition. An (A,B)-species of structures between small categories
A and B is a functor BA // B̂ .

Note that, analogously to what happens with standard species of struc-
tures, generalised species can be equivalently defined by restricting BA to its
full subcategory PA consisting of sequences, i.e. families indexed by finite
cardinals. Indeed, restriction along the embedding PA � � // BA determines,
for all small categories A and B, an equivalence of functor categories

[BA, B̂]
' // [PA, B̂] ; (6)

a quasi-inverse to which is given by the mapping that left Kan extends along
the embedding PA � � // BA.

In view of the above, we will henceforth consider (A,B)-species of struc-
tures either as functors BA // B̂ or PA // B̂ depending on the point of
view that is most convenient.
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3.2. Generalised analytic functors and substitution. Generalising the
situation for species of structures, we consider analytic functors F̃ : Â // B̂
associated to (A,B)-species of structures F . Consequently, a functor be-
tween presheaf categories is said to be analytic whenever it is naturally
isomorphic to the analytic functor associated to a generalised species. As
in the case of standard analytic endofunctors on Set, also in this general
context one is justified to refer to F as the generalised species of Taylor
coefficients of any analytic functor naturally isomorphic to F̃ .

For F : PA // B̂, the functor F̃ : Â // B̂ is given as follows:

F̃ (X)b =def

∫ u∈PA

F (u)b ×Xu

where
X〈ai〉i∈[n] =def

∏
i∈[n]

Xai .

Note that F̃ is a left Kan extension of F

PA Â

B̂

//

eF
��F
))

+3

along the sum functor SA : PA // Â given by

SA

(
〈ai〉i∈[n]

)
=def

∑
i∈[n]

yA(ai) ,

where yA denotes the Yoneda embedding A � � // Â. Indeed, this readily
follows by observing that

X〈ai〉i∈[n] ∼=
∏
i∈[n]

Â
[
yA(ai), X

] ∼= Â
[
SA〈ai〉i∈[n], X

]
.

Further note that, for n ∈ N and uj ∈ PA (j ∈ [n]), there are canonical
coherent natural isomorphisms as follows:∑

j∈[n]

SA(uj) ∼= SA

(
⊕j∈[n] uj

)
. (7)

We now introduce an operation of substitution for generalised species of
structures that generalises (4). To give the definition we need to consider
a canonical symmetric strict monoidal structure on PA. The unit is the
empty sequence, denoted 〈 〉. The tensor product, denoted ⊕, is given by
sequence concatenation. Explicitly,

〈ai〉i∈[m] ⊕ 〈a′j〉j∈[n] =def 〈[a, a′]k〉k∈[m+n] (8)

where

[a, a′]k =
{

ak , for 1 ≤ k ≤ m

a′k−m , for m + 1 ≤ k ≤ m + n
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The symmetry has components

〈[a, a′]k〉k∈[m+n]

(σm,n,〈id[a,a′]k
〉k∈[m+n])

∼=
// 〈[a′, a]k〉k∈[n+m]

where σm,n is the component of the symmetry of P defined in (3).
For an (A,B)-species F and a (B,C)-species G, the substitution (A,C)-species

G ◦ F is defined as follows:

(G ◦ F )(u)c =def

∫ v∈PB

G(v)c × F ∗v(u) (9)

where

F ∗〈bi〉i∈[n](u) =def

∫ u1,...,un∈PA ∏
i∈[n]

F (ui)bi
×PA[⊕i∈[n]ui, u] . (10)

The next theorem implies that generalised analytic functors are closed
under composition.

3.2.1. Theorem. The analytic functor associated to a substitution gener-
alised species is naturally isomorphic to the composite of the analytic func-
tors of the generalised species.

The central part of the proof of the theorem is encapsulated in the fol-
lowing lemma.

3.2.2. Lemma.

(i) There is an isomorphism natural for X ∈ Â and uj ∈ (PA)◦, for
j ∈ [n], as follows: ∏

j∈[n]

Xuj ∼= X⊕j∈[n]uj . (11)

(ii) For every (A,B)-species F there is an isomorphism natural for X ∈ Â
and v ∈ (PB)◦ as follows:

(F̃X)v ∼=
∫ u∈PA

F ∗v(u)×Xu . (12)

Proof.

(i)
∏

j∈[n] X
uj ∼=

∏
j∈[n] Â[SA(uj), X]

∼= Â
[ ∑

j∈[n] SA(uj), X
]

∼= Â
[
SA

(
⊕j∈[n] uj

)
, X

]
, by (7)

∼= X⊕j∈[n]uj



8 M. FIORE, N. GAMBINO, M. HYLAND, AND G. WINSKEL

(ii) (F̃X)〈bj〉j∈[n]

=
∏

j∈[n]

∫ u∈PA
F (u)bj

×Xu

∼=
∫ u1,...,un∈PA ∏

j∈[n] F (uj)bj
×

∏
j∈[n] X

uj

∼=
∫ u1,...,un∈PA ∏

j∈[n] F (uj)bj
×X⊕j∈[n]uj , by (11)

∼=
∫ u∈PA ∫ u1,...,un∈PA ∏

j∈[n] F (uj)bj
×PA[⊕j∈[n]uj , u]×Xu

=
∫ u∈PA

F ∗〈bj〉j∈[n](u)×Xu

�

Proof of Theorem 3.2.1. We establish that, for an (A,B)-species F and a
(B,C)-species G, the functorial composition of analytic functors G̃ F̃ is nat-
urally isomorphic to the analytic functor G̃ ◦ F .

Indeed, for X ∈ Â, we have the following natural isomorphisms:

G̃(F̃X)c =
∫ v∈PB

G(v)c × (F̃X)v

∼=
∫ v∈PB

G(v)c ×
∫ u∈PA

F ∗v(u)×Xu , by (12)

∼=
∫ u∈PA ∫ v∈PB

G(v)c × F ∗v(u)×Xu

=
∫ u∈PA

(G ◦ F )(u)c ×Xu

= G̃ ◦ F (X)c

�

One can also generalise the definition of the unit of the tensor product of
the substitution monoidal structure recalled in (5). This is done by defining
the identity (A,A)-species of structures IA as

IA(a, u) =def PA
[
〈a〉, u

]
. (13)

As expected, the identities generalised species are characterised by the fact
that ĨA

∼= Id bA.

3.3. The bicategory of generalised species. There is a bicategory Esp
(for espèces de structures [23, 24]) with small categories as 0-cells, gener-
alised species of structures as 1-cells, and natural transformations as 2-cells.
Modulo the equivalence (6), composition of 1-cells in Esp is given by the
substitution operation defined in (9) and the identity 1-cells are given by the
identity generalised species defined in (13). Indeed, it is possible to exhibit
coherent natural isomorphisms

IB ◦ F
∼= // F , F

∼= // F ◦ IA , (H ◦G) ◦ F
∼= // H ◦ (G ◦ F )



GENERALISED SPECIES OF STRUCTURES 9

that arise from lengthy coend manipulations. The next section describes
a conceptual approach to the formulation of the substitution calculus of
generalised species of structures.

4. The Kleisli bicategory of generalised species

4.1. The 2-monad for symmetric monoidal categories. The function
mapping a category A to the category PA defines the action on objects of
a 2-endofunctor which is part of a 2-monad P on the 2-category CAT of
locally small categories, functors, and natural transformations [8]. As with
any 2-monad, we have both strict algebras and pseudo-algebras [43]. The
strict algebras and the pseudo-algebras for P are categories equipped with
particular forms of symmetric monoidal structure. The strict algebras are
symmetric strict monoidal categories, and PA is the free symmetric strict
monoidal category on A. The pseudo-algebras are instead symmetric mo-
noidal categories in the unbiased version (see, e.g., [32, Section 3.1]). These
are categories equipped with coherent n-ary symmetric tensor products for
all n ∈ N, instead of just nullary and binary ones.

We describe the unit and multiplication of the 2-monad P. The unit
e : Id // P has components given by the embeddings eA : A � � // PA defined
as

eA(a) =def 〈a〉 .

The components mA : P2A // PA of the multiplication m : P2 // P are
defined using the canonical tensor product on PA defined in (8) by letting

mA

(
〈ui〉i∈[n]

)
=def

⊕
i∈[n] ui .

As it is to be expected in the context of 2-dimensional monad theory [8],
the universal property of PA requires that for any functor F : A // B,
where B is a (unbiased) symmetric monoidal category, we have a diagram
of the form

A PA

B

� � eA //

F ]

��F
))

ηF +3+3 (14)

where F ] is a symmetric strong monoidal functor and ηF is a natural iso-
morphism. If B is strict monoidal, then F ] is the unique symmetric strict
monoidal functor that makes diagram (14) commute strictly, rather than up
to isomorphism. These data are universal in that they induce an equivalence
of categories

CAT[A,B]
(−)]

'
//
SMON[PA,B]

U(−) eA

oo
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where SMON denotes the 2-category of (unbiased) symmetric monoidal
locally small categories, symmetric strong monoidal functors, and monoidal
transformations; U : SMON // CAT is the forgetful 2-functor.

The functor F ] : PA // B can be defined explicitly using the n-ary tensor
product of B as follows:

F ]
(
〈ai〉i∈[n]

)
=def

⊗
i∈[n] F (ai) . (15)

Similarly, the natural isomorphism ηF can be defined using the coherence
isomorphisms of the (unbiased) symmetric monoidal structure of B.

4.2. A pseudo-monad on profunctors. Recall that for small categories A

and B, an (A,B)-profunctor A � // B is a functor A // B̂, or equivalently
a functor B◦ × A // Set. The identity profunctor on A is the Yoneda
embedding yA : A � � // Â, corresponding to the hom functor A◦×A // Set.
The composite of two profunctors F : A � // B and G : B � // C, denoted
G · F : A � // C, is defined as follows:

(G · F )(c, a) =def

∫ b∈B

G(c, b)× F (b, a) .

We write Prof for the bicategory of small categories, profunctors, and nat-
ural transformations; see e.g. [4, 31, 44] for further background.

The possibility of extending the 2-monad for symmetric [strict] monoidal
small categories to Prof is an example of a general situation analysed in
detail in the context of 2-dimensional monad theory in [18], which develops
further the theory of pseudo-distributive laws for pseudo-monads [26, 34, 11,
19]. In the particular case that concerns us here, one can see that the key
reason for this phenomenon is that the (symmetric) monoidal structure on a
category extends to its category of presheaves via Day’s convolution monoi-
dal structure [12, 22]. Recall that for a small category B, the convolution
tensor product of presheaves Xi ∈ P̂B, for i ∈ [n], is the presheaf defined as(⊗̂

i∈[n]
Xi

)
(v) =def

∫ v1,...,vn∈PB ∏
i∈[n]

Xi(vi)× PB
[
v,⊕i∈[n]vi

]
.

As a consequence, for a small category B, the cocompleteness and the (un-
biased) monoidal structure of P̂B allow us to build the following diagram

B
� � yB //� p

eB
  B

BB
BB

BB
BB ∼= +3

B̂
� �

e bB //

ceB
  A

AA
AA

AA
A

∼= +3

PB̂

dB
}}{{

{{
{{

{{

PB
� �

yPB

// P̂B

Here êB is the left Kan extension of the composite yPB eB along the Yoneda
embedding given by

(êBX)(v) =def

∫ b∈B

X(b)× PB[v, eB(b)] ,
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and dB =def êB
] according to the notation introduced in (15). Using this

construction, for a profunctor F : A � // B, one can define a profunctor
PF : PA � // PB as the composite

PA
PF // PB̂

dB // P̂B .

This definition yields a pseudo-endofunctor P on Prof which underlies a
pseudo-monad. The unit and multiplication of this pseudo-monad are de-
fined using the unit and multiplication of the 2-monad P. The components
of the unit are the profunctors eA : A � // PA defined as

eA(u, a) =def PA
[
u, eA(a)

]
.

The multiplication has components mA : P2A � // PA given by profunctors
defined as

mA(u, s) =def PA
[
u, mA(s)

]
.

4.3. The Kleisli bicategory of generalised species. The duality on
profunctors (see, e.g., [13, Section 7]) allows then to turn the pseudo-monad
P into a pseudo-comonad P.

The dual of a small category A is its opposite, A⊥ =def A◦; the dual
of a profunctor F : A � // B is the profunctor F⊥ : B⊥ � // A⊥ defined
by letting F⊥(a, b) =def F (b, a); the dual of a natural transformation η :
F +3 G :A � // B is the natural transformation η⊥ : F⊥ +3 G⊥ :A⊥ � // B⊥

given by (η⊥)(b,a) = η(a,b). Thus, the pseudo-endofunctor underlying the
pseudo-comonad P is given by the composite

Prof
(·)⊥ // Prof

P // Prof
(·)⊥ // Prof .

The counit e : P � // Id and comultiplication m : P2 � // P are defined as
follows

eA =def (eA⊥)⊥ , mA =def (mA⊥)⊥ .

We write ProfP for the Kleisli bicategory of the pseudo-comonad P on
Prof . The general Kleisli-bicategory construction is recalled in Appen-
dix A.6. For our particular case, the 0-cells are small categories and, since
ProfP[A,B] = Prof [PA,B], the 1-cells are generalised species of structures.
Henceforth, when considered as a 1-cell in ProfP, an (A,B)-species F will
be denoted in either of the following ways

F : PA // B̂ , F : PA � // B , F : A o // B

depending on what is most convenient.

The identities in the Kleisli bicategory of generalised species ProfP, which
are given by the components of the counit of P, coincide with the identities
generalised species defined in (13). There is also a correspondence between
composition and substitution.

4.3.1. Theorem. The composition and substitution operations of generalised
species of structures are naturally isomorphic.
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It is convenient for what follows to adopt the following convention. Since
the opposite of a (symmetric) [strict] monoidal category is also (symmetric)
[strict] monoidal, for any small category A, the category (PA)◦ is symmetric
strict monoidal, and one can consider the symmetric monoidal extension of
the embedding eA

◦ : A◦ � � // (PA)◦ along the universal embedding eA◦ :
A◦ � � // P(A◦). This construction yields a canonical natural isomorphism(

eA
◦)] : P(A◦)

∼= // (PA)◦

which, as a notational convention, we will consistently treat as an identity.
Conveniently then, the expression PA◦ and similar ones become unambigu-
ous.

Proof of Theorem 4.3.1. Let F : A o // B and G : B o // C be generalised
species. Recall from Appendix A.6 that the Kleisli composite of F and G
is the profunctor composite G · FP : PA � // C where FP : PA � // PB is in
turn the profunctor composite

P(F ) ·mA =
(
P(F⊥)

)⊥ ·mA .

Thus, it is enough to show that FP : PA � // PB is naturally isomorphic to
F ∗ : PA � // PB defined, using (10), as follows

F ∗(v, u) =def F ∗v(u) .

We start by considering P(F⊥) : PB◦ // P̂2A◦. For 〈bj〉j∈[n] ∈ PB◦, we
have that

P(F⊥)
(
〈bj〉j∈[n]

)
= dPA◦

(
P(F⊥)

(
〈bj〉j∈[n]

))
= êPA◦ ]

(
〈F⊥(bj)〉j∈[n]

)
= ⊕̂j∈[n] êPA◦

(
F⊥(bj)

)
Hence, for s ∈ P2A, we have

P(F⊥)
(
s, 〈bj〉j∈[n]

)
=

∫ s1,...,sn∈P2A ∏
j∈[n]

êPA◦(F⊥(bj))(sj)×P2A[⊕j∈[n]sj , s] .

For b ∈ PB◦ and s ∈ P2A, we have

êPA◦(F⊥(b))(s) =
∫ u∈PA

F (b, u)× P2A[〈u〉, s] .

It follows that, for 〈bj〉j∈[n] ∈ PB◦ and s ∈ P2A,

(PF )(〈bj〉j∈[n], s)

= P(F⊥)
(
s, 〈bj〉j∈[n]

)
=

∫ s1,...,sn∈P2A ∏
j∈[n]

∫ uj∈PA
F (bj , uj)× P2A[〈uj〉, sj ]× P2A[⊕j∈[n]sj , s]

∼=
∫ u1,...,un∈PA ∏

j∈[n] F (bj , uj)× P2A[〈uj〉j∈[n], s]
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Finally, for 〈bj〉j∈[n] ∈ PB◦ and u ∈ PA, we conclude that

FP(〈bj〉j∈[n], u)

=
∫ s∈P2A(PF )(〈bj〉j∈[n], s)× PA[mA(s), u]

∼=
∫ s∈P2A ∫ u1,...,un∈PA ∏

j∈[n] F (bj , uj)× P2A[〈uj〉j∈[n], s]× PA[mA(s), u]

∼=
∫ u1,...,un∈PA ∏

j∈[n] F (bj , uj)× PA[⊕j∈[n]uj , u]

= F ∗(〈bj〉j∈[n], u)

�

The correspondence between substitution and composition extends to a
biequivalence between Esp and ProfP.

5. The cartesian closed structure

The concept of cartesian closed bicategory can be expressed entirely in
terms of the concept of biadjunction between bicategories [44], the definition
of which we recall in Appendix A.4.

A bicategory E is cartesian if the diagonal pseudo-functor ∆n : E // En

has a right biadjoint for all n ∈ N. Further, a bicategory E with binary
products (−) u (=) : E × E // E is closed if, for all B ∈ E , the pseudo-
functor (−) uB : E // E has a right biadjoint.

5.1. Products. To establish the cartesian structure of the bicategory of
generalised species, we first recall a basic property of the presheaf construc-
tion, viz. that it maps sums to products.

Let n ∈ N. For presheaves Xi : Ai
◦ // Set (i ∈ [n]), let [X1, . . . , Xn] :

(
∑

i∈[n] Ai)◦ // Set be the unique presheaf such that for all i ∈ [n],
[X1, . . . , Xn] ιi◦ = Xi, where ιi : Ai

//
∑

i∈[n] Ai denote the coproduct

injections. This construction yields a functor [−] :
∏

i∈[n] Âi
//
∑̂

i∈[n] Ai.
Conversely, composition with the coproduct injections provides a functor in
the opposite direction, ι :

∑̂
i∈[n] Ai

//
∏

i∈[n] Âi. This is defined by letting
ι(F ) =def (F ι1

◦, . . . , F ιn
◦). We then have the following fact.

5.1.1. Lemma. The functors

∏
i∈[n] Âi

[− ] // ∑̂
i∈[n] Ai

ι
oo

form an isomorphism of categories.
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This lemma entails the following chain of isomorphisms∏
i∈[n] Esp[B,Ai] =

∏
i∈[n]

[
PB, Âi

]
∼=

[
PB,

∏
i∈[n] Âi

]
∼=

[
PB,

∑̂
i∈[n] Ai

]
= Esp

[
B,

∑
i∈[n] Ai

]
which indicate that the bicategory of generalised species has finite products.
The next result establishes this formally.

5.1.2. Theorem. The bicategory Esp is cartesian.

Proof. We start by defining the action of the right biadjoint to the diagonal
pseudo-functor on objects. For small categories Ai (i ∈ [n]),

ui∈[n]Ai =def
∑

i∈[n] Ai .

Then, for Gi : B o // Ai (i ∈ [n]), the pairing 〈G1, . . . , Gn〉 : B o //ui∈[n]Ai

is defined by setting, for i ∈ [n],

〈G1, . . . , Gn〉(ιi(a), v) =def Gi(a, v)

where a ∈ Ai. Next, we introduce the projections πi :ui∈[n]Ai o // Ai (i ∈ [n]),

πi(a, u) =def P
( ∑

i∈[n] Ai

)
[ 〈ιi(a)〉, u ] .

We claim that these data determine an adjoint equivalence of the form

Esp[B,ui∈[n]Ai]

(
π1◦(−) ,..., πn◦(−)

)
⊥

// ∏
i∈[n] Esp[B,Ai] .

〈−〉
oo

To check this, one needs to exhibit natural isomorphisms for the unit and
counit. The component of the unit for F : B o // ui∈[n]Ai is given by a
natural isomorphism

F
∼= +3 〈π1 ◦ F, . . . , πn ◦ F 〉

that expresses the η-expansion for products. The component of the counit
for Gi : B o // Ai (i ∈ [n]), consists of natural isomorphisms

πi ◦ 〈G1, . . . , Gn〉
∼= +3 Gi

that express the β-reduction for products. Explicit definitions can be derived
via coend manipulations which we omit. �
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5.2. Exponentials. The closed structure of the cartesian bicategory of gen-
eralised species will be established by exploiting a property of the free sym-
metric strict monoidal completion. Since the product of (symmetric) [strict]
monoidal categories carries a (symmetric) [strict] monoidal structure, we get
a diagram of the form

A + B

S
''OOOOOOOOOOOO

� � eA+B // P(A + B)

S]

��
PA× PB

where S : A + B // PA× PB is defined by letting

S
(
ι1(a)

)
=def

(
〈a〉, 〈 〉

)
, S

(
ι2(b)

)
=def

(
〈 〉, 〈b〉

)
for a ∈ A and b ∈ B. We also define a functor in the opposite direction:

PA× PB
P(ι1)×P(ι2) // P(A + B)× P(A + B)

⊕ // P(A + B) .

5.2.1. Lemma. The functors

P(A + B)
S]

//
PA× PB

⊕
(
P(ι1)×P(ι2)

)oo

form an equivalence of categories.

We introduce some abbreviations for future reference. For x ∈ P(A×B),
we write (x.1, x.2) for S](x), so that we have x.1 ∈ PA and x.2 ∈ PB. Given
u ∈ PA and v ∈ PB, we write u ⊕ v for Pι1(u) ⊕ Pι2(v), so that we have
u ⊕ v ∈ P(A + B). With this notation, thus, we then have isomorphisms
x ∼= x.1 ⊕ x.2, for all x ∈ P(A + B).

Crucially, the equivalence of Lemma 5.2.1 can be used in the following
chain of equivalences, that suggests the definition of exponentials in the
bicategory of generalised species of structures:

Esp[A uB,C] = [ P(A + B), Ĉ ]

' [ PA× PB, Ĉ ]
∼= [PA, ̂PB◦ × C ]
= Esp[A,PB◦ × C]

In the proof of the next theorem, the cartesian closed structure is exhibited
in detail.

5.2.2. Theorem. The cartesian bicategory Esp is closed.

Proof. Let B ∈ Esp and recall that the pseudo-functor (−) uB : Esp // Esp
is defined using the projections and pairing operations introduced earlier, as
follows:

F uB =def 〈F ◦ π1, π2〉 .
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To define the required right biadjoint we let, for C ∈ Esp,

CB =def PB◦ × C .

For G : A uB o // C, we define its abstraction λB(G) : A o // CB as follows

(λB G)
(
(v, c), u) =def G(c, u⊕ v

)
.

We further define the generalised species evalB : CBuB o // C, which models
evaluation, as follows

evalB(c, z) =def P(PB◦ × C) [ 〈 (z.2, c) 〉 , z.1 ] .

We claim that there is an adjoint equivalence of the form

Esp[A,CB] ⊥

evalB◦(−uB) //
Esp[A uB,C] .

λB(−)
oo

The component of the unit of the adjunction for F : A o // CB is given by a
natural isomorphism of the form

F
∼= +3 λB

(
evalB ◦ (F uB)

)
that expresses the η-expansion for exponentials. The component of the
counit for G : A uB // C is given by a natural isomorphism of the form

evalB ◦
(
λB(G) uB

) ∼= +3 G

that expresses the β-reduction for exponentials. These natural transforma-
tions can be produced by lengthy coend manipulations. �

6. Applications

6.1. Structural combinatorics. The concept of a generalised species of
structures encompasses most of the notions of combinatorial species in-
troduced in the literature. Let us refer here to (A,1)-species of struc-
tures simply as A-species, and observe that these can be identified with
functors BA // Set. Under these conventions, one can see that k-sorted
species [23, 7] are

( ∐
i∈[k] 1

)
-species; permutationals [6, 23] are CP-species,

where CP is the groupoid of finite cyclic permutations; partitionals [40] are
B∗-species, where B∗ is the groupoid of non-empty finite sets. Other notions
fitting into our framework are colored species [38], and species on graphs
and digraphs [37].

Furthermore, the operation of substitution associated to these combinato-
rial species (introduced for enumerative combinatorial purposes as structural
counterparts of the composition of corresponding formal power series) ap-
pear as specialisations of our substitution operation for generalised species.
For example, the multi-substitution G(F1, . . . , Fk) of the `-sorted species
F1, . . . , Fk and the k-sorted species G is the substitution `-sorted species
G ◦ 〈F1, . . . , Fk〉.
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In fact, the whole calculus of species [24, 7] (encompassing addition, mul-
tiplication, substitution, [partial] differentiation) extends to a calculus of
generalised species. However, the closed structure exhibited in this paper
provides a new dimension absent from the combinatorial perspective. In-
deed, for instance, the calculus of generalised species does not only supports
the above operations but also higher-order differential operators. Details
will appear elsewhere, though see [17, Section 2].

6.2. Lambda calculus. The bicategory of generalised species, being carte-
sian closed, is a pseudo-extensional model of the simply typed lambda cal-
culus, in the sense that both the η and β identities for product and function
types (see, e.g., [30]) are modelled by canonical natural isomorphisms rather
than by equalities. Note that our explicit description of the cartesian closed
structure includes that of the η and β isomorphisms, respectively modelling
η-expansion and β-reduction.

The bicategory of generalised species further provides models of the un-
typed lambda calculus (i.e. reflexive objects [42]) akin to graph models (see,
e.g., [3, 29] and also [21]). Indeed, the free P(−)◦×(−)-algebra A on a small
category A in Cat, the category of small categories and functors, yields a

retraction A
A

C A in Esp. Further, the final P(−)◦×(−)-coalgebra U on
Cat yields an isomorphism UU ∼= U in Esp. Curiously, U is a groupoid
with the following explicit combinatorial description: it has objects given
by the class of planar trees described by ω◦-chains

{0} � � //⊥
oo

O1 � � //⊥
oo · · · � � //⊥

oo
On � � //⊥

oo · · · (n ∈ N)

of reflections between finite ordinals, with morphisms given by natural bi-
jections. In the light of the differential structure mentioned in Section 6.1,
the bicategory of generalised species provides also a 2-dimensional model of
both the typed and the untyped differential lambda calculus [15, 9].

Acknowledgements. We are grateful to Claudio Hermida for advice on
bicategory theory.

Appendix A. Bicategory theory

A.1. Bicategories. A bicategory C consists of the following data:
• a class Ob(C) of 0-cells, or objects;
• a family C[A,B], for A,B ∈ Ob(C), of hom-categories, whose objects

and morphisms are respectively called 1-cells and 2-cells;
• a composition operation, given by a family of functors

C[B,C]× C[A,B] // C[A,C]

whose actions on a pair (G, F ) of 1-cells is written G · F ;
• identities, given by 1-cells 1A ∈ C[A,A], for A ∈ Ob(C);
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• natural isomorphisms α, λ, ρ, expressing the associativity law

αH,G,F : (H ·G) · F // H · (G · F )

and identity laws

λF : 1B · f // F , ρF : F // F · 1A

subject to three coherence axioms [5].

A.2. Pseudo-functors. A pseudo-functor Φ : C // D between bicategories
consists of

• a function Φ : Ob(C) // Ob(D);
• functors ΦA,B : C[A,B] // D[ΦA,ΦB], for A,B ∈ C;
• natural isomorphisms

ϕG,F : Φ(G · F ) // Φ(G) · Φ(F ) , ϕA : Φ(1A) // 1ΦA

subject to coherence axioms [5].

A.3. Pseudo-natural transformations. A pseudo-natural transformation
p : Φ // Ψ between pseudo-functors consists of

• a family of morphisms pA : ΦA // ΨA, for A ∈ C;
• a family of invertible 2-cells

ΦA ΦB

ΨA ΨB

pA

��

pB

��

ΦF //

ΨF
//

pF
��

for F : A // B, subject to coherence axioms [5].

A.4. Biadjoints. To define a right biadjoint to a pseudo-functor between
bicategories Φ : C // D, it is sufficient to give:

• 0-cells ΨX ∈ C, for X ∈ D;
• 1-cells qX : ΦΨX // X, for X ∈ D;
• a family of equivalences of categories, for A ∈ C and X ∈ D,

C[A,ΨX]
qX ·Φ( · )

⊥
//
D[ΦA,X]

(·)[

oo . (16)

The unit and counit of an adjunction as in (16) have components that we
write, for F : A // ΨX and G : ΦA // X, as

ηF : F //
(
qX · Φ(F )

)[
, εG : qX · Φ(G[) // G .

These data canonically determine a pseudo-functor Ψ : D // C and the unit
and counit of the pseudo-adjunction, given by pseudo-natural transforma-
tions p : IdC // ΨΦ and q : ΦΨ // IdD, which satisfy the triangular laws
up to coherent isomorphism.
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A.5. Pseudo-comonads. A pseudo-comonad on a bicategory C consists of
a pseudo-functor P : C // C, two pseudo-natural transformations v : P // IdC
and n : P // P 2, called counit and comultiplication, and invertible modifi-
cations α, λ, and ρ fitting in the following diagrams

P P 2

P 2 P 3

n

��
nP

��

n //

Pn
//

α
��

P

P

P 2 P
Pv
oo

1P

��

n

��

vP
//

1P

��
λks ρks (17)

and subject to three coherence conditions. We refer to the modifications α,
λ, and ρ as the associativity, left unit, and right unit of the pseudo-monad,
respectively.

A.6. The Kleisli bicategory. The Kleisli bicategory CP associated to a
pseudo-comonad P on a bicategory C is defined as having the same 0-cells
as C, and by letting

CP [A,B] =def C[PA,B] .

The composition in CP of F : PA // B and G : PB // C is as

G ◦ F =def G · (PF · nA)

This definition can be easily extended to provide the required composition
functors. The identities in CP are the components of the counit of the
comonad. The associativity, left unit, and right unit of the pseudo-comonad
allow the definition of isomorphisms for the associativity and unit laws of
the bicategory. The coherence conditions for a pseudo-comonad guarantee
that the coherence conditions for a bicategory are satisfied.
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